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1 Introduction

Recently, the four-point amplitude in ABJM theory [1] has been computed at two loops [2–

4] that is the first non-trivial order where perturbative corrections appear. This amplitude

shares many remarkable properties with its analogue in N = 4 SYM, namely it is dual

conformally invariant [5, 6], it exhibits WL/amplitude duality [7, 8] and can be consistently

thought of as the first term in an exponential resummation of the perturbative series anal-

ogous to the BDS ansatz in four dimensions [9, 10].

Actually, the amplitude itself divided by its tree level expression strikingly looks very

similar to the four-gluon amplitude in N = 4 SYM at one-loop divided by its tree level

counterpart. Precisely, the expression of the former ratio, evaluated in dimensional regu-

larization d = 3− 2ǫ, exactly matches the latter in d = 4− 4ǫ, up to a constant and after

identifying the renormalization scales.

In N = 4 SYM theory, the IR divergent part of the amplitude is completely fixed by an

evolution equation which constrains its dependence on the renormalization mass scale to be
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proportional to the cusp anomalous dimension fSYM(λ) [11–18]. The finite part is equally

fixed by off-shell dual conformal invariance [6, 8] and the result is an iterative expression [10]

log
A4d

Atree
4d

= [IR div] +
fSYM(λ)

4
log2

(s

t

)

+ const.+O(ǫ) (1.1)

In particular, when restricted at first order in the λ-coupling, this identity gives the one-loop

ratio on the l.h.s. in terms of the first order expansion of the cusp anomalous dimension,

as required by the Ward identities at this order.

Given the matching between the two-loop ABJM amplitude and the one-loop N = 4

SYM amplitude, the Ward identities satisfied by the three dimensional amplitude are the

same as those in four dimensions. Therefore, for the two-loop ratio of the three dimen-

sional theory we expect an expansion similar to (1.1). In fact, the explicit result found

in [2–4] can be factorized as in (1.1) and, quite remarkably, the coefficient in front of the

finite remainder agrees with the ABJM cusp anomalous dimension determined through

integrability arguments [20]

fCS(λ) =
1

2
fSYM(λ)

∣

∣

∣

√
λ

4π
→h(λ)

(1.2)

being h(λ) the ABJM interpolating function [20–23].

Therefore, at the order we are working we can write

A
(2)
3d

Atree
3d

∣

∣

∣

∣

∣

fCS

=
A

(1)
4d

Atree
4d

∣

∣

∣

∣

∣

fSYM

+ const.+O(ǫ) (1.3)

where the mapping (1.2) between the two cusp anomalous dimensions is meant.

Assuming that this identity can be uplifted to all orders, we are tempted to conjecture

that both amplitudes exhibit an iterative structure related by

log
A3d

Atree
3d

∣

∣

∣

∣

∣

fCS

= log
A4d

Atree
4d

∣

∣

∣

∣

∣

fSYM

+ const. +O(ǫ) (1.4)

Since the identification is up to O(ǫ) terms, the perturbative series for the two amplitudes

will not coincide. In fact, when exponentiating eq. (1.4) to obtain the complete amplitudes

the O(ǫ) terms on the r.h.s. will mix with the ǫ-poles, spoiling the identification of the

amplitudes order by order. The exact mapping between the two amplitudes can be recon-

structed only once we know all the O(ǫ) terms. It is then important to check the validity

of eq. (1.4) to all orders in ǫ.

In N = 4 SYM it happens that in the four-point amplitude the divergent and the

non-constant finite parts in (1.1) are completely captured by the one loop contribution

in a very precise way, encoded in the well-known BDS ansatz [10]. Assuming that also

in ABJM theory the first non-vanishing contribution to the four-point amplitude dictates

all the non-trivial dependence on the kinematic invariants through its ǫ expansion, it is

sufficient to find an all-order-in-ǫ relation of the type (1.4) only for the lowest non-trivial

order in λ corrections to both amplitudes.
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In this paper we carry out such a program by proving analytically an exact identity

between the two-loop ABJM amplitude and the one-loop N = 4 SYM amplitude to all

orders in ǫ. This is achieved by first acting on the four dimensional amplitude with a

differential operator. The result can be manipulated in two different ways, so deriving two

differential equations. In the first one, the r.h.s. features the 3d amplitude. In the second

one, a six dimensional integral appears which can be re-expressed in terms of the original 4d

amplitude, by means of an integration by parts identity and Passarino-Veltman reduction.

Equating the r.h.s. of these equations yields a close, all-order-in-ǫ relation between the

ABJM and N = 4 SYM lowest order amplitudes. Up to order ǫ2 we have managed to check

explicitly this identity by evaluating the three dimensional momentum integrals up to O(ǫ2)

and comparing the result with the known expansion of the 4d integrals at that order [10].

The powerful identity we have found allows to rewrite the BDS-like ansatz for the

ABJM four-point amplitude in terms of the four dimensional one. It follows that, if the

conjectured ansatz is correct, the similarity between the two amplitudes uncovered at first

order will propagate all over the perturbative expansion.

Assuming the exponentiation ansatz to hold in three dimensions, we can speculate on

the form of the four-loop amplitude. The essential ingredients determining the non-trivial

parts of the four-loop correction are the cusp anomalous dimension which is known up to

four loops [24–26], and the expansion of the two-loop amplitude up to order ǫ2. In par-

ticular, the cusp anomalous dimension along with the two-loop amplitude at order zero in

ǫ, allows to fix the finite remainder of the amplitude, as shown in [3, 4]. In this paper,

exploiting the knowledge of the subleading terms in ǫ, we make an almost complete pre-

diction for the amplitude at four loops, up to constants and scheme-dependent coefficients

appearing in front of simple poles.

The plan of the paper is as follows. In section 2 we review the result for the ABJM four-

point amplitude at two loops and discuss its similarity with the four dimensional one-loop

amplitude. In section 3 we first work out the expression of the two-loop 3d amplitude up

to order ǫ2, by explicitly solving the corresponding momentum integrals. This allows to re-

alize that the matching with its four-dimensional cousin persists up to order ǫ2. Motivated

by the observation that there must be at least a technical explanation for this surprising

similarity, we then give the explicit derivation of an all-order-in-ǫ identity between the two

quantities (see eq. (3.27)). In section 4, assuming the validity of a BDS-like ansatz for

the 3d amplitude, we propose an all-loop relation between the two amplitudes. Finally, in

section 5, assuming the exponentiation ansatz to be valid, we work out an almost complete

prediction for the ABJM four-point amplitude at four loops. A final discussion and five

appendices with all technical details follow.

2 ABJM four-point amplitude: a review

In the ABJM theory, the four-point amplitude for two scalars and two fermions has been

calculated at two loops in [2–4] . Its explicit expression divided by the tree level counterpart
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reads

λ2M
(2)
3d ≡

A2−loops
4

Atree
4

= λ2
[

−
(s/µ′2)−2ǫ

(2 ǫ)2
−

(t/µ′2)−2ǫ

(2 ǫ)2
+

1

2
log2

(s

t

)

+K1 +O(ǫ)

]

(2.1)

where λ = N/K is the ABJM ’t Hooft coupling (see appendix A for conventions), µ′ is the

IR scale of dimensional regularization, conveniently redefined such as to absorb the ǫ−1 pole

µ′2 = 8πe−γE µ2 (2.2)

and K1 = 4ζ2 + 3 log2 2 is a numerical constant.

Working in N = 2 superspace and using an ordinary diagrammatic approach, the

result (2.1) arises by summing contributions from six super-Feynman diagrams, after per-

forming D-algebra reduction and computing the corresponding momentum integrals in di-

mensional regularization, d = 3− 2ǫ, up to order O(ǫ). We list the results for the relevant

integrals, referring to [4] for a detailed explanation of their origin.

Keeping the notation close to the one used in refs. [3, 4], the two-loop amplitude can

be written as

M
(2)
3d = (4π)2

[

I(a)(s) + I(b)(s) + 6I(d)(s)− 2I(f)(s, t) + (s↔ t)
]

(2.3)

where

• Integral (a)

I(a)(s) = −
Γ2(1/2 + ǫ)Γ4(1/2− ǫ)

(4π)d Γ2(1− 2ǫ)

(

µ2

s

)2ǫ

(2.4)

• Integral (b)

I(b)(s) = 2
Γ(1/2 + ǫ)Γ2(1/2− ǫ)Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)d Γ(1− 2ǫ)Γ(1/2− 3ǫ)

(

µ2

s

)2ǫ

(2.5)

• Integral (d)

I(d)(s) = −
Γ3(1/2− ǫ)Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)d Γ2(1− 2ǫ)Γ(1/2− 3ǫ)

(

µ2

s

)2ǫ

(2.6)

• Integral (f)

I(f)(s, t) =
(1 + s/t)Γ3(1/2− ǫ)

(4π)d Γ2(1− 2ǫ)Γ(1/2− 3ǫ)(t/µ2)2ǫ
(2.7)

×

+i∞
∫

−i∞

dv

2πi
Γ(−v)Γ(−2ǫ− v)Γ∗(−1− 2ǫ− v)Γ2(1 + v)Γ(2 + 2ǫ+ v)

(s

t

)

v

– 4 –
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The last expression is the result of using the Mellin-Barnes (MB) representation of the

Feynman parametrized integral. The star stems for shifting the integration contour on the

right of the first pole of Γ(−1 − 2ǫ − v), ensuring a well-defined expression. This integral

can be evaluated in the ǫ→ 0 limit [3, 4], leading to the finite result (12 log
2 s/t+ 3ζ2).

The expression (2.1) is nicely akin to the one-loop four-point amplitude in N = 4 SYM

theory [27, 28]

λSYM M
(1)
4d (ǫ) = λSYM

[

−

(

s/µ′′2
)−ǫ

ǫ2
−

(

t/µ′′2
)−ǫ

ǫ2
+

1

2
log2

(s

t

)

+
2π2

3

]

+O(ǫ) (2.8)

arising from the evaluation of a single box integral. Here, the ’t Hooft coupling is defined

as λSYM = g2N
8π2 and the regularization scale is

µ′′2 = 4πe−γE µ2 (2.9)

Neglecting terms that vanish when removing the IR regulator, the two expressions (2.1)

and (2.8) are indeed identical up to numerical constants, once we identify the scaling pa-

rameters and shift ǫ → 2ǫ in M1−loop
4d (ǫ) to take into account the different loop order. At

this stage we can then write

M
(2)
3d (ǫ, µ

′) = M
(1)
4d (2ǫ, µ

′′) + const.+O(ǫ) (2.10)

A stringent question which arises is whether the identification between the two results

holds at any order in ǫ. The main motivation for investigating this problem comes from

the observation that in N = 4 SYM all-order terms in the IR regulator are crucial for

determining the correct exponential resummation of scattering amplitudes [10]. Therefore,

an answer to this question may shed some light on the structure of the exponentiation of

scattering amplitudes in the ABJM model, as we now explain.

Compelling evidence suggests that the four dimensional result (2.8) is the first order

expansion of an exponential resummation of the perturbative series [10]

M4d = exp

[ ∞
∑

l=1

λlSYM

(

f (l)(ǫ)M
(1)
4d (lǫ) + C(l)(ǫ)

)

]

(2.11)

where M
(1)
4d is the four-point one-loop amplitude to all orders in ǫ divided by the cor-

responding tree level expression, while C(l)(ǫ) contain constants plus O(ǫ) terms. The

expansion is in powers of the dimensionless effective coupling, while the mass scale (2.9) is

hidden inside the one-loop amplitude. The functions f (l)(ǫ) have an expansion in ǫ

f (l)(ǫ) = f
(l)
0 + f

(l)
1 ǫ+ f

(l)
2 ǫ2 (2.12)

whose zero order terms f
(l)
0 coincide with one-quarter the coefficients appearing in the

perturbative expansion of the scaling function fSYM arising in the dispersion relations for

magnons.1

1The scaling function is found to be twice the cusp anomalous dimension Γcusp which controls the UV

divergences of Wilson loops near the cusps.
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In the ABJM theory, perturbative contributions to four point scattering amplitudes

can occur only at even powers of λ = N/K due to the invariance of the theory under the

discrete symmetry K → −K, V ↔ V̂ , A ↔ B. Therefore, the two-loop contribution (2.1)

is the first non-trivial quantum correction.

This observation accompanied by the impressive similarity (2.10) hints that the all-

order amplitude for ABJM might equally exponentiate as in the four dimensional case. In

other words, the amplitude (2.1) could be the first order expansion of

M3d = exp

[ ∞
∑

l=1

λ2l
(

f̃ (2l)(ǫ)M
(2)
3d (lǫ) + C̃(2l)(ǫ)

)

]

(2.13)

where the N = 4 SYM coefficients f (l)(ǫ) have been replaced by their ABJM counterparts,

f̃ (l) = f̃
(l)
0 + f̃

(l)
1 ǫ+ f̃

(l)
2 ǫ2 .

A first suggestive support to this ansatz comes from the observation that, according

to our two-loop calculation, at this order the coefficient f̃ (2) ≡ f̃
(2)
0 matches the ABJM

scaling function obtained through integrability in a rather independent context

f̃(λ) =
1

2
fSYM(λSYM)|√λSYM

4π
→h(λ)

(2.14)

with h(λ) being the interpolating function appearing in the dispersion relations for ABJM

magnons.

Further support to the ansatz (2.13) should come from higher order-in-λ results for

which the knowledge of the M
(2)
3d amplitude at subleading orders in ǫ becomes mandatory.

Moreover, according to eq. (2.10), at two loops we can trade M
(2)
3d (ǫ) in eq. (2.13) with

M
(1)
4d (2ǫ). If the identity (2.10) were to persist at higher orders in ǫ we could express the

BDS-like ansatz for three dimensional amplitudes in terms of the four dimensional one.

Therefore, it is important to evaluate the amplitude at finite ǫ and investigate whether the

identification (2.10) holds at any order.

3 An identity between ABJM and N = 4 SYM four-point amplitudes

In this section we discuss the evaluation of subleading-in-ǫ contributions to the four-point

amplitude in ABJM theory.

By direct inspection of O(ǫ2) terms we find a refinement of eq. (2.10) which holds at

that order. Thereafter, we prove a general identity between the ABJM and the N = 4

SYM amplitudes at all orders in the regularization parameter.

3.1 O(ǫ2) identity for the two-loop amplitudes

When evaluating the subleading-in-ǫ terms of the two-loop ABJM amplitude, it is more

convenient to work with the IR scale µ′′ in eq. (2.9) rather than µ′ in eq. (2.2). In fact,

this allows to avoid the appearance of non-trivial functions of the kinematic invariants

multiplying powers of log 2 which would make the comparison with the four-dimensional

– 6 –
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amplitude more obscure. The price that we pay is the emergence of a simple pole divergence

which modifies the relation (2.10) as

M
(2)
3d (ǫ, µ

′′) = M
(1)
4d (2ǫ, µ

′′)−
(

s−2ǫ + t−2ǫ
) 1

2ǫ
log 2 + const.+O(ǫ) (3.1)

To check the consistency of this relation beyond O(ǫ0) terms, we write

M
(2)
3d (ǫ, µ

′′) ≡
(

s−2ǫ + t−2ǫ
)

2
∑

j=−∞

Aj

ǫj
(3.2)

and determine the coefficients A−2, · · · , A2 by explicitly computing the integrals (2.4)–(2.7)

up to ǫ2. The result is reported in eq. (C.2).

There, we also give the one-loop amplitude of N = 4 SYM, eqs. (C.3), (C.4), where

we have chosen to write the result in the same form as eq. (3.2) and a doubling of the

customary regularization parameter ǫ has been performed (d = 4− 4ǫ).

Quite remarkably, the expressions for the A−2, · · · , A2 coefficients of our amplitude

are almost carbon copies of the c−2, · · · , c2 coefficients of the one-loop amplitude in N = 4

SYM. A closer look reveals that most of the differences are due to additive numerical

constants which depend on the subtraction scheme that we choose.

The only non-trivial difference between the two sets of coefficients is the appearance

of a log2(s/t) term at order ǫ2. However, it is easy to see that at least at this order we can

absorb it in a scheme redefinition

(µ2A)
2ǫ = [1− 5ζ2 ǫ

2 +O(ǫ3)] (µ′′2)2ǫ (3.3)

thus obtaining the following empirical relation

M
(2)
3d (ǫ, µA) = M

(1)
4d

(

2ǫ, µ′′
)

+D(ǫ) +O(ǫ3) (3.4)

where D(ǫ) is given in (D.4). This result shows that the connection between the 3d and

the 4d amplitudes persists at order ǫ2.

In the next section we prove that this connection is not accidental but can be extended

to all orders as an exact identity that we derive analytically.

3.2 All order identity for the two-loop amplitudes: an analytical derivation

First of all, we observe that writing the amplitude as in (3.2) and taking into account the

particular dependence of the integrals (2.4)–(2.7) on the Mandelstam variables, the only

non-trivial contribution to the coefficients Aj comes from the integral I(f). In fact, all the

other integrals produce just constant factors.

Therefore, for the time being we concentrate on I(f). In the following, we are going to

prove an exact relationship between this integral and the four dimensional amplitude

Mf
3d(ǫ, µA) = M

(1)
4d (2ǫ, µ

′′) +
(

s−2ǫ + t−2ǫ
)

B(ǫ) (3.5)

where

(µ2A)
2ǫ ≡ A(ǫ) (µ′′2)2ǫ =

Γ(1− 2ǫ)Γ(1− 3ǫ)Γ(1− 4ǫ)

Γ3(1− ǫ)Γ(1− 6ǫ)
(µ′′2)2ǫ (3.6)
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and B(ǫ) is a constant given by

B(ǫ) =
Γ2(−2ǫ)Γ(1 + 2ǫ)

Γ3(1− 4ǫ)
e2γEǫ (3.7)

At second order, µA coincides with the expression found in (3.3).

To prove the identity (3.5) we start with the all-order-in-ǫ expression of the integral

I(f) as given in eq. (2.7). Neglecting the mass scale (we will recover it at the very end of

the derivation) and defining x ≡ s/t it reads

Mf
3d(ǫ) =

(4π)2ǫ Γ3(1/2− ǫ)

π Γ(1/2− 3ǫ)Γ2(1− 2ǫ)
t−2ǫ(1 + x)

×

∫

dv

2πi
Γ(−v)Γ2(−2ǫ− v)Γ2(1 + v)Γ(1 + 2ǫ+ v)xv (3.8)

At the same time, we consider the Mellin-Barnes representation of the 4d amplitude, again

neglecting the mass scale. Being it given by a single box integral I
(1)
4 (s, t), we can write

M
(1)
4d (2ǫ) = −8π2 s t I

(1)
4 (s, t)

=
2ǫt−2ǫx

(4π)−2ǫΓ(1−4ǫ)

∫

dv

2πi
Γ(−v)Γ2(−1−2ǫ−v)Γ2(1+v)Γ(2+2ǫ+v)xv (3.9)

The contour of integration in this expression is ill-defined in the ǫ → 0 limit, signaling

the emergence of ǫ-poles. Therefore, we extract the divergent contributions by suitably

deforming the contour. This leads to

M
(1)
4d =

Γ(1 + 2ǫ)Γ2(−2ǫ)s−2ǫ

2(4π)−2ǫΓ(−4ǫ)
(log(x) + 2ψ(0)(−2ǫ) + γE − ψ(0)(1 + 2ǫ)) (3.10)

+
2ǫ s−2ǫ

(4π)−2ǫΓ(1−4ǫ)

∫

dv

2πi
Γ(−v)Γ∗ 2(−1−2ǫ−v)Γ2(1+v)Γ(2+2ǫ+v)x1+2ǫ+v

where ψ(0)(x) is the digamma function defined in (B.8) and the Mellin-Barnes integral that

survives has a well-defined contour in the ǫ → 0 limit and contributes to the amplitude

beginning at order ǫ.

The product M
(1)
4d s

2ǫ depends only on the ratio x = s/t. Deriving with respect to x

we obtain

d

dx
(M

(1)
4d s

2ǫ) =
Γ(1 + 2ǫ)Γ2(−2ǫ)

2(4π)−2ǫΓ(−4ǫ)

1

x
(3.11)

+
2ǫ x2ǫ

(4π)−2ǫΓ(1− 4ǫ)

∫

dv

2πi
Γ(−v)Γ2(−2ǫ− v)Γ2(1 + v)Γ(1 + 2ǫ+ v)xv

where the same Mellin-Barnes integral as in (3.8) appears.

Thus, comparing (3.11) to (3.8) we can write

(1 + x)
d

dx
(M

(1)
4d s

2ǫ) = −2ǫ (4π)2 t
[

T (s) s2ǫ + T (t) t2ǫ
]

+
2ǫ

A(ǫ)
s2ǫMf

3d (3.12)

– 8 –



J
H
E
P
0
4
(
2
0
1
2
)
0
4
5

where A(ǫ) is given in eq. (3.6) and we have defined

T (s) =
Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)2−2ǫΓ(1− 4ǫ)

1

s1+2ǫ
, T (t) =

Γ(1 + 2ǫ)Γ2(−2ǫ)

(4π)2−2ǫΓ(1− 4ǫ)

1

t1+2ǫ
(3.13)

Note that T (s) and T (t) are one-mass triangle integrals in four dimensions in the s and

t-channel, respectively.

Equation (3.12) establishes a differential relation between the 4d amplitude and the

contribution I(f) to the 3d one. In order to obtain an algebraic relation, we derive a first

order differential equation relating the four dimensional box diagram to itself. This can be

done by using an algorithm similar to the one of ref. [29].

We consider the Feynman-parametrized form of the 4d box integral in d = 4 − 4ǫ

introduced in (3.9)

I
(1)
4 (1, 1, 1, 1; s, t) =

∫

d4−4ǫk

(2π)4−4ǫ

1

k2(k − p1)2(k − p1 − p2)2(k + p4)2

=
Γ(2 + 2ǫ)x1+2ǫ

(4π)2−2ǫ

1

t2−2ǫ

1
∫

0

[dα]
1

(α1α3 x+ α2α4)2+2ǫ
(3.14)

where the measure is [dα] = dα1dα2dα3 δ(
∑

i αi−1). The labels in I
(1)
4 indicate the powers

of the propagators according to the order in which they appear.

By taking the derivative with respect to the ratio x = s/t we obtain

x
d

dx
(s1+2ǫ t I

(1)
4 ) = (1+2ǫ)s1+2ǫ t I

(1)
4 −

Γ(3 + 2ǫ)x2+2ǫ

(4π)2−2ǫ

1
∫

0

[dα]
α1 α3

(α1α3 x+ α2α4)3+2ǫ
(3.15)

The second piece of this equation is proportional to a six-dimensional box integral with

two indices raised by one unit. Precisely,

Γ(3 + 2ǫ)

(4π)3−2ǫ

1
∫

0

[dα]
α1 α3

(α1α3 s+ α2α4t)3+2ǫ
= I

(1)
6 (2, 1, 2, 1; s, t) ≡ (1+3+)I

(1)
6 (s, t) (3.16)

where n± are the operators which raise and lower the power of the n-th propagator by one

unit.

Comparing (3.16) with (3.15) we obtain

x
d

dx
(s1+2ǫ t I

(1)
4 (s, t)) = (1 + 2ǫ)s1+2ǫ t I

(1)
4 (s, t)− 4π s2+2ǫt (1+3+)I

(1)
6 (s, t) (3.17)

We further manipulate (1+3+)I
(1)
6 (s, t) with the scope of re-expressing it in terms of

four dimensional integrals. Applying Integration-by-parts relations arising from the identity

0 =

∫

d6−4ǫk

(4π)6−4ǫ

d

dk µ

(

(k − p1 − p2)
µ

k2 (k − p1)2 [(k − p1 − p2)2]2 (k + p4)2

)

(3.18)
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we are led to

4π s (1+3+)I
(1)
6 (s, t) = 4π(1+ + 2+ + 3+ + 4+)I

(1)
6 (s, t) + 4π 4ǫ3+I

(1)
6 (s, t) (3.19)

Using the Feynman-parametrized form of the first four terms, it is not difficult to ascertain

that by the condition
∑

i αi = 1 imposed by the delta-function we obtain

4π(1+ + 2+ + 3+ + 4+)I
(1)
6 (s, t) = I

(1)
4 (s, t) (3.20)

For the last term, comparing its Feynman-parametrized form

4π 4ǫ3+I
(1)
6 (s, t) =

4ǫΓ(2 + 2ǫ)

(4π)2−2ǫ

1
∫

0

[dα]
α3

(α1α3 s+ α2α4t)2+2ǫ
(3.21)

with the Feynman-parametrized form of a four-dimensional vector-like box integral

Iµ4 =

∫

d4−4ǫk

(2π)4−4ǫ

kµ

k2(k − p1)2(k − p1 − p2)2(k + p4)2

=
Γ(2 + 2ǫ)

(4π)2−2ǫ

1
∫

0

[dα]
α2p

µ
1 + α3(p1 + p2)

µ − α4p
µ
4

(α1α3 s+ α2α4t)2+2ǫ
(3.22)

we find that it coincides with the (p1 + p2)-direction of the vector-like box integral in

four dimensions. This component can be easily evaluated by employing Passarino-Veltman

reduction and we obtain

4π 4ǫ3+I
(1)
6 (s, t) =

2ǫ

1 + x
I
(1)
4 (s, t) + 4ǫ

T (t)−T (s)

t(1 + x)
(3.23)

where T (s) and T (t) have been defined in (3.13).

Collecting the results (3.19), (3.20), (3.23) and inserting back into eq. (3.17) we obtain

the desired differential equation for the four-dimensional box integral. Recasting it in terms

of the amplitude M
(1)
4d (2ǫ) = −8π2 s t I

(1)
4 (s, t) we finally have

(1 + x)
d

dx
(M

(1)
4d (2ǫ) s2ǫ) = 2ǫM

(1)
4d (2ǫ)s2ǫ + 2ǫ (4π)2 t s2ǫ[T (t)− T (s)] (3.24)

Matching the different conventions, it is easy to see that this is the same as eq. (4.14)

of ref. [30], when we send ǫ→ 2ǫ.2

Comparison with the r.h.s. of (3.12) produces an algebraic equation relating Mf
3d to

M
(1)
4d

Mf
3d(ǫ) = A(ǫ)

(

M
(1)
4d (2ǫ) + (4π)2 (sT (s) + tT (t))

)

(3.25)

Finally, reinserting the scale parameters and absorbing the A(ǫ)(4πe−γE)2ǫ factor as in (3.6),

this identity casts into the form (3.5).

2We thank L. Dixon for bringing this to our attention.
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We note that the result (3.25) is a generalization of the the well-known duality between

the two-loop diagonal box integral and the one-loop easy box integral to the case where a

non-trivial numerator is present (for a nice derivation of this duality, see ref. [31]).

In order to recover the whole 3d amplitude in terms of M
(1)
4d we add to (3.5) the con-

tributions from the integrals I(a), I(b) and I(d) where we apply the µA-scheme redefinition.

Given that

(4π)2

A(ǫ) (4πe−γE)2ǫ

(

I(a)(s) + I(b)(s) + 6I(d)(s) + (s↔ t)
)

=

= −
(

s−2ǫ + t−2ǫ
) e2γEǫ Γ(1− 6ǫ)Γ2

(

1
2 − ǫ

)

Γ3(1− ǫ)

4π Γ3(1− 2ǫ)Γ(1− 3ǫ)Γ(1− 4ǫ)Γ
(

1
2 − 3ǫ

)

×

{

Γ2(−2ǫ)Γ(2ǫ+ 1)

[

6Γ

(

1

2
− ǫ

)

− 2Γ(1− 2ǫ)Γ

(

1

2
+ ǫ

)]

+Γ

(

1

2
− 3ǫ

)

Γ2

(

1

2
− ǫ

)

Γ2

(

1

2
+ ǫ

)}

≡
(

s−2ǫ + t−2ǫ
)

E(ǫ) (3.26)

we finally obtain

M
(2)
3d (ǫ, µA) = M

(1)
4d

(

2ǫ, µ′′
)

+D(ǫ) (3.27)

where we have defined D(ǫ) ≡ (s−2ǫ+ t−2ǫ)(B(ǫ)+E(ǫ)). Series expansions for A(ǫ), B(ǫ),

D(ǫ) and E(ǫ) can be found in appendix D. It is easy to check that neglecting subleading

terms for ǫ→ 0 we are back to the relation (3.1).

4 Three dimensional BDS ansatz revisited

The identity (3.27) enables us to reformulate the BDS-like conjecture for the ABJM four-

point amplitude in terms of the original N = 4 SYM all-loop proposal.

In fact, reformulating the ansatz (2.13) in the µA scheme, first of all we can write

M3d(ǫ, µA) = exp

[ ∞
∑

l=1

λ2l
(

f
(2l)
CS (ǫ)M

(2)
3d (lǫ, µA) + C

(2l)
CS (ǫ)

)

]

(4.1)

where the functions f
(2l)
CS (ǫ) are the f̃ (2l)(ǫ) counterparts in the µA-scheme. Their leading

coefficients f
(2l)
CS,0 are still determined by one-quarter the Chern-Simons scaling function, as

the change of scheme affects only f̃
(2l)
2 .

Modifications in the constant part of the amplitude due to the scheme change are

included in the new coefficients C
(2l)
CS (ǫ).

The convenient choice of the µA-scheme allows to use the identity (3.27) in the previous

expression, thus leading to a suggestive ansatz for the all-loop four-point amplitude in 3d

M3d(ǫ, µA) = exp

[ ∞
∑

l=1

λ2l
(

f
(2l)
CS (ǫ)M

(1)
4d (2lǫ, µ

′′) + f
(2l)
CS (ǫ)D(lǫ) + C

(2l)
CS (ǫ)

)

]

≡ M4d(2ǫ, µ
′′)
∣

∣

∣

f(ǫ)→fCS(ǫ)
exp

[ ∞
∑

l=1

λ2lH(l)(ǫ)

]

(4.2)
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where we have defined

H(l)(ǫ) = f
(2l)
CS (ǫ)D(lǫ) + C

(2l)
CS (ǫ)− C(l)(2ǫ) (4.3)

and C(l)(2ǫ) are the functions appearing in the 4d BDS ansatz (2.11).

It is important to note that, apart from a factor (s−2lǫ + t−2lǫ) hidden inside D(lǫ),

the coefficients H(l)(ǫ) contain only constant terms, while the hard-core of the amplitude

is completely encoded in M4d.

The ansatz (4.2) reveals a deep intertwining between the conjectured exponentiation

of four-point amplitudes in N = 4 SYM and ABJM theories. Therefore, we are led to

conjecture that the remarkable connection uncovered at lowest order [2–4] will propagate

over their entire perturbative series.

5 A conjecture for the four-loop amplitude

In spite of this beautiful result, the poor knowledge of the functions fCS(ǫ) spoils the power

of (4.2) in predicting higher order corrections to the four-point function. Nevertheless,

using known results for the scaling function of the ABJM theory, we are able to formulate

an almost complete prediction for this amplitude at four loops in terms of the N = 4 SYM

amplitude at two loops.

The main ingredients for carrying out this program are the expression

M
(4)
3d (ǫ, µA) =

1

2

[

f
(2)
CS (ǫ)

(

M
(1)
4d (2ǫ, µ

′′) +D(ǫ)
)

+ C
(2)
CS (ǫ)

]2

+f
(4)
CS (ǫ)

(

M
(1)
4d (4ǫ, µ

′′) +D(2ǫ) + C
(4)
CS (ǫ)

)

(5.1)

obtained from the expansion of the ansatz (4.2), and the value of the ABJM scaling function

at four-loops [24–26]

fCS(λ) = 4λ2 − 24 ζ2 λ
4 +O(λ6) (5.2)

which leads to

f
(2)
CS ≡ f

(2)
CS,0 = 1 f

(4)
CS,0 = −6 ζ2 (5.3)

Unfortunately, while integrability suggests a prescription for deriving the ABJM scaling

function from that of N = 4, no such a connection is known for the first and the second

order coefficients f
(4)
CS,1 and f

(4)
CS,2.

From the structure of the BDS-like ansatz it is easy to realize that as long as we are

interested in the non-trivial part of the amplitude we can forget about f
(4)
CS,2 that would con-

tribute only to constants. The lack of information about f
(4)
CS,1, instead, leaves the 1/ǫ pole

undetermined.3 Therefore, the two relations above are sufficient to formulate an almost

complete prediction, up to scheme-dependent subdivergent terms.

3To restrain the lack of information coming from the unknown f
(4)
CS,1, one could switch to a scheme where

the choice of the regularization scale would be analogous to that in (2.2) (µ2
A → µ′2

A = 22ǫµ2
A), allowing for

no 1/ǫ poles in the series expansion of the two-loop amplitude. In that case f
(4)
CS,1 would only affect the

coefficient of the 1/ǫ pole at four loops, but not the finite part.
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Combining the two ingredients (5.1), (5.3), we can write

M
(4)
3d (ǫ, µA) =

1

2

(

M
(1)
4d (2ǫ, µ

′′) +D(ǫ)
)2

− 6 ζ2

(

M
(1)
4d (4ǫ, µ

′′) +D(2ǫ)
)

−
(

s−4ǫ + t−4ǫ
) f

(4)
CS,1

16ǫ
+ Ĉ

(4)
CS (ǫ) (5.4)

where Ĉ
(4)
CS (ǫ) includes finite contributions coming from f

(4)
CS,1 and f

(4)
CS,2.

Alternatively, we can collect the pieces that reproduce the N = 4 SYM amplitude at

two loops [32] and cast the previous expression into the form

M
(4)
3d (ǫ, µA) = M

(2)
4d (2ǫ, µ

′′) +M
(1)
4d (2ǫ, µ

′′)D(ǫ)− 5 ζ2M
(1)
4d (4ǫ, µ

′′)

−6 ζ2D(2ǫ) +
1

2
D(ǫ)2 −

(

s−4ǫ + t−4ǫ
) f̂

(4)
CS,1

16ǫ
+

ˆ̂
C

(4)
CS (ǫ) (5.5)

where f̂
(4)
CS,1 and

ˆ̂
C

(4)
CS have been defined so as to include O(ǫ−1) and O(ǫ0) terms respec-

tively, arising when reconstructing the four dimensional four loop amplitude.4

Eq. (5.5) expresses our prediction for the four-loop four-point amplitude in ABJM in

terms of the two-loop amplitude in N = 4 SYM theory. An explicit expression for its

divergent and finite parts is given in appendix E. In the C0 coefficient, eq. (E.2), we can

recognize terms proportional to L4, (log2 2)L2 and ζ2L
2 which were present in the finite

reminder computed in [4].

We stress that the most non-trivial contribution to the amplitude, featuring the highest

weight harmonic polylogarithms, is enclosed in the four dimensional two-loop contribution

(the first term on the r.h.s. of this equation). Moreover, all the remaining polylogarithmic

dependence on the kinematic invariants is captured by the four-dimensional lower order

amplitudes. This pattern will show up at any perturbative order.

6 Discussion

In this paper we have algebraically derived an exact relation between the two-loop four-

point amplitude of the ABJM theory divided by its tree level expression and the corre-

sponding one-loop ratio in the N = 4 SYM theory. That a relation were to be at work was

already observed in [2–4] for the two amplitudes computed up to finite terms in the IR reg-

ulator. Here, we have extended this relation to an exact identity holding at any order in ǫ.

Besides the technical reasons underlying this identity which can be inferred from our

proof, it would be very interesting to understand whether it has a deeper explanation based

on more robust conceptual grounds. Moreover, still in this direction, it would be impor-

tant to investigate whether it is an accident of the four-point amplitude or it holds also for

higher-point amplitudes.

Assuming that, as in the N = 4 SYM theory, the ABJM amplitudes have an iterative

structure encoded in a BDS-like exponentiation ansatz, the all-order-in-ǫ result at lowest

4More precisely f̂
(4)
CS,1 = f

(4)
CS,1 − 2 f

(2)
SYM,1

(

−
1
16

)

= f
(4)
CS,1 −

1
8
ζ3, and

ˆ̂
C

(4)
CS = Ĉ

(4)
CS − 4 f

(2)
Y M,2

(

−
1
16

)

=

Ĉ
(4)
CS −

1
4
ζ3.
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order in perturbation theory would be sufficient for identifying all higher order contribu-

tions. In three dimensions this is indeed two loops. According to our identity, the two-loop

3d amplitude can be rewritten in terms of the lowest order contribution to the four dimen-

sional one which enters the ordinary BDS equation for the whole 4d amplitude. Therefore,

this allows to conjecture that an exact relation should hold between the complete four-point

three dimensional amplitude and its four dimensional counterpart.

A strong non-trivial test of this conjecture would come from a direct evaluation of the

ABJM amplitude at four loops, either by traditional perturbative methods or by generalized

unitarity cuts. The result could in fact confirm or kill the prediction that we have for the

amplitude at this order and, at the same time, could give some indication on the explicit

expression for the scheme dependent coefficient f
(4)
CS,1 that our ansatz leaves undetermined.

In refs. [2–4] a duality between the two-loop four-point amplitude and a 3d light-like

four-polygon Wilson loop [37, 38] was pointed out, as long as the two quantities are eval-

uated up to finite terms in ǫ. It would be interesting to investigate whether this duality

persists at sub-leading orders. Given our algebraic identity and the fact that the 4d ampli-

tude is known up to order ǫ4 [10], the explicit result for the two-loop ABJM amplitude at

that order in ǫ is now available. It would then be interesting to try and push the evaluation

of the Wilson loop up to the same order and compare the two results.
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A ABJM theory: notations and conventions

In N = 2 superspace, the physical content of U(N)K × U(N)−K ABJM theory [1] is or-

ganized into two vector multiplets (V, V̂ ) in the adjoint representation of the first and the

second U(N)’s respectively, and four chiral multiplets Ai and Bi, i = 1, 2, with Ai in the

(N, N̄) and Bi in the (N̄ ,N) (anti)bifundamental representations.

The N = 6 supersymmetric action reads [33–35]

S = SCS + Smat (A.1)

with

SCS =
K

4π

∫

d3x d4θ

∫ 1

0
dt

{

Tr
[

V D
α (
e−tVDαe

tV
)

]

− Tr
[

V̂ D
α
(

e−tV̂Dαe
tV̂
) ]}

Smat =

∫

d3x d4θ Tr
(

Āie
VAie−V̂ + B̄ieV̂Bie

−V
)

+
2πi

K

∫

d3x d2θ ǫikǫ
jl Tr(AiBjA

kBl)+
2πi

K

∫

d3x d2θ̄ ǫikǫjl Tr(ĀiB̄
jĀkB̄

l) (A.2)

where K is an integer, as required by the gauge invariance of the effective action. In the

perturbative regime we take λ ≡ N
K

≪ 1.
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We are interested in four-point scattering amplitudes. Without loosing generality we

consider chiral superamplitudes of the type (AiBjA
kBl), as the other superamplitudes can

be obtained from these ones by SU(4) R-symmetry transformations.

At any order in perturbation theory they can be inferred from the corresponding con-

tributions to the effective superpotential [3, 4]. When going to components, they give rise

to amplitudes for two scalars and two fermions.

We write the amplitude divided by its tree level expression as an expansion in powers

of the ’t Hooft coupling

M =
∑

l

λl M(l) (A.3)

where λ is the dimensionless effective coupling in d = 3 − 2ǫ, and M(l) ≡ A(l−loops)/Atree

includes the mass scale of dimensional regularization (µ2)lǫ.

B Functions appearing in the result at order ǫ
2

Here we review the definition of harmonic polylogarithms Ha1...an which are ubiquitous in

solving Feynman integrals. These functions are defined recursively as

Ha1a2...an(x) =

∫ x

0
dt fa1(t)Ha2...an(t) (B.1)

where

f±1(x) =
1

1∓ x
, f0(x) =

1

x
, (B.2)

H±1(x) = ∓ log(1∓ x) , H0(x) = log x , (B.3)

and the index n is referred to as the weight of the given harmonic polylogarithm. Up to

weight 4, these functions (when only 0 or +1 indices are present) may be expressed in

terms of ordinary polylogarithms.

All the harmonic series arising from closing our MB integrals can be solved analytically.

Simple and nested harmonic sums are conventionally defined as [36]

Si(n) =
n
∑

j=1

1

ji
Si,k(n) =

n
∑

j=1

Sk(j)

ji
(B.4)

Here we list some nested series, which are encountered during the order ǫ2 evaluation of

integrals, producing high order harmonic polylogarithms

∞
∑

n=1

S1(n− 1)2
zn

n
= −2S1,2(z) +H1(z)H0,1(z) +

1

3
H1(z)

3 (B.5)

∞
∑

n=1

S1(n− 1)S2(n− 1)
zn

n
= −

1

2
H0,1(z)

2 −H1(z) (S1,2(z)−H0,0,1(z)) +

+
1

2
H1(z)

2H0,1(z)
2 (B.6)
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∞
∑

n=1

S2(n− 1)2
zn

n
= H1,0,0,0,1 (z) + 2H1,0,1,0,1 (z) (B.7)

These are relevant for summing series of second order in polygamma functions ψ(i)(n)

ψ(i)(x) =
di+1

dxi+1
log Γ (x) (B.8)

such as
∑∞

n=1

[

ψ(0)(n)
]2
zn,

∑∞
n=1 ψ

(0)(n)ψ(1)(n)zn and
∑∞

n=1

[

ψ(1)(n)
]2
zn, respectively.

C Explicit comparison

In this section we compute explicitly the three dimensional amplitude at order ǫ2 and

compare it to the four dimensional one.

In order to make closer contact with the four dimensional case we choose the IR scale to

be µ′′2 = 4πe−γE µ2. This choice has the advantage that many non-trivial terms multiplied

by powers of log 2 drop off the series. The price to pay is to reinstate a ǫ−1 pole, which

could have been removed from the coefficients Aj by using the scale µ′ in (2.2). We write

M
(2)
3d (ǫ, µ

′′) =
(

s−2ǫ + t−2ǫ
)

2
∑

j=−2

Aj

ǫj
(C.1)

By ǫ-expanding the integrals arising in the computation and using the tools reviewed above

we determine explicitly the coefficients. With the shorthands x ≡ s/t and L ≡ log x, they

read

A2 = −
1

4

A1 = −
1

2
log 2

A0 = +
1

4
L2 +

π2

3
+ log2 2

A−1 = −
1

2
H0,0,1

(

−
1

x

)

−
1

2
H0,1

(

−
1

x

)

L

−
1

4
H1

(

−
1

x

)

L2 −
1

4
π2H1

(

−
1

x

)

+

(

x↔
1

x

)

+
185ζ(3)

12
−

4 log3 2

3
−

7

12
π2 log 2

A−2 = +H1,0,0,1

(

−
1

x

)

+H0,0,1,1

(

−
1

x

)

+H0,1,0,1

(

−
1

x

)

+H0,0,0,1

(

−
1

x

)

+H0,1,1

(

−
1

x

)

L+H1,0,1

(

−
1

x

)

L

−
1

2
H0,1

(

−
1

x

)

L2 +
1

2
H1,1

(

−
1

x

)

L2 +
1

2
π2H1,1

(

−
1

x

)

−
1

3
H1

(

−
1

x

)

L3 −
1

2
π2H1

(

−
1

x

)

L− ζ3H1

(

−
1

x

)

+

(

x↔
1

x

)
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−
1

24
π2L2

+
91ζ(3) log 2

3
+

233π4

1440
+

4 log4 2

3
−

17

6
π2 log2 2 (C.2)

In order to make a comparison, we report the corresponding result for the one-loop

four-point amplitude in N = 4 SYM as can be found in ref. [10]. Using the results of

appendix B of that reference, suitably adapted to our conventions (euclidean signature,

x→ 1/x and ǫ→ 2ǫ) and choosing a slightly different definition for the series expansion

M
(1)
4d (ǫ, µ

′′) =
(

s−2ǫ + t−2ǫ
)

2
∑

j=−2

cj
ǫj

(C.3)

we find

c2 = −
1

4
c1 = 0

c0 = +
L2

4
+
π2

3

c−1 = −
1

2
H0,0,1

(

−
1

x

)

−
1

2
H0,1

(

−
1

x

)

L

−
1

4
H1

(

−
1

x

)

L2 −
1

4
π2H1

(

−
1

x

)

+

(

x↔
1

x

)

+
17

3
ζ3

c−2 = +H1,0,0,1

(

−
1

x

)

+H0,0,1,1

(

−
1

x

)

+H0,1,0,1

(

−
1

x

)

+H0,0,0,1

(

−
1

x

)

+H0,1,1

(

−
1

x

)

L+H1,0,1

(

−
1

x

)

L

−
1

2
H0,1

(

−
1

x

)

L2 +
1

2
H1,1

(

−
1

x

)

L2 +
1

2
π2H1,1

(

−
1

x

)

−
1

3
H1

(

−
1

x

)

L3 −
1

2
π2H1

(

−
1

x

)

L− ζ3H1

(

−
1

x

)

+

(

x↔
1

x

)

+
1

3
π2L2 +

20

3
ζ3 L+

41

360
π4 (C.4)

Comparing them with eq. (C.2) we see that the two sets of coefficients differ by constants

and by a non-trivial term − 5
24π

2L2 = −5
4ζ2 log

2 (s/t) at order ǫ2. Owing to this observation

we conclude that up to order ǫ2 the following relation holds

M
(2)
3d (ǫ)

A(ǫ)
= M

(1)
4d (2ǫ) +D(ǫ) +O(ǫ3) (C.5)

where A(ǫ) = 1 − 5ζ2ǫ
2 + O(ǫ3) and D(ǫ) is given in (D.4). This precisely meets the

expectations from (3.27), which proves this formula to be valid to all orders in ǫ.

– 17 –
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D Series expansions

Here we list the ǫ-expansions of the functions used in the computations of sections 3.2), (4

and 5

A(ǫ) =
Γ(1− 2ǫ)Γ(1− 3ǫ)Γ(1− 4ǫ)

Γ3(1− ǫ)Γ(1− 6ǫ)

= 1− 5ζ2 ǫ
2 − 40ζ3 ǫ

3 −
821ζ4
4

ǫ4 +O(ǫ5) (D.1)

B(ǫ) =
Γ2(−2ǫ)Γ(1 + 2ǫ)

Γ3(1− 4ǫ)
e2γEǫ

=
1

4ǫ2
−

1

2
ζ2 −

14

3
ζ3 ǫ−

47

4
ζ4 ǫ

2 +O(ǫ3) (D.2)

E(ǫ) = −
1

4ǫ2
−

log 2

2ǫ
+

(

log2 2−
3

4
ζ2

)

+

(

−6 ζ2 log 2 +
53

12
ζ3 −

4

3
log3 2

)

ǫ

+

(

−12 ζ2 log2 2−
207

8
ζ4 +

31

3
ζ3 log 2 +

4

3
log4 2

)

ǫ2 +O
(

ǫ3
)

(D.3)

D(ǫ) =
(

s−2ǫ + t−2ǫ
)

{

−
1

2ǫ
log 2 +

(

log2 2−
5

4
ζ2

)

+

(

−6 ζ2 log 2−
1

4
ζ3 −

4

3
log3 2

)

ǫ

+

(

−12 ζ2 log2 2−
301

8
ζ4 +

31

3
ζ3 log 2 +

4

3
log4 2

)

ǫ2 +O
(

ǫ3
)

}

(D.4)

E The ABJM four-point amplitude at four loops

In this appendix we give the explicit result for the ABJM four-point amplitude at four

loops as derived from eq. (5.5). Writing

M
(4)
3d (ǫ, µA) =

(

s−4ǫ + t−4ǫ
)

4
∑

j=0

Cj

ǫj
+O(ǫ) (E.1)

we find

C4 =
1

16

C3 =
1

4
log 2

C2 = −
3

16
L2 −

1

4
log2 2

C1 =
1

4
H0,0,1(−x)−

1

4
H0,1(−x)L

+
1

8
H1(−x)L

2 +
1

8
π2H1(−x) +

(

x↔
1

x

)

−
1

2
log 2L2
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0
1
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)
0
4
5

−
65

24
ζ3 −

1

3
log3 2 +

15

4
ζ2 log 2−

f
(4)
CS,1

16

C0 = −
1

2
H0,0,0,1(−x)−

1

2
H0,0,1,1(−x)−

1

2
H1,0,0,1(−x)−

1

2
H0,1,0,1(−x)

+
1

2
H0,1,1(−x)L+

1

2
H1,0,1(−x)L−

1

4
H1,1(−x)L

2

+
1

4
H0,1(−x)L

2 −
3

2
ζ2H1,1(−x) +

1

2
ζ3H1(−x)

+
1

12
log 2

(

6H0,0,1(−x)− 6LH0,1(−x)

+ 3H1(−x)L
2 + 3π2H1(−x)

)

+

(

x↔
1

x

)

+
11

24
L4 +

3

4
log2 2L2 +

1

4
ζ2 L

2

+
123

32
ζ4 −

127

12
ζ3 log 2 +

15

2
ζ2 log2 2 +

5

3
log4 2

−
1

4
log 2 f

(4)
CS,1 −

1

16
f
(4)
CS,2 +

1

2
C

(4)
CS (0) (E.2)
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