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The aimwas to determine the intestinal Ca2+ absorption in type I diabetic rats after different times of STZ induc-
tion, as well as the gene and protein expression of molecules involved in both the transcellular and paracellular
Ca2+ pathways. The redox state and the antioxidant enzymes of the enterocytes were also evaluated in duode-
num from either diabetic or insulin-treated diabetic rats as compared to control rats. Male Wistar rats
(150–200 g) were divided into two groups: 1) controls and 2) STZ-induced diabetic rats (60 mg/kg b.w.). A
group of diabetic rats received insulin for five days. The insulin was adjusted daily to maintain a normal blood
glucose level. Five 5 d after STZ injection, there was a reduction in the intestinal Ca2+ absorption, which was
maintained for 30 d and disappeared at 60 d. Similar changes occurred in the GSH and ˙O2

− levels. The protein ex-
pression ofmolecules involved in the transcellular pathway increased at 5 and 30 d returning to control values at
60 d. Their mRNA levels declined considerably at 60 d. The gene and protein expression of claudin 2 was upreg-
ulated at 30 d. Catalase activity increased at 5 and 30 d normalizing at 60 d. To conclude, type I D.m. inhibits the
intestinal Ca2+ absorption, which is transient leading to a time dependent adaptation and returning the absorp-
tive process to normal values. The inhibition is accompanied by oxidative stress. When insulin is administered,
the duodenal redox state returns to control values and the intestinal Ca2+ absorption normalizes.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

There is a great body of evidence that human type I Diabetesmellitus
(D.m.) is associated with alterations in Ca2+ homeostasis resulting in
hypercalciuria and reduced bonemass or osteopenia [1]. Hypercalciuria
can be rectified by insulin, but only partially if hormone treatment is de-
layed, an indication that some irreversible changes might occur at early
stages of diabetes [2]. The diabetic hypercalciuria in rats involves en-
hanced glomerular filtration rate with raised urinary output, reduced
Ca2+ reabsorption, and impaired bone deposition. A reduction of extra-
cellular Ca2+-sensing receptor without alterations in other Ca2+
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transport molecules were shown throughout the whole kidney section
in diabetic rats [1]. However, Western blot analysis has shown that
the protein expression of plasma membrane Ca2+-ATPase (PMCA1b)
and vitamin D receptor (VDR) was significantly decreased in kidneys
from streptozotocin (STZ)-treated mice compared to that of controls
[3]. With regard to bone, diabetic patients not only show osteopenia
[4], but also increased risk of fractures [5,6] and delayed fracture healing
[7]. The adverse effects of D.m. on bone have been attributed to
insulinopenia, microangiopathy, and alterations in local factors regulat-
ing bone remodeling [8]. Serum calcium has been observed to be de-
creased [9], normal [10] or increased [11] in type I D.m. In other
words, Ca2+ homeostasis in the type I D.m. is quite controversial and
needs to be clarified.

The intestine is another important organ involved not only in the
maintenance of Ca2+ homeostasis, but also in the proper mineralization
of bone preventing osteoporosis and osteoporotic fractures [12]. Earlier
studies have shown that diabetic patients have a normal [13], low [14]
or high [15] intestinal Ca2+ absorption. Hough et al. [11] have found dif-
ferences in the intestinal Ca2+ absorption and in hormonal response in
diabetic rats depending on the duration of diabetes (chronic versus
short). Since nutritional factors also alter the intestinal Ca2+ absorption
[16], the variability in the data on the cation transport in diabetic patients
or animals might be also due to differences in the diet composition.
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Calcitriol or 1,25(OH)2D3 is the main stimulus to increase the intes-
tinal Ca2+ absorption either in mammals or in birds [17]. As serum
levels of 1,25(OH)2D3 have been proved to be decreased in diabetic
humans and rats [18], the alteration in the intestinal Ca2+ absorption
has been associated with vitamin D status [11]. The intestinal Ca2+ ab-
sorption occurs via paracellular and transcellular pathways. Apparently,
calcitriol enhances both routes. The transcellular pathway involvesmol-
ecules such as the transient receptor potential cation channel V6
(TRPV6), located at the apical side of enterocytes, calbindin D9k in the
cytoplasm, and PMCA1b and Na+/Ca2+-exchanger (NCX1), both pro-
teins at the basolateral membranes [19]. The paracellular via is less
known and, apparently, some proteins that form the tight junctions,
such as claudin 2 (cldn 2) and claudin 12 (cldn 12), could be involved
in Ca2+ movements [20]. There is a lack of information on the time de-
pendent changes about the gene and protein expression of these mole-
cules when the D.m. is developing.

The intactness of intestinal redox state is essential to have anoptimal
intestinal Ca2+ absorption. We have demonstrated that normal levels
of intracellular glutathione (GSH) are important to maintain a proper
intestinal Ca2+ absorption [21–23]. Although oxidative stress in the
small intestine during diabetes has been reported in STZ-induced dia-
betic rats [24], there is no information about a possible relationship be-
tween the intestinal Ca2+ absorption and the oxidative damage and the
antioxidant status of the intestine.

The aim of this study was to determine the intestinal Ca2+ absorp-
tion in STZ-induced diabetic rats (type I D.m.) after a short and long last-
ing period of induction, as well as the gene and protein expression of
molecules involved in both the transcellular and paracelluar pathways
of Ca2+ transport. In addition, the redox state and the antioxidant enzy-
matic system of the enterocytes were evaluated in the duodenum from
either diabetic or insulin-treated diabetic rats as compared to control
rats.

2. Materials and methods

2.1. Chemicals

All chemicals were purchased from Sigma Aldrich Co (St Louis, MO,
USA) unless otherwise stated.

2.2. Animals

Eight-week-old male Wistar rats (150–200 g) were maintained at
20–25 °C on a 12 h light–12 h dark cycle, with access to water and
food ad libitum. Calcium content in the diet was 1 %, and vitamin D con-
tentwas about 1000 IU/kg of diet (GEPSAmouse-rat, Pilar, Buenos Aires,
Argentina). The animals were divided into two groups: 1) control rats,
and 2) STZ-induced diabetic rats. Rats from the second group received
a single intraperitoneal injection of STZ (60 mg/kg b.w. dissolved in
0.1 mol/L citrate, pH 4.5 solution), whereas the control rats were
injected with vehicle alone. After 3 days of STZ injection, the blood glu-
cose levels were measured by using a glucometer (AccuCheck; Roche,
Germany). The animals were considered diabetic when their blood glu-
cose values exceeded 250 mg/dL and glucose was detected in urine
(Multistix, Siemens Medical Solutions Diagnostics, Malvern, USA).
STZ-treated rats were sacrificed by cervical dislocation at 5, 30 or
60 days after induction. All experimental protocols followed the Guide
for the Care and Use of Laboratory Animals from the Medicine School
of the Universidad Nacional de Córdoba, Córdoba, Argentina. All efforts
weremade tominimize the number of animals used and their suffering.

2.3. Insulin-treated diabetic rats

Thirty days after STZ injection, a group of rats received daily insulin
therapy (Insulina Glargina, Lantus, Sanofi-Aventis, Uruguay S.A.) via
subcutaneous injection for five days until they were sacrificed. The
insulin dosage was adjusted daily to maintain blood glucose level in
the range of 100–200 mg/dL.

2.4. Serum biochemical determinations

Blood samples from rats were used for biochemical measurements.
Serum glucose (Glicemia enzimática AA), Ca (Ca-Color AA), P
(Fosfatemia UV-AA), and creatinine (Creatinina-enzimática AA) were
determined using kits from Wiener Laboratorios S.A.I.C. (Rosario,
Argentina), HbA1c and insulin were determined by Glycohemoglobin
Reagent (Teco Diagnostics, Anaheim, CA, USA) and Rat insulin ELISA
(Millipore, Billerica, MA, USA) respectively, according tomanufacturer’s
operating protocol. 1,25(OH)2D3 was determined by RIA (DiaSorin,
Saluggia, Italy) and 25(OH)D3 by ECLIA immunoassay (Modular Analyt-
ics E1701, Roche, Mannheim, Germany).

2.5. Intestinal Ca2+absorption

Rats were anesthetized with an intramuscular injection of ketamine
(50 mg/kg b.w.) and xylazine (10 mg/kg b.w.). One mmol/L CaCl2, con-
taining 1.85 × 105 Bq 45Ca2+, pH 7.2, was introduced into the lumen of
the ligated intestinal segment. After ten minutes, blood waswithdrawn
by cardiac puncture, centrifuged and the plasma 45Ca2+ was measured
in a liquid scintillation counter. Absorption was defined as appearance
of 45Ca2+ in blood [21].

2.6. Alkaline phosphatase activity assay

Alkaline phosphatase (AP), E.C. 3.1.3.1., was measured in water ho-
mogenates (1:10) of intestinal mucosa using p-nitrophenyl phosphate
as substrate in 0.5 mol/L diethanolamine buffer pH 9.8. This was per-
formed by following an adaptation of Walter and Schütt method [25].
Enzyme activities are expressed in IU/mg of protein.

2.7. RNA isolation and analysis of pmca1b, ncx1, trpv6 and cldn 2 gene
expression by qRT-PCR

Total RNA isolationwas performedwith TRIZOL reagent according to
the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). RNA
concentration and purity were determined by spectrophotometry.
Quantitative RT-PCR amplification was performed in a thermocycler
(Quantitative PCR thermocycler StratageneMx 3000P, Agilent Technol-
ogies, Inc., Santa Clara, CA, USA). Amplification mixture (total volume:
25 μL) contained 0.5 μg RNA, 0.3 μmol/L each primer, 0.4 μL of the dilut-
ed reference dye, 1.0 μL of reverse transcriptase (RT)/RNase block
enzymemixture and 12.5 μL of 2× Brilliant IISYBR Green QRT-PCRmas-
ter mix (Stratagene, Agilent Technologies, Inc., Santa Clara, CA, USA).
The following protocol was used: 1 cycle at 50 °C for 30 min., 1 cycle
at 95 °C for 10 min., 40 cycles as follows: denaturation at 95 °C for
30 s, annealing at 60 °C for 60 s and extension at 72 °C for 30 s. The
amount of PCR products formed in each cycle was evaluated on the
basis of SYBR Green fluorescence. Cycle-to-cycle fluorescence emission
readings were monitored and quantified using the DDCt method [26].
The amount of copy numbers of mRNA from each gene was normalized
relative to that of GAPDH. The primers sequences of the studied genes
are listed in Table 1.

2.8. Western blot analysis

Immunoblotting analysis of PMCA1b, NCX1, TRPV6, VDR and cldn 2
was performed in pools ofmucosa from two rat duodenae each. Suspen-
sionswere done in RIPA (radio immuno precipitation assay buffer) lysis
buffer (1% SDS, 1% Triton X-100, 0.5% sodium deoxycholate in PBS, con-
taining 1 PMSF and 1 mmol/L NaF), and then centrifuged. Afterwards,
proteins (100 μg) were denatured for 5 min. at 95 °C and separated
in 12% (w/v) SDS–polyacrylamide minigels for cldn 2 and VDR and in



Table 1
Sequences of specific primers used for RT-qPCR amplification.

Gene Primer sequences (5'–3') Size of the PCR products

(bp)
ncx1 Forward: GTTGTGTTCGCTTGGGTTGC 163

Reverse: CGTGGGAGTTGACTACTTTC
pmca1b Forward: CGCCATCTTCTGCACAATT 109

Reverse: CAGCCATTGTTCTATTGAAAGTTC
trpv6 Forward: ATCCGCCGCTATGCAC 80

Reverse: AGTTTTTCTGGTCACTGTTTTTGG
cldn 2 Forward: GCTGCTGAGGGTAGAATGA 107

Reverse: GCTCGCTTGATAAGTGTCC
Gapdh Forward: AGTCTACTGGCGTCTTCAC 133

Reverse: TCATATTTCTCGTGGTTCAC

ncx1: Na+/Ca2+ exchanger; pmca1b: plasma membrane Ca2+-ATPase; trpv6: transient
receptor potential V6; cldn 2: claudin 2; gapdh: glyceraldehyde-3-phosphate
dehydrogenase.
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8% (w/v) SDS–polyacrylamide minigels for the other proteins [27].
Gels containing the separated proteins were immersed in the transfer
buffer (25 mmol/L Tris–HCl, and 192 mmol/L glycine, 0.05% w/v SDS
and 20% v/v methanol) [28]. Nitrocellulose membranes (0.45 μm)
were blocked for 1.5 h with 2% w/v nonfat dry milk in 0.5 mol/L Tris-
buffered saline solution and incubated overnight at 4 °C with the
specific primary antibody at 1:1000dilution in each case. The antibodies
were: anti PMCA1b (human erythrocyte clone 5 F10 A7952 SIGMA Saint
Louis, MO, USA), anti-NCX1 monoclonal antibody PPS019 (R&D Sys-
tems, Minneapolis, MN, USA), anti-TRPV6 polyclonal antibody (L-15:
sc-31445 Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-VDR
polyclonal antibody (C-20: sc-1008 Santa Cruz Biotechnology, Santa
Cruz, CA, USA), and anti-cldn 2 monoclonal antibody (Invitrogen,
Carlsbad, CA, USA). After three washings, appropriate secondary bio-
tinylated antibodies were incubated at room temperature for 1 h.
Then, the blots were washed three times and streptavidin – biotin con-
jugate (Histostain-SP Broad Spectrum, Invitrogen CA, USA) was added.
Detectionwas performed using 3,3’-diaminobenzidine (DAB) as a chro-
mogen. Monoclonal antibody anti-GAPDH (clone GAPDH-71.1 Sigma–
Aldrich, St. Louis, MO, USA), was used to detect GAPDH as a marker to
normalize the relative expression of the other proteins. The band inten-
sities were quantified using an Image Capturer EC3 Imaging System,
LaunchVisionworksls software in order to obtain the relative expression
of proteins.

2.9. Total GSH determination

Total GSH content was also determined in supernatants from
intestinal homogenates using the glutathione disulfide reductase-5,5´-
dithiobis (2-nitrobenzoate) recycling procedure, as described else-
where [29]. The data are expressed in nmol/mg of protein.

2.10. Superoxide anion measurement

Mature enterocytes from the duodenal villus tip were isolated
as previously described [30]. Cellular viability was assayed by the
Trypan blue exclusion technique. Cells were washed twice with Hanks
buffer (137 mmol/L NaCl, 5.4 mmol/L KCl, 0.25 mmol/L Na2HPO4,
0.44 mmol/L KH2PO4, 1.3 mmol/L CaCl2, 1 mmol/L MgSO4, 4.2 mmol/L
NaHCO3, 6.24 mmol/L glucose, pH 7.4) and incubated with nitro blue
tetrazolium (NBT) (1mg/mL) at 37 °C for 1 h. The formazan precipitates
formed were dissolved in dimethylsulfoxide and quantified by spectro-
photometry at 560 nm. OD values are direct indicators of ˙O2

− concentra-
tion in the samples [31].

2.11. Catalase and superoxide dismutase activities

All enzymes activities were assayed in supernatants of duodenal ho-
mogenates. Catalase (CAT), EC 1.11.1.6, and superoxide dismutase
(Mg2+-SOD), EC 1.15.1.1, activities were performed in diluted aliquots
from the supernatants of intestinal homogenates (1:5). CAT activity
was assayed in 50 mmol/L potassium phosphate buffer pH 7.4 and
0.3 mol/L H2O2 [32]. Mg2+-SOD activity was determined in 1 μmol/L
EDTA, 50 mmol/L potassium phosphate buffer, pH 7.8, 13 mmol/L
methionine, 75 μmol/L NBT and 40 μmol/L riboflavin [33]. Enzyme
activities are expressed in U/mg of protein.

2.12. Statistical analysis

All data are expressed asmeans± SE. The results were evaluated by
one-way analysis of variance (ANOVA) and the Bonferroni’s test as a
post hoc test. Differences were considered statistically significant
at p b 0.05. All the analyses were carried out by using SPSS software
(version 17.0) for Windows XP (SPSS, Inc., Chicago, IL, USA).

3. Results

3.1. Characterization of the diabetic rats

Table 2 shows that theweight loss in rats injectedwith STZ occurred
as early as 5 days after the injection. At all times studied, the diabetic
rats exhibited lower bodyweight than the respective control rats. As ex-
pected, the body weight increased over time in control animals as well
as in diabetic rats, but in less proportion in the latter group. Serum glu-
cose levels were always significantly higher in diabetic rats than those
from the control rats. Serumglucose remained unchanged in the control
rats, whereas in the diabetic rats the values were gradually increased
after the STZ injection. Serum insulin decreased sharply 5 days after
STZ injection decreasing even more over time. The percentage of
HbA1c increased almost 50 % in diabetic rats as compared to control
rats; this difference was kept at all times. Serum Ca values were similar
between control and diabetic rats, as well as serum P and serum creat-
inine at different times (Table 2).

3.2. D.m. inhibits transiently the intestinal Ca2+ absorption

A considerable reduction in the intestinal Ca2+ absorption was trig-
gered by STZ after 5 days of induction as compared to that of the control
rats. The intestinal Ca2+ absorption remained low 30 days after STZ in-
jection in the diabetic rats, returning to the control values at 60 days
(Table 3).

3.3. D.m. alters the intestinal AP activity

As shown in Fig. 1, the activity of intestinal AP, a protein presumably
involved in the intestinal Ca2+ absorption, decreased 5 days after STZ
injection, continued low after 30 days and, then, increased reaching
higher values compared to the control rats one month later.

3.4. D.m. modifies the gene and protein expressions of molecules involved
in the transcellular and paracellular pathways of the intestinal Ca2+

absorption and the VDR protein expression

The gene expression of proteins involved in the transcellular path-
way of the intestinal Ca2+ absorption, pmca1b, ncx1 and trpv6, decreased
significantly 60 days after STZ injection. The gene expression of cldn 2, a
protein presumably involved in the paracellular pathway of the intesti-
nal Ca2+ absorption, was more than double in diabetic rats than that of
the control rats 30 days after STZ injection and later decreased (Table 4).
In contrast, the protein expression of PMCA1b, NCX1 and TRPV6 signifi-
cantly increased either 5 or 30 days after STZ injection returning to the
control values at 60 days, except that of the TRPV6. Cldn 2 protein ex-
pression highly increased 30 days after STZ induction and normalized
30 days later (Fig. 2). VDR protein expression was enhanced at all
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Table 3
Intestinal calcium absorption in control and diabetic rats (STZ).

Days after induction Control STZ

nmol 45Ca2+/mL plasma

5 3.03 ± 0.13 1.22 ± 0.06*
30 3.07 ± 0.25 2.39 ± 0.11#

60 3.05 ± 0.25 3.09 ± 0.33

Values are expressed as means ± S.E from 10 rats for each experimental condition. STZ:
streptozotocin induced diabetic rats. *p b 0.001 vs corresponding control and 30 and
60 days after STZ injection, #p b 0.01 vs corresponding control.
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different times after STZ injection, but in less proportion 60 days after
the induction (Fig. 2).

3.5. Diabetes triggers oxidative stress in the rat duodenum

Fig. 3 shows that STZ caused GSH depletion in mucosa from the rat
duodenum either 5 or 30 days after injection, being the values normal-
ized 30 days later. The mucosal levels of ˙O2

− were highly increased
5 days after STZ injection, andprogressively decreased reaching the nor-
malization after 60 days. Similarly, duodenal CAT activity was enhanced
5 and 30 days after STZ injection and returned to control values at 60
days. Duodenal SOD activity did not change after STZ injection at any
time.

3.6. Insulin restores the intestinal Ca2+ absorption and the intestinal redox
state of the diabetic rats, but not the levels of serum vitamin D metabolites

The inhibition of the intestinal Ca2+ absorption caused 30 days after
STZ injection to rats was blunted by using a single daily injection of in-
sulin for 5 days. The same hormonal treatment normalizedGSH content,
CAT activity and ˙O2

− levels (Fig. 4). The serum levels of 25OHD3 and
1,25(OH)2D3 were decreased by STZ injection at different times, and
remained low after insulin treatment for 5 days (Table 5).

Discussion

The present study demonstrates that the intestinal Ca2+ absorption
decreases by insulin deficit in rats injected with STZ. The effect is rela-
tively rapid and transient leading to a time dependent adaptation,
which makes that the absorptive process returns to normal values.
The inhibitory effect on the intestinal Ca2+ absorption is accompanied
by redox changes that cause oxidative stress, which may alter the
0
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Fig. 1. Intestinal alkaline phophatase activity fromduodenal sac of control and STZ induced
diabetic rats. Alkaline phosphatase was measured in water homogenates (1:10) of intes-
tinal mucosa using p-nitrophenyl phosphate as a substrate in 0.5 mol/L diethanolamine
buffer pH 9.8. Values represent means ± SE from nine rats for each experimental condi-
tion. *p b 0.05 vs the corresponding control, #p b 0.001 vs the corresponding control,
§p b 0.05 vs 5 and 30 days after STZ injection.



Table 4
Gene expression of pmca1b, ncx1, trpv6 and cldn 2, in control and STZ induced diabetic rats.

Days after induction pmca1b ncx1 trpv6 cldn 2

Control STZ Control STZ Control STZ Control STZ

5 1.00 ± 0.18 0.70 ± 0.08 1.00 ± 0.15 1.22 ± 0.08# 1.00 ± 0.17 0.79 ± 0.17 1.00 ± 0.11 0.87 ± 0.07
30 1.00 ± 0.20 0.87 ± 0.15 1.00 ± 0.20 0.82 ± 0.08 1.00 ± 0.18 0.86 ± 0.07 1.00 ± 0.01 2.53 ± 0.50*#

60 1.00 ± 0.27 0.35 ± 0.07*# 1.00 ± 0.09 0.66 ± 0.07* 1.00 ± 0.07 0.66 ± 0.09* 1.00 ± 0.01 0.64 ± 0.10*

Real time quantitative PCR analysis of rat duodenae mRNA expression levels. Gene expression levels represent the relativemRNA expression compared with the GAPDHmRNA (arbitrary
units). Values representmeans ± SE from 6 rats for each experimental condition. STZ: streptozotocin induced diabetic rats. *p b 0.05 vs the corresponding control, #p b 0.001 vs STZ from
the other induction times.
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duodenum permeability. When insulin is administered, the redox state
of the intestine returns to control values and the intestinal Ca2+ absorp-
tion is normalized, independently of vitamin D status.

The adaptability of the intestine to absorbmore or less Ca2+ accord-
ing to the physio-pathological conditions has been known for many
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in body weight and in biochemical parameters, all of them compatible
with type I D.m. [36]. At this time, the intestinal Ca2+ absorption is high-
ly inhibited; it remains low at 30 days and returns to control values at 60
days. The activity of intestinal AP, enzyme that has been proposed to be
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Table 5
Serum calcidiol (25(OH)D3) and calcitriol (1,25(OH)2D3) levels from control, STZ induced diabetic rats and STZ + I.

Days after induction 25(OH)D3 (ng/mL) 1,25(OH)2D3 (pg/mL)

Control STZ STZ + I Control STZ STZ + I

5 7.64 ± 0.49 3.17 ± 0.09* 3.22 ± 0.10* n.d. n.d. n.d.
30 10.89 ± 1.16 4.25 ± 0.82* 3.13 ± 0.06* 115.00 ± 3.51 35.83 ± 7.92# 36.33 ± 0.88#

60 9.94 ± 0.74 4.53 ± 0.77* 3.45 ± 0.20* 98.33 ± 0.66 25.33 ± 7.12# 30.20 ± 0.40#

Values are expressed as means ± S.E from 4 rats for each experimental condition. STZ: streptozotocin induced diabetic rats, STZ + I: diabetic rats treated with insulin. *p b 0.01 vs the
corresponding control, #p b 0.001 vs the corresponding control. n.d.: not determined.
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of AP activity, whichwas also observed by other groups [38], could be an
anti-inflammatory response in order to protect the intestine from the
inflammatory cell infiltration, as suggested [37]. The protein expression
of PMCA1b, NCX1 and TRPV6, all proteins presumably involved in the
Ca2+ transcellular pathway, is increased either 5 or 30 days after STZ in-
jection returning to control values at 60 days, except that of the TRPV6.
The data are indicative of an adaptive mechanism to improve the intes-
tinal Ca2+ absorption for avoiding Ca2+ loss, which has been detected
60 days after STZ injection. The TRPV6 protein expression goes down
at 60 days, but it is still significantly higher than that of the control
group, which could mean that the Ca2+entrance step needs more time
to be normalized than the Ca2+ exit step from enterocytes. Lee et al.
[39] have also found a significant increase in the abundance of renal
calbindin D28k and TRPV5 in diabetic rats for the 2-week duration com-
pared to control group. Both proteins belong to the transcellular path-
way of Ca2+ reabsorption in rat kidney and the increment of them has
been proposed as a compensatory mechanism for the enhancement of
renal Ca2+ excretion. It has been also reported similar compensatory
upregulations of sodium and water transporters in uncontrolled D.m.
in rats [40,41].

The gene expression of PMCA1b, NCX1 and TRPV6 is not modified 5
or 30 days after STZ injection. However, the mRNA levels codifying for
these proteins decline considerably 30 days later, when the intestinal
Ca2+ absorption returns to normal values. Our data suggest that the
transient inhibition of intestinal Ca2+ absorption caused by diabetes in-
duction would trigger a compensatory mechanism as judged by an in-
crease in the protein expression of molecules involved in the intestinal
transcellular Ca2+ movement. This response could downregulate the
gene expression of those proteins to avoid an overproduction of the
molecules responsible for taking the cation from one pole to the other
pole within the cell. In other words, the transcription of these genes is
not altered by the insulin deficit at early stages of diabetes, but the pro-
tein synthesis seems to be stimulated in order to rapidly compensate
the inhibition of the intestinal Ca2+ absorption.

Although themolecular basis for paracellular Ca2+ absorption in the
intestine is not well known [42], tight junction proteins cldn 2 and
cldn12 have been proposed to form the paracellular pores for cations
[20]. Our data on gene and protein expressions of cldn 2 showno chang-
es at 5 days after STZ injection. However, a sharp rise in the protein ex-
pression of cldn 2 occurs 30 days after STZ injection, which is also
accompanied by increased gene expression. It is quite possible that
the enhanced protein expression of molecules involved in the transcel-
lular pathway is not enough for restoring the intestinal Ca2+ absorption
and, consequently, the paracellular pathway is induced, a possible inter-
play of both mechanisms that has been previously suggested [19]. In
other words, the insulin deficit promotes the transcellular and the
paracellular pathways of the intestinal Ca2+ absorption in order to nor-
malize the cation absorption.

As previously shown [43,44], the diabetic condition alters the vita-
min D metabolism, as judged by the low levels of serum calcidiol and
calcitriol. This could partly explain the inhibition in the intestinal Ca2+

absorption that occurs as early as 5 days after STZ injection, but not
the compensatory stimulation of molecules of both transcellular and
paracellular pathways. Therefore, other molecules could be responsible
for the compensatory mechanisms. In addition, insulin replacement
therapy for 5 consecutive days does not improve the impaired vitamin
D metabolism. Maybe a longer insulin therapy or other factors are nec-
essary to normalize serum calcitriol levels.

The occurrence of oxidative stress in the small intestine has been
demonstrated in diabetic rats 6 weeks after STZ injection [24]. Our
study shows that oxidative stress is triggering in the duodenum at
early stages of STZ-induced diabetic rats as revealed by GSH depletion,
increased ˙O2

− and increase in the CAT activity after 5 days of induction.
These alterations are also very noticeable at 30 days, but disappear
30 days later. There is a temporal correlation between changes in the in-
testinal Ca2+ absorption and the oxidative stress. The recovery of the
normal redox status of the enterocytes occurs at the same time that
the intestinal Ca2+ absorption returns to control values.When consecu-
tive insulin injections for 5 days are administered to rats 30 days after
STZ injection, the intestinal Ca2+ absorption is normalized as well as
the intestinal GSH content, the ˙O2

− levels and the CAT activity. Therefore,
the lack of insulin promotes intestinal oxidative stress, which in turn
causes inhibition of intestinal Ca2+ absorption. In our laboratory we
have well documented that GSH depleting drugs such as menadione,
deoxycholate and BSO inhibit the intestinal Ca2+ absorption through
oxidative stress and apoptosismediated by both the extrinsic and intrin-
sic pathways [21–23]. In diabetic animals there are compensatory
mechanisms trying to normalize the redox state and, consequently,
the intestinal Ca2+ absorption. It is interesting to note that these mech-
anisms occur independently of the levels of plasma vitamin D metabo-
lites. However, we have shown that the intestinal VDR protein
expression is increased by the STZ injection at all times studied. This up-
regulation of VDR has been suggested as a unique compensatory re-
sponse of intestine in untreated D.m. animals, which has been
associated with the intestinal hyperplasia [45]. In addition, a higher af-
finity of calcitriol to intestinal VDR has been also demonstrated in type
I D.m [46].

Many studies indicate that oxidative stress plays a crucial role in the
pathogenesis of late diabetic complications [47,48]. It has been proved
that hyperplasia and hypertrophy of intestinal epithelial cells and de-
crease in fluidity of the brush border membranes occur in the small in-
testine of diabetic rats 6 weeks after STZ injection [49], and a reduction
in the density of myenteric neurons of the duodenum was observed
120 days after STZ administration [50]. In the jejunum of diabetic rats
15 days after STZ injection, increase in the length of villi, congestion,
goblet cell hyperplasia and infiltration of inflammatory cells have been
found [38]. Our study shows that oxidative stress in the duodenum of
diabetic rats occurs at early stages, but if an appropriate compensatory
response occurs from the antioxidant network, the redox imbalance
can be overcome and the intestinal Ca2+ absorption returns to normal
values.We do not discard that transitory alterations in the intestinal ab-
sorption of other ions or nutrients could be also occurred.

To conclude, oxidative stress in the rat intestine occurs at early
stages of developing type I D.m., leading to inhibition of the intestinal
Ca2+ absorption. Time-dependent adaptive mechanisms trigger an in-
crement of protein expression of molecules involved in both the trans-
cellular and the paracellular pathways, normalizing the intestinal
Ca2+ absorption as well as the duodenal redox state. Insulin injection
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also restores the duodenal redox state and the intestinal Ca2+ absorp-
tion without improving the serum levels of vitamin D metabolites. The
characterization of the intestinal Ca2+ absorption in diabetic animals
is an important issue that might help to understand the alterations in
the Ca2+ homeostasis and the bone disease associated with the type I
D.m. in humans.

Conflict of Interest

No conflicts of interest, financial or otherwise, are declared by the
authors.

Acknowledgements

This work was supported by grants from CONICET (PIP 2010–12)
and SECYT (UNC), Argentina. Prof. Dr. Nori Tolosa de Talamoni and
Dr. Valeria Rodríguez are Members of Investigator Career from the
Consejo Nacional de Investigaciones Científicas y Tecnológicas
(CONICET). Dr. María Angélica Rivoira is a recipient of a Postdoctoral
Fellowship from SECYT (UNC). All authors participated in the concep-
tion, design, and performance of the study as well as interpretation of
data and drafting the manuscript. None of the authors had a personal
conflict of interest. The authors thank Lucía Corball, student of the
School of Medicine (UNC) and recipient from the PROMED Fellowship,
for helping with some experiments.

References

[1] D.T. Ward, S.K. Yau, A.P. Mee, E.B. Mawer, C.A. Miller, H.O. Garland, D. Riccardi,
Functional, molecular, and biochemical characterization of streptozotocin-induced
diabetes, J. Am. Soc. Nephrol. 12 (2001) 779–790.

[2] B. Hoskins, J.M. Scott, Evidence for a direct action of insulin to increase renal reab-
sorption of calcium and for an irreversible defect in renal ability to conserve calcium
due to prolonged absence of insulin, Diabetes 33 (1984) 991–994.

[3] Y. Zhang, C.J. Papasian, H.W. Deng, Alteration of vitamin D metabolic enzyme
expression and calcium transporter abundance in kidney involved in type 1
diabetes-induced bone loss, Osteoporos. Int. 22 (2011) 1781–1788.

[4] E.J. Hamilton, V. Rakic, W.A. Davis, S.A. Chubb, N. Kamber, R.L. Prince, T.M. Davis,
Prevalence and predictors of osteopenia and osteoporosis in adults with Type 1
diabetes, Diabet. Med. 26 (2009) 45–52.

[5] A. Montagnani, S. Gonnelli, M. Alessandri, R. Nuti, Osteoporosis and risk of fracture
in patients with diabetes: an update, Aging Clin. Exp. Res. 23 (2011) 84–90.

[6] M. Yamamoto, Secondary osteoporosis or secondary contributors to bone loss in
fracture. Bone metabolic disorders in patients with diabetes mellitus, Clin. Calcium
23 (2013) 1327–1335.

[7] A. Joshi, P. Varthakavi, M. Chadha, N. Bhagwat, A study of bone mineral density and
its determinants in type 1 diabetes mellitus, J. Osteoporos. (2013), http://dx.doi.org/
10.1155/397814.

[8] S. Rao Sirasanagandla, S. Ranganath Pai Karkala, B.K. Potu, K.M. Bhat, Beneficial effect
of Cissus quadrangularis Linn. on osteopenia associated with streptozotocin-
induced type 1 Diabetes Mellitus in male Wistar rats, Adv. Pharmacol. Sci. (2014),
http://dx.doi.org/10.1155/483051.

[9] N. Ohara, Impaired intestinal active calcium absorption and reduction of serum
1alpha, 25(OH)2D3 in streptozotocin-induced diabetic pregnant rats with hypocal-
cemia in their fetuses, Clin. Exp. Obstet. Gynecol. 27 (2000) 100–102.

[10] J. Verhaeghe, R. van Bree, E. van Herck, I. Jans, Z. Zaman, R. Bouillon, Calciotrophic
hormones during experimental hypocalcaemia and hypercalcaemia in spontane-
ously diabetic rats, J. Endocrinol. 162 (1999) 251–258.

[11] S. Hough, J.E. Russell, S.L. Teitelbaum, L.V. Avioli, Calcium homeostasis in chronic
streptozotocin-induced diabetes mellitus in the rat, Am. J. Physiol. 242 (1982)
E451–E456.

[12] M. Kumari, N.B. Khazai, T.R. Ziegler, M.S. Nanes, S.A. Abrams, V. Tangpricha, Vitamin
D-mediated calcium absorption in patients with clinically stable Crohn's disease: a
pilot study, Mol. Nutr. Food Res. 54 (2010) 1085–1091.

[13] H. Heath, P.W. Lambert, F.J. Service, S.B. Arnaud, Calcium homeostasis in diabetes
mellitus, J. Clin. Endocrinol. Metab. 49 (1979) 462–466.

[14] P. McNair, Bone mineral metabolism in human type 1 (insulin dependent) diabetes
mellitus, Dan. Med. Bull. 35 (1988) 109–121.

[15] L. Monnier, C. Colette, L. Aguirre, C. Sany, J. Mirourze, Intestinal and renal handling of
calcium in human diabetes mellitus: influence of acute oral glucose loading and
diabetic control, Eur. J. Clin. Investig. 8 (1978) 225–231.

[16] V. Centeno, G.D. de Barboza, A. Marchionatti, V. Rodríguez, N. Tolosa de Talamoni,
Molecular mechanisms triggered by low-calcium diets, Nutr. Res. Rev. 22 (2009)
163–174.

[17] A.V. Pérez, G. Picotto, A.R. Carpentieri, M.A. Rivoira, M.E. Peralta López, N.G. Tolosa
de Talamoni, Minireview on regulation of intestinal calcium absorption. Emphasis
on molecular mechanisms of transcellular pathway, Digestion 77 (2008) 22–34.
[18] K. Hamilton, M. Tein, J. Glazier, E.B. Mawer, J.L. Berry, R.J. Balment, R.D. Boyd, H.O.
Garland, C.P. Sibley, Altered calbindin mRNA expression and calcium regulating
hormones in rat diabetic pregnancy, J. Endocrinol. 164 (2000) 67–76.

[19] I. Hwang, H. Yang, H.S. Kang, C. Ahn, E.J. Hong, B.S. An, E.B. Jeung, Alteration of tight
junction gene expression by calcium- and vitamin D-deficient diet in the duodenum
of calbindin-null mice, Int. J. Mol. Sci. 14 (2013) 2997–3010.

[20] H. Fujita, K. Sugimoto, S. Inatomi, T. Maeda, M. Osanai, Y. Uchiyama, Y. Yamamoto, T.
Wada, T. Kojima, H. Yokozaki, T. Yamashita, S. Kato, N. Sawada, H. Chiba, Tight
junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+

absorption between enterocytes, Mol. Biol. Cell 19 (2008) 1912–1921.
[21] N. Tolosa de Talamoni, A. Marchionatti, V. Baudino, A. Alisio, Glutathione plays a role

in the chick intestinal calcium absorption, Comp. Biochem. Physiol. A Physiol. 115
(1996) 127–132.

[22] A.M. Marchionatti, A.V. Perez, G.E. Diaz de Barboza, B.M. Pereira, N.G. Tolosa de
Talamoni, Mitochondrial dysfunction is responsible for the intestinal calcium ab-
sorption inhibition induced by menadione, Biochim. Biophys. Acta 1780 (2008)
101–107.

[23] M.A. Rivoira, A.M. Marchionatti, V.A. Centeno, G.E. Diaz de Barboza, M.E. Peralta
López, N.G. Tolosa de Talamoni, Sodium deoxycholate inhibits chick duodenal
calcium absorption through oxidative stress and apoptosis, Comp. Biochem. Physiol.
A Mol. Integr. Physiol. 162 (2012) 397–405.

[24] V.M. Bhor, N. Raghuram, S. Sivakami, Oxidative damage and altered antioxidant
enzyme activities in the small intestine of streptozotocin-induced diabetic rats,
Int. J. Biochem. Cell Biol. 36 (2004) 89–97.

[25] A.M. Marchionatti, G.E. Díaz de Barboza, V.A. Centeno, A.E. Alisio, N.G. Tolosa de
Talamoni, Effects of a single dose of menadione on the intestinal calcium absorption
and associated variables, J. Nutr. Biochem. 14 (2003) 466–472.

[26] J.L. Kenneth, T.P. Schmittgen, Analysis of relative gene expression data using real-
time quantitative PCR and the 2-DDCT method, Methods 25 (2001) 402–408.

[27] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of
bacteriophage T4, Nature 227 (1970) 680–685.

[28] H. Towbin, T. Staehelin, J. Gordon, Electrophoretic transfer of proteins from poly-
acrylamide gels to nitrocellulose sheets: procedure and some applications, Proc.
Natl. Acad. Sci. U. S. A. 76 (1979) 4350–4354.

[29] M.E. Anderson, Determination of glutathione and glutathione disulfide in biological
samples, Methods Enzymol. 113 (1985) 548–555.

[30] V.A. Centeno, G.E. Díaz de Barboza, A.M. Marchionatti, A.E. Alisio, M.E. Dallorso, R.
Nasif, N. Tolosa de Talamoni, Dietary calcium deficiency increases Ca2+ uptake
and Ca2+ extrusion mechanisms in chick enterocytes, Comp. Biochem. Physiol. A
Mol. Integr. Physiol. 139 (2004) 133–141.

[31] L. Serrander, L. Cartier, K. Bedard, B. Banfi, B. Lardy, O. Plastre, A. Sienkiewicz, L.
Fórró, W. Schlegel, K.H. Krause, NOX4 activity is determined by mRNA levels and re-
veals a unique pattern of ROS generation, Biochem. J. 406 (2007) 105–114.

[32] H. Aebi, S.R. Wyss, B. Scherz, F. Skvaril, Catalase, Eur. J. Biochem. 48 (1974) 137–145.
[33] C.O. Beauchamp, I. Fridovich, Isozymes of superoxide dismutase from wheat germ,

Biochim. Biophys. Acta 317 (1973) 50–64.
[34] N. Tolosa de Talamoni, Calcium and phosphorous deficiencies alter the lipid compo-

sition and fluidity of intestinal basolateral membranes, Comp. Biochem. Physiol. A
Physiol. 115 (1996) 309–315.

[35] S. Christakos, L. Lieben, R. Masuyama, G. Carmeliet, Viamin D endocrine system and
the intestine, Bonekey Rep. (2014), http://dx.doi.org/10.1038/2013.230.

[36] A.I. Padrã, T. Carvalho, R. Vitorin, R. Alves, A. Caseiro, J. Duarte, R. Ferreira, F. Amado,
Impaired protein quality control system underlies mitochondrial dysfunction in
skeletal muscle of streptozotocin-induced diabetic rats, Biochim. Biophys. Acta
1822 (2012) 1189–1197.

[37] J.P. Lallès, Intestinal alkaline phosphatase: multiple biological roles in maintenance
of intestinal homeostasis and modulation by diet, Nutr. Rev. 68 (2010) 323–332.

[38] P.S. Rajini Vismaya, Exacerbation of intestinal brush border enzyme activities and
oxidative stress in streptozotocin-induced diabetic rats by monocrotophos, Chem.
Biol. Interact. 211 (2014) 11–19.

[39] C.T. Lee, Y.H. Lien, L.W. Lai, J.B. Chen, C.R. Lin, H.C. Chen, Increased renal calcium and
magnesium transporter abundance in streptozotocin-induced diabetes mellitus,
Kidney Int. 69 (2006) 1786–1791.

[40] Y.H. Kim, T.H. Kwon, B.M. Christensen, J. Nielsen, S.M. Wall, K.M. Madsen, J. Frokiaer,
S. Nielsen, Altered expression of renal acid–base transporters in rats with lithium-
induced NDI, Am. J. Physiol. Ren. Physiol. 285 (2003) 1244–1257.

[41] L.N. Nejsum, T.H. Kwon, D. Marples, A. Flyvbjerg, M.A. Knepper, J. Frokiaer, S.
Nielsen, Compensatory increase in AQP2, p-AQP2, and AQP3 expression in rats
with diabetes mellitus, Am. J. Physiol. Ren. Physiol. 280 (2001) 715–726.

[42] J.C. Fleet, R.D. Schoch, Molecular mechanisms for regulation of intestinal calcium
absorption by vitamin D and other factors, Crit. Rev. Clin. Lab. Sci. 47 (2010)
181–195.

[43] B.M. Svoren, L.K. Volkening, J.R.Wood, L.M. Laffel, Significant vitamin D deficiency in
youth with type 1 diabetes mellitus, J. Pediatr. 154 (2009) 132–134.

[44] P. Pozzilli, S. Manfrini, A. Crinò, A. Picardi, C. Leomanni, V. Cherubini, L. Valente, M.
Khazrai, N. Visalli, Low levels of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin
D3 in patients with newly diagnosed type 1 diabetes, Horm. Metab. Res. 37 (2005)
680–683.

[45] L.A. Stone, V.M. Weaver, M.E. Bruns, J. Welsh, Vitamin D receptors in intestine, kid-
ney and thymus of streptozotocin diabetic rats, Diabetes Res. 15 (1990) 165–172.

[46] Y. Seino, R.I. Sierra, Y.M. Sonn, A. Jafari, S.J. Birge, L.V. Avioli, The duodenal 1
alpha,25-dihydroxyvitamin D3 receptor in rats with experimentally induced diabe-
tes, Endocrinology 113 (1983) 1721–1725.

[47] J.L. Evans, I.D. Goldfine, B.A. Maddux, G.M. Grodsky, Oxidative stress and stress-
activated signaling pathways: a unifying hypothesis of type 2 diabetes, Endocr.
Rev. 23 (2002) 599–622.

http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0005
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0005
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0005
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0010
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0010
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0010
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0015
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0015
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0015
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0020
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0020
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0020
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0025
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0025
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0230
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0230
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0230
http://dx.doi.org/10.1155/397814
http://dx.doi.org/10.1155/483051
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0030
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0030
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0030
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0030
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0030
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0035
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0035
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0035
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0040
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0040
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0040
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0045
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0045
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0045
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0050
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0050
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0055
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0055
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0060
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0060
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0060
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0245
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0245
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0245
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0065
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0065
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0065
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0070
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0070
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0070
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0075
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0075
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0075
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0080
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0080
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0080
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0080
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0080
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0085
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0085
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0085
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0090
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0090
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0090
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0090
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0095
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0095
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0095
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0095
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0100
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0100
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0100
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0105
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0105
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0105
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0110
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0110
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0115
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0115
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0120
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0120
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0120
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0125
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0125
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0130
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0130
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0130
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0130
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0130
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0130
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0130
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0130
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0135
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0135
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0135
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0140
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0145
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0145
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0150
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0150
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0150
http://dx.doi.org/10.1038/2013.230
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0155
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0155
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0155
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0155
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0160
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0160
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0165
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0165
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0165
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0170
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0170
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0170
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0175
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0175
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0175
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0180
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0180
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0180
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0185
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0185
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0185
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0190
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0190
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0195
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0195
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0195
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0195
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0200
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0200
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0205
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0205
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0205
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0210
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0210
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0210


394 M. Rivoira et al. / Biochimica et Biophysica Acta 1852 (2015) 386–394
[48] J.L. Evans, I.D. Goldfine, B.A. Maddux, G.M. Grodsky, Are oxidative stress-activated
signaling pathways mediators of insulin resistance and beta-cell dysfunction?
Diabetes 52 (2003) 1–8.

[49] V.M. Bhor, S. Sivakami, Regional variations in intestinal brush border membrane
fluidity and function during diabetes and the role of oxidative stress and non-
enzymatic glycation, Mol. Cell. Biochem. 252 (2003) 125–132.
[50] F. Izbéki, T. Wittman, A. Rosztóczy, N. Linke, N. Bódi, E. Fekete, M. Bagyánszki,
Immediate insulin treatment prevents gut motility alterations and loss of nitrergic
neurons in the ileum and colon of rats with streptozotocin-induced diabetes,
Diabetes Res. Clin. Pract. 80 (2008) 192–198.

http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0215
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0215
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0215
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0220
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0220
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0220
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0225
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0225
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0225
http://refhub.elsevier.com/S0925-4439(14)00359-7/rf0225

	Time dependent changes in the intestinal Ca2+ absorption in rats with type I diabetes mellitus are associated with alterati...
	1. Introduction
	2. Materials and methods
	2.1. Chemicals
	2.2. Animals
	2.3. Insulin-treated diabetic rats
	2.4. Serum biochemical determinations
	2.5. Intestinal Ca2+absorption
	2.6. Alkaline phosphatase activity assay
	2.7. RNA isolation and analysis of pmca1b, ncx1, trpv6 and cldn 2 gene expression by qRT-PCR
	2.8. Western blot analysis
	2.9. Total GSH determination
	2.10. Superoxide anion measurement
	2.11. Catalase and superoxide dismutase activities
	2.12. Statistical analysis

	3. Results
	3.1. Characterization of the diabetic rats
	3.2. D.m. inhibits transiently the intestinal Ca2+ absorption
	3.3. D.m. alters the intestinal AP activity
	3.4. D.m. modifies the gene and protein expressions of molecules involved in�the transcellular and paracellular pathways of...
	3.5. Diabetes triggers oxidative stress in the rat duodenum
	3.6. Insulin restores the intestinal Ca2+ absorption and the intestinal redox state of the diabetic rats, but not the level...

	Discussion
	Conflict of Interest
	Acknowledgements
	References


