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Abstract
Aim: Existing	global	models	to	predict	standing	biomass	are	based	on	trees	charac-
terized	by	a	 single	principal	 stem,	well	 developed	 in	height.	However,	 their	use	 in	
open	woodlands	and	shrublands,	characterized	by	multistemmed	species	with	sub-
stantial	crown	development,	generates	a	high	 level	of	uncertainty	 in	biomass	esti-
mates.	 This	 limitation	 led	 us	 to	 (a)	 develop	 global	 models	 of	 shrub	 individual	
aboveground	biomass	based	on	simple	allometric	variables,	(b)	to	compare	the	fit	of	
these	models	with	existing	global	biomass	models,	and	(c)	to	assess	whether	models	
fit	change	when	bioclimatic	variables	are	considered.
Location: Global.
Time period: Present.
Major taxa studied: 118	species	of	shrubs.
Methods: We	 compile	 a	 database	 of	 3,243	 individuals	 across	 49	 sites	 distributed	
worldwide.	 Including		stem	basal	diameter,	height	and	crown	diameter	as	predictor	
variables,	we	built	potential	models	and	compared	 their	 fit	using	generalized	 least	
squares.	We	 used	mixed	 effects	 models	 to	 determine	 if	 bioclimatic	 variables	 im-
proved	the	accuracy	of	biomass	models.
Results: Although	the	most	 important	variable	 in	terms	of	predictive	capacity	was	
stem	basal	diameter,	crown	diameter	significantly	improved	the	models’	fit,	followed	
by	height.	Four	models	were	finally	chosen,	with	the	best	model	combining	all	these	
variables	in	the	same	equation	[R2	=	0.930,	root	mean	square	error	(RMSE)	=	0.476].	
Selected	models	performed	as	well	as	established	global	biomass	models.	Including	
the	individual	bioform	significantly	improved	the	models’	fit.
Main conclusions: Stem	basal	diameter,	crown	diameter	and	height	measures	could	
be	combined	to	provide	robust	aboveground	biomass	(AGB)	estimates	of	individual	
shrub	species.	Our	study	supplements	well-established	models	developed	for	trees,	
allowing	more	accurate	biomass	estimation	of	multistemmed	woody	individuals.	We	
further	 provide	 tools	 for	 a	 methodological	 standardization	 of	 individual	 biomass	
quantification	in	these	species.	We	expect	these	results	contribute	to	improve	the	
quality	of	biomass	estimates	across	ecosystems,	but	also	to	generate	methodological	
consensus	on	field	biomass	assessments	in	shrubs.
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1  | INTRODUC TION

Over	recent	decades,	vegetation	cover	shifts	due	to	land	use	changes	
have	deeply	affected	 the	global	 carbon	budget,	 representing	c. 18% 
of	the	total	carbon	emissions	globally	 (Le	Quéré	et	al.,	2018).	 In	this	
context,	carbon	mitigation	projects		intended	to	protect	and	enhance	
forest	 cover,	 and	 thus	 carbon	 sequestration,	 have	 gained	 attention	
[e.g.,	Reducing	Emissions	from	Deforestation	and	Forest	Degradation	
(REDD)].	Most	of	these	projects	have	taken	place	in	tropical	ecosys-
tems	and	have	been	focused	on	tree	species,	particularly	those	with	
larger	diameters,	 as	 they	 store	 large	amounts	of	 carbon	 (Lutz	et	 al.,	
2018;	Saatchi	et	al.,	2011;	Slik	et	al.,	2013).	Nonetheless,	open	forests	
and	woodlands	have	received	less	attention	in	carbon	accounting	mod-
els	and	mitigation	projects.	However,	some	of	these	ecosystems	(e.g.,	
semi-arid	ecosystems,	mostly	dominated	by	multistemmed	trees	and	
shrub	species)	have	been	recognized	as	drivers	of	global	atmospheric	
CO2	level	variations	(Poulter	et	al.,	2014),	and	are	expected	to	increase	
in	coverage	due	to	global	climate	change	by	the	end	of	the	21st	century	
(Huang,	Yu,	Guan,	Wang,	&	Guo,	2016).	One	of	the	large	sources	of	un-
certainty	in	carbon	stocks	quantification	is	the	lack	of	standard	models	
to	convert	woody	individual	measurements	into	biomass	estimations	
(Chave	et	al.,	2005).	Therefore,	it	is	essential	to	gather	ground-based	
information	 on	 carbon	stored	 in	 vegetation	 across	 different	 ecosys-
tems,	especially	in	those	where	multistemmed	trees	and	shrubs	are	a	
significant	proportion	of	the	total	vegetation	biomass,	in	order	to	im-
plement	and	improve	global	climate	change	mitigation	projects.

Ground-based	estimates	of	aboveground	biomass	(AGB)	are	typ-
ically	 obtained	by	 applying	 allometric	models	 based	on	 field	mea-
surements	of	biometric	data	at	 individual	 level.	At	present,	several	
well-established	global	models	use	stem	diameter	at	breast	height	
(i.e.,	DBH,	diameter	at	1.3	m	from	the	ground	level)	as	an	AGB	pre-
dictor	variable	of	tree	individuals,	which	are	often	represented	by	a	
single	stem,	well	developed	in	height	(Brown,	1997;	Chave	et	al.,	 ).	
The	choice	of	this	biometric	variable	is	based	on	the	fact	that	DBH	is	
relatively	easy	to	obtain	in	the	field	(but	see	Paul	et	al.,	2017)	and	has		
been	shown	to	have	good	predictive	capacity.	Nevertheless,	in	both	
woodlands	 and	 open	 forests,	 where	 vegetation	 communities	 are	
dominated	by	multistemmed	and/or	small	woody	individuals,	these	
generalized	 biomass	 models	 based	 on	 DBH	 do	 not	 fit	 accurately.	
This	is	because	these	woody	species	typically	have	a	well-developed	
crown,	 branching	 off	 at	 stem	heights	 below	1.3	m	 (Vesk,	Warton,	
&	Westoby,	 2004).	 For	 the	 purpose	 of	 this	 study,	 “shrubs”	 are	 all	
woody	 non-climbing	 plants	 with	 multiple	 stems	 and/or	 small	 size	
that	do	not	meet	the	tree	definition	criteria	(i.e.,	a	perennial	woody	
plant	 with	 many	 secondary	 branches	 supported	 by	 a	 single	 main	
stem	or	trunk	with	clear	apical	dominance;	Richardson	&	Rejmánek,	
2011).	We	use	 the	 term	 “shrub”	 in	 its	broadest	definition	 in	order	

to	use	one	unifying	denomination.	Paul	et	al.	 (2017)	demonstrated	
the	methodological	limitation	of	using	DBH,	showing	that	AGB	mod-
els	based	upon	diameter	tend	to	be	less	accurate	for	multistemmed	
woody	individuals,	mainly	due	to	the	 lack	of	standardization	 in	ac-
counting	for	the	diameter	of	multistemmed	individuals.

Plant	dimensions	 reflecting	crown	morphology	 (i.e.,	height	and	
crown	diameters)		are	more	comprehensive	AGB	predictors	of	shrub	
species,	 as	 they	 define	 plant	 architecture	 better	 than	 diameter.	
Inclusion	of	these	allometric	variables	would	improve	the	fit	of	mod-
els	used	to	quantify	shrub	AGB,	representing	alternative	measures	
when	 stem	 diameter	 is	 difficult	 or	 unpractical	 to	measure	 (Conti,	
Enrico,	Casanoves,	&	Díaz,	2013;	Hierro,	Branch,	Villarreal,	&	Clark,	
2000;	Hofstad,	2005;	Murray	&	Jacobson,	1982).	The	relevance	of	
allometric	tools	including	height	and	crown	size	to	predict	AGB	has	
just	 recently	 started	 to	 be	widely	 recognized,	 especially	 for	 trees	
(Feldpausch	et	al.,	2012;	Goodman,	Phillips,	&	Baker,	2014;	Jucker	
et	al.,	2017;	Ploton	et	al.,	2016).	Wood	density	has	also	been	doc-
umented	as	another	 important	predictor	of	 stand-level	biomass	 in	
tropical	ecosystems	(Chave	et	al.,	2014),	although	its	predictive	po-
tential	has	been	questioned,	particularly	for	AGB	models	developed	
for	temperate	species	for	which	wood	density	is	typically	less	vari-
able	(Swenson	&	Enquist,	2007).

Improving	the	fit	of	allometric	models	represents	one	of	the	most	
important	steps	in	assessing	AGB	stocks	(Chave	et	al.,	2005;	Skole,	
Samek,	&	Smalligan,	2011).	Developing	new	generalized	models	for	
wide	application	depends	on	the	availability	of	destructive	sampling	
data,	which	 are	 enormously	 time-consuming	 and	 expensive	 to	 ac-
quire	(Chave	et	al.,	2014;	Paul	et	al.,	2016).	Species-specific	models	
locally	developed	for	shrub	species	across	ecosystems	provide	ac-
curate	AGB	estimates	 (e.g.,	Conti	et	 al.,	2013;	Hierro	et	 al.,	2000;	
Návar	et	al.,	2004).	However,	their	application	outside	the	range	of	
calibration,	or	in	a	different	location,	can	generate	significant	biases	
(20–200%,	e.g.,	Chave	et	al.,	2014;	Ishihara	et	al.,	2015;	Ketterings,	
Coe,	Noordwijk,	Ambagau,	&	Palm,	2001).	The	compilation	of	large	
databases	from	previous	species-	and	site-specific	studies	based	on	
destructively	sampled	individuals	could	be	effectively	used	to	rep-
arametrize	global	allometric	models,	substantially	 improving	global	
AGB	estimations	 (e.g.,	Chave	et	al.,	2014;	 Jucker	et	al.,	2017;	Paul	
et	 al.,	2016;	Vieilledent	et	al.,	2012).	Additionally,	 to	 fully	 test	 the	
applicability	of	global	predictive	biomass	models	based	on	allome-
tric	variables,	bioclimatic	variables	need	to	be	considered,	given	the	
varying	relationship	between	individual	allometric	variables	(scaling	
relationships)	across	different	regions	and	bioforms	(Blanchard	et	al.,	
2016).	Therefore,	it	is	imperative	to	assemble	all	the	available	infor-
mation	to	improve	global	biomass	models.

We	 analysed	 a	 globally	 distributed	 database	 of	 direct-harvest	
biomass	of	multistemmed	and/or	small	woody	species.	The	dataset	
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included	 49	 undisturbed	 vegetation	 and	 secondary	 forest	 sites,	
spanning	 a	 wide	 range	 of	 vegetation	 types,	 for	 a	 total	 of	 3,243	
woody	 individuals	 belonging	 to	 118	 different	 shrub	 species.	 The	
following	questions	were	 addressed:	 (a)	which	 are	 the	 best	 global	
AGB	models	developed	for	shrubs	based	on	commonly	used	allome-
tric	variables?;	(b)	how	do	our	AGB	models	compare	in	performance	
with	other	globally	 fitted	AGB	models?;	 and	 (c)	does	 the	 inclusion	
of	different	bioclimatic	variables	improve	the	prediction	of	AGB	for	
shrubs?	To	the	best	of	our	knowledge,	this	work	is	the	first	compi-
lation	of	biomass	data	for	shrub	species	across	different	ecosystem	
types	around	the	world,	and	one	of	the	first	that	attempts	to	make	
progress	 in	 overcoming	 issues	 related	 to	 modelling	 AGB	 in	 mul-
tistemmed	and/or	small	woody	individuals	globally.

2  | MATERIAL S AND METHODS

2.1 | Database development

We	compiled	a	database	of	published	papers	that	developed	AGB	
models	 using	 allometric	 variables	 as	 predictor	 variables.	 These	
models	were	developed	based	on	destructively	harvested	woody	
individual	plants	considered	within	the	definition	of	shrub	detailed	
before.

To	construct	 the	database,	we	performed	a	search	 in	Scopus	
and	 Google	 Scholar	 during	 the	 years	 2016	 and	 2017	 using	 the	
following	 English	 and	 Spanish	 search	 terms	 “(*mass	OR	biomasa	
OR	weight	OR	peso)	AND	(shrub*	OR	arbusto*	OR	multistem*	OR	
multitallo	OR	multi-tallo)	AND	(allometr*	OR	alométrico*	OR	equa-
tion*	OR	ecuacion*	OR	‘dimensional	relationship*’	OR	‘relaciones	
dimensionales’)”.	We	identified	390	papers	and	examined	whether	
they	included	the	following	measurements	at	individual	plant	level	
in	order	to	be	included	in	the	database:	total	AGB;	crown	diame-
ters,	their	average,	or	crown	area	in	order	to	estimate	mean	crown	
diameter	 (CD);	 individual	 height	 (H);	 and,	 if	 available,	 a	measure	
of	 total	 stem	 diameter	 (basal	 diameter,	 measured	 below	 30	cm	
stem	 height	 (BD);	 stem	 diameter	 at	 30	cm	 height	 (D30)	 and/or	
DBH).	We	excluded	data	from	individuals	explicitly	sampled	after	
regrowth.	In	the	case	of	multistemmed	individuals,	the	measured	
stem	diameter	had	to	represent	the	total	basal	area	at	a	specified	
stem	height.	 In	 general,	 the	most	 common	 stem	diameters	 sam-
pled	in	shrubs	were	basal	diameter	(below	30	cm	stem	height:	D5,	
D10,	D20	or	not	exactly	defined),	diameter	at	30	cm,	diameter	of	
the	longest	stem	and	diameter	at	breast	height.	Some	studies	re-
ported	the	sum	of	all	stem	diameters,	while	others	did	not	report	
how	multiple	stems	were	dealt	with	in	diameter	estimation.	This	is	
why	we	decided	to	obtain	a	standardized	basal	stem	diameter	es-
timation	(BDest)	based	on	the	different	stem	diameters	compiled	
(see	Supporting	Information	Figure	S1)	to	maximize	the	number	of	
included	 harvested	 individuals,	 but	 at	 the	 expense	 of	 increasing	
the	model’s	biases.	More	accurate	estimations	of	AGB	are	possi-
ble	by	precisely	defining	the	basal	stem	height	at	the	diameter	at	
which	 it	 is	 sampled.	 This	would	 certainly	generate	more	 precise	
predictions	than	those	that	were	obtained	here.

After	the	selection	and	filtering	processes	we	finally	retained	
35	articles	that	were	used	to	construct	the	database	(see	details	
in	Supporting	 Information	Table	S1).	When	data	were	solely	dis-
played	 in	 figures,	we	used	a	data	extraction	software	 (Tummers,	
2006).	When	data	were	not	publicly	 available,	 the	dataset	 asso-
ciated	with	 the	published	 reference	was	 requested	 from	 the	au-
thors.	More	detailed	information	about	the	database	compilation,	
analysis	and	screening	are	in	Supporting	Information	Text	S1.

Wood	 density	 (the	 oven-dry	 wood	 mass	 divided	 by	 its	 green	
volume,	and	denoted	as	ρ, g/cm3)	of	the	sampled	species	was	also	
included.	If	ρ	for	a	given	species	was	reported	in	the	original	study,	
we	included	that	value.	Otherwise,	we	assumed	the	mean	value	for	
the	species	reported	in	the	global	wood	density	database	(Chave	et	
al.,	2009),	as	well	as	in	other	references	(see	Supporting	Information	
Table	S2	for	details).

To	 test	 if	 model	 parameters	 change	 under	 particular	 biocli-
matic	conditions,	we	 included	the	species’	bioform,	as	well	as	the	
corresponding	 biome	 and	 the	 global	 aridity	 index	 (GAI)	 category	
for	 the	 study	 site.	We	 subcategorized	 shrub	 species’	 bioforms	 as	
mangroves,	 subshrubs,	 shrubs	 (i.e.,	 small	 size	 woody	 individuals	
typically	multistemmed)	and	“shrubs	sometimes	small	 trees”	 (SST)	
(i.e.,	medium	 sized	woody	 plants,	with	 variable	 architecture	 from	
multistemmed	 to	 single-stemmed)	 (Zizka,	 Govender,	 &	 Higgins,	
2014).	This	categorization	followed	the	authors’	description	of	the	
species	and	 the	available	 information	on	 local	 floras	or	digital	 re-
positories	 (see	specific	 references	 in	Supporting	 Information	Text	
S1).	Taxonomic	information	for	each	species	was	carefully	checked	
for	consistency	using	The	Plant	List	(http://www.theplantlist.org/).	
Each	 individual	 shrub	 in	 the	 database	was	 assigned	 to	 one	of	 six	
biome	 types	 based	 on	 its	 geographic	 location:	 “Tropical	 &	 sub-
tropical	 forests	 &	 shrublands”;	 “Temperate	 coniferous	 forests”;	
“Temperate	mixed	forests”;	“Savannas,	woodlands	&	Mediterranean	
forests”;	“Grasslands	&	shrublands”	or	“Deserts	&	xeric	shrublands”	
[classification	 adapted	 from	Olson	 et	 al.	 (2001)].	 The	 location	 of	
each	study	site	was	georeferenced	and	used	to	obtain	environmen-
tal	data.	We	chose	the	GAI	as	an	 index	summarizing	mean	annual	
precipitation	(MAP)	and	mean	annual	potential	evapotranspiration	
(MAE)	(GAI	=	MAP/MAE).	We	defined	different	regions	according	
to	the	following	GAI	categories	as	follows:	GAI	<	0.03,	Hyper	Arid;	
GAI	between	0.03	and	0.2,	Arid;	GAI	between	0.2	and	0.5,	Semi-
Arid;	GAI	between	0.5	and	0.65,	Dry	sub-humid;	and	GAI	>	0.65,	
Humid	(Middleton	&	Thomas,	1992).

A	 first	 overview	 of	 the	 database	 showed	 that	 it	 included	 49	
study	sites	 (Figure	1a),	 from	published	and	unpublished	sources,	
for	a	total	of	3,243	harvested	shrub	individuals,	belonging	to	118	
species	 and	 35	 families	 (see	 Supporting	 Information	 Table	 S2),	
spanning	 a	wide	 range	of	woody	 shrub	 sizes	 (BD:	0.5–41.74	cm;	
H:	0.2–20.76	m;	CD:	0.2–13.02	m;	AGB:	0.01–926.30	kg,	ρ:	0.38–
1.07 g/cm3).	 The	database	 sites	were	distributed	 along	different	
combinations	of	temperature	and	precipitation,	but	with	a	stron-
ger	 representation	 under	 1,000	mm	 MAP	 and	 semi-arid	 sites	
(GAI	 between	 0.2	 and	 0.5)	 (Figure	 1b,d).	 “Savannas,	 woodlands	
&	Mediterranean	forests”	were	the	most	represented	biome	type	

http://www.theplantlist.org/
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(Figure	1b),	while	most	individuals	fell	within	the	SST	bioform	cat-
egory	(Figure	1c).

2.2 | Statistical analysis

2.2.1 | Developing a global shrub species 
aboveground model

Allometric	model	 construction	was	 based	 on	 regressing	AGB	 as	 a	
dependent	 variable	 against	 one	 or	 several	 independent	 variables.	
The	 independent	 variables	 considered	 were	 stem	 basal	diameter	
(BD	or	BDest,	cm),	tree	height	(H,	m),	mean	crown	diameter	(CD,	m)	
and	wood	density	(ρ).	First,	we	fitted	a	log-log	model	relating	AGB	
to	each	 individual	 allometric	 variable	 separately	 to	 explore	 which	
was	the	best	AGB	predictor.	The	tested	log-log	models	had	the	fol-
lowing	mathematical	form	(in	the	simplest	version):

where	X	 refers	 to	 the	putative	 independent	variables,	α and β are 
model	parameters,	and	ε	is	an	error	term.

For	practical	use,	estimated	biomass	predictions	computed	using	
a	 log-log	 model	 must	 be	 back-transformed	 to	 the	 original,	 plant-
biomass	scale.	Because	 this	 transformation	 is	nonlinear,	and	 there	
is	variability	 in	 the	observed	data	around	the	 fitted	 relationship,	a	
simple	exponential-based	transformation	(a	“naïve”	transformation)	
would	 generate	 bias	 (Baskerville,	 1972;	 Clifford,	 Cressie,	 England,	
Roxburgh,	&	Paul,	2013).	Consequently,	correction	factors	are	typi-
cally	calculated	to	remove	this	bias	when	back-transforming.	Clifford	
et	al.	(2013)	reviewed	this	issue	and	provided	routines	to	implement	
those	 corrections.	We	 tested	 the	 naïve	 version	 together	with	 the	
recommended	 correction	 factors	 [El-Shaarawi-Viveros	 estimator	

(1)AGB = exp
(

�+�i ln
(

Xi

)

+�
)

F I G U R E  1  Overview	of	the	allometric	database.	Panel	(a)	shows	the	geographic	location	of	the	included	sites,	and	(b)	the	distribution	of	
these	sites	considering	their	mean	annual	precipitation	and	temperature	among	forest	types.	Circle	sizes	reflect	the	number	of	individuals	
measured	at	each	location.	Panels	(c)	and	(d)	show	violin	plots	of	the	distribution	in	terms	of	individual	aboveground	dry	biomass	across	
bioforms	and	the	global	aridity	index	categories,	respectively.	In	the	case	of	bioform,	157	individuals	were	excluded	because	their	bioform	
was	not	reported	in	the	source	study.	SST	=	shrubs	sometimes	small	trees

0

(a) (b)

(c) (d)
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(EV)	 and	 the	 minimum	 bias	 estimator	 (MB)	 from	 El-Shaarawi	 and	
Viveros	(1997)	and	Shen	and	Zhu	(2008),	respectively]	and	the	tradi-
tional	correction	factor	(restricted	maximum	likelihood,	REML)	pro-
posed	by	Baskerville	(1972)	across	our	dataset.

We	built	several	models	including	all	allometric	predictor	vari-
ables	 in	 all	 possible	 combinations	 and	 compared	 the	 fit	 of	 the	
models	 obtained	 using	 generalized	 least	 squares	 (GLS).	 To	 carry	
out	these	analyses	the	total	database	was	randomly	divided	 into	
a	training	dataset	 (n	=	2,919,	90%	of	the	data)	and	a	fitting	data-
set	(n	=	324,	10%	of	the	data).	The	fitting	dataset	was	exclusively	
used	 to	 evaluate	 our	models’	 performance	 and	 to	 compare	with	
other	published	models.	The	distributions	across	both	training	and	
fitting	datasets	of	the	bioclimatic	variables	considered	are	shown	
in	Supporting	Information	Figure	S2.	For	the	training	dataset,	we	
first	cleaned	all	missing	values	for	the	included	variables	to	gener-
ate	a	complete	subset	of	data	without	blanks	(n	=	1,444),	in	order	
to	 obtain	 comparable	 statistical	 descriptors	 between	 the	 devel-
oped	models,	and	to	run	model	selection.	The	preferred	statistical	
model	was	selected	according	to	the	Akaike	information	criterion	
(AIC),	a	likelihood	criterion	that	penalizes	the	number	of	parame-
ters	 (Burnham	&	Anderson,	2002);	 the	coefficient	of	determina-
tion	(R2);	and	the	root	mean	square	error	(RMSE),	calculated	as:

where	AGBobs	is	the	observed	AGB	and	AGBest	is	the	estimated	AGB.	
We	 used	 the	 GLS	 procedure	 using	 the	 maximum	 likelihood	 (ML)	
method	to	obtain	the	model’s	AIC	and	then,	using	the	REML	method,	
we computed R2	and	RMSE.

After	 selecting	 the	 best	 statistical	 models,	 we	 reparametrized	
the	models	using	 the	complete	analysis	dataset	 to	 include	all	data	
points	 available	 for	 each	 particular	model,	 given	 that	 different	 al-
lometric	 variables	 had	 different	 sample	 sizes.	 Then,	 for	 each	 final	
model	we	reported	the	number	of	 individuals	used	to	obtain	 their	
particular	parameters.

2.2.2 | Testing established allometric models

We	used	the	fitting	dataset	to	compare	the	performance	of	the	final	
selected	models	together	with	already	existing	and	well-established	
global	 models	 in	 predicting	 the	 individual	 AGB.	 The	 already	 pub-
lished	global	models	selected	were:
1.	 The	 one	 proposed	 by	 Chave	 et	 al.	 (2014)	 using	 DBH,	 H and 

ρ	 as	 predictive	 variables	 for	 pantropical	 trees,

2.	 A	 global	 tree	 model	 proposed	 by	 Jucker	 et	 al.	 (2017)	 for	 an-
giosperms,	 using	 H	 and	 CD	 as	 predictive	 variables,

3a.	The	shrubs	and	small	trees	model	(“SHRUB”	model)

3b.	The	multistemmed	tree	model	(“MULTI”	model),

with	both	3a	and	3b	developed	by	Paul	et	al.	(2016)	based	only	upon	
stem	diameter	at	10	cm	height	 (D10)	at	 the	Australian	continental	
scale.

As	Chave	et	al.’s	model	required	DBH	as	an	input	variable,	the	final	
training	subset	was	reduced	to	122	individuals	containing	all	the	vari-
ables	required	by	all	models,	using	the	original	DBH	value	recorded	
(without	conversion).	We	compared	the	RMSE	of	each	model	(from	
the	observed	versus	predicted	AGB	relationship)	 to	have	a	general	
approximation	of	 the	behaviour	of	particular	models.	Furthermore,	
we	calculated	the	average	relative	systematic	error	of	model	predic-
tions	(or	bias,	in	%)	using	the	biomass	data	without	log-transformation	
(Chave	et	al.,	2005;	Jucker	et	al.,	2017),	as	shown	below:

All	 model	 comparisons	 were	 performed	 using	 their	 back-trans-
formed	 versions	 to	 estimate	 AGB	 from	 the	 fitting	 dataset.	 In	 some	
cases,	we	then	log-transformed	data	to	facilitate	graphical	comparisons.

2.2.3 | Testing the effect of bioclimatic variables on 
models’ performance

The	models	developed	so	far	considered	the	complete	dataset	with-
out	accounting	for	climatic	and	ecological	differences,	assuming	that	
scaling	 relationships	 between	 BD,	H	 and	 CD	 are	 invariant	 across	
zones	with	varying	hydrological	balance,	biomes,	or	distinctive	bio-
forms.	To	determine	if	these	variables	improved	the	accuracy	of	the	
four	proposed	biomass	models,	we	used	mixed	effects	models	to	an-
alyse	if	their	parameters	vary	as	a	function	of	these	variables.	To	that	
end,	 the	relationship	between	AGB	and	the	 independent	variables	
(e.g.,	BD,	H,	CD)	for	each	case	was	allowed	to	vary	among	bioforms,	
biomes	and	GAI	categories	(random	intercepts	and	slope	model,	only	
random	intercept,	and	only	random	slope).	We	could	not	analyse	if	
these	variables	also	interact	between	one	another	(nested	analysis),	
as	not	all	bioforms	were	represented	in	all	biomes	and	climatic	con-
ditions,	resulting	in	a	very	unbalanced	model.	The	final	models	were	
compared	with	each	original	model,	 to	evaluate	 if	 the	 inclusion	of	
bioclimatic	variables	improved	the	fit	of	the	models.

All	 statistical	 analyses	were	performed	using	R	 statistical	 soft-
ware	version	3.4.0	(R	Core	Team,	2017).	Climatic	data	extraction	was	
carried	out	using	the	extract	function	from	the	“raster”	package	in	
R	 (Hijmans	&	van	Etten,	 2017).	Model	 comparisons	 and	mixed	ef-
fect	models	were	performed	using	the	“nlme”,	“lme4”,	“bbmle”	and	
“MuMIn”	packages	(Barton,	2016;	Bates,	Mächler,	Bolker,	&	Walker,	
2014;	Pinheiro,	Bates,	DebRoy,	Sarkar,	&	R	Core	Team,	2017).
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3  | RESULTS

3.1 | Developing a global shrub species 
aboveground model

Preliminary	 analyses	 using	 only	 single	 predictor	 variables	 (i.e.,	
BD, H	 and	CD)	 to	 explore	which	of	 them	better	 explained	AGB	
variability	showed	BD	as	the	best	single	predictor	(Figure	2a).	CD	
also	showed	a	good	fit	(Figure	2b),	with	greater	predictive	power	
than	H,	which	showed	a	comparatively	poorer	fit	when	used	as	a	
single	predictive	variable	of	AGB,	with	a	larger	dispersion	than	BD	
and	CD	(Figure	2c).

The	analysis	 to	 find	 the	best	predictive	model	of	AGB	showed	
that,	in	general,	models	including	BD	had	the	highest	predictive	ca-
pacity.	Even	when	BD	was	the	only	predictive	variable	in	the	model,	
goodness	 of	 fit	was	 superior	 to	 any	 other	model	 including	 all	 the	
remaining	variables.	However,	the	inclusion	of	other	allometric	vari-
ables	 (particularly	CD,	but	also	H)	 significantly	 improved	 the	 fit	of	

the	models	 (Figure	3).	When	BD	was	not	 included	 as	 a	predictive	
variable,	 the	model	based	on	CD	and	H	 had	 the	best	 fit,	 but	with	
significantly	lower	predictive	capacity	(Table	1).	Finally,	the	inclusion	
of	ρ	slightly	improved	the	fit	of	the	proposed	models	(see	statistical	
descriptors	in	Supporting	Information	Table	S3).

We	 selected	 four	 final	 best-performing	 models	 for	 predicting	
shrub	AGB	(Table	1)	according	to	the	fit	of	the	models	and	the	num-
ber	of	variables	included.	The	best	AGB	model	included	BD,	CD	and	
H	as	independent	variables	(Model	1):

The	results	showed	that	Model	1	tended	to	overestimate	AGBest 
at	 lower	 observed	AGB	 values,	 showing	 an	 average	 relative	 error	
of	+33%	for	shrubs	weighing	 less	than	10	kg	(Figure	4a).	At	higher	
AGB	values	the	mean	error	was	reduced	(Figure	4b).	Comparison	of	
models	fits	(Supporting	Information	Figure	S3)	showed	that	Model	1	
and	Model	2	had	similar	average	systematic	bias	(−0.96	and	−0.16%,	

(8)AGBest=e(−2.281+1.525 Ln (BD)+0.831 Ln (CD)+0.523 Ln (H))

F I G U R E  2  Regression	analysis	between	dry	aboveground	biomass	of	woody	shrub	individuals	(AGB,	kg)	and	allometric	variables:	(a)	
stem	basal	diameter	(BD,	cm),	(b)	height	(H,	m)	and	(c)	mean	crown	diameter	(CD,	m).	Statistical	descriptors	were	obtained	based	on	the	same	
number	of	individuals	for	all	models	(n	=	1,444).	After	obtaining	comparable	statistical	descriptors,	each	model	was	rerun	using	the	maximum	
number	of	individuals	available	for	each	variable	(BD,	n	=	1,933;	CD,	n	=	2,620;	H, n	=	2,877).	Each	dot	represents	an	individual	shrub.	The	
fitted	model	is	represented	by	the	dashed	line.	RMSE	=	root	mean	square	standard	error;	AIC	=	Akaike	information	criterion

(a) (b)

(c)
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respectively)	but	Model	1	had	a	better	general	fit	 in	terms	of	AIC,	
R2	 and	RMSE,	 although	 it	 included	one	variable	more	 than	Model	
2.	Model	3	had	also	good	fit,	considering	that	includes	a	single	pre-
dictive	variable,	with	an	average	systematic	bias	of	−8.14%.	Finally,	
Model	4	including	CD	and	H,	but	not	BD,	had	the	lowest	predictive	
capacity	 within	 the	 proposed	 models	 (average	 systematic	 bias	 of	
+12.9%).

Surprisingly,	when	 comparing	 bias	 between	 predicted	 and	 ob-
served	 values	 obtained	 for	 each	 model	 after	 applying	 the	 REML,	
MB	 and	 EV	 correction	 factors,	 together	 with	 the	 naive	 estimate,	
the	latter	gave	the	lowest	bias	in	all	cases	but	for	Model	4.	Only	for	
this	case,	the	application	of	the	REML	correction	factor	reduced	the	
model	RMSE	(see	details	in	Supporting	Information	Figure	S4).	We	
retained	 the	 simplest	 version	 of	each	of	 the	 selected	models,	 and	
computed	the	REML	correction	factor	only	for	the	reported	version	
of	Model	4.

3.2 | Testing established allometric models

Model	 1	 (Equation	 8)	 and	 Chave	et	 al.’s	 model	 (Equation	 3)	 were	
the	best	fitted	models	(Figure	5	and	Supporting	Information	Figure	
S5a,b).	However,	Chave	et	 al.’s	model	 presented	 the	 lowest	RMSE	
and	average	systematic	bias	(+1.5%)	,	while	Model	1	comparatively	
showed	a	higher	RMSE	and	average	systematic	bias	(+10.4%).	Across	
this	comparison,	both	Paul	et	al.’s	models	(Equations	5	and	6),	based	
on	BD	only,	had	higher	RMSE	than	Model	1	and	Model	2.	Equation	
6	 (MULTI)	 fitted	 the	 data	 better	 than	 Equation	 5	 (SHRUB),	which	
showed	a	higher	underestimation	of	observed	AGB	(average	system-
atic	bias	of	+7.3%	for	MULTI	versus	+21.0%	for	SHRUB).	The	com-
parison	of	Paul	et	al.’s	models	with	Model	3,	also	based	on	BD	only,	
showed	 that	Model	3	had	an	 intermediate	 fit	between	 the	MULTI	
and	SHRUB	models	in	terms	of	RMSE	(0.591)	and	average	system-
atic	bias	(+13.7%)	(Supporting	Information	Figure	S5c,d).	Finally,	the	
model	proposed	by	Jucker	et	al.	(2017)	(Equation	4),	including	only	
H	 and	 CD,	 showed	 the	 poorest	 performance	 across	 models.	 This	
model	presented	the	highest	RMSE	and	average	systematic	bias	(in	
absolute	terms;	−67.3%),	with	a	general	underestimation	of	observed	
values	(Figure	5).	When	Jucker	et	al.’s	model	was	compared	to	Model	
4	based	on	the	same	variables	(CD	and	H),	Model	4	performed	bet-
ter	in	terms	of	RMSE	(0.653)	and	average	systematic	bias	(+53.3%)	
(Supporting	Information	Figure	S5e,f).

3.3 | Testing the effect of bioclimatic variables on 
models’ performance

The	models’	parameters	changed	significantly	in	response	to	the	in-
clusion	of	bioclimatic	variables	(Table	2).	However,	for	Model	1,	and	
Model	4	only	in	the	case	of	bioform,	model	performance	was	consid-
erably	increased	in	terms	of	AIC	and	RMSE.	For	example,	the	inclu-
sion	of	 the	 variable	bioform	 in	Model	 1	decreased	AIC	 and	RMSE	
by	17	and	7.3%,	respectively,	whereas	the	inclusion	of	biome	or	GAI	
reduced	AIC	and	RMSE	by	no	more	than	5%.	The	pattern	was	main-
tained	 across	 the	 four	 proposed	models	with	 bioform	 as	 the	 vari-
able	 that	most	 increased	model	performance	according	 to	 the	AIC	
criteria.	However,	for	the	case	of	Models	2	and	3,	AIC	reduction	was	

F I G U R E  3  Effect	of	including	different	allometric	variables	on	
the	root	mean	square	error	(RMSE)	of	global	shrub	biomass	models.	
BD	=	stem	basal	diameter;	BD	+	CD	=	stem	basal	diameter	+	
mean	crown	diameter;	BD	+	CD	+	H	=	stem	basal	diameter	+	mean	
crown	diameter	+	height;	BD	+	CD	+	H	+	ρ	=	stem	basal	diameter	
+		mean	crown	diameter	+	height	+	wood	density.	The	order	of	
inclusion	of	the	allometric	variables	followed	their	comparative	
goodness	of	fit.	Values	in	parentheses	are	the	RMSE	for	each	
particular model

Models Parameters R2 RMSE AIC

Model	1 AGBest	=	exp(−2.281	+	1.525	Ln	(BD)	+	
0.831	Ln	(CD)	+	0.523	Ln	(H))

0.930 0.476 1,966

Model	2 AGBest	=	exp(−2.057	+	1.741	Ln	(BD)	+	
0.945	Ln	(CD))

0.913 0.531 2,278

Model	3 AGBest	=	exp(−2.869	+	2.584	Ln	(BD)) 0.880 0.625 2,745

Model	4 AGBest	=	exp(−0.370	+	1.903	Ln	(CD)	+	
0.652	Ln	(H))*1.403

0.859 0.677 2,979

Note.	AGBest	=	estimated	aboveground	dry	biomass	(kg);	BD	=	stem	basal	diameter	(cm);	H	=	height	
(cm);	CD	=	mean	crown	diameter	(m);	R2	=	coefficient	of	determination;	RMSE	=	root	mean	square	
error;	 AIC	 =	 Akaike	 information	 criterion.	 All	 regression	 analyses	 were	 statistically	 significant	
(p	<	0.0001).	 Statistical	 descriptors	 were	 obtained	 considering	 the	 same	 number	 of	 individuals	
(n	=	1,444)	for	comparison.	After	obtaining	statistical	descriptors,	model	coefficients	were	recalcu-
lated	using	the	maximum	number	of	individuals	available	for	each	case:	Model	1,	n	=	1633;	Model	2,	
n	=	1658;	Model	3,	n	=	1933	and	Model	4,	n = 2,578.

TA B L E  1  Comparison	of	shrub	
aboveground	biomass	regression	models
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also	higher	when	both	biome	(AIC	decreased	by	11.2	and	15.5%	for	
Models	 2	 and	3,	 respectively)	 and	GAI	 (AIC	 decreased	 by	 9.4	 and	
14%,	 for	Models	 2	 and	 3,	 respectively)	were	 included.	 Supporting	
Information	Tables	S5	to	S8	show	the	results	for	all	remaining	models.

4  | DISCUSSION

By	 analysing	 a	worldwide	dataset	 of	 3,243	woody	 individuals,	we	
developed	 four	 different	 global	 models	 to	 estimate	 shrub	 AGB	

biomass,	considering	a	combination	of	the	most	frequently	sampled	
allometric	variables	 (BD,	CD	and	H).	Our	work	supports	the	effec-
tiveness	of	generic	biomass	allometric	models	developed	from	large	
datasets	for	shrub	species,	consistent	with	comparable	models	de-
veloped	for	trees	and	multistemmed	woody	individuals	across	forest	
ecosystems	(Chave	et	al.,	;	Jucker	et	al.,	2017;	Paul	et	al.,	2016).	The	
research	presented	here	has	the	added	value	of	presenting	alterna-
tive	models	for	those	cases	where	stem	diameter	is	difficult,	or	even	
impossible,	to	obtain	in	the	field,	a	very	common	situation	in	the	case	
of	multistemmed	woody	individuals.	Furthermore,	we	found	that	the	

F I G U R E  4  Goodness	of	fit	for	Model	1	based	on	multiple	allometric	variables	[stem	basal	diameter	(BD),	height	(H),	mean	crown	diameter	
(CD)]	for	predicting	the	aboveground	biomass	of	shrub	individuals.	(a)	Predicted	and	observed	aboveground	biomass	(AGB)	values;	the	
dashed	line	corresponds	to	a	1:1	relationship.	Each	dot	represents	a	woody	individual.	(b)	Mean	relative	error	[Error	=	(AGBest	–	AGBobs/
AGBobs)	×	100]	for	different	AGB	classes,	with	the	bars	delimiting	the	interquartile	range	(boxes)	and	95%	limits	(dotted	lines)	of	the	errors.	
Note	that	when	the	predicted	value	is	greater	than	the	observed	value,	overestimation	occurs	and	the	error	is	positive;	conversely,	negative	
error	values	represent	underestimation.	Pink	points	represent	the	mean	error	for	each	AGB	class.	Total	number	of	AGB	values	was	divided	
into	classes	of	the	same	length,	where	each	number	shown	on	the	AGB	axis	is	representative	of	the	initial	AGB	value	for	each	class.	RMSE	=	
root	mean	square	error;	AIC	=	Akaike	information	criterion

(a) (b)

F I G U R E  5  Comparison	of	models’	performances	using	the	fitting	dataset.	(a)	Predicted	and	observed	aboveground	biomass	(AGB)	values	
for	the	selected	models.	(b)	Mean	relative	errors	[Error	=	(AGBest	−	AGBobs/AGBobs)	×	100]	for	the	compared	models	across	the	observed	
aboveground	biomass	values.	The	compared	models	correspond	to	Model	1	proposed	here;	the	global	model	proposed	by	Chave	et	al.	(2014),	
including	diameter	at	breast	height	(DBH),	height	(H)	and	wood	density	(ρ);	the	model	proposed	by	Jucker	et	al.	(2017)	for	angiosperms	
including	mean	crown	diameter	(CD)	and	H;	and	the	shrub	models	proposed	by	Paul	et	al.	(2016)	using	stem	diameter	at	10	cm	height	(D10)	
as	a	main	variable	(MULTI	and	SHRUB	models).	RMSE	=	root	mean	square	error;	Bias	=	average	relative	systematic	error	of	model	predictions

(a) (b)
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fitness	of	 the	models	was	 improved	by	 including	bioclimatic	varia-
bles,	showing	that	scaling	relationships	differed	mainly	for	different	
bioforms.	However,	the	original	models	still	fit	the	data	satisfactorily	
and	their	use	is	simpler	and	more	practical.	Here,	we	discuss	several	
aspects	that	arise	from	the	results	that	need	to	be	considered	to	use	
these	models	for	accurate	estimation	of	individual	AGB	across	shrub	
species	and	ecosystems.

4.1 | Developing a global shrub species 
aboveground model

Substantial	work	has	been	dedicated	 to	develop	species-	and	site-
specific	models	for	shrub	species	worldwide,	encompassing	a	huge	
range	of	species	and	environments	 including	subtropical	 forests	of	
Mexico,	the	USA,	Canada	(e.g.,	Alaback,	1986;	Ludwig,	Reynolds,	&	
Whitson,	1975;	Murray	&	Jacobson,	1982;	Návar	et	al.,	2004),	China	
(Zeng,	Liu,	Feng,	&	Ma,	2010)	and	South	America	(Conti	et	al.,	2013;	
Haase	&	Haase,	1995;	Hierro	et	al.,	2000;	Sampaio,	2005);	European	
Mediterranean	shrublands	(Paton,	Nuñez,	Bao,	&	Muñoz,	2002);	and	
the	Patagonian	steppe	(Oñatibia,	Aguiar,	Cipriotti,	&	Troiano,	2010),	
among	others.	The	variables	tested	were	seldom	other	than	stem	di-
ameter-related	variables,	crown-related	variables	and	height,	all	with	
good	fits.	These	local	studies	represent	enormous	efforts	to	improve	
biomass	models	to	 include	these	woody	species	 in	 local	and	global	
carbon	budgets.	However,	these	models	are	mostly	species-specific	
and	rely	on	a	low	number	of	individuals	(typically	<	100),	which	limits	
application	to	the	local	scale	or	to	a	few	species.	Approaches	aimed	
to	develop	a	global	biomass	model	based	on	a	relatively	large	sample	

size	 (>1,000)	have	the	added	value	of	greatly	 reducing	uncertainty	
in	parameter	estimates,	as	already	shown	by	models	developed	for	
trees	around	the	world	(i.e.,	Chave	et	al.,	2004;	Jucker	et	al.,	2017;	
Roxburgh,	Paul,	Clifford,	England,	&	Raison,	2015).	For	the	case	of	
shrubs,	 to	 our	 knowledge,	 only	 Paul	 et	 al.	 (2016)	 have	 compiled	 a	
huge	dataset	across	several	functional	types	at	continental	 level	 in	
Australia,	including	multistemmed	shrubs	and	small	trees,	and	using	
stem	diameter,	H and ρ	as	the	main	predictor	variables.	The	analysis	
presented	 in	Paul	 et	 al.	 (2016)	 showed	 that	AGB	prediction	based	
only on BD, or even including H and ρ,	 tended	 to	be	 less	accurate	
for	multistemmed	shrubs	in	comparison	with	trees.	The	authors	ex-
plained	this	low	model	fit	by	the	problems	associated	with	diameter	
sampling	across	species	belonging	to	the	former	(Paul	et	al.,	2017).	
Our	work	went	further	by	compiling	a	global	dataset	of	shrub	indi-
viduals,	including	not	only	BD,	H and ρ,	but	also	CD,	as	predictor	vari-
ables	of	a	global	shrub	biomass	model	with	potential	wide	application	
across	different	phytogeographic	regions	and	climatic	conditions.

Stem	diameter	seems	to	be	the	best	single	predictive	variable	of	
biomass	across	woody	individuals,	as	found	by	other	studies	(Brown,	
1997;	Chave	et	al.,	2005;	Paul	et	al.,	2016).	However,	accurate	field	
measurement	of	shrub	BD	can	be	demanding,	particularly	in	highly	
branched	or	spiny	species	where	stem	diameter	measurement	is	dif-
ficult,	 slow	 and	 also	 dangerous	 due	 to	 exposure	 to	 potential	 haz-
ards,	often	resulting	 in	 inaccurate	measures	as	the	operator	needs	
to	physically	crawl	or	bend	to	get	close	access	to	the	stem	(Paul	et	
al.,	2017).	In	such	cases,	an	alternative	model	without	BD	(Model	4)	
is	needed	to	accurately	estimate	AGB,	even	if	there	is	a	goodness	of	
fit	trade-off.

Models AIC RMSE AIC change (%) RMSE change (%)

Model	1 1,966 0.476   

Model	1	+	bioform 1,631 0.441 17.04 7.35

Model	1	+	biome 1,875 0.452 4.63 5.04

Model	1	+	GAI 1,881 0.457 4.32 3.99

Model	2 2,278 0.531   

Model	2	+	bioform 1,912 0.493 16.07 7.16

Model	2	+	biome 2,022 0.477 11.24 10.17

Model	2	+	GAI 2,064 0.485 9.39 8.66

Model	3 2,745 0.625   

Model	3	+	bioform 2,235 0.558 18.58 10.72

Model	3	+	biome 2,319 0.530 15.52 15.20

Model	3	+	GAI 2,360 0.538 14.03 13.92

Model	4 2,979 0.677   

Model	4	+	bioform 2,492 0.614 16.35 9.31

Model	4	+	biome 2,882 0.647 3.26 4.43

Model	4	+	GAI 2,967 0.668 0.40 1.33

Note.	AIC	=	Akaike	information	criterion;	RMSE	=	root	mean	square	error;	GAI	=	global	aridity	index.	
Values	in	bold	represent	changes	>5%.	Statistical	descriptors	were	obtained	considering	the	same	
number	 of	 individuals	 (n	=	1,444)	 for	 comparison.	Mixed	models	 including	 random	 intercept	 and	
slope	had	the	best	fit	in	all	cases,	except	for	Model	4	for	which	mixed	model	including	random	slope	
but	fixed	intercept	had	the	best	fit	for	the	case	of	bioform.

TA B L E  2  Absolute	change	(%)	in	the	
predictive	capacity		of	models	after	
including	different	bioclimatic	variables
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In	agreement	with	Goodman	et	al.	(2014)	and	Jucker	et	al.	(2017)	
our	 results	 indicate	 that	 AGB	models	 incorporating	 a	 crown-re-
lated	variable	have	significantly	improved	predictive	power,	even	
more	 so	 than	 including	 height	 and	wood	density	 (Figure	 3).	 The	
crown	represents	a	relatively	higher	amount	of	biomass	in	shrubs	
than	in	trees,	in	which	the	main	stem	accounts	for	the	major	pro-
portion	of	biomass,	and	this	is	probably	why	this	variable	markedly	
increased	the	predictive	power	of	shrub	AGB	models	(a	RMSE	re-
duction	of	15%),	followed	by	H	 (an	additional	RMSE	reduction	of	
10%)	 and	 lastly	 by	 ρ	 (other	 additional	RMSE	 reduction	 of	1.5%).	
Although	 the	 inclusion	 of	 several	 variables	 could	be	 impractical	
for	field	sampling,	our	study	showed	that	it	is	difficult	to	capture	
the	volume	occupied	by	a	multistemmed	individual	with	only	one	
variable	(or	dimension).

Our	models	did	not	 improve	significantly	after	 including	ρ, in 
contrast	with	what	was	 found	by	 other	 authors	 for	 tree	models	
(Chave	et	al.,	2005,	2014).	A	potential	explanation	of	this	pattern	
could	be	related	to	 the	 level	of	sampling	 (measurement	error)	as	
was	also	suggested	by	Paul	et	al.	(2016),	given	that	species’	ρ val-
ues	 were	 obtained	 from	databases	 rather	 than	 at	 the	 individual	
level.	 There	 is	 accumulated	 evidence	 that	ρ	 varies	 as	 a	 function	
of	height,	ramification	degree	and	age	(Chave	et	al.,	2009).	Hence,	
database-derived	ρ	 values	 could	 increase	 variability,	 rather	 than	
reduce	 it.	 It	could	be	 interesting	to	test	 if	 reducing	this	method-
ological	bias	 could	 significantly	 improve	 the	predictive	power	of	
biomass	models.

4.2 | Practical field considerations in order to 
accurately estimate shrub biomass

Much	work	has	been	devoted	to	discussing	how	to	adequately	es-
timate	 individual	AGB	 in	 trees	 (Brown,	1997;	Chave	et	al.,	2014;	
Feldpausch	 et	 al.,	 2012;	 Ketterings	 et	 al.,	 2001;	 Ploton	 et	 al.,	
2016).	On	 the	 contrary,	 protocols	 for	 shrubs	 are	not	well	 devel-
oped	(but	see	Chojnacky	&	Milton,	2008).	In	the	quest	to	establish	
general	recommendations	for	assessing	shrub	individual	biomass,	
our	results	revealed	that	any	measure	of	the	total	basal	area	of	an	
individual	is	by	far	the	best	proxy	of	its	total	AGB.	This	coincides	
with	the	findings	of	Haase	and	Haase	(1995).	However,	measuring	
stem	diameter	in	shrubs	can	be	problematic	when	individuals	ram-
ify	 from	the	base.	 In	 these	cases,	 its	 field	measurement	can	add	
uncertainty	and	bring	about	huge	methodological	errors.	Through	
the	analysis	of	the	database	used	here,		we	detected	that	the	deci-
sion	on	how	to	sample	shrub	stem	diameter	was	entirely	up	to	the	
researcher.	There	was	no	methodological	standardization	on	what	
to	do	 in	 the	case	of	multistemmed	 individuals,	which	often	have	
more	than	20	ramifications	from	the	base.	To	develop	our	models	
we	chose	to	consider	as	BD	any	stem	diameter	sampled	above	the	
root	collar	and	below	30	cm	of	stem	height.	This	decision	allowed	
us	to	include	more	studies	and	simplified	the	standardization	pro-
cedure.	However,	to	reduce	the	amount	of	noise	 introduced	into	
collated	datasets,	we	recognize	the	need	to	standardize	the	height	
selected	to	measure	the	stem	diameter.	We	therefore	recommend	

sampling	 the	 stem	diameter	 at	10	cm	 stem	height	 (D10),	 as	pro-
posed	by	Paul	et	al.	(2016).	If	ramifications	exist	below	this	level,	
then	we	recommend	also	recording	their	diameters	(Di)	to	obtain	a	
single	value	of	basal	stem	diameter	(BD)	representing	all	basal	area	
at	this	height,	calculated	as	follows:

Paul	 et	 al.	 (2016)	 also	 presented	 simple	 equations	 to	 convert	
measures	 of	 D0,	 D30,	 D50	 and	 D130	 to	 D10	 that	 we	 include	 in	
Supporting	 Information	Table	S4	 to	have	a	 complete	 standardized	
protocol	to	recommend.	Improved	accuracy	of	the	models	being	de-
veloped	could	be	achieved	if	more	rigor	 is	applied	to	the	height	of	
stem	diameter	measurement	required	to	derive	BD.

Even	 though	 stem	 diameter	 measures	 could	 be	 standardized	
across	 protocols	 and	 studies,	 sometimes	 it	 can	 be	 impossible	 to	
sample	 this	 variable	 in	 the	 field.	 Measuring	crown	 diameter	 has	
then	the	advantage	of	being	relatively	easy	to	sample	in	the	field	for	
small-	and	medium-sized	shrub	individuals	(Northup,	Zitzer,	Archer,	
McMurtry,	&	Boutton,	2005)	without	methodological	constraints.	
To	assess	average	crown	diameter	in	the	field,	we	recommend	mea-
suring	the	maximum	crown	diameter	and	its	perpendicular	diame-
ter	with	a	metric	tape,	and	then	calculating	their	mean.

We	 found	 a	 large	 dispersion	 in	 shrub	 height	 values	 across	 our	
dataset,	which	could	be	 related	 to	methodological	 aspects	 that	are	
not	 usually	 addressed.	 To	 have	 a	 comparable	measure	 of	 height,	 it	
is	 important	to	know	if	 it	refers	to	the	standing	maximum	height	of	
the	shrub	crown,	the	total	length	of	the	highest	branch	as	maximum	
height,	or	the	apparent	average	maximum	height	of	the	crown.	 It	 is	
also	important	to	know	if	height	was	measured	using	a	metric	tape,	a	
telescopic	stick,	a	laser	rangefinder,	a	clinometer,	or	if	it	was	visually	
estimated.	 In	all,	 these	methodological	 issues	may	 introduce	signifi-
cant	bias	when	comparing	different	datasets,	as	shown	here.	However,	
the	inclusion	of	height	as	a	predictive	variable	in	a	biomass	model,	im-
proved	 its	performance,	as	was	also	 found	for	 trees	 (Feldpausch	et	
al.,	2012).	We	recommend	considering	height	as	the	shortest	distance	
between	the	upper	boundary	of	the	main	photosynthetic	tissues	of	
a	plant	and	the	ground	level,	expressed	in	metres	and	measured	on	
the	standing	plant	before	harvest.	For	estimating	the	height	of	short	
shrubs,	a	metric	tape	can	be	used,	but	a	telescopic	stick	with	metre	
marks	or	a	laser	rangefinder	could	be	useful	for	taller	shrubs.

Several	 methodologies	 have	 been	 developed	 for	 estimating	
crown	 area,	 height	 and	 stem	 diameter	 from	 remote	 sensing	 (e.g.,	
Barbier,	 Couteron,	 Proisy,	 Malhi,	 &	 Gastellu-Etchegorry,	 2010;	
Jucker	et	al.,	2017),	yet	their	calibration	still	relies	on	the	accuracy	
of	ground-based	biomass	(Baccini	et	al.,	2012;	Saatchi	et	al.,	2011;	
Le	Toan	et	al.,	2011).	It	 is	important	to	understand	the	uncertainty	
linked	to	the	use	of	different	methodologies	in	order	to	reduce	po-
tential	bias	in	the	estimations.

Estimation	 of	 shrub	 biomass	 can	be	 improved	 by	 considering	
plant	dimensions	other	than	diameter.	However,	the	goal	of	develop-
ing	and	applying	AGB	allometric	models	is	to	enable	site-specific	es-
timation	of	biomass	based	on	plot	measurements	of	plant	individual	
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allometric	variables	 (BD,	CD	and	H).	Given	that	site-level	sampling	
errors	are	often	the	largest	source	of	error	in	these	estimates	(Paul	
et	 al.,	 2017),	 they	 are	 likely	 to	be	minimized	by	 increasing	 sample	
size.	Any	decision	on	increasing	the	number	of	predictive	variables	
should	not	be	at	the	expense	of	reducing	sample	size.	On	the	other	
hand,	a	generalized	allometric	model	may	be	applied	across	multiple	
sites,	but	validation	is	important	when	an	existing	generic	multispe-
cies	model	is	applied	to	a	species	not	represented	within	the	existing	
model.	According	 to	Paul	 et	 al.	 (2018),	 there	 are	 no	 low-cost	 (i.e.,	
small	N)	options	for	such	validation.	In	those	cases,	sampling	inten-
sities	of	N	>	50	 individuals	 should	be	used	 to	validate	 the	existing	
model	(Roxburgh	et	al.,	2015),	in	such	a	way	that	even	if	the	valida-
tion	fails,	the	new	dataset	is	sufficiently	large	to	develop	a	new	spe-
cies-specific	model.	If	the	validation	is	successful,	the	new	data	may	
be	combined	with	the	existing	dataset	to	provide	a	revised	generic	
allometric	model	(Paul	et	al.,	2018).	All	these	decisions	will	definitely	
depend	on	the	objective	and	the	budget	of	the	particular	research	
project.

We	 developed	 models	 to	 estimate	 individual	 AGB	 of	 shrubs	
worldwide;	 however,	 we	 should	 mention	 that	 biomass	 estimates	
generally	 require	 both	 above-	 and	 belowground	 biomass.	 Paul	 et	
al.	 (2019)	 developed	 models	 to	 estimate	 individual	 belowground	
biomass	 of	 Australian	 shrubs	 and	 multistemmed	 trees,	 based	 on	
diameter	 at	 10	cm	 stem	 height.	 This	 has	 to	 be	 considered	 when	
planning	 root	 biomass	 quantification	 based	 on	 aboveground	 allo-
metric	predictive	variables.	Other	studies	have	also	estimated	tree	
belowground	biomass	based	on	total	AGB	(Cairns,	Brown,	Helmer,	
&	Baumgardner,	1997),	and	based	on	the	 joint	variation	of	 root	 to	
shoot	ratios	and	DBH	(Ledo	et	al.,	2018).	A	standardized	protocol	for	
quantifying	belowground	biomass	across	distinct	woody	 life-forms	
and	different	ecosystems	is	also	an	imperative	future	step.

4.3 | Testing established allometric models

The	four	proposed	models	were	compared	with	previously	published	
and	established	biomass	models	for	trees	(Chave	et	al.,	2014;	Jucker	
et	al.,	2017)	and	small	and/or	multistemmed	trees	and	shrubs	(Paul	
et	al.,	2016).	Our	models	had	similar	fit	to	that	of	the	most	used	tree	
biomass	model	(Chave	et	al.,	2014),	even	with	a	relatively	lower	sam-
ple	 size.	We	 also	 showed	 that	Chave	et	 al.’s	model	 had	 a	 good	 fit	
for	 shrubs,	even	when	 the	 fitting	subset	was	 in	part	 (8.7%)	out	of	
the	range	of	applicability	of	Chave	et	al.’s	model,	including	some	in-
dividuals	with	DBH	<	5	cm.	However,	 it	 is	 important	 to	note	 that,	
although	it	is	possible	to	use	Chave	et	al.’s	model	to	predict	the	bio-
mass	of	individual	shrubs	with	good	fit,	this	is	only	achievable	if	DBH	
can	be	effectively	sampled	on	those	individuals,	which	is	unlikely	for	
most	multistemmed	woody	individuals.	As	an	example,	to	carry	out	
model	comparison	we	had	to	reduce	our	fitting	dataset	by	62.3%	in	
order	to	include	only	shrub	individuals	for	which	DBH	was	sampled.

Model	 3	 based	 only	 on	 BD	 also	 performed	well	 in	 compari-
son	 to	 those	 proposed	 by	 Paul	 et	 al.	 (2016)	 based	 on	 the	 same	
variable.	 This	 is	 particularly	 true	 for	 Paul	et	 al’s	 MULTI	 model	
based	on	a	dataset	with	similar	applicability	range,	but	comprising	

a	 significantly	 greater	 number	 of	 individuals	 (N	=	5,397),	 which	
explains	 its	 better	 performance	 in	 comparison	 with	 Model	 3.	
However,	 Paul	et	 al.’s	 SHRUB	 model	 yielded	 higher	 underesti-
mates	for	AGB	>	10	kg	in	comparison	with	Model	3	and	Paul	et	al.́ s	
MULTI	model.	Differences	 in	 the	 fit	 of	 these	models	 can	be	 ex-
plained	mainly	by	the	fact	that	Paul	et	al.’s	SHRUB	model	consid-
ered	individuals	smaller	than	those	included	here	(but	our	data	are	
still	within	its	range	of	applicability),	which	could	produce	higher	
bias	 for	 individuals	 less	 represented	 in	 their	 dataset	 (>10	kg).	
When	 comparing	 Model	 4	 with	 the	 model	 proposed	 by	 Jucker	
et	al.	 (2017),	also	 including	H	and	CD	as	predictive	variables,	we	
found	that	our	model	performed	better	due	to	a	consistent	under-
estimation	of	Jucker	et	al.’s	predicted	values.	Differences	in	model	
fit	 in	 this	 case	 could	 be	mainly	 due	 to	 the	 different	 procedures	
used	to	fit	biomass	models	(GLS	in	our	models	in	comparison	with	
data	binning	in	Jucker	et	al.’s	model).

In	general,	our	models	represent	a	well-fitted	set	of	shrub	bio-
mass	models,	complementing	well-established	and	commonly	used	
AGB	tree	models	and	spanning	across	diverse	ecosystems	unrep-
resented	previously.	They	provide	 further	evidence	of	 the	effec-
tiveness	 of	 generic	 biomass	 allometric	 models	 developed	 from	
large	datasets,	consistent	with	comparable	models	developed	for	
trees	 across	 forest	 ecosystems.	More	 accurate	 estimates	 of	 for-
est	 biomass	 and	 carbon	 results	 from	 the	 inclusion	of	 small,	mul-
tistemmed	woody	individuals,	a	biomass	compartment	previously	
underestimated.	We	further	proposed	an	alternative	model	when	
BD	cannot	be	adequately	sampled,	 including	CD	as	an	 important	
predictive	variable,	as	well	as	H.

Depending	on	which	allometric	variable	can	be	more	precisely	
sampled	at	individual	level,	we	suggest	the	following	general	proce-
dure	when	estimating	AGB	in	woody	ecosystems	where	no	regional	
models	exist	and	destructive	sampling	is	unfeasible	(see	schematic	
protocol	in	Figure	6):

1.	 If	 DBH	 can	 be	 accurately	 sampled	 (e.g.,	 tall	 woody	 individuals	
branching	 off	 at	 stem	 height	 >130	cm),	 apply	 Chave	 et	 al.’s	
(2014)	 tree	 model	 (Equation	 3);

2.	 If	 DBH	 cannot	 be	 sampled	 adequately	 (e.g.,	 woody	 individuals	
branching	off	below	130	cm	but	above	10	cm	stem	height),	but	
BD and CD or H	can	be	recorded,	apply	our	proposed	Models	1	or	
2	(Table	1);

3.	 If	only	BD	(but	not	CD	or	H)	can	be	sampled	(e.g.,	woody	individu-
als	branching	off	below	130	cm	but	above	10	cm	height,	but	with	
a	very	open	canopy	and	twisted	stems)	apply	Paul’s	MULTI	model	
(Equation	6).	This	option	is	also	useful	when	researchers	need	to	
reduce	 the	 individual	 sampling	 effort	 to	 have	 a	 decreased	 site-
level	estimation	error	by	increasing	the	number	of	sampled	indi-
viduals	 (i.e.,	maximizing	the	accuracy-to-cost	ratio	by	measuring	
more	individuals	rather	than	spending	more	time	maximizing	the	
accuracy	at	individual	level).

4.	 Finally,	if	precise	acquisition	of	BD	is	impossible	and	it	is	only	pos-
sible	 to	 record	CD	and	H	 (e.g.,	woody	 individuals	branching	off	
just	above	root	collar),	apply	our	proposed	Model	4	(Table	1).
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4.4 | Including bioclimatic variables

A	key	requirement	for	developing	more	accurate	allometric	equa-
tions	is	to	incorporate	all	of	the	appropriate	variables	that	affect	
AGB,	such	as	ρ,	and	the	relationship	between	allometric	variables	
subject	 to	 variation	 due	 to	 geographic	 constraints	 (Banin	 et	 al.,	
2012;	Goodman	 et	 al.,	 2014).	Our	 database	 comprised	 different	
bioforms	 and	 sites	 distributed	 across	 different	 biomes	 and	 cli-
matic	conditions,	allowing	us	to	test	the	hypothesis	that	changes	
in	these	scaling	relationships	could	affect	the	predictive	power	of	
global	biomass	models.	Results	confirmed	the	 fact	 that	 the	scal-
ing	relationship	between	the	allometric	variables	used	to	estimate	
AGB	did	vary	with	different	bioclimatic	variables.	However,	only	
bioform	significantly	strengthened	the	model.	These	results	agree	
with	Paul	et	al.	(2016)	and	Jucker	et	al.	(2017),	where	the	inclusion	
of	 site-related	 factors	 (stand	and	climate	characteristics)	did	not	
markedly	improve	the	predictive	ability	of	the	allometric	models,	
but	the	inclusion	of	plant	architecture-	or	physiognomy-type	did.	
Varying	bioforms	or	species’	architecture	reflect	different	energy	
investment	 strategies	 likely	 to	 result	 in	 different	 crown–mass	
ratios	 among	 woody	 individuals	 with	 similar	 size	 (Ploton	 et	 al.,	
2016).	 Across	 our	models,	 the	 effects	 of	 other	 bioclimatic	 vari-
ables	 (biome	and	GAI)	 significantly	 improved	model	 fits	 particu-
larly	when	 height	was	 not	 included	 in	 the	model	 (Models	 2	 and	

3).	Although	not	conclusive,	this	may	indicate	that	different	allo-
metric	dimensions	could	be	differentially	limited	across	bioclimatic	
regions,	and	that	accounting	for	more	allometric	variables	may	re-
duce	this	variation	across	sites,	and	so	the	associated	uncertainty,	
as	was	 found	 for	 trees	 (Blanchard	 et	 al.,	 2016).	 Future	 research	
is	 needed	 to	 explore	 the	 differences	 in	 shrubs’	 scaling	 relation-
ships	across	varying	bioclimatic	conditions	to	accurately	account	
for	these	differences.	As	a	general	conclusion,	the	inclusion	of	bio-
climatic	 variables,	 especially	 bioform,	 contributes	 to	more	 accu-
rate	estimates	of	individual	shrub	AGB.	Despite	this	improvement,	
the	original	Model	1	remains	strong	enough	on	its	own	to	be	used	
across	different	bioforms,	biomes	and	climatic	 regions,	but	deci-
sion	on	the	final	model	used	is	at	the	discretion	of	the	researcher.

In	summary,	information	on	stem	basal	diameter,	crown	diameter	
and	height	can	be	combined	 in	different	ways	 to	provide	a	 robust	
AGB	estimate	of	individual	shrubs,	even	more	accurate	than	locally	
developed	 previous	 estimates.	 Our	 study	 supplements	 previous	
well-established	models	 developed	 for	 trees,	 allowing	more	 accu-
rate	biomass	estimation	of	shrubs	that	are	not	usually	accounted	for	
when	quantifying	biomass	 and	 carbon	 stocks.	We	 further	provide	
tools	 for	 a	 methodological	 standardization	 of	 individual	 biomass	
quantification	in	shrub	species	worldwide.	However,	it	is	necessary	
to	 highlight	 that	 this	method	 provides	 estimates—not	 direct	mea-
surements—and	model	errors	should	always	be	carefully	examined	

F I G U R E  6  Schematic	protocol	recommended	for	applying	general	aboveground	biomass	(AGB)	models	for	woody	individuals.	(a)–(d)	
Different	individual	woody	physiognomy	types	sampled	in	the	field.	For	each	case,	we	suggest	measuring	different	sets	of	allometric	
variables	in	order	to	apply	the	recommended	biomass	models.	DBH	=	diameter	at	130	cm	stem	height	(cm);	BD	=	stem	basal	diameter	(cm);	
CD	=	mean	crown	diameter	(m);	H	=	height	(m);	ρ	=	wood	density	(g/cm3);	AGBest	=	estimated	AGB.	See	detailed	explanation	in	the	main	text

(a) (b) (c) (d)
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and	analysed.	With	this	work	we	expect	not	only	to	assist	in	improv-
ing	the	quality	of	biomass	estimates	across	different	ecosystems,	but	
also	to	contribute	to	methodological	consensus	on	field	assessments	
of	biomass	 in	small	and/or	multistemmed	woody	species.	This	will	
benefit	advancement	towards	a	global	mechanism	to	boost	climate	
change	mitigation	projects.
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