
Int. J. Web and Grid Services, Vol. x, No. x, xxxx 1

Anti-pattern free code-first Web Services for
state-of-the-art Java WSDL generation tools

José Luis Ordiales Coscia
E-mail: jlordiales@gmail.com

Cristian Mateos*
ISISTAN-CONICET - UNICEN University
Tandil (B7001BBO), Buenos Aires, Argentina.
Tel./Fax: +54 (249) 443-9682 ext. 35/443-9681
E-mail: cmateos@conicet.gov.ar
Also Consejo Nacional de Investigaciones Cientı́ficas y Técnicas
(CONICET)
*Corresponding author

Marco Crasso
ISISTAN-CONICET - UNICEN University
E-mail: mcrasso@conicet.gov.ar
Also CONICET

Alejandro Zunino
ISISTAN-CONICET - UNICEN University
E-mail: azunino@conicet.gov.ar
Also CONICET

Abstract: Service-Oriented Computing (SOC) is a recent paradigm that
promotes building applications as a set of coarse-grained, remote software
components called services. SOC just represents a paradigm and as such
it must be materialized through specific technologies, being Web Services
the most common choice. In Web Service terms, each service is composed
of an implementation and an abstract description of its functionality by
using the Web Services Description Language (WSDL). Methodologically,
Web Services are often built by first implementing their behavior and then
generating the corresponding WSDL document via automatic tools. Even
when this practice is cheaper, bad design and coding practices already present
in a service implementation may end up affecting the quality of the resulting
WSDL document. For Web Services to be reusable, good WSDL designs are
crucial. In a previous paper Mateos et al. (2011) it was shown that there is a
high correlation between established Object-Oriented (OO) metrics from the
source code implementing services and the occurrences of “anti-patterns” in
WSDL documents. In this follow-up paper, these previous results are extended
to all the existing WSDL generation tools and perform a detailed analysis of
the impact of individual early source code OO metric-driven refactorings on
the quality of the obtained WSDL documents. The generalized nature of the
experiments makes the findings readily applicable in the industry.

Copyright c⃝ 2009 Inderscience Enterprises Ltd.



2 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

Keywords: SERVICE-ORIENTED COMPUTING; WEB SERVICES; CODE-
FIRST; OBJECT-ORIENTED METRICS; WSDL ANTI-PATTERNS; WSDL
GENERATION TOOLS; JAVA.

Reference to this paper should be made as follows: Ordiales Coscia, J. L.,
Mateos, C., Crasso, M. and Zunino, A. (xxxx) ‘Anti-pattern free code-first
Web Services for state-of-the-art Java WSDL generation tools’, Int. J. Web
and Grid Services, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: José Luis Ordiales Coscia is an MSc. candidate
at the UNICEN, working under the supervision of Cristian Mateos and
Marco Crasso. His thesis is about early improving understandability and
discoverability of code-first Web Services.

Cristian Mateos http://www.exa.unicen.edu.ar/ ˜cmateos received a
Ph.D. degree in Computer Science from the UNICEN, in 2008, and his M.Sc.
in Systems Engineering in 2005. He is a full time Teacher Assistant at the
UNICEN and member of the ISISTAN and the CONICET. He is interested
in parallel/distributed programming, Grid middlewares and Service-oriented
Computing.

Marco Crasso http://www.exa.unicen.edu.ar/ ˜mcrasso received a Ph.D.
degree in Computer Science from the UNICEN in 2010. He is a member of
the ISISTAN and the CONICET. His research interests include Web Service
discovery and programming models for SOC.

Alejandro Zunino http://www.exa.unicen.edu.ar/ ˜azunino received a
Ph.D. degree in Computer Science from the UNICEN, in 2003, and his M.Sc.
in Systems Engineering in 2000. He is a full Adjunct Professor at UNICEN
and member of the ISISTAN and the CONICET. His research areas are Grid
computing, Service-oriented computing, Semantic Web Services and mobile
agents.

1 Introduction

The success encountered by the Internet encourages practitioners, companies and
governments to create software that uses information and services that third-parties
have made public in the Web. Service-Oriented Computing (SOC) is a relatively
new computing paradigm that supports the development of distributed applications in
heterogeneous environments Erickson and Siau (2008) and has radically changed the
way applications are architected, designed and implemented Mateos et al. (2010). The
SOC paradigm introduces a new kind of building block called service, which represents
functionality that is delivered by external providers (e.g., a business or an organization),
made available in registries, and remotely consumed using standard protocols. Far from
being a buzzword, SOC has been exploited by major players in the software industry
including Microsoft, Oracle, Google and Amazon.

The term Web Services refers to the de WWW-based way for implementing the
SOC paradigm. Web Services are services with clear interfaces that can be published,
located and consumed through ubiquitous Web protocols Erickson and Siau (2008)



Anti-pattern free code-first Web Services 3

such as SOAP W3C Consortium (2007). When employing Web Services, a provider
describes each service technical contract, a.k.a. its interface, in WSDL, an XML-based
language designed for specifying service functionality as a set of abstract operations
with inputs and outputs, and to associate binding information so that consumers can
invoke the offered operations. These interactions among a service producer, a registry
and a consumer are shown in Figure 1.

(2) discover service
(1

) p
ublis

h s
erv

ic
e

(3) consume service

Service

provider

Service WSDL

<?xml ...>

SOAP message over HTTP, SMTP, etc.

Service

consumer

Application

Service

registry

Figure 1: The Web Services model (extracted from Mateos et al. (2011)).

To make their WSDL documents publicly available, providers used to employ
a specification of service registries called Universal Description, Discovery and
Integration (UDDI), whose central purpose is to maintain meta-data about Web Services.
Apart from this, UDDI defines an inquiry Application Programming Interface (API)
for discovering services, which allows consumers to discover services that match their
functional needs. The inquiry API receives a keyword-based query and in turn returns
a list of candidate WSDL documents, which the consumer who performs the discovery
process must analyze. In recent years several syntactic Web Service registries such as
Woogle Dong et al. (2004), WSQBE Crasso et al. (2008) and seekda!1 have however
emerged and took over UDDI. These registries work by applying text mining or machine
learning techniques, such as XML supervised classification Crasso et al. (2008) or
clustering Rusu et al. (2008), to improve the retrieval effectiveness of the same keyword-
based discovery process Crasso et al. (2011). In the future, it is expected that WSDL
documents will be automatically enhanced with semantical annotations, i.e., a link from
a specific WSDL part to a concept of an ontology, but a requirement to reach such
an ambitious goal is that WSDL descriptions should be self-explanatory Crasso et al.
(2010b).

All in all, service contract design plays one of the most important roles in enabling
third-party consumers to understand, discover and reuse services Crasso et al. (2010a).
On one hand, unless appropriately specified by its provider, a service contract can be
counterproductive and obscure the purpose of a service and thus hindering its adoption.
Indeed, it has been shown that service consumers, when faced with two or more
contracts in WSDL that are similar from a functional perspective, they tend to choose
the most concisely described Rodriguez et al. (2010a). Moreover, a WSDL description
without much comments of its operations can make the associated Web Service difficult
to be discovered, and particularly discovery precision of syntactic registries is harmed
when dealing with poorly described WSDL documents Rodriguez et al. (2010a).



4 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

In Rodriguez et al. (2010a), common discoverability bad practices, or anti-patterns
for short, found in public WSDL documents are studied. The same authors in Rodriguez
et al. (2010c) provide a set of guidelines service providers should take into account to
obtain clear, discoverable service contracts. However, a requirement inherent to applying
these guidelines is that services are built in a contract-first manner, which means first
deriving the WSDL contract of a service and then supplying an implementation for
it. However, the most used approach to build Web Services by the industry is code-
first, which means first implementing a service and then generating the WSDL contract
by automatically deriving this latter from the implemented code. In this way, WSDL
documents are not created manually but are automatically derived via WSDL generation
tools. Consequently, anti-patterns may occur in the resulting WSDL documents when
bad implementation practices are followed Crasso et al. (2010a).

In Mateos et al. (2011) it was shown that there is a statistical significant, high
correlation between several traditional and ad-hoc Object-Oriented (OO) metrics and
the anti-patterns. Particularly, that work studied the feasibility of avoiding these anti-
patterns by using OO metrics from the code implementing services. Basically, the idea is
employing these metrics as “indicators” that warn the user about the potential occurrence
of anti-patterns in the Web Service implementation phase prior to WSDL generation.
However, one of the main limitations of the mentioned work is that only one WSDL
generation tool (i.e., Java2WSDL) was used for the experimental analysis. Therefore, the
results presented a high dependency with the tool chosen and could not be generalized.

In this paper, the analysis presented in Mateos et al. (2011) was extended to
include extra Java-based tools for the generation of the Web Services contracts including
WSProvide, Java2WS and EasyWSDL, which brings the findings to a broader audience.
This approach benefits many software practitioners in the industry, where code-first
service construction is commonplace. Specifically, through some statistical analysis, this
paper shows that a small sub-set of the OO metrics studied is highly correlated to the
studied anti-patterns and, more important, these results hold valid for the most of the
employed WSDL generation tools. Based on this, the present paper analyzes several
simple code refactorings that developers can use to avoid anti-patterns in their service
contracts. Additionally, this paper quantifies the impact of applying both each refactoring
individually or in tandem in the number of anti-patterns present in resulting WSDLs.
For the experiments, unlike Mateos et al. (2011), in which a data-set of 90 Web Services
was used, an extended data-set of 154 Web Services was employed. It is worth noting
that this is to date the largest code-first Web Services data-set existing in the literature.

The rest of the paper is structured as follows. Section 2 gives some quick background
on the WSDL anti-patterns and code-first tools for the Java language. Then, Section 3
introduces the approach for detecting these anti-patterns at the service implementation
phase. Later, Section 4 presents experiments that evidence the correlation of OO metrics
with the anti-patterns, the derived source code refactorings, and the positive effects of
these latter in the WSDL documents. Section 5 surveys relevant related works, and
Section 6 concludes the paper. For the sake of readability and self-containment, some
of the explanations reported in Mateos et al. (2011) have been deliberately included.



Anti-pattern free code-first Web Services 5

2 Background

WSDL allows providers to describe two parts of a service, namely what it does (its
functionality) and how to invoke it. The former part reveals the service interface that
is offered to consumers, while the latter part specifies technological aspects, such as
transport protocols and network addresses. Consumers use the functional descriptions
to match third-party services to their needs, and the technological details to invoke the
selected service.

With WSDL, service functionality is described as one or more port-type W =
{O0(I0,R0), ...,ON(IN ,RN)}, which arranges different operations Oi that exchange input
and return messages, Ii and Ri respectively. Main WSDL elements, such as port-types,
operations and messages, must be labeled with unique names. Optionally, these WSDL
elements might contain documentation as comments. Messages consist of parts that
transport data between consumers and providers of services, and vice-versa. Exchanged
data is represented using XML according to specific data-type definitions in XML
Schema Definition (XSD), a language to define the structure of an XML element. XSD
offers constructors for defining simple types (e.g., integer and string), restrictions and
both encapsulation and extension mechanisms to define complex elements. XSD code
might be included in a WSDL document using the types element, but alternatively it
might be put into a separate file and imported from the WSDL document or even other
WSDL documents afterward.

A WSDL document is intended to be the only publicly available software artifact
describing a Web Service. Thus, many approaches to Web Service discovery are
based on WSDL service descriptions Crasso et al. (2011). Strongly inspired by
classic Information Retrieval techniques, such as word sense disambiguation, stop-
words removal, and stemming, in general these approaches extract keywords from
WSDL documents, and then model extracted information on inverted indexes or vector
spaces Crasso et al. (2011). Then, generated models are employed for retrieving relevant
service descriptions, i.e., WSDL documents, for a given keyword-based query. Different
experiments empirically have confirmed that these approaches to discover services are
very interesting, however as they rely on the descriptiveness of service specifications,
poorly written WSDL documents deteriorate approaches retrieval effectiveness.

The work published in Rodriguez et al. (2010a) introduces the WSDL discoverability
anti-patterns (see Table 1). This work measures the impact of WSDL anti-patterns
on both service retrieval effectiveness and human users’ experience, and proposes
refactoring actions to remedy the identified problems. The authors classify the identified
bad practices as problems concerning how a service interface has been designed,
problems on the comments and identifiers used to describe a service, and problems on
how the data exchanged by a service are modeled. Each bad practice description is
accompanied by a reproducible solution in Rodriguez et al. (2010c).

A requirement inherent to apply these solutions is that services are built in a
contract-first manner, a method that encourages designers to first derive the WSDL
contract of a service and then supply an implementation for it. Contract-first however
is not very popular among developers because it requires a bigger effort than code-first.
Code-first promotes first implementing a service and then generating the corresponding
service contract by automatically extracting and deriving the interface from the
implemented code. In general, code-first tools map the implementation code C to a
WSDL document W, formally T : C →W .



6 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

Table 1 The core sub-set of the Web Service discoverability anti-patterns.

Anti-pattern Occurs when

Ambiguous

names (AP1)
Ambiguous or meaningless names are used for the main elements of a WSDL document.

Empty messages (AP2) Empty messages are used in operations that do not produce outputs nor receive inputs.

Enclosed data

model (AP3)

The data-type definitions used for exchanging information are placed in WSDL documents

rather than in separate XSD documents.

Low cohesive

operations in the same

port-type (AP4)

Port-types have weak semantic cohesion.

Redundant data

models (AP5)
Many data-types for representing the same objects of the problem domain.

Whatever types (AP6) A special data-type is used for representing any object of the problem domain.

Mapping T from C = {M(I0,R0), ..,MN(IN ,RN)} or the front–end class implementing
a service to W = {O0(I0,R0), ..,ON(IN ,RN)} or the WSDL document describing
the service, generates a WSDL document containing a port-type for the service
implementation class, having as many operations O as public methods M are defined in
the class. Moreover, each operation of W will be associated with one input message I
and another return message R, while each message conveys an XSD type that stands
for the parameters of the corresponding class method. Code-first tools like WSDL.exe,
Java2WSDL, and gSOAP Van Engelen and Gallivan (2002) are based on a mapping T
for generating WSDL documents from C#, Java and C++, respectively, though each tool
implements T in a particular manner mostly because of the different characteristics of
the involved programming languages. The same applies to tools for the same language,
such as the case of the four Java-based tools used in this paper.

Let us take the case of Java2WSDL, a software tool that given a Java class
produces a WSDL document with operations standing for all public methods declared
in the class. Java2WSDL associates an XML representation with each input/output
method parameter –primitive types or objects– in XSD. One consequence of this WSDL
generation method is that any change introduced in service implementations requires
the re-generation of WSDL documents, which in turn may affect service consumers as
service interfaces potentially change. In the end, developers focus on developing and
maintaining service implementations, while delegating WSDL documents generation to
code-first tools during service deployment.

It is known that it is possible to avoid WSDL anti-patterns early in
the implementation phase by basing on classic API metrics taken at service
implementations Mateos et al. (2011). As explained in Crasso et al. (2010a), the anti-
patterns are associated with API design qualitative attributes, in the sense that some
anti-patterns spring when well-established API design golden rules are not applied. For
instance, one anti-pattern is to place semantically unrelated operations in the same
port-type, although modules with high cohesion tend to be preferable, which is a well-
known lesson learned from structured design. The approach underlying the present paper



Anti-pattern free code-first Web Services 7

(i.e., Mateos et al. (2011)) avoids WSDL discoverability anti-patterns previous to build
WSDL documents from service implementations.

3 Hypothesis statements for early WSDL anti-patterns detection

The approach in Mateos et al. (2011) aims at allowing providers to prevent their WSDL
documents from incurring in the WSDL anti-patterns presented in Rodriguez et al.
(2010a) when following the code-first method for building services. To do this, the
approach is supported by two facts. First, the approach assumes that a typical code-
first tool performs a mapping T. The second fact underpinning the approach is that
anti-patterns are associated with API design attributes Crasso et al. (2010a), which can
be measured by using Object-Oriented (OO) class-level metrics. A well-known metric
catalog in this line is the Chindamber and Kemerer’s catalog Chidamber and Kemerer
(1994). Consequently, these metrics tell providers about how a service implementation
conforms to specific design attributes. For instance, the LCOM (Lack of Cohesion
Methods) metric provides a mean to measure how well the methods of a class are
semantically related to each other, while the “Low cohesive operations in the same port-
type” measures WSDL operations cohesion. Then, by employing well-known software
engineering metrics on a service code C, a provider can estimate how the resulting
WSDL document W will be like in terms of anti-pattern occurrences Mateos et al.
(2011), since a known mapping T relates C with W.

Based on these facts, several hypotheses by using an exploratory approach to test
the statistical correlation among OO metrics and the anti-patterns can be established.
The hypotheses that actually hold are shown below:

Hypothesis 1 (H1 : CBO → AP3). The higher the number of classes directly related to
the class implementing a service (CBO metric), the more frequent the Enclosed
data model anti-pattern occurrences.

Basically, CBO (Coupling Between Objects) Chidamber and Kemerer (1994) counts
how many methods or instance variables defined by other classes are accessed by a
given class. Code-first tools based on T include in resulting WSDL documents as many
XSD definitions as objects are exchanged by service classes methods. Then, increasing
the number of external objects that are accessed by service classes may increase the
likelihood of data-types definitions within WSDL documents.

Hypothesis 2 (H2 : WMC → AP4). The higher the number of public methods belonging
to the class implementing a service (WMC metric), the more frequent the Low
cohesive operations in the same port-type anti-pattern occurrences.

The WMC (Weighted Methods Per Class) Chidamber and Kemerer (1994) metric counts
the methods of a class. Therefore, a greater number of methods increases the probability
that any pair of them are unrelated, i.e., having weak cohesion. Since T-based code-first
tools map each method to an operation, a higher WMC may increase the possibility that
resulting WSDL documents have low cohesive operations.

Hypothesis 3 (H3 : WMC → AP5). The higher the number of public methods belonging
to the class implementing a service (WMC metric), the more frequent the
Redundant data models anti-pattern occurrences.



8 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

The number of message elements defined within a WSDL document built under T-based
code-first tools, is equal to the number of operation elements multiplied by two. As
each message may be associated with a data-type, the likelihood of redundant data-type
definitions increases with the number of public methods, since this in turn increase the
number of operation elements.

Hypothesis 4 (H4 : WMC → AP1). The higher the number of public methods belonging
to the class implementing a service (WMC metric), the more frequent the
Ambiguous names anti-pattern occurrences.

Similarly to H3, an increment in the number of methods may lift the number of non-
representative names within a WSDL document, since for each method a T-based code-
first tool automatically generates in principle five names (one for the operation, two for
input/output messages, and two for data-types).

Hypothesis 5 (H5 : ATC → AP6). The higher the number of method parameters
belonging to the class implementing a service that are declared as non-concrete
data-types (ATC metric), the more frequent the Whatever types anti-pattern
occurrences.

ATC (Abstract Type Count) is a metric that computes the number of method parameters
that do not use concrete data-types, or use Java generics with type variables instantiated
with non-concrete data-types. We have defined the ATC metric after noting that some
T-based code-first tools map abstract data-types and badly defined generics to xsd:any
constructors, which are root causes for the Whatever types anti-pattern Pasley (2006),
Rodriguez et al. (2010a).

Hypothesis 6 (H6 : EPM → AP2). The higher the number of public methods belonging
to the class implementing a service that do not receive input parameters (EPM
metric), the more frequent the Empty messages anti-pattern occurrences. EPM
(Empty Parameters Methods) counts the number of methods in a class that do not
receive parameters. Then, increasing the number of methods without parameters
may increase the likelihood of the Empty messages anti-pattern occurrences,
because T-based code-first tools map this kind of methods onto an operation
associated with one input message element not conveying XML data.

The next section describes the experiments that were carried out to test these six
hypotheses as well as the relation between other OO metrics not included in the above
list and the studied anti-patterns under the four Java-based WSDL generation tools
considered.

4 Statistical analysis and experiments

The hypotheses of the previous section were tested by gathering OO metrics from open
source Web Services, and checking the values obtained against the number of anti-
patterns found in services WSDL documents using correlation methods. This allowed
us to assess the usefulness of the metrics for anti-pattern prediction. To perform the
analysis, we implemented a software pipeline including software tools for automating
metrics recollection, WSDL document generation, and finally anti-patterns detection. For



Anti-pattern free code-first Web Services 9

the first task, we extended ckjm Spinellis (2005), a Java-based tool that computes the
Chidamber-Kemerer metrics Chidamber and Kemerer (1994), whereas for the second
part we used the already mentioned four Java-based WSDL generation tools.

To measure anti-patterns, we employed a WSDL anti-pattern detection
tool Rodriguez et al. (2010b). The WSDL Anti-patterns Detector Rodriguez et al.
(2010b) (or Detector) automatically checks whether a WSDL document suffers from
the anti-patterns of Rodriguez et al. (2010a) or not based on a given WSDL document
as input. The Detector includes heuristics to deal with anti-patterns that can be detected
by analyzing only the structure of WSDL documents, like Empty Messages, Enclosed
data-types, Redundant data models, and Whatever types anti-patterns, and heuristics
to deal with detecting Ambiguous names and Low cohesive operations in the same
port-type anti-patterns, which require not only structural but also textual analysis of
WSDL documents.

In the tests, a data-set of 154 different real services was used, whose
implementations were collected by using the Merobase component finder (http://
merobase.com ) and the Exemplar code search engine Grechanik et al. (2010). Merobase
allows users to harvest software components from a several sources (e.g., Apache,
SourceForge, and Java.net) and supports interface-driven and text-driven searches.
Exemplar relies on a hybrid approach to keyword-based search that combines textual
processing and intrinsic qualities of code to mine repositories. Complementary, projects
from Google Code were collected, plus around 60 Web Services from a local software
company that most of its applications are designed following the SOC paradigm.
All in all, the data-set included Web Service implementations from real-life software
engineers. After building the data-set, the associated services were uniformized by
explicitly providing a Java interface in order to facade their implementations. Then,
4 WSDL documents were obtained by feeding four different WSDL generation tools
with the corresponding interface, namely WSProvide2, Java2WS3, EasyWSDL4 and
Java2WSDL5.

The rest of the Section is structured as follows. Section 4.1 describes the statistical
correlation analysis between OO metrics and anti-patterns performed on the above data-
set. Section 4.2 explores several service refactorings at the source code level and their
effect on the anti-patterns of WSDL documents. The Section also summarizes the main
findings that are of interest to Web Service practitioners.

4.1 OO metrics and WSDL anti-patterns: Correlation analysis

Similar to Mateos et al. (2011), in this study the 6 anti-patterns described up to
now were set as the dependent variables, whose values were produced by using the
Detector, while OO metrics were set as the independent variables, which were computed
via the ckjm tool. As independent variables, 11 OO metrics were used. Specifically,
WMC, CBO, RFC, and LCOM have been selected from the work of Chindamber and
Kemerer Chidamber and Kemerer (1994). The WMC (Weighted Methods Per Class)
metric counts the methods of a class. CBO (Coupling Between Objects) counts how
many methods or instance variables defined by other classes are accessed by a given
class. RFC (Response for Class) counts the methods that can potentially be executed
in response to a message received by an object of a given class. LCOM (Lack of
Cohesion Methods) provides a mean to measure how well the methods of a class
are related to each other, with higher values of the metric standing for less cohesive



10 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

Table 2 Descriptive statistics for anti-patterns.

Probabilistic

metric

Tool Ambiguous

names

Empty

messages

Enclosed

data model

Low

cohesive...

Redundant

data models

Whatever

types

Minimum WSProvide 2.00 0.00 0.00 0.00 0.00 0.00

Java2WS 2.00 0.00 2.00 0.00 0.00 0.00

EasyWSDL 0.00 0.00 2.00 0.00 0.00 0.0

Java2WSDL 1.00 0.00 0.00 0.00 0.00 0.0

Maximum WSProvide 316.00 0.00 0.00 1263.00 0.00 0.00

Java2WS 316.00 0.00 227.00 1288.00 1073.00 15.00

EasyWSDL 433.00 0.00 225.00 1554.00 1142.00 17.00

Java2WSDL 243.00 11.00 44.00 910.00 891.00 17.00

Mean WSProvide 15.58 0.00 0.00 12.28 0.00 0.00

Java2WS 15.57 0.00 46.66 12.49 39.43 0.64

EasyWSDL 17.94 0.00 17.29 12.72 29.24 0.33

Java2WSDL 13.43 0.57 5.41 9.78 23.46 0.92

Std. Deviation WSProvide 36.91 0.00 0.00 102.99 0.00 0.00

Java2WS 36.92 0.00 43.35 104.98 140.06 1.42

EasyWSDL 46.57 0.00 25.68 125.41 129.47 1.66

Java2WSDL 28.77 1.64 7.09 74.99 100.46 1.86

methods. In addition, the CAM (Cohesion Among Methods of Class) metric from the
work of Bansiya and Davis Bansiya and Davis (2002) was picked. CAM computes
the relatedness among methods based upon the parameter list of these methods.
Additionally, a number of extra metrics that could be related to the WSDL metrics
were used, namely TPC (Total Parameter Count), APC (Average Parameter Count), ATC
(Abstract Type Count), VTC (Void Type Count), and EPM (Empty Parameters Methods).
The last employed metric was the well-known lines of code (LOC) metric.

The descriptive statistics for the metrics studied are shown in Table 3 while the
same information for the anti-patterns, namely Ambiguous names (AP1), Empty messages
(AP2), Enclosed data model (AP3), Low cohesive operations in the same port-type (AP4),
Redundant data models (AP5) and Whatever types (AP6), considering each generation
tool is shown in Table 2. Several interesting facts can be observed from this data. First
of all, the experimental data show that when using the WSProvide tool no occurrences
of AP2, AP3, AP5 and AP6 were detected. This is due to the fact that this particular
WSDL tool is the only one that defines every XSD type on a separate file and thus, they
are not taken into consideration by the Detector. However, even when the tool is unable
to detect the occurrences of these anti-patterns they are still on the XSD file. Therefore,
their negative effect on human discoverers’ ability to understand and select the service
remains Rodriguez et al. (2010c).



Anti-pattern free code-first Web Services 11

Table 3 Descriptive statistics for OO metrics.

OO metric /

Probabilistic metric
Minimum Maximum Mean Std. Deviation

WMC 1.00 97.0 5.73 11.13

CBO 0.00 27.0 2.02 2.91

RFC 1.00 97.0 5.73 11.13

LCOM 0.00 4656.0 75.21 427.42

LOC 1.00 97.0 5.73 11.13

CAM 0.13 1.0 0.78 0.23

TPC 0.00 228.0 10.91 24.23

APC 0.00 17.0 2.04 1.83

ATC 0.00 20.0 1.09 2.25

VTC 0.00 25.0 1.05 3.53

EPM 0.00 11.0 0.57 1.64

Service code Port-types

MessagesTypes

Figure 2: Simple WSDL generation for Java2WS and EasyWSDL.

It is also worth noting that both EasyWSDL and Java2WS present no occurrences
of AP2. To understand the reasons behind this result consider the WSDL generation
example in Figure 2. It can be seen that when generating an operation with no
input parameters, although the corresponding message is not empty, now the data-type
referenced from this message is. Therefore, even when technically there are no empty
messages, the anti-pattern was not solved but just pushed one step down the generation
process, which is not spotted by the Detector.

The Spearman’s rank correlation coefficient was used in order to establish the
existing relations between the dependent and independent variables of the above
statistical model. Table 4 depicts the correlation factors among the studied OO metrics.
The cells values in bold are those coefficients which are statistically significant at the
5% level, i.e., p-value < 0.05, which is a common choice when performing statistical



12 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

Table 4 Correlation among OO metrics.

OO metric WMC CBO RFC LCOM LOC CAM TPC APC ATC VTC EPM

WMC 1.00 0.20 1.00 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

CBO - 1.00 0.20 0.20 0.20 -0.37 0.29 0.26 0.41 -0.07 -0.15

RFC - - 1.00 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

LCOM - - - 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

LOC - - - - 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

CAM - - - - - 1.00 -0.63 0.08 -0.24 -0.35 -0.36

TPC - - - - - - 1.00 0.55 0.33 0.28 0.08

APC - - - - - - - 1.00 0.30 0.04 -0.33

ATC - - - - - - - - 1.00 0.03 -0.18

VTC - - - - - - - - - 1.00 0.38

EPM - - - - - - - - - - 1.00

studies Stigler (2008). The sign of the correlation coefficients defines the direction
of the relationship, i.e., positive or negative. A positive relation means that when the
independent variable grows, the dependent variable grows too, and when the independent
variable falls the dependent goes down as well. Instead, a negative relation means
that when dependent variables grow, the independent metrics fall, and vice versa.
The absolute value, or correlation factor, indicates the intensiveness of the relation
regardless of its sign. The correlation factors depicted in Table 4 clearly show that
the metrics studied are not statistically independent and, therefore, capture redundant
information. In other words, if a group of variables in a data-set are strongly correlated,
these variables are likely to measure the same underlying dimension (i.e., cohesion,
complexity, coupling, etc.). In the studied data-set, it can be seen from Table 4 that
the metrics WMC, RFC, LOC and LCOM have a perfect correlation, i.e., —correlation
factor— = 1, and therefore only one of them needs to be considered. Given that WMC
is more popular among developers and is better supported in IDE tools compared to the
other three, we chose to exclude the latter from further analysis and focus on WMC.

Tables 5a, 5b, 5c and 5d show the correlation between the OO metrics and the
anti-patterns for WSProvide, Java2WS, EasyWSDL and Java2WSDL, respectively. The
factors in bold represent those with a p-value ¡ 0.05. Additionally, for the sake of
readability, a graphical approach to depict the correlation matrixes of Tables 5a, 5b,
5d and 5c was used, which is shown in Figure 3. In the Figure, blank cells stand for
not statistically significant correlations, whereas cells with circles represent correlation
factors at the 5% level. The diameter of a circle represents a correlation factor, i.e., the
bigger the correlation factor the bigger the diameter. The color of a circle stands for
the correlation sign, being black used for positive correlations and white for negative
ones. Furthermore, those cells representing each of the correlations proposed on the
hypotheses defined in Section 3 show their associated names (H1 through H6). Then,
it can be seen in Figure 3 that the six bigger circles, i.e., the six highest statistically
significant correlation factors, correspond precisely with the six defined hypotheses.



Anti-pattern free code-first Web Services 13

Table 5 Correlation between OO metrics and WSDL anti-patterns using different code-first
tools.

(a) Correlation between OO metrics and anti-patterns for WSProvide.

Anti-pattern / OO

metric
WMC CBO CAM TPC APC ATC VTC EPM

AP1 0.95 0.23 -0.80 0.75 -0.006 0.18 0.24 0.34

AP2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AP3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AP4 0.61 0.12 -0.53 0.49 0.03 -0.01 0.25 0.46

AP5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AP6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) Correlation between OO metrics and anti-patterns for Java2WS.

Anti-pattern / OO

metric
WMC CBO CAM TPC APC ATC VTC EPM

AP1 0.95 0.24 -0.80 0.75 -0.002 0.18 0.24 0.34

AP2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AP3 0.47 0.75 -0.46 0.48 0.21 0.60 -0.13 -0.11

AP4 0.61 0.15 -0.55 0.50 0.05 0.007 0.27 0.45

AP5 0.74 0.48 -0.54 0.61 0.07 0.41 0.06 0.22

AP6 0.02 0.56 -0.04 0.09 0.18 0.73 -0.26 -0.30

(c) Correlation between OO metrics and anti-patterns for EasyWSDL.

Anti-pattern / OO

metric
WMC CBO CAM TPC APC ATC VTC EPM

AP1 0.85 0.21 -0.72 0.69 -0.01 0.17 0.24 0.31

AP2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AP3 0.64 0.70 -0.59 0.67 0.31 0.50 0.13 0.18

AP4 0.53 0.08 -0.43 0.36 -0.08 -0.06 0.38 0.33

AP5 0.91 0.25 -0.68 0.72 0.01 0.19 0.23 0.32

AP6 0.22 -0.05 -0.21 0.13 -0.08 0.30 0.42 0.23

(d) Correlation between OO metrics and anti-patterns for Java2WSDL.

Anti-pattern / OO

metric
WMC CBO CAM TPC APC ATC VTC EPM

AP1 0.91 0.29 -0.75 0.76 0.02 0.20 0.09 0.21

AP2 0.41 -0.15 -0.36 0.08 -0.33 -0.18 0.37 1.0

AP3 0.08 0.92 -0.22 0.19 0.27 0.48 -0.12 -0.21

AP4 0.64 0.11 -0.56 0.51 -0.004 0.11 0.40 0.40

AP5 0.87 0.13 -0.63 0.65 -0.11 0.06 0.08 0.25

AP6 0.17 0.43 -0.23 0.33 0.31 0.96 -0.02 -0.24



14 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

H1

H2

H3

H4

H5

H6

(a) WSProvide

H1

H2

H3

H4

H5

H6

(b) Java2WS

H1

H2

H3

H4

H5

H6

(c) EasyWSDL

H1

H2

H3

H4

H5

H6

(d) Java2WSDL

Figure 3: Correlation between OO metrics and anti-patterns: Graphical representation.

From Tables 5a, 5b, 5c and 5d, it can be observed that there is a high statistical
correlation between a sub-set of the analyzed metrics and the anti-patterns, along with a
certain level of consistency throughout the different generation tools. Concretely, two out
of the eleven metrics, i.e., WMC and CBO, are positively correlated to four of the
six studied anti-patterns, i.e., Ambiguous names, Enclosed data model, Low cohesive
operations in the same port-type and Redundant data models, independently of the
tool employed with the exception of WSProvide for the last two anti-patterns for the
detection issues already mentioned. Additionally, as expected, ATC and EPM are the
best predictors for the two remaining anti-patterns, i.e., Empty messages and Whatever
types.

It is also worth noting that there are two other OO metrics that are highly correlated
to several anti-patterns for every generation tool, namely CAM and TPC. However, as
shown in Table 4, these two metrics present high correlation factors with WMC and
therefore are likely to measure redundant information. Then, only WMC needs to be
considered. Moreover, as will be explained in Section 4.2, in order to avoid WSDL
anti-patterns, early code refactorings by basing on OO metrics values are necessary.
Thus, the smaller the number of considered OO metrics upon refactoring, the more
simple (but still effective) this refactoring process becomes. The results obtained from
this correlation analysis show that the hypotheses defined in Section 3 are supported by
the experimental data employed.

4.2 Code refactorings and discussion

The correlation among the WMC, CBO, ATC and EPM metrics and the anti-patterns,
which is statistically significant for the analyzed Web Service data-set proves that, in



Anti-pattern free code-first Web Services 15

practice, an increment/decrement of the metric values taken on the code of a code-
first Web Service directly affects anti-pattern occurrence in its generated WSDL. We
then studied some source code refactorings driven by these metrics on the data-set
so as to quantify the effect on anti-pattern occurrence. We conducted five rounds of
refactoring which in turn produced five new data-sets, one for each of the four mentioned
metrics and a fifth one where all the previous refactorings were included. Moreover,
each refactoring was applied on the original data-set, meaning they are completely
independent from each other. For the sake of brevity, in the rest of this section we will
refer to these refactored data-sets as DSWMC, DSCBO, DSATC, DSEPM and DSALL.

The first metric to consider was WMC. In this case we refactored the original data-
set by splitting the services that contained more than one operation into two new services
so that on average the metric in the refactored services represented a 50% of the original
value. This refactoring resulted in a new data-set that contained approximately twice as
many services as the original one. Next, we focused on CBO by modifying the original
services’ implementation code to replace every occurrence of a complex data-type for
the Java primitive type String. In a third refactoring round, we focused on the ATC
metric, which computes the number of parameters in a class that are declared as Object
or data structures –i.e., collections– that do not use Java generics. In the latter case, when
this practice is followed, these collections cannot be automatically mapped onto concrete
XSD data-types for both the container and the contained data-type in the final WSDL.
A similar problem arises with parameters whose data-type is Object. In this sense, we
modified the original services in order to reduce ATC by, basically, replacing generic
arguments with concrete ones. The last metric taken into consideration was EPM, which
counts the number of methods in a class that do not receive input parameters. The
refactoring applied in this case was to introduce a new boolean parameter to each of
these methods. Finally, a last round of refactoring was performed by deriving a data-set
including all the above code modifications. Tables 6a, 6b, 6c and 6d show the impact of
the refactoring process on the anti-patterns for each generation tool. Note that only those
anti-patterns whose occurrences could be analyzed by the anti-pattern detection tool
(discussed in Section 4.1) are shown. Additionally, since OO metrics are independent of
the library used for WSDL generation their impacts are showed separately in Table 7.

From the results presented it can be seen that, for all the generation tools employed,
the decrement on the values of the OO metrics produced the same effect on their
associated anti-patterns. Concretely, reducing the value of WMC by 50% caused an
average decrease of the Ambiguous names, Low cohesive operations in the same
port-type and Redundant data models anti-patterns of 47.83%, 72.17% and 71.07%,
respectively. Similar results were obtained when refactoring by considering CBO, EPM
or ATC metrics producing an average decrement of the Empty messages, Enclosed data
model and Whatever types anti-patterns by 100.00%, 45.59% and 96.71%, respectively.
This provides practical evidence to better support part of the correlation analysis of the
previous section.

It can also be observed that, while the individual metric refactorings had a positive
impact on their associated anti-patterns, some of them also increase the number of
occurrences of other anti-patterns. To clarify this, let us take for example the case of the
CBO metric, which produced a decrease on the Enclosed data model anti-pattern but
also a considerable increase on the Redundant data models anti-pattern. Furthermore,
the negative impact of this increment outweighs the benefits of the refactoring since
the total number of anti-patterns is higher with respect to the original data-set. This



16 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

Table 6 Implications of the refactorings on the anti-patterns for different code-first tools.

(a) Refactoring: impact on anti-patterns for WSProvide.

Anti-pattern Original

(average)

DSWMC

(average)

DSCBO

(average)

DSATC

(average)

DSEPM

(average)

DSALL

(average)

Ambiguous names 24.42 12.58 24.42 24.42 24.42 12.58

Low cohesive operations in the same port-type 30.06 8.49 30.06 30.06 24.68 8.82

Total number of anti-patterns 54.47 21.08 54.47 54.47 49.09 21.41

(b) Refactoring: impact on anti-patterns for Java2WS.

Anti-patterns Original

(average)

DSWMC

(average)

DSCBO

(average)

DSATC

(average)

DSEPM

(average)

DSALL

(average)

Ambiguous names 24.38 12.58 24.38 24.38 24.38 12.58

Enclosed data model 22.09 13.08 17.32 21.98 22.09 8.91

Low cohesive operations in the same port-type 30.72 8.49 30.72 30.72 25.64 8.82

Redundant data models 72.49 20.74 150.49 72.83 69.58 36.52

Whatever types 0.58 0.32 0.47 0.02 0.58 0.00

Total number of anti-patterns 150.26 55.21 223.38 149.92 142.28 66.83

(c) Refactoring: impact on anti-patterns for EasyWSDL.

Anti-pattern Original

(average)

DSWMC

(average)

DSCBO

(average)

DSATC

(average)

DSEPM

(average)

DSALL

(average)

Ambiguous names 28.58 14.75 28.58 28.58 28.58 14.75

Enclosed data model 20.72 11.62 17.34 20.60 20.72 8.92

Low cohesive operations in the same port-type 32.91 7.29 32.91 32.91 33.47 9.94

Redundant data models 60.25 17.88 103.74 61.17 60.55 25.97

Whatever types 0.85 0.49 0.51 0.06 0.85 0.00

Total number of anti-patterns 143.30 52.03 183.08 143.32 144.17 59.58

(d) Refactoring: impact on anti-patterns for Java2WSDL.

Anti-pattern Original

(average)

DSWMC

(average)

DSCBO

(average)

DSATC

(average)

DSEPM

(average)

DSALL

(average)

Ambiguous names 20.02 10.79 20.02 20.02 20.96 11.24

Empty messages 0.94 0.44 0.94 0.94 0.00 0.00

Enclosed data model 3.28 2.61 0.04 3.25 3.28 0.01

Low cohesive operations in the same port-type 24.62 8.19 24.62 24.62 19.04 6.25

Redundant data models 52.96 15.10 132.96 53.89 57.81 34.10

Whatever types 0.83 0.43 0.62 0.00 0.83 0.00

Total number of anti-patterns 102.66 37.58 179.21 102.72 101.92 51.59



Anti-pattern free code-first Web Services 17

Table 7 Refactoring: impact on OO metrics.

Anti-pattern Original

(average)

DSWMC

(average)

DSCBO

(average)

DSATC

(average)

DSEPM

(average)

DSALL

(average)

WMC 8.64 4.45 8.64 8.64 8.64 4.45

CBO 2.02 1.39 0.00 2.02 2.02 0.00

ATC 1.11 0.59 0.68 0.04 1.11 0.00

EPM 0.94 0.44 0.94 0.94 0.00 0.00

kind of situations are known as trade-offs. As in software literature in general, here a
trade-off represents a situation in which the software engineer should analyze and select
among different metric-driven implementation alternatives. Two other metrics represent
trade-offs. For example, by decreasing the ATC metric, resulting WSDL documents will
present a smaller value for the Whatever types anti-pattern than the original WSDL
document. However, this will cause an increment of the Redundant data models anti-
pattern. A similar situation occurs with the EPM metric and the Empty messages and
Redundant data models anti-patterns. Controlling the WMC metric is safe, in the sense
that it does not present trade-off situations and by modifying its value no undesired
collateral effects will be generated. Moreover, as shown in Table 7, when the WMC
metric is refactored to reduce its value the rest of the OO metrics are indirectly affected
and their values are decreased as well. Therefore, all the anti-patterns reduce their total
number of occurrences and not just those associated with WMC.

Figure 4 depicts the total average number of anti-patterns of each refactored data-set
with respect to the original data-set for each tool. From the experiments it could be
observed that paying attention to the WMC metric upon service development allows for
services with minimal amount of anti-patterns, thus a simple method for achieving both
understandable and discoverable Web Services is given. Moreover, considering CBO
renders the associated refactoring counterproductive, while refactoring for ATC or EPM
does not have a clear impact on anti-patterns occurrence.

It is worth noting that when all the refactorings were applied on the same data-
set (DSALL) the total number of anti-patterns were reduced with respect to the original
data-set but it was slightly higher than the one obtained by applying only the WMC
refactoring. Considering that code refactoring is a time consuming process, it can be
concluded that if the goal is to minimize the total number of anti-patterns then focusing
only on WMC for the refactorings results in principle in the most efficient choice.
However, the WMC refactoring splits a service in many smaller services. This leads
to the Chatty Services SOA anti-pattern from IBM6, which basically means realizing
a single functional service by implementing a number of Web Services each having a
small amount of operations. This in turn results in the implementation of a large number
of services leading to degradation in performance because client applications are forced
to compose various operations in order to effectively reuse the original (single) service
as a whole. In this context, considering a combined and more balanced refactoring
strategy similar to DSALL instead of aggressively refactoring for WMC only might offer
WSDL documents with an acceptable number of WSDL anti-patterns while not incurring
in the Chatty Services SOA anti-pattern.



18 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

 0

 20

 40

 60

Total number of anti−patterns

N
um

be
r 

of
 o

cc
ur

re
nc

es
Original data−set

DSWMC
DSCBO
DSATC
DSEPM
DSALL

(a) WSProvide

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

Total number of anti-patterns

N
um

be
r 

of
 o

cc
ur

re
nc

es

Original data-set
DSWMC
DSCBO
DSATC
DSEPM
DSALL

(b) Java2WS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Total number of anti-patterns

N
um

be
r 

of
 o

cc
ur

re
nc

es

Original data-set
DSWMC
DSCBO
DSATC
DSEPM
DSALL

(c) EasyWSDL

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Total number of anti-patterns

N
um

be
r 

of
 o

cc
ur

re
nc

es

Original data-set
DSWMC
DSCBO
DSATC
DSEPM
DSALL

(d) Java2WSDL

Figure 4: Total number of anti-patterns after refactoring.

5 Related work

This work is related to a number of efforts that can be grouped into two broad classes.
On the one hand, there is a substantial amount of research concerning improving services
with respect to the quality of the contracts exposed to consumers Fan and Kambhampati
(2005), Blake and Nowlan (2008), Pasley (2006), Crasso et al. (2010a), Rodriguez
et al. (2010a). In particular, Rodriguez et al. (2010a) subsumes the research listed
previously, and also supplies each identified problem with a practical solution, thus
conforming a unified catalog of WSDL discoverability anti-patterns. The importance of
these anti-patterns was measured by manually removing anti-patterns from a data-set of
ca. 400 WSDL documents and comparing the retrieval effectiveness of several syntactic
discovery mechanisms when using the original WSDL documents and the improved
ones (i.e., without anti-patterns). The fact that using improved data-sets allows for
better discovery efficiency regardless the approach to Web Service discovery employed,
suggests that the improvements are explained by the removal of discoverability anti-
patterns rather than the incidence of the underlying discovery mechanism. Furthermore,
the importance of WSDL discoverability anti-patterns has been increasingly emphasized
in Crasso et al. (2010a), when the authors associate anti-patterns with software API
design principles. In this sense, it can be said that the approach in this paper is related
to such efforts since we share the same goal, i.e., obtaining more legible, discoverable
and clear service contracts.



Anti-pattern free code-first Web Services 19

On the other hand, in this paper, these aspects are quantified in the obtained contracts
by means of specific WSDL-level metrics. As discussed earlier, the values of such
metrics can be “controlled” based on the values of OO metrics taken on the code
implementing services prior to WSDL generation. Then, the work in this paper is
also related to some efforts that attempt to predict the value of traditional software
quality metrics (e.g., number of bugs or popularity) in conventional software based
on traditional OO metrics at implementation time Subramanyam and Krishnan (2003),
Gyimothy et al. (2005), Meirelles et al. (2010). Particularly, this work extends the
approach presented in Mateos et al. (2011) on which a public data-set of around 90
web services is statistically analyzed to determine whether or not a high correlation
factor can be established between WSDL anti-patterns and OO metrics. However, in
the mentioned approach only the Java2WSDL generation tool was employed for the
experimental phase, thus the results presented were not general enough. However, in
the mentioned approach only the Java2WSDL generation tool was employed for the
experimental phase, thus lacking generality. This paper includes a higher number of Web
Services for the data-set and employs several different WSDL generation tools during
the experiments, and additionally performs a deeper study of refactorings incidence on
anti-patterns manifestation.

6 Conclusions

WSDL document specification is one of the most important activities when publishing
services in order to get understandable and discoverable (and hence reusable) Web
Services Crasso et al. (2010a). It has been shown previously that understandability
and discoverability can be improved by avoiding bad WSDL specification practices or
anti-patterns Rodriguez et al. (2010a). Mostly, the industry is based on code-first Web
Service development, which means that developers first derive a service implementation
and then generate the Web Service contracts from the implemented code. In this way,
the approach in Mateos et al. (2011) presents a statistical model and preliminary
experiments showing that traditional OO metrics can be used as predictors of the level of
understandability and discoverability of WSDL documents generated via Java2WSDL.

In this paper, we have focused on the problem of how to obtain WSDL documents
that are free from those undesirable anti-patterns when using code-first, independently
of the generation tool used. To this end, we based our experiments in four Java-based
WSDL generation tools very popular in the industry, and a data-set of 154 real code-first
Web Services. We analyzed how certain OO metric-driven refactorings in the code of
services impact on the number of occurrences of WSDL anti-patterns. Indeed, having
WSDL documents as free as possible from WSDL anti-patterns positively impact on
service understandability and discoverability Crasso et al. (2010a).

Precisely, it is known that, when developing contract-first Web Services, removing
certain WSDL anti-patterns or at least reducing the number of their occurrences
increases the retrieval efficiency of syntactic Web Service search engines and thus
simplifies discovery Rodriguez et al. (2010c). In these kind of Web Services, anti-
pattern avoidance is manually carried out by developers as Web Service contract design
comes before implementation. When developing code-first services, as shown by the
findings of this paper, these anti-patterns can be removed or mitigated automatically and
indirectly based on source code refactorings. We are investigating the real impact of



20 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

the different refactorings –particularly the one reducing WMC– and the extent to which
they are applied in the effectiveness of Web Service retrieval apart from anti-pattern
occurrences. Effectiveness in this context is being measured by using common metrics
from the Information Retrieval area such as Recall, Normalized Recall, R-Precision and
Precision-at-n.

This paper has conceived WSDL quality as a synonym of WSDL understandability
and discoverability, and thus the anti-pattern catalog can be viewed as a mean to quantify
these two aspects from WSDL documents. Alternatively, other authors conceive high
quality WSDL documents as those having little complexity Sneed (2010) or exposing
high levels of maintainability Basci and Misra (2011). In some recent studies it has
been additionally have found that OO metrics and their refactorings can be also used to
predict the levels of complexity Coscia et al. (2012) and maintainability Ordiales Coscia
et al. (2012a) of code-first Web Services. However, there are some difficult trade-offs
situations regarding to what extent refactoring should be applied when trying to balance
the values of Web Service quality metrics from different catalogs, i.e., when attempting
to build a service that is simultaneously understandable and discoverable, not complex,
and maintainable. Therefore, addressing this issue is certainly subject of further research.

Acknowledgments

We acknowledge the financial support provided by ANPCyT through grant PAE-PICT
2007-02311.

References

Bansiya, J. and Davis, C. (2002). A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, 28:4–17.

Basci, D. and Misra, S. (2011). Metrics suite for maintainability of extensible markup
language Web Services. IET Software, 5(3):320–341.

Blake, M. B. and Nowlan, M. (2008). Taming Web Services from the wild. IEEE
Internet Computing, 12:62–69.

Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493.

Ordiales Coscia, J., Crasso, M., Mateos, C., and Zunino, A. (2012). Estimating Web
Service interface complexity and quality through conventional object-oriented metrics.
In XV Ibero-American Conference on Software Engineering (CibSe 2012 - formerly
IDEAS).

Crasso, M., Rodriguez, J. M., Zunino, A., and Campo, M. (2010a). Revising WSDL
documents: Why and how. IEEE Internet Computing, 14(5):30–38.

Crasso, M., Zunino, A., and Campo, M. (2008). Easy Web Service discovery: A Query-
By-Example approach. Science of Computer Programming, 71(2):144–164.



Anti-pattern free code-first Web Services 21

Crasso, M., Zunino, A., and Campo, M. (2010b). Combining document classification
and ontology alignment for semantically enriching Web Services. New Generation
Computing, 28:371–403.

Crasso, M., Zunino, A., and Campo, M. (2011). A survey of approaches to Web Service
discovery in Service-Oriented Architectures. Journal of Database Management,
22(1):103–134.

Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., and Zhang, J. (2004). Similarity
search for Web Services. In Nascimento, M. A., Özsu, M. T., Kossmann, D., Miller,
R. J., Blakeley, J. A., and Schiefer, K. B., editors, 31th International Conference
on Very Large Data Bases (VLDB 2004), Toronto, Canada, pages 372–383. Morgan
Kaufmann.

Erickson, J. and Siau, K. (2008). Web Service, Service-Oriented Computing, and
Service-Oriented Architecture: Separating hype from reality. Journal of Database
Management, 19(3):42–54.

Fan, J. and Kambhampati, S. (2005). A snapshot of public Web Services. SIGMOD
Record, 34(1):24–32.

Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., and Cumby, C. (2010).
A search engine for finding highly relevant applications. In 32nd ACM/IEEE
International Conference on Software Engineering (ICSE ’10), pages 475–484. ACM
Press.

Gyimothy, T., Ferenc, R., and Siket, I. (2005). Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions on Software
Engineering, 31(10):897–910.

Mateos, C., Crasso, M., Zunino, A., and Campo, M. (2010). Separation of concerns
in Service-Oriented Applications based on pervasive design patterns. In 2010 Web
Technology Track (WT) - ACM Symposium on Applied computing (SAC), pages 849–
853. ACM Special Interest Group on Applied Computing, ACM Press.

Mateos, C., Crasso, M., Zunino, A., and Ordiales Coscia, J. (2011). Detecting WSDL
bad practices in code-first Web Services. International Journal of Web and Grid
Services, 7:357–387.

Meirelles, P., Santos, C., Miranda, J., Kon, F., Terceiro, A., and Chavez, C. (2010).
A study of the relationships between source code metrics and attractiveness in free
software projects. In Brazilian Symposium on Software Engineering (SBES ’10), pages
11–20. IEEE Computer Society.

Ordiales Coscia, J., Crasso, M., Mateos, C., Zunino, A., and Misra, S. (2012a).
Predicting web service maintainability via object-oriented metrics: A statistics-based
approach. In Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A., Taniar, D.,
and Apduhan, B., editors, Computational Science and Its Applications - ICCSA 2012,
volume 7336 of Lecture Notes in Computer Science, pages 29–39. Springer Berlin /
Heidelberg.



22 J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino

Ordiales Coscia, J., Crasso, M., Mateos, C., and Zunino, A. (2012b). An approach to
improve code-first Web Services discoverability at development time. In 2012 Web
Technology Track (WT) - ACM Symposium on Applied Computing, pages 638–643,
New York, NY, USA. ACM Press.

Pasley, J. (2006). Avoid XML schema wildcards for Web Service interfaces. IEEE
Internet Computing, 10:72–79.

Rodriguez, J. M., Crasso, M., Zunino, A., and Campo, M. (2010a). An analysis of
frequent ways of making undiscoverable Web Service descriptions. Electronic Journal
of SADIO - Special issue of Software Enginneering in Argentina: Present and Future
Trends (Extended version of selected papers ASSE 2009), 9(1):5–23.

Rodriguez, J. M., Crasso, M., Zunino, A., and Campo, M. (2010b). Automatically
detecting opportunities for web service descriptions improvement. In Cellary, W. and
Estevez, E., editors, Software Services for e-World, IFIP Advances in Information and
Communication Technology, pages 139–150. Springer.

Rodriguez, J. M., Crasso, M., Zunino, A., and Campo, M. (2010c). Improving
Web Service descriptions for effective service discovery. Science of Computer
Programming, 75(11):1001–1021.

Rusu, L., Rahayu, W., and Taniar, D. (2008). Intelligent dynamic XML documents
clustering. In 22nd International Conference on Advanced Information Networking
and Applications (AINA 2008), pages 449 –456. IEEE Computer Society.

Sneed, H. M. (2010). Measuring Web Service interfaces. In 12th IEEE International
Symposium on Web Systems Evolution (WSE), 2010, pages 111 –115.

Spinellis, D. (2005). Tool writing: A forgotten art? IEEE Software, 22:9–11.

Stigler, S. (2008). Fisher and the 5% level. Chance, 21:12–12.

Subramanyam, R. and Krishnan, M. (2003). Empirical analysis of CK metrics for object-
oriented design complexity: Implications for software defects. IEEE Transactions on
Software Engineering, 29(4):297–310.

Van Engelen, R. and Gallivan, K. (2002). The gSOAP toolkit for Web Services and peer-
to-peer computing networks. In 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID ’02), pages 128–135. IEEE Computer Society.

W3C Consortium (2007). SOAP version 1.2 part 1: Messaging framework. W3C
Recommendation, http://www.w3.org/TR/soap12-part1 .


