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Abstract
Aim: Understanding fire effects on pollinators is critical in the context of fire regime 
changes and the global pollination crisis. Through a systematic and quantitative re‐
view of the literature, we provide the first global assessment of pollinator responses 
to fire. We hypothesize that pollinators increase after fire and during the early post‐
fire succession stages; however, high fire frequency has the opposite effect, decreas‐
ing pollinators.
Location: Terrestrial ecosystems, excluding Antarctica.
Time period: Data collected from 1973 to 2017.
Major taxa studied: Insects (Coleoptera, Diptera, Hymenoptera and Lepidoptera) 
and a few bird species.
Methods: We first compiled available studies across the globe that assessed fire ef‐
fects on pollinator communities. Then, by means of hierarchical meta‐analyses, we 
evaluated how different fire regime parameters (fire frequency, postfire time and fire 
type) and habitat characteristics affect the abundance and richness of animals that 
act as pollinators. We also explored to what extent the responses vary among taxa 
groups and life history traits of pollinators (sociality system, nest location and feeding 
specialization), and among biomes.
Results: The overall effect size of fire on pollinator abundance and richness across all 
studies was positive. Fire effect was especially clear and significant in early postfire 
communities, after wildfires, and for Hymenoptera. Taxonomic resolution influenced 
fire effects, where only studies at the species/genus and family levels showed signifi‐
cant effects. The main exceptions were recurrent fires that showed a negative effect, 
and especially wildfire effects on Lepidoptera abundance that showed a significant 
negative response.
Main conclusions: Pollinators tend to be promoted after a wildfire event. However, 
short fire intervals may threat pollinators, and especially lepidopterans. Given the 
current fire regime changes at the global scale, it is imperative to monitor postfire 
pollinators across many ecosystems, as our results suggest that fire regime is critical 
in determining the dynamics of pollinator communities.
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1  | INTRODUC TION

Fire is an ecological and evolutionary factor that modulates the dy‐
namics, diversity and structure of many terrestrial ecosystems across 
the Earth (Pausas & Keeley, 2009). Fires not only modify plant and an‐
imal community compositions, but also the biotic interactions (García, 
Castellanos, & Pausas, 2018; Pausas & Parr, 2018), with consequences 
for ecosystem functioning and the services they provide. While the 
effect of wildfires on plant communities is well studied across many 
ecosystems around the world (Bradstock, Williams, & Gill, 2012; 
Keeley, Bond, Bradstock, Pausas, & Rundel, 2012; Pausas & Ribeiro, 
2017), their effect on biotic interactions is still poorly known. An es‐
pecially relevant interaction is pollination, as most flowering plants 
(85%), including most crops (75%), rely on animal pollinators for sexual 
reproduction (Klein et al., 2007; Ollerton, Winfree, & Tarrant, 2011). 
Anthropogenic changes of fire regimes are likely to affect the pollina‐
tors and thus the pollination process (Dirzo et al., 2014; Potts et al., 
2010), with ecological and economic consequences in both natural and 
agricultural systems (Dirzo et al., 2014; McKechnie & Sargent, 2013; 
Wilcock & Neiland, 2002). However, there is still no global assessment 
of how pollinators respond to fire (Winfree, Aguilar, Vázquez, LeBuhn, 
& Aizen, 2009). Understanding the effect of fire on pollinators is now 
becoming even more relevant with the current global fire regime 
changes (Chergui, Fahd, Santos, & Pausas, 2018; Flannigan, Krawchuk, 
Groot, Wotton, & Gowman, 2009; Keeley & Syphard, 2016) and the 
global pollination crisis (Cariveau & Winfree, 2015; Goulson, Nicholls, 
Botías, & Rotheray, 2015; Potts et al., 2010).

Fire can affect biotic interactions by directly increasing mortal‐
ity, or indirectly, by changing habitat structure, which affects visibil‐
ity, resources and flowering pattern (García, Castellanos, & Pausas, 
2016, 2018; Knight & Holt, 2005; Koltz et al., 2018; Peralta, Stevani, 
Chacoff, Dorado, & Vázquez, 2017). Consequently, if the habitat con‐
ditions change (i.e., vegetation structure and composition) the polli‐
nator community is also expected to change in response to variations 
in nesting and feeding resources. Because the availability of edaphic 
resources increases immediately after fire, there is also a postfire in‐
crease in flowering and hence in resources for pollinators. Early post‐
fire successional species are typically short‐lived that mature and 
flower earlier than woody long‐lived species. Consequently, pollinator 
communities are likely to decrease with postfire age. However, high 
fire frequency may negatively affect pollinator populations (directly or 
by modifying the habitat). In addition, short fire intervals may prevent 
many plants from reaching maturity and flowering (“immaturity risk”; 
Pausas & Keeley, 2014; Zedler, 1995). Therefore, pollinators are likely 
to depend on the different components of fire regime like the fre‐
quency of fires (Lazarina et al., 2017; Moretti, Obrist, & Duelli, 2004), 
the time since fire (Brown, York, Christie, & McCarthy, 2016; Potts 
et al., 2003; Swengel & Swengel, 2007) and the spatial variability of 
these parameters (Brown, York, & Christie, 2016; Ponisio et al., 2016). 
Understanding how fire regime factors affect pollinators is critical for 
planning conservation and management actions in the context of the 
Anthropocene (Dirzo et al., 2014; Kelly et al., 2018).

At the community level, fire effects on pollinator diversity can 
vary depending upon the spatial scales at which they are measured. 
At the regional scale, fire creates patches of different postfire age, 
thereby increasing the between‐patch heterogeneity as fire diver‐
sity increases (Ponisio et al., 2016; Wikars, 1997). At the local scale, 
where species interactions occur, fire events decrease competitive 
exclusion and thus increasing the diversity of species. However, too 
frequent fires with short return intervals eliminate plant and animal 
species without giving time for re‐establishment (Connell, 1978; 
Kral, Limb, Harmon, & Hovick, 2017). Therefore, the intermediate 
disturbance hypothesis (Huston, 1979) predicts that a moderate fre‐
quency or intensity of disturbances maintains high species diversity 
within a habitat. Thus, the loss of plant diversity and the vegeta‐
tion changes induced by altered fire regime can trigger pollinator 
co‐extinctions under high frequency of fires (Vieira, Cianciaruso, & 
Almeida‐Neto, 2013).

Pollinators may vary in their susceptibility to fire, depending 
on certain traits such as the degree of mobility, sociality, nesting 
behaviour and feeding habits (Kelly et al., 2018; Kral et al., 2017; 
Pausas, 2019). Many pollinators are good flyers and thus likely to 
recolonize or to forage in the burn area quickly as flowers are avail‐
able (Carbone & Aguilar, 2017; García et al., 2018; Peralta et al., 
2017; Thom, Daniels, Kobziar, & Colburn, 2015). In addition, ground‐ 
nesting pollinators that survived the fire, as well as those with social 
organization may be benefited in burned environments due to lower 
competition for floral resources and lower predation levels (Koltz 
et al., 2018; Kral et al., 2017; Pausas & Parr, 2018). Moreover, polli‐
nators with generalist feeding habits tend to recolonize burned sites 
faster than pollinator specialists, as the latter need specific floral 
resources that may not be readily available in postfire communities 
(García et al., 2016; García et al., 2018; Geerts, Malherbe, & Pauw, 
2012; Kelly et al., 2018).

We therefore predict that a fire event promotes pollinator rich‐
ness and abundance, as a result of the increased floral resources 
occurring immediately after the fire and the high pollinator mobility. 
Consequently, we expect a positive response of pollinators at the 
early postfire successional stages. However, we also expect that in‐
creased fire frequency will reduce pollinator diversity due to the dras‐
tic changes of habitat and resource depletion. Moreover, pollinator 
response to fire age may differ between vegetation physiognomies 
where grasslands may exhibit higher immediate postfire flowering and 
thus pollinator activity, whereas woody vegetation might take longer 
to restore high flowering levels. To test these predictions, we con‐
ducted a systematic literature review of the available studies across 
the globe that assessed fire effects on the community of floral visitors 
that are known to pollinate plants (pollinators hereafter). By means 
of hierarchical meta‐analyses, we evaluate how different fire regime 
parameters (fire frequency, postfire time and fire type) and habitat 
characteristics (vegetation physiognomy) affect the abundance and 
richness of pollinators. We also explore to what extent the responses 
vary among taxa groups, life history traits of pollinators (sociality sys‐
tem, nest location and feeding specialization) and among biomes.
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2  | METHODS

2.1 | Literature search and compilation of dataset

We performed literature searches in three online databases (ISI 
Web of Knowledge, Fire Research Institute library © 2015 http://
www.firer​esear​chins​titute.org/, and Scopus), in English, Spanish and 
Portuguese, covering publications from January 1973 to October 
2017, and using two independent keyword combinations. The first 
search involved the following string of keywords: (*fire* OR wild‐
fire* OR *burn*) AND (pollinat* OR pollinator*), and was aimed at 
gathering all the studies assessing fire effects on the abundance 
and richness of pollinators, regardless of their taxonomic classifica‐
tion. A second search string of keywords was conducted to further 
search for studies assessing fire effects on certain taxonomic groups 
and common names of insects, birds, bats and non‐flying mam‐
mals that are known to be pollinators, regardless of the interests 
of each primary study, to determine fire effects on plant–pollina‐
tor interactions: (*fire* OR wildfire* OR *burn*) AND (hymenoptera 
OR coleoptera OR lepidoptera OR anthomyiidae OR acroceridae 
OR calliphoridae OR muscidae OR sarcophagidae OR scathophagi‐
dae OR nemestrinidae OR apioceridae OR empididae OR syrphidae  
OR tachinidae OR bombyliidae OR trochilidae OR hummingbird* OR 
nectarinidae OR promeropidae OR meliphagidae OR fringillidae OR 
psittacidae OR sugarbird* OR sunbird* OR honeyeater* OR honey‐
creeper* OR "brush‐tongued parrot*" OR "brush‐tongued lorikeet*" 
OR phyllostomidae OR pteropodidae OR bat* OR muridae OR lamu‐
ridae OR callitrichidae OR cebidae OR didelphidae OR dasyuridae 
OR burramyidae OR petauridae OR tarsipedidae) NOT (formicidae). 
Studies gathered from this second search were individually screened 
to identify whether the target taxon being studied was a pollinator 
or not. In all cases we only included studies that assessed fire effects 
on abundance or richness of animals that are frequent floral visitors 
and able to act as pollinators. We discarded all studies assessing fire 
effects on non‐pollinator animals or on non‐nectar/pollen feeding 
life stages (e.g., lepidopteran larvae). We excluded ants (Formicidae) 
from the literature search because ant pollination is not only very 
rare but it can also deplete plant reproduction by decreasing pollen 
viability, damaging floral sexual organs or competing with legitimate 
pollinators (e.g., Beattie, Turnbull, Knox, & Williams, 1984). We also 
excluded parasitic and parasitoid species because the response of 
these high‐trophic‐level organisms may depend on factors related to 
the fire response of their host species, which goes beyond the ob‐
jectives of this review. This initial search yielded 2,820 articles (see 
Supporting Information Figure S1) and included studies reported by 
the previous meta‐analysis of Winfree et al. (2009).

For a study to be included in our review, it had to report fire ef‐
fects on the abundance or richness of a pollinator taxon and had to 
provide numerical parameters to compute the effect sizes (see below), 
the common metric to conduct a meta‐analysis. The final list of the 
studies included in the meta‐analysis is found in the Appendix: Data 
sources. In those studies, pollinator abundance was mainly estimated 
as the number of individuals within a sampling unit (e.g., transect, 

parcel, trap, etc.) or the visitation rate to flowers at the species level. 
However, in some cases, abundance was estimated at the genus, fam‐
ily or order taxonomic levels. Species richness was mostly measured as 
the number of species of different taxonomic levels (family or order), 
and only a few studies used other diversity indexes.

For each study, we defined the following variables related to the 
characteristics of the fire considered, and the type and conditions of 
the study: Fire frequency (classified as “once burned vs. unburned”, or 
“repeated burned vs. unburned”); Fire age (age at which the postfire 
assessment was performed; “early”: 3 years or less; “late”: otherwise); 
Fire Type (prescribed vs. wildfire); Pollinator taxa (birds, Coleoptera, 
Diptera, Hymenoptera or Lepidoptera); Biome (following Olson et 
al., 2001); vegetation physiognomy (forest, grassland or shrubland); 
Pollinator feeding specialization (generalist vs. specialist pollinator); 
Sociality (social/semi‐social vs. solitary; for bees); and Nest location 
(aboveground vs. belowground).

2.2 | Meta‐analysis

We used Hedges' d, the standardized mean difference, as the effect 
size measure across all studies, which has the advantage of being un‐
biased by small sample size (Gurevitch, Curtis, & Jones, 2001). We cal‐
culated Hedges' d in three ways: (a) For most of the studies, Hedges' 
d was calculated straightforwardly from the mean values, sample sizes 
and standard deviations of abundance and/or species richness in each 
of the two contrasting fire conditions: the control (unburned, long‐time 
since last fire or mature forests) and the treatment (burned, single or 
repeated). (b) In studies providing correlational data (e.g., postfire time 
or fire frequency gradients), we calculated the Pearson's correlation 
coefficient r and the sample size (Rosenberg, Rothstein, & Gurevitch, 
2013). (c) For studies presenting pollinator presence/absence data in 
burned and unburned conditions, we used two × two contingency 
tables to calculate the odds ratio, which expresses the probability of 
occurrence of a species in burned and unburned conditions in rela‐
tion to its total occurrence (Rosenberg et al., 2013). Correlation coef‐
ficients and the log of the odds ratio were mathematically transformed 
into Hedges' d following Borenstein, Hedges, Higgins, and Rothstein 
(2009). Negative values of d imply a decrease in the mean value of the 
abundance or richness of pollinators in burned conditions, whereas a 
positive d value corresponds to an increase as compared to the un‐
burned conditions.

We conducted hierarchical mixed effects meta‐analyses for 
each response variable (abundance and richness). That is, inverse‐
variance‐weighted models that included fixed (see moderators 
below) and random effects to estimate the differences across 
studies, assuming they do not share a common mean effect but 
that there is random variation among them, in addition to within‐
study sampling variation (Borenstein et al., 2009). The models also 
took into account the hierarchical dependence in our data due to 
cases where multiple data points (i.e., effect sizes) were obtained 
from the same paper, by including a publication‐level random ef‐
fect as a nesting factor (Stevens & Taylor, 2009; see models in 
Supporting Information Table S1).

http://www.fireresearchinstitute.org/
http://www.fireresearchinstitute.org/
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The heterogeneity of effect sizes was assessed with Q statistics, 
which are weighted sums of squares tested against a χ2 distribution 
(Hedges & Olkin, 1985). Specifically, we examined the p values of 
Qbetween (Qb) statistics that describe the variation in effect sizes that 
can be attributed to differences among categories of each predictor 
variable. A significant value of Qb indicates that categories being com‐
pared have different effects of fire. Specifically, we tested the fol‐
lowing predictor variables: Fire frequency, Fire age, Fire Type, Biome, 
Vegetation physiognomy, Pollinator taxa, Feeding specialization, 
Sociality and Nest location (see Supporting Information Table S2). 
We also included the overall fire effect, which considers all studies 
independent of their experimental details. We conducted a sensi‐
tivity analysis to explore whether the taxonomic level at which the 
effects were measured affected the overall effect size of pollinator 
response to fire. This analysis required the recalculation of the overall 
effect after eliminating one taxonomic level at a time. An effect of 
fire was considered significant if the 95% confidence intervals (CIs) 
of the effect size (d) did not overlap zero (Rosenberg et al., 2013). We 
performed all the analyses in R using the “metaphor” package with the 
restricted maximum likelihood “REML” method (R Core Team, 2018, 
version 3.3.0; Viechtbauer, 2010). Datasets used in the meta‐analy‐
ses are found in Supporting Information Tables S4 and S5.

2.3 | Publication bias

An intrinsic problem in any systematic quantitative review is the pos‐
sibility of publication bias, that is, studies showing significant results 
have a higher probability of being published. We explored the poten‐
tial of publication bias in our dataset by two different methods. (a) 
We assessed the Kendall's rank correlations of effect size and stand‐
ard error across the studies (Begg, 1994); significant p values indi‐
cate potential publication bias, whereby studies with small sample 
size (large standard errors) are only published if they show large ef‐
fect sizes. (b) We performed the “trim and fill” method, which is used 
as a sensitivity analysis that recalculates the estimated mean effect 
size; this provides an estimate of how the overall effect size would 
change if we were able to incorporate all missing studies (Jennions 
& Møller, 2002).

3  | RESULTS

We identified 65 studies across 21 countries of the 5 continents 
(Supporting Information Figure S2) that meet our criteria for inclu‐
sion in the review. Among these, 59 studies reported abundance 
data and 36 richness data, which yielded 293 data points (effect size 
values) for pollinator abundance and 99 data points for species rich‐
ness (Supporting Information Figure S1). As expected, most of pol‐
linators studied were insects, a few were birds (Apodiformes and 
Passeriformes; Figure 1) and only one study reported data of a marsu‐
pial pollinator. Among the studied insect pollinators, more than 50% 
were Hymenoptera, and more than 20% were Lepidoptera species 
(Figure 1). Very few studies reported data for Diptera and Coleoptera 

species. On the other hand, most studies analysed the pollinator re‐
sponse to fire by comparing once burned versus unburned conditions 
(61 and 86% of the effect sizes for richness and abundance, respec‐
tively), and only a few considered fire frequency (repeated burned, 
Figure 1). Fire effects were measured in a wide range of postfire time 
periods: from immediately after the burn up to 25 years after the fire. 
In relation to fire type, two‐thirds of the richness effect sizes were 
obtained from prescribed fires while almost half of the abundance 
effect sizes come from wildfires. Among biomes, extratropical envi‐
ronments were overrepresented, especially from Mediterranean and 
temperate forest, followed by boreal and subtropical open habitats 
(Figure 1, Supporting Information Figure S2).

The overall weighted‐mean effect size of fire on pollinator abun‐
dance and richness across all studies was positive (although non‐sig‐
nificantly different from zero for richness; i.e., confidence intervals 
slightly overlapping 0; Figure 2, Supporting Information Table S2a). 
The total heterogeneity of effect sizes was large and statistically sig‐
nificant for both abundance and richness (Supporting Information 
Table S3a), suggesting that fire effects may differ among the differ‐
ent factors considered. Fire frequency and time since fire largely 
explained the heterogeneity of abundance and richness of pollina‐
tors (Supporting Information Table S3a). The mean effect size was 
positive for the once burned/unburned comparison, but negative for 
the reburned/unburned comparison (Figure 2). In the latter case, the 
variability is large and CIs overlap zero. Pollinator abundance and 
richness increased in early postfire (≤3 years) but had no effect in 
late postfire (Figure 2, Supporting Information Table S2a). Pollinator 
response to postfire age was similar among vegetation physiogno‐
mies, and none of them showed significant effects of fire on rich‐
ness and abundance, with the exception of early‐postfire grasslands, 
which showed a significant increase in abundance of pollinators 
(Supporting Information Figure S3). In relation to the fire type, the 
mean effect size was positive only for wildfires for both richness and 
abundance (Figure 2). The sensitivity analysis indicated that studies 
assessing pollinators at finer taxonomic resolution (family, genus/
species) showed a significant positive overall effect on pollinator 
abundance (Supporting Information Figure S4). These results imply 
that assessing fire effects at higher taxonomic levels such as orders 
can yield low precision estimates for abundance but not for richness. 
Within the same order there may be species responding to fire in 
contrasting directions, thereby resulting in null effect sizes at the 
order level. The sensitivity analysis on richness showed no changes 
across the taxonomic levels.

The response of the different pollinator taxa to fire was relatively 
homogeneous (i.e., Qb was not significant; Supporting Information 
Table S3a). The effect size tended to be negative for birds (abun‐
dance) and Lepidoptera (richness) and significantly positive for the 
abundance of Hymenoptera. For Diptera and Coleoptera, these pos‐
itive trends were non‐significant due to the large variability of low 
replicates for each category (Figure 3a). When looking at the effect 
of wildfires only (i.e., excluding prescribed fires), the negative effect 
on Lepidoptera and the positive effect on Hymenoptera became sig‐
nificant (Figure 3b, Supporting Information Tables S2b, S3b).
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Looking at the abundance of Hymenoptera, the group with most 
information (n = 174), there was no differential response to fire be‐
tween different degrees of feeding specialization (specialist/general‐
ists), or between nesting habitats (below/above ground), or between 
sociality systems (solitary/social; Supporting Information Table S2a). 
In all cases, mean effect size was positive, and significant for below‐
ground nesting and social behaviour (Supporting Information Table 
S2a). Finally, pollinator species from different biomes and physiog‐
nomies (forest, shrubland and grassland) responded fairly similarly 
(Supporting Information Table S2a), with a positive tendency in tem‐
perate forest and grasslands (Supporting Information Figure S5).

Rank correlation tests for funnel plot asymmetry (Supporting 
Information Figure S6) indicate that our datasets are not subject to 
publication bias (Kendall's τabundance = −0.052, p  =  0.187; Kendall's 
τrichness = 0.059, p = 0.392); that is, there is no relationship between 

effect size magnitude and sample size. Accordingly, the recalcu‐
lated unbiased overall effect size after incorporating all potentially 
non‐significant missing studies was −0.05 (p  = 0.273, CI = −0.142 
to 0.040) for pollinator abundance and 0.20 (p = 0.033, CI = 0.017–
0.385) for richness, which does not differ from the outputs of our 
original database.

4  | DISCUSSION

Our results show that overall, and for most fire factors considered, the 
effect of fire is positive (Figure 2), thereby increasing the abundance 
and richness of floral visitors able to pollinate (pollinators). Fire effect 
was especially clear and significant in early postfire communities, 
after wildfires, and for Hymenoptera (the largest group of pollinators). 

F I G U R E  1  Number of effect sizes within each moderator variable for abundance (dark grey) and richness (light grey) datasets: 
(a) fire regime factors: fire frequency (once burned–unburned, repeated burned–unburned), postfire time (early, late) and fire type 
(prescribed, wildfire); (b) pollinator taxa (birds, Coleoptera, Diptera, Hymenoptera, Lepidoptera); (c) biome: B = boreal; DXS = deserts 
and xeric shrublands; MeFWS = Mediterranean forest, woodlands and scrubland; MoGS = montane grasslands and shrublands; 
TeBMF = temperate broadleaf and mixed forests; TeCF = temperate coniferous forest; TeGSS = temperate grasslands, savannas and 
shrublands; TrSDBF = tropical and subtropical dry broadleaf forests; TrSGSS = tropical and subtropical grasslands, savannas and shrublands; 
TrSMBF = tropical and subtropical moist broadleaf forests; and (d) vegetation physiognomy: forest, grassland and shrubland

(a)

(c) (d)

(b)
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These results suggest that the pollinator community is not only resil‐
ient to wildfire, but it has a tendency to increase in postfire conditions. 
The main exception was recurrent fires that showed a negative (non‐
significant) tendency, and especially wildfire  effects on Lepidoptera 
abundance which showed a significant negative response. Our results 
concur with the overall positive response to fire previously found for 
different animal guilds, including arthropods (Kral et al., 2017; Pressler, 

Moore, & Cotrufo, 2019) and some vertebrates (Buchalski, Fontaine, 
Heady, Hayes, & Frick, 2013; Fontaine & Kennedy, 2012; Kalies, 
Chambers, & Covington, 2010). The fact that pollinators are mostly 
insect flyers, and thus they can quickly colonize burned areas, may 
explain their resilience to fire (Kral et al., 2017; Swengel, 2001). In ad‐
dition, the typical increase in flowers after fire (due to more resources 
and less competition) may contribute to the positive tendency.

F I G U R E  2  Weighted‐mean effect sizes and 95% bias‐corrected confidence intervals of fire on abundance (closed circles) and richness 
(open circles) of pollinators. The effect sizes of overall abundance and richness, fire frequency (once burned–unburned, repeated burned–
unburned), postfire time (early, late), and fire type (prescribed fire, wildfire) are shown from the top to bottom. Parameters with confidence 
intervals that do not overlap the vertical dotted line (Hedge's d = 0) are considered to have a significant positive or negative effect. Sample 
sizes for each category are shown in parentheses. The size of each symbol is proportional to its weight or contribution to the overall mean 
calculation. Asterisk denotes a significant difference (Qbetween) among categories (***p < 0.0001. *p < 0.05)

F I G U R E  3  Weighted‐mean effect sizes and 95% bias‐corrected confidence intervals of all fire effects (a; i.e., considering prescribed and 
wildfires), and considering wildfire only (b), on abundance (closed circles) and richness (open circles) of pollinator taxa: birds, Coleoptera, 
Diptera, Hymenoptera and Lepidoptera. Parameters with confidence intervals that do not overlap the vertical dotted line (Hedge's d = 0) are 
considered to have a significant positive or negative effect. Sample sizes for each category are shown on the right of each effect. The size of 
each symbol is proportional to its weight or contribution to the overall mean calculation. Asterisks denote a significant difference (Qbetween) 
among categories (***p < 0.0001)

(a) (b)
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The different fire regime characteristics are key for determin‐
ing species fire tolerance and diversity (Keeley, Pausas, Rundel, 
Bond, & Bradstock, 2011; Pausas, 2019). For instance, polli‐
nators responded positively to a single fire event in relation to 
unburned habitats, and more clearly under wildfires. In contrast, 
repeated fires showed an overall negative (although non‐signifi‐
cant) tendency. That is, sites that exhibited several consecutives 
fires showed a trend of lower pollinator abundance and richness 
in comparison to unburned sites (Figure 2). The fire interval in 
these studies ranged from 10 to 12  years (SD  =  5–7  years be‐
tween fires), and they largely corresponded to wildfires (69%) in 
extratropical biomes. That is, under non‐tropical environments 
these short fire intervals tend to be detrimental for pollinators, 
as for other organisms (Kowaljow et al., 2018; Kral et al., 2017). 
However, we cannot disentangle whether this reduction of pol‐
linators is due to reduced flowering (i.e., immaturity risk under 
short fire intervals) or to a direct negative effect on pollinators, 
and thus a disruption of the pollination interaction (Kowaljow et 
al., 2018; Vieira et al., 2013).

The positive effect of fire on pollinators can also be seen 
when we look at the time since fire, as only early postfire stud‐
ies showed a significant positive fire effect on both abundance 
and richness (Figure 2). That is, pollinators benefit from recently 
burned environments. Late postfire communities (3 or more years 
after fire) showed no effect of fire on pollinators, suggesting that 
pollinator increase after fire is transient. The increase of diversity 
and abundance of nectar providing plants immediately after a fire 
(LoPresti et al., 2018; Mola & Williams, 2018; Potts et al., 2003; 
Van Nuland et al., 2013), the higher nectar production (Ne'eman 
& Dafni, 1999) and particularly the high nectar concentration of 
plant species that germinate profusely after fires (obligate seed‐
ers, Carpenter & Recher, 1979; Ne'eman, Dafni, & Potts, 2000) 
support the preference for early postfire vegetation. In addition, 
pollinator response to postfire age was little affected by vegeta‐
tion physiognomy (grassland, shrubland, forest), with only early 
postfire grasslands showing higher pollinator abundance. These 
results suggest that increasing flowering postfire is quite gen‐
eral across vegetation types (Lamont & Downes, 2011). The high 
number of herbaceous species in fire‐prone environments with 
floral phenology synchronized by fire (Lamont & Downes, 2011; 
Pilon, Hoffmann, Abreu, & Durigan, 2018) can be quite attractive 
to pollinators, explaining the higher pollinator visitation to flo‐
ral‐resource‐rich communities of recently burned sites (Mola & 
Williams, 2018; Swengel, 2001).

While wildfires showed a clear positive effect on pollinators, 
prescribed fires had no effect on abundance or richness (Figure 2). 
The fact that these burns tend to be lighter, smaller and patchier 
may cause less changes in the vegetation (composition, structure), 
and in the associated fauna. In addition, prescribed fires may be 
often performed in already open communities, or in understorey of 
woodlands, and thus the changes in structure are low. In contrast, 
unmanaged wildfires likely cause more drastic changes in vegeta‐
tion structure and composition (Carbone, Aguirre‐Acosta, Tavella, 

& Aguilar, 2017; Kowaljow et al., 2018; Pellegrini et al., 2018) al‐
lowing a more significant change (increase) in floral resources for 
pollinators. The importance of changes in community structure is 
also evident given that the case studies with the highest positive 
effect sizes were all temperate forests subject to crown fires (e.g., 
Bogusch, Blažej, Trýzna, & Heneberg, 2015; Moretti et al., 2004; 
Taylor & Catling, 2011). Unlike other insect functional guilds, such 
as soil arthropods that are not differently affected by fire type 
(Pressler et al., 2019), insect pollinators appear to depend to a large 
extent on strong aboveground changes. Therefore, generalizations 
should be applicable with caution to conditions only within compa‐
rable animal guilds and disturbance type (Kral et al., 2017).

Pollinating birds tend to be negatively affected by fire, although 
with high variability (Fraser, 1989; Geerts et al., 2012; but see 
Fontaine & Kennedy, 2012; Kalies et al., 2010), while the abundance 
of insects, especially Hymenoptera, exhibits on average a positive 
trend in burned scenarios (Figure 3a). When only looking at the wild‐
fires, the positive response of Hymenoptera and the negative trend 
of Lepidoptera become significant (Figure 3b). Pollinators that are re‐
silient to fire show life history traits or response strategies to survive 
fires, or to quickly recolonize or forage in the postfire area (Pausas, 
2019; Pausas & Parr, 2018; Williams et al., 2010). Given that most of 
the studies do not identify whether pollinators are really nesting in 
burned areas, it is not possible to discern individuals foraging within 
but living outside the burned areas from a full recolonization. In ad‐
dition, removal of predators, parasites and competitors for the same 
feeding resources may confer a fitness benefit by stimulating polli‐
nator reproduction in burned places, as happens with some pyro‐
philous insects (New, 2014; Pausas, Belliure, Mínguez, & Montagut, 
2018). For instance, within Hymenoptera pollinators, we expected 
that traits such as social organization, underground nesting and gen‐
eralist pollinators should present advantages in burned sites. This 
is because social hymenopterans have bigger colonies, and ground‐
nesting species are better protected from the heat and thus likely to 
be favoured (Cane & Neff, 2011; Mola & Williams, 2018; Williams 
et al., 2010). Our results partially support these predictions because 
fire increased the abundance of social and below ground‐nesting 
bees (Supporting Information Table S2a). The response to fire of 
bees with different nesting behaviour can depend on the postfire 
age, because the nesting resource (bare soil or vegetation) changes 
with postfire succession (Lazarina et al., 2019; Williams et al., 2010).

Lepidoptera abundance tends to decrease under wildfire re‐
gimes. Habitat specialists and oligolectic butterflies are often un‐
derrepresented after wildfires (Cleary et al., 2004; Swengel, 1998, 
2001; Swengel & Swengel, 2013). However, we tested adult but‐
terflies' habitat preference (generalist versus specialist) and feed‐
ing behaviour at the larval life stage (polylectic versus oligolectic) 
as moderators and failed to find significant differences (not shown). 
Therefore, the negative response of Lepidoptera to wildfires is 
likely due to the higher larvae susceptibility to direct fire effects 
than Hymenoptera, which typically nest in more protected micro‐
sites (e.g., belowground or woody holes). In addition, it is likely that 
increased light in burned habitats and consequent changes in leaf 
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tissues, which lepidopteran larvae depend on, could be responsi‐
ble for the lower butterfly abundance after wildfires (Cariveau & 
Winfree, 2015; Kral et al., 2017; Swengel, 2001).

While our results show clear response patterns, it is important 
to underline that the current available research about the role of fire 
on pollinators is still limited for some ecosystems, like savannas and 
other tropical ecosystems. Thus, our review also evidences gaps in 
the current knowledge (Figure 1). Our synthesis was not able to in‐
clude the effect of important spatial factors like fire size (García et 
al., 2016, 2018) and the spatial heterogeneity of fire regime parame‐
ters (Brown & York, 2017; Lazarina et al., 2019; Ponisio et al., 2016), 
which are highly related to the mobility of the animals and their land‐
scape scale persistence (Pausas, 2019). There are not enough studies 
that analyse the spatial component of the fire regime to be able to 
perform a global meta‐analysis. Another factor that requires further 
work at the local and regional scales is to study the changes in the 
pollinator composition (species turnover) in relation to fire (García et 
al., 2018; Moretti, De Bello, Roberts, & Potts, 2009) and the ecolog‐
ical consequences for the plant populations of having a larger and 
richer pollinator community right after fires (LoPresti et al., 2018).

In conclusion, we present the first global synthesis of empirical ev‐
idence across multiple pollinator functional groups and show that pol‐
linators are not only resilient to fire, but they also tend to be promoted 
during the first postfire years. We also found evidence that short fire 
intervals in non‐tropical ecosystems may be a  threat  to  pollinators, 
and especially lepidopterans. This is critical because it emphasizes the 
importance of fire regime (and not fire per se; Keeley et al., 2011) in 
determining the winners and losers in fire‐prone ecosystems. Given 
the ongoing global fire regime changes, it is imperative to monitor 
postfire pollination across many ecosystems, as our results suggest 
that fire regime is critical in determining the dynamics of pollinator 
communities, and thus of the pollination service.
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