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Let F1, . . . , Fs ∈ R[X1, . . . , Xn] be polynomials of degree at most d, and suppose that
F1, . . . , Fs are represented by a division free arithmetic circuit of non-scalar complexity
size L. Let A be the arrangement of Rn defined by F1, . . . , Fs .
For any point x ∈ Rn , we consider the task of determining the signs of the values
F1(x), . . . , Fs(x) (sign condition query) and the task of determining the connected
component of A to which x belongs (point location query). By an extremely simple
reduction to the well-known case where the polynomials F1, . . . , Fs are affine linear
(i.e., polynomials of degree one), we show first that there exists a database of (possibly
enormous) size sO(L+n) which allows the evaluation of the sign condition query using only
(Ln)O(1) log(s) arithmetic operations. The key point of this paper is the proof that this
upper bound is almost optimal.
By the way, we show that the point location query can be evaluated using dO(n) log(s)
arithmetic operations. Based on a different argument, analogous complexity upper-bounds
are exhibited with respect to the bit-model in case that F1, . . . , Fs belong to Z[X1, . . . , Xn]
and satisfy a certain natural genericity condition. Mutatis mutandis our upper-bound
results may be applied to the sparse and dense representations of F1, . . . , Fs .

© 2011 Elsevier B.V. All rights reserved.
1. Basic notions and notations

Throughout this paper we shall use the following no-
tation: let n, s, d, h and L be given natural numbers, let
X1, . . . , Xn be indeterminates over R, let X := (X1, . . . , Xn)

and let F1, . . . , Fs ∈ R[X1, . . . , Xn] be given polynomials of
degree at most d.
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In case that F1, . . . , Fs belong to Z[X1, . . . , Xn], we sup-
pose that the maximal bit-length of their coefficients (i.e.
the logarithmic height of F1, . . . , Fs) is bounded by h.

Furthermore, we assume that the polynomials F1, . . . ,

Fs are represented by (the output nodes of) an arithmetic
circuit β in R[X] with inputs X1, . . . , Xn such that β satis-
fies the following conditions:

• β uses only R-linear operations and multiplications of
polynomials (i.e., β is division-free);

• β contains at most L multiplications of polynomials
which are counted at unit costs, whereas R-linear op-
erations are free (i.e., the non-scalar size of β is at
most L).
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Observe that for k ∈ N the dense and k-sparse encod-
ings of F1, . . . , Fs are special instances of the circuit rep-
resentation of polynomials, with L = O(dn) and L = O(kd)

in each case, respectively.
A sign condition σ ∈ {−1,0,1}s , with σ = (σ1, . . . , σs)

determines a polynomial inequality system of the form
∧

1�i�s

sign(Fi) = σi . (1.1)

We call σ consistent if there exists a point x ∈ Rn satisfying
the condition (1.1).

The consistent sign conditions on the polynomials
F1, . . . , Fs define a semi-algebraic partition A := A(F1, . . . ,

Fs) of Rn , called an arrangement. Suppose now that there is
given another semi-algebraic partition P := P (F1, . . . , Fs)

of Rn which refines A and depends only on F1, . . . , Fs .
Then P defines a query Q P (F1, . . . , Fs) which determines,
for each x ∈ Rn the (unique) element P ∈ P with x ∈ P .

In case P = A, we call Q P (F1, . . . , Fs) the sign condi-
tion query for F1, . . . , Fs . If P is the partition of Rn into
the connected components of (the elements of) A, we call
Q P (F1, . . . , Fs) the point location query for F1, . . . , Fs .

If F1, . . . , Fs are affine-linear and represented by their
coefficients, the sign condition and the point location
query may be evaluated using O(n5 log(s)) arithmetic op-
erations in R (see [1–3]).

The algorithm of [2] may be interpreted as follows:
A first preprocessing yields a constraint database repre-
sented by an algebraic computation tree Γ of size sO(n)

which allows the evaluation of the sign condition query.
While the size of the database (and the cost of its
construction) are not taken into account, the evaluation
of the sign condition query can be performed in time
O(n5 log(s)).

In this paper we analyze the complexities of the sign
condition and point location queries under a constraint
database point of view. In the same spirit as the arith-
metic circuit representation of polynomials, we use alge-
braic computation trees to represent constraint databases
(see [4–6] for the background on constraint databases and
algebraic complexity theory).

In the next section we are going to expose our results,
indicating in the most simple cases also the proofs. As part
of these results, we present an algorithm that performs
the evaluation of the sign condition query for F1, . . . , Fs
in time (Ln)O(1) log(s) and we show that this upper-bound
is tight.

In the particular case that the polynomials F1, . . . , Fs
are given in dense representation, our method evaluates
the sign condition query in time dO(n) log(s). By a mathe-
matically different and more sophisticated method, a sim-
ilar upper bound has already been derived in [7] for the
coarser algorithmic model of algebraic decision trees (where
the evaluation of any polynomial is free).

However, restricting our attention to computational
models where arithmetic operations have a cost, the previ-
ous best time-upper-bound for the evaluation of this query
is based on an application of general cylindrical algebraic
decomposition method and results in a time bound that
depends doubly-exponentially on n (see [8] and [9] for a
discussion of this issue).
2. Results

2.1. Upper complexity bounds. Algorithms

Our first result relies on an extremely simple reduction
argument to the case treated in [2], namely when the poly-
nomials F1, . . . , Fs are affine-linear.

Theorem 2.1. Suppose that F1, . . . , Fs can be evaluated by a
division-free arithmetic circuit of non-scalar size L.

Then there exists a constraint database represented by
an algebraic computation tree of size sO(L+n) such that in
this database the sign condition query for F1, . . . , Fs can
be evaluated by this database in time O((L + n)5 log(s)) =
(Ln)O(1) log(s) (counting arithmetic operations and compar-
isons at unit costs).

Proof. Let Y = (Y1, . . . , Y L) be new indeterminates. From
[5], Section 9 and [6], Exercise 9.18 we deduce that there
exist polynomials G1, . . . , G L ∈ R[X] and polynomials of
degree one H1, . . . , Hs ∈ R[Y ] having the following prop-
erties:

G := (G1, . . . , G L) can be evaluated using L polynomial
multiplications and therefore, counting also R-linear opera-
tions at unit costs, by means of O((L + n)2) arithmetic op-
erations. Furthermore the condition F1 = H1(G), . . . , Fs =
Hs(G) is satisfied.

For any x ∈ Rn , we compute first G(x) and apply then
the algorithm of [2] to H1, . . . , Hs and the input G(x) in
order to determine the signs of F1(x), . . . , Fs(x). �

If for k ∈ N the polynomials F1, . . . , Fs are k-sparse,
Theorem 2.1 remains correct when we replace the param-
eter L by kd.

Suppose now that the polynomials F1, . . . , Fs are given
in dense representation. Then Theorem 2.1 implies imme-
diately that the sign condition query for F1, . . . , Fs can be
evaluated in time dO(n) log(s).

Taking into account that the connected components of
the arrangement A(F1, . . . , Fs) are definable by sndO(n4)

polynomials of R[X] of degree at most dO(n3) (see e.g., [10],
Theorem 16.18), we obtain finally the following result.

Corollary 2.2. The sign condition and the point location queries
for F1, . . . , Fs can be evaluated in time dO(n) log(s) by a con-
straint database consisting of an algebraic computation tree of
size sO(dn) .

We are now going to consider the sign condition and
the point location queries under the aspect of their bit-
complexity. For this purpose we assume that F1, . . . , Fs are
polynomials of Z[X] of logarithmic height at most h.

Furthermore we suppose that the family F1, . . . , Fs is
generic in the following sense: for any 1 � r � n and any
1 � i1 < · · · < ir � s the polynomials Fi1 , . . . , Fir form a
regular sequence in Q[X] or generate the trivial ideal.

By a considerable more elaborated method, based
on arithmetic arguments from effective algebraic geome-
try [10], we obtain the following result in the spirit of [1].
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Theorem 2.3. There exists a constant c ∈ N such that for δ :=
2−hdcn2

any hypercube R ⊂ [0,1]n of side length δ has the
following property: at most n of the polynomials F1, . . . , Fs
change their signs in R.

By means of Theorem 2.3 we are able to construct a
constraint database D which consists of the partition of
[0,1]n into hypercubes of side length δ. To each of these
hypercubes we assign the indices and the signs of the at
least s − n polynomials among F1, . . . , Fs which do not
change their signs on it (observe that this preprocessing
requires a consistency test for semi-algebraic constraint
sets; see e.g. [11]). We obtain now the following state-
ment.

Corollary 2.4. For any real algebraic input point x ∈ [0,1]n of
degree d′ and logarithmic height h′ , the sign condition query
for F1, . . . , Fs can be evaluated in the database D using (h +
h′)dO(n3)d′O(n) bit operations. The database D can be repre-

sented by an algebraic computation tree of size 2hdO(n3)
.

As remarked in Section 1, simple minded and unspe-
cific applications of geometric elimination methods lead
in Corollary 2.2 and Corollary 2.4 to complexity bounds
which are doubly exponential in n.

2.2. Lower complexity bounds for the evaluation of sign
condition queries

We may now ask whether, and in which sense, the run-
time of our query evaluation algorithms may be improved.

In order to clarify this question, we are going to ex-
hibit two examples which certify, in worst case and up to
a polynomial expression in n, L and log(s), the optimality
of the evaluation algorithms of [2] and Section 2.1 for the
sign condition query. We limit ourselves to the algebraic
complexity model. First, let us state the following techni-
cal result.

Lemma 2.5. Let be given an algebraic computation tree Γ

which realizes the evaluation of the sign condition query for
F1, . . . , Fs. Then Γ satisfies the following conditions.

(i) The branching complexity of Γ is at least log3(#A(F1, . . . ,

Fs)).
(ii) Suppose that the polynomials F1, . . . , Fs are irreducible,

defining each a hypersurface (i.e., a codimension one subva-
riety) of Rn. Then there exists for each 1 � i � s a branching
node of Γ which tests the sign of a polynomial of R[X]
which is a multiple of Fi .

Example 1. Assume s > n2 and that F1, . . . , Fs are generic
linear forms of R[X] represented by their coefficients. Then
the evaluation of the sign condition query for F1, . . . , Fs
(by means of an algebraic decision tree) requires at least
n log3(s)

2 = Ω(n · log(s)) arithmetic operations.

Proof. From the genericity of F1, . . . , Fs we deduce
#A(F1, . . . , Fs) �

( s
n

)
. Let Γ be an algebraic computa-

tion tree that realizes the evaluation of the sign condition
query for F1, . . . , Fs . Lemma 2.5(i) implies that the branch-
ing complexity of F is at least log3(#A(F1, . . . , Fs)) �
log3

(( s
n

))
� n(log3(s)− log3(n)) � n log3(s)

2 = Ω(n · log(s)). �
We remark that [2] implies for Example 1 the upper

complexity bound of O(n5 log(s)) = O((n log(s))5) in the
model of linear decision trees. We observe that this upper
bound is polynomial with respect to the lower bound of
Ω(n log(s)) in the more general setting of algebraic com-
putation trees.

Example 2. Let n � 2 and s > n2. We extend the family of
linear polynomials F1, . . . , Fs of Example 1 by the poly-
nomial F0 := X2L

1 − X2 and suppose that F0, . . . , Fs are
represented by a division-free arithmetic circuit in R[X] of
non-scalar size L. Then the evaluation of the sign condition
query for F0, . . . , Fs requires Ω(L +n log(s)) arithmetic op-
erations and comparisons.

Proof. We observe that F0 is an irreducible polynomial of
R[X] that defines a hypersurface of Rn . Let Γ be an alge-
braic computation tree that realizes the evaluation of the
sign condition query for F0, . . . , Fs . From Lemma 2.5(ii) we
deduce that Γ contains a branching node which tests the
sign of a polynomial G ∈ R[X] which is a multiple of F0.
Therefore the degree of G is at least 2L and hence the
evaluation of G requires at least L arithmetic operations
(see [6], Section 8.1).

On the other hand, the choice of F1, . . . , Fs implies by
Example 1 that the branching complexity of Γ is at least
n log3(s)

2 . Thus Γ contains a computation path of length not

less than max{L,n log3(s)
2 } = Ω(L + n log(s)). �

We observe that Theorem 2.1 implies for Example 2
the upper complexity bound of O((L + n)5 log(s)) =
O((L + n log(s))6). This upper bound is therefore polyno-
mial in the lower bound Ω(L + n log(s)).

The results of this paper and their full proofs are con-
tained in the PhD thesis of the first author [9].
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