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A B S T R A C T

Phosphorus is one of the main macronutrients for plant development. Despite its large deposits in soils, it is
scarcely available for plants. Phosphate-solubilizing bacteria, belonging to the group of plant growth-promoting
rhizobacteria (PGPR), are capable of mobilizing deposits of insoluble phosphates in the soil. The use of PGPR as
inoculants provides an environmentally sustainable approach to increase crop production. The effectiveness of
inoculants depends on their proper production, formulation and storage in order to ensure the application of the
required number of viable microbial cells. In order to develop inexpensive technology, low-cost compounds for
biomass production and protection should be used. After the biomass production process, the product should be
formulated in a liquid or a solid form, taking into account required storage time, use of protectors/carriers,
storage conditions (temperature, humidity, etc.), ease of application and maintenance of beneficial effects on
crops. Careful determination of these optimal conditions would ensure a low-cost efficient inoculant that would
promote the growth and yield of various crops.

1. Introduction

Microorganisms that inhabit the rhizospheric microenvironment are
able to exert beneficial, neutral, variable, or deleterious effects on plant
growth and development (Barea, 2015). Plant growth-promoting rhi-
zobacteria (PGPR) are beneficial microorganisms such as nitrogen-
fixing and phosphate-solubilizing bacteria (PSB) (Bharti and Barnawal,
2018). These bacteria present relevant properties involving essential
nutrients for plants such as nitrogen (N) and phosphorus (P). Since
PGPR are able to increase vegetable nutrient uptake by means of var-
ious widely studied mechanisms, they have become really interesting
for the agricultural industry. Numerous formulations based on these
microorganisms have been developed, with applications for different
crops around the world (Saleem and Khan, 2017). However, the

inconsistency in the results obtained, dependent on many factors such
as climate, autochthonous microbiota, available nutrients and crop
characteristics, makes optimization necessary for each particular
system (Vassilev et al., 2015). Research including physiological and
technological studies should be a priority in order to develop stable,
functional and reliable inoculants as tools to support sustainable agri-
culture (Seema et al., 2018). In this review, interesting properties of
PGPR, particularly of PSB, and their liquid and solid formulations are
discussed. Moreover, a study of the formulation of a potential inoculant
based on Pseudomonas tolaasii IEXb, a PSB isolated from the Puna re-
gion, Argentina, is also commented.
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2. Phosphorus in the soil and its importance for plants

Phosphorus is one of the inorganic nutrients most required by
plants. It is essential for plant growth and development since it is in-
volved in many important functions such as energetic metabolism,
structural functions, signal transduction functions and transfer of ge-
netic features through successive generations. Thus, this element is
essential for cell division and for the generation of new tissues
(Dissanayaka et al., 2018).

Plants absorb P from orthophosphate anions (H2PO4
− and HPO4

2−)
(Herrera-Estrella and López-Arredondo, 2016). In the soil, P is most
often found in apatite, which is a group of phosphate minerals. Apatite
wear causes the release of phosphate anions in low amounts (1% of
total soil phosphorus) (Barea and Richardson, 2015). Phosphate anions
participate in reactions that limit their availability to plants, forming
compounds (e.g., several forms of tricalcium phosphate, iron phosphate
or aluminum phosphate) in the form of salts in solution, crystalline salts
or salts adsorbed by soil colloids. Moreover, phosphate ions can be
directly adsorbed by soil colloids or form highly stable complexes with
iron, aluminum or manganese hydroxides that are part of these colloids.
These inorganic compounds have very low solubility (Liu et al., 2014).
On the other hand, P can be found in organic forms including inositol
phosphate, phosphomonoesters and phosphotriesters. These com-
pounds can form insoluble complex molecules with some metals present
in the soil. Based on the different aspects described, limited P bioa-
vailability in the soil causes limited plant growth.

3. Chemical fertilization

Chemical fertilizers are applied to compensate for P deficiency in
commercial crops, improving plant development and increasing yields.
Plants are able to use P from soil solution, mainly from their root
exudates, which contain organic acids and phosphatases (Novo et al.,
2018). When phosphate fertilizers are introduced, several processes in
rhizosphere, soil, and plants occur (Shen et al., 2011) (Fig. 1). In che-
mical fertilizers, P is included mainly as monocalcium phosphate [Ca
(H2PO4)2] or monopotassium phosphate (KH2PO4). A great part of so-
luble inorganic P applied as a fertilizer (more than 80%) immediately
precipitates after its application by the formation of iron and aluminum
phosphates in acid soils, monocalcium-bicalcium-tricalcium phosphates
in alkaline soils, or adsorption on iron or aluminum oxides or clays. All
these compounds are non-bioavailable complexes, whereby phosphorus
is wasted (Urrutia et al., 2014; Wang et al., 2018). When phosphate
fertilizers are applied in excessive amounts, they cause P fixation,
characterized by the presence of enormous amounts of P in the form of
phosphate minerals. Fixation mechanisms generally cause a slow re-
lease of P, generating great challenges to remediate these soils, with
highly accumulated P and thus not available for crops (Roy, 2017).

The application of phosphate fertilizers may significantly affect the
physicochemical properties of the soil (Li et al., 2017). However, with
the necessary previous studies, it is possible to associate different types
of fertilizers with soils that have different physicochemical character-
istics (Gellings and Parmenter, 2016).

4. Phosphate-solubilizing bacteria

The rhizosphere is a critical zone where microorganisms, soil and
plants interact. PGPR constitute a heterogeneous group that can be
present in the rhizosphere as soil bacteria at the root surface. They are
currently divided into three functional groups: plant growth-promoting
bacteria, biocontrol agents, proposed by Bashan and Holguin (1997),
and plant stress homeoregulating bacteria, proposed by Cassan et al.
(2009). These functional PGPR groups can directly or indirectly facil-
itate plant growth under biotic or abiotic stress conditions (Singh et al.,
2015). Bacteria of various genera such as Bacillus, Pseudomonas, My-
cobacterium, Azospirillum, Agrobacterium, Azotobacter, Rhizobium and

Alcaligenes are included in the PGPR group (Pathak et al., 2017; Yadav
et al., 2018).

PSB, which belong to the PGPR group, are ubiquitous and have
different properties and population levels according to the physico-
chemical characteristics, organic matter content and P of the soil where
they are found. In arid and semiarid zones such as the Puna region
(Northwestern Argentina), there is a huge diversity of PGPR that can be
biotechnologically exploited because of their high phenotypic plasticity
(Viruel et al., 2011; Lamizadeh et al., 2016).

PSB can transform different P insoluble compounds into soluble
forms available for plant uptake (Pathak et al., 2017). Phosphate-so-
lubilizing mechanisms include solubilization of inorganic phosphates
by the action of low molecular weight acids such as gluconic and citric
acids, which are synthetized by soil bacteria. On the other hand, or-
ganic phosphate mineralization occurs through bacterial synthesis of
phosphatases such as phytases and nucleases, which catalyze the hy-
drolysis of phosphoric esters, releasing the phosphate group (Novo
et al., 2018). An important fact is that inorganic P solubilization and
organic P mineralization are capabilities that can coexist in a same
bacterial strain (Hanif et al., 2015).

5. Other mechanisms associated with plant growth-promoting
effects

Phosphate solubilization is not the only mechanism through which
PGPR can exert a beneficial effect on plants (Vejan et al., 2016). Other
mechanisms include nitrogen fixation, production of siderophores,
phytohormones and 1-aminocyclopropane-1-carboxylate (ACC) dea-
minase, and biological control (Bharti and Barnawal, 2018) (Fig. 2).

5.1. Nitrogen fixation

N is the most important vital nutrient for plant growth and

Fig. 1. Phosphorus dynamics in soil, rhizosphere and plants after the addition
of chemical fertilizers (adapted from Shen et al., 2011).
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productivity. Although there is almost 78% of N2 in the atmosphere, it
is unavailable to plants. Atmospheric N2 is transformed into forms
available for plants by the biological nitrogen fixation (BNF) process, by
which N2 is transformed into NH3 by N2-fixing microorganisms (Singh
et al., 2015). The N2-fixation process is catalyzed by a complex enzyme
known as nitrogenase complex (Choudhary and Varma, 2017). Dini-
trogenase reductase provides electrons with high reducing power, while
dinitrogenase uses these electrons to reduce N2 to NH3. Structurally, the
N2-fixing system has variations among different bacterial genera. Most
BNF is catalyzed by the activity of molybdenum nitrogenase, which is
found in all diazotrophs (Mus et al., 2018). The genes responsible for
nitrogen fixation, called nif genes, are found in symbiotic and free living
systems. The symbiotic activation of nif-genes in Rhizobium is depen-
dent on low oxygen concentration, which is regulated by another set of
genes called fix-genes, also commonly found in both symbiotic and free
living nitrogen fixation systems (Wongdee et al., 2018). Several PGPR
are able to colonize plant internal tissues and thus enhance their
growth-promoting effect by providing a limiting oxygen environment
required for activation of N2-fixation and more efficient transfer of the
fixed nitrogen to the host plants (Nyoki and Ndakidemi, 2018). BNF
represents an alternative to chemical fertilizers due to its economic and
environmental advantages.

5.2. Siderophore production

Iron (Fe) is a vital nutrient for almost all forms of life. In an aerobic
atmosphere, where it is found mainly as Fe3+ ion, it forms hydroxides
and oxyhydroxides that make it unavailable for microorganisms and
plants, which require it in the Fe2+ form (Neilands, 2014; Pahari and
Mishra, 2017).

Bacteria usually acquire Fe2+ by secretion of low molecular weight
chelators known as siderophores. Fe3+ ion and a siderophore form a
complex in the membrane in which Fe3+ is reduced to Fe2+, which is
released into the cell by the siderophore through an input mechanism
that links the outer and inner membranes. During this reduction pro-
cess, the siderophore can be destroyed or recycled (Kashyap et al.,
2017).

Plants can assimilate Fe2+ from bacterial siderophores through
different mechanisms such as directly uptaking Fe-siderophore com-
plexes or by means of an exchange reaction using an appropriate ligand
(Rasouli-Sadaghiani et al., 2014; Novo et al., 2018).

5.3. Phytohormone production

The auxin phytohormone (indole acetic acid, IAA), produced by
rhizobacteria, is an effector molecule in plant-microorganism interac-
tions as well as in pathogenesis and phytostimulation processes
(Venturi and Keel, 2016).

IAA internal concentration in plants can be altered by the acquisi-
tion of IAA secreted by soil bacteria (Manasa et al., 2017). IAA is in-
volved in growth and development aspects of plants as well as in de-
fense mechanisms. IAA increases the root surface and length and
provides greater access to soil nutrients by plants (Gowtham et al.,
2017). IAA also weakens plant cell walls, resulting in an increase in the
amount of radicular exudate, which in turn provides additional nu-
trients for rhizobacterial growth (Etesami et al., 2015).

5.4. ACC deaminase

Ethylene is an essential metabolite for plant normal growth and
development (Van de Poel et al., 2015). Besides being a growth reg-
ulator, it is a hormone generated in stress situations resulting from
salinity, drought or pathogenicity (Müller and Munné-Bosch, 2015). In
these conditions, endogenous ethylene level increases significantly,
with negative effects since it can act as a negative plant growth reg-
ulator, leading to shorter roots (epinasty), and premature senescence
(Bharti and Barnawal, 2018). Thus, high ethylene concentrations can
reduce crop yields. PGPR that have ACC deaminase are able to regulate
ethylene production by metabolizing ACC (an immediate precursor of
ethylene biosynthesis in higher plants) in α-ketobutyrate and NH3 (Dar
et al., 2018). In this way, PGPR facilitate plant growth and development
since they are able to decrease ethylene levels. Thus, plant resistance to
various stresses (e.g., presence of phytopathogenic bacteria, polyaro-
matic hydrocarbons, heavy metals, salinity and drought) is increased
(Singh and Jha, 2016; Bharti and Barnawal, 2018).

5.5. Biological control

In general, competition for nutrients, exclusion of niches, systemic
resistance induction and antagonistic metabolite production are the
main modes of action through which PGPR exert biocontrol (Fukami
et al., 2018). Through these mechanisms, beneficial bacteria can pre-
vent the deleterious effect of phytopathogens on plant growth and/or
development.

Antagonistic secondary metabolites produced by beneficial

PGPR

Nitrogen fixation

Nitrogenase complex

Siderophore
production

Fe3+ Fe2+

Phytohormone
production

IAA Growth/
Development/

Defense 

ACC deaminase

Ethylene levels
Stress 

tolerance

Biological control

Phytopathogen

Phosphate solubilization

Inorganic 
phosphate 

solubilization

Organic 
phosphate 

mineralization

Low molecular
weight acids

Phytases
and nucleases

Fig. 2. Some of the most important beneficial effects that plant growth-promoting rhizobacteria (PGPR) exert on plants. IAA: indole acetic acid; ACC deaminase: 1-
aminocyclopropane-1-carboxylate deaminase.
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microorganisms against phytopathogens are biodegradable molecules,
in contrast with many agrochemicals. Biocontrol is used to control in-
fectious diseases in both living plants and fruits during storage (Liu
et al., 2018). It should be noted that some PGPR are also active against
weeds and insects (Adnan et al., 2016).

Biological control is as complex process involving not only the
biocontrol agent, the pathogen and the plant. It also includes the in-
digenous microbiota and macrobiota such as nematodes and protozoa,
and the plant growth substrate such as soil, stonewool or vermiculite
(Mahajan and Shirkot, 2014). The biological control agent should re-
main active against multiple plant diseases that often affect individual
crops (Liu et al., 2017). However, broad-spectrum biocontrol activity is
not easy to achieve, and more efficient and persistent biocontrol sys-
tems should be developed.

6. Phosphate-solubilizing bacteria as inoculants

Some PSB have been isolated and multiplied, allowing the devel-
opment of various inoculants (Bashan et al., 2014). Inoculation with
PSB belonging to genera such as Pseudomonas, Bacillus, Rhizobium, Mi-
crococcus, Flavobacterium, Achromobacter, Erwinia and Agrobacterium has
been associated with an increase in phosphate solubilization and crop
yields (Rodrıǵuez and Fraga, 1999; Ruzzi and Aroca, 2015).

The use of the inoculant either by itself or in combination with other
products currently available on the market is a smart alternative, since
it would lead to a reduction in the amount of chemical fertilizer re-
quired and to the use of the phosphate already present in the soil
(Verma et al., 2015). Seed inoculation with PSB is an effective tech-
nique that can mitigate phosphorus deficiency (Qureshi et al., 2012).
On the other hand, the positive effects of PSB can be more significant
when co-inoculating PSB with bacteria having other physiological
capabilities (e.g., N2-fixation) or with mycorrhizal and non-mycorrhizal
fungi (Muthukumar and Udaiyan, 2018).

Definitely, commercial crop inoculation with PSB would allow in-
creasing yields, besides generating a more sustainable and eco-friendly
agricultural practice because of the lower requirement for chemical
fertilizers.

7. Inoculants: PGPR biomass production

Biomass production, formulation and shelf life determination are
crucial steps during the development of bacterial inoculants, which
should ensure the application of the required number of viable and
active microbial cells (Bashan et al., 2014). The cost of biological fer-
tilizers, which comprises mainly raw material costs, equipment, and
staff, must be competitive in relation to the production cost of chemical
fertilizers. In a general cost analysis, the choice of an appropriate cul-
ture medium for the development of high amounts of microbial biomass
is an important issue (Xu et al., 2014; Liu et al., 2016).

In several studies, different culture media have been assayed or
optimized for the growth of PGPR in submerged and solid-state fer-
mentation processes (Table 1). Standard culture media such as ammo-
nium mineral salt (AMS) broth, nitrogen-free broth (NFb) and nutrient
broth are suitable for laboratory assays (Chanratana et al., 2017;
Yaghoubi Khanghahi et al., 2018), but they are expensive for PGPR
biomass production at larger scales (Trujillo-Roldán et al., 2013;
Carrasco-Espinosa et al., 2015). Several new culture media were opti-
mized based only on conventional ingredients (Vyas et al., 2014;
Posada-Uribe et al., 2015; Camelo-Rusinque et al., 2017). However, the
inclusion of some components such as peptones, yeast extract and
tryptone continues to generate high inoculant production prices. In this
sense, Vyas et al. (2014) and Posada-Uribe et al. (2015) argued that the
decrease in nutrient concentrations or incubation time needed to reach
maximum PGPR biomass can represent a reduction in production costs.

On the other hand, traditional culture medium components have
been successfully combined with low-cost substrates for biomass

production during inoculant development (Bashan et al., 2011; Singh
et al., 2013; Peng et al., 2014; Zhang et al., 2018). In those studies,
industrial wastes or by-products such as crude glycerol, corn flour,
soybean meal, dairy sludge and maize bran residue were used as low-
cost carbon or nitrogen sources for microbial growth (Table 1). Inter-
estingly, glycerol and maize bran residue can be employed in both
biomass production and formulation processes (glycerol as a protective
agent of microbial cells and maize bran residue as a carrier) (Vassilev
et al., 2017; Zhang et al., 2018). The use of culture media formulated
with industrial wastes or by-products to produce bacteria of agronomic
interest is a viable way to contribute to a sustainable agroindustry,
handling low-cost substrates of high nutritional value.

As shown in Table 1, the most economical culture media recently
proposed to produce inoculants were formulated only with waste or by-
products (Xu et al., 2014; Zhang et al., 2014; Huang et al., 2015; Liu
et al., 2016; Pastor-Bueis et al., 2017). For instance, different composts
supplemented with novel additive nutrients were used in the solid-state
fermentations of Bacillus amyloliquefaciens and Paenibacillus polymyxa
strains (Zhang et al., 2014; Huang et al., 2015; Liu et al., 2016).

Among the works reviewed, none has addressed the use of whey for
PGPR growth. In a recent study carried out by our group, a culture
medium composed of whey (1% w/v) and soybean meal (1% w/v) as
low-cost substrates for Pseudomonas tolaasii IEXb biomass production
was formulated (Table 1; unpublished results). P. tolaasii IEXb was
previously isolated from Puna grass rhizosphere from Northwestern
Argentina and selected for its beneficial characteristics as a bacterial
candidate for inclusion in an inoculant (Viruel et al., 2011, 2014). This
microorganism solubilizes tricalcium phosphate and hydroxyapatite,
produces alkaline phosphatase, indole acetic acid and siderophore, and
can increase maize growth and yield under both culture chamber and
field conditions (Viruel et al., 2011, 2014). In plant trials, maize seeds
were soaked in fresh P. tolaasii IEXb cultures conducted in a synthetic,
liquid growth medium (Viruel et al., 2011, 2014). However, this pro-
cedure is not feasible under commercial conditions. Therefore, our
subsequent studies were aimed at producing P. tolaasii IEXb biomass
using low-cost culture media and at including it in suitable formula-
tions, enabling its storage, transport and application with no drastic
losses in viability or microbial contamination.

When scaling P. tolaasii IEXb biomass production in a 10 L fer-
menter, a satisfactory bacterial growth (around 109 CFU/mL at 8 h of
culture) was obtained (Table 1; unpublished results). Therefore, alter-
native substrates used for P. tolaasii IEXb biomass production provided
C, N and other nutrients necessary for bacterial growth. Whey and
soybean meal are industrial by-products that can be used in both human
food and animal feed; however, they must often be discarded, causing
serious environmental pollution. Therefore, the use of these highly
polluting by-products as low-cost culture media components for mi-
crobial biomass production could be an ecological solution for waste
management. Soy flour is obtained from whole milled soy beans. It
contains high protein and carbohydrate concentrations (35% and 34%
w/w respectively), fat (19% w/w), minerals and a wide range of vita-
mins (Kang et al., 2017).

Whey is the main by-product of the cheese manufacturing process.
About 9 liters of whey are produced per kilogram of cheese, its chemical
composition depending on milk treatment (coagulation process,
heating, centrifugation, homogenization, pasteurization, concentration,
etc.), among other factors. Several main derived compounds are cur-
rently obtained from surplus whey such as condensed whey powders,
whey protein concentrates/isolates/hydrolysates, whey permeate, in-
dividual whey proteins and lactose (Ryan and Walsh, 2016). Whey and
some whey-derived compounds can be used as raw materials for mi-
crobial growth and biotechnological product formation (e.g., bioe-
thanol, single-cell protein, bioplastics, antimicrobial peptides, enzymes,
biogas and other organic compounds). Additional interesting informa-
tion on the subject can be found in Cortés-Sánchez et al. (2015) and
Ryan and Walsh (2016). In the case of whey powder, it is produced by
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drying whey, which facilitates its handling, storage and transport.
Concentrated whey powder contains (in % w/w): lactose, 50, proteins,
10, fat, 2, minerals, 5, and a broad range of vitamins, cofactors and
mineral salts (Haug et al., 2007; Tunick, 2008). For biomass produc-
tion, the use of whey powder instead of whey has relevant advantages
such as high concentrations of lactose and other nutrients resulting in
higher microbial growth levels (Lavari et al., 2014).

In addition to the selection of a suitable low-cost culture medium for
optimal biomass production, scaling-up is a relevant issue in inoculant
technology. Scaling-up is a process carried out in order to prevent en-
vironmental effects on microbial growth, and to introduce the required
variations in equipment design when the bioreactor size changes
(Trujillo-Roldán et al., 2013). As summarized in Table 1, as a first step,
different culture conditions were assayed at laboratory scale in order to
optimize PGPR growth parameters (Singh et al., 2013; Xu et al., 2014;
Zhang et al., 2018). At larger scales, the most important factors in the
culture such as incubation temperature and culture medium must re-
main constant (Garcia-Ochoa and Gomez, 2009; Ali et al., 2018). Other
physicochemical factors such as agitation, oxygen availability and pH
must be optimized during scaling-up to large bioreactors, as evidenced
in several studies included in Table 1 (Trujillo-Roldán et al., 2013; Vyas
et al., 2014; Carrasco-Espinosa et al., 2015; Posada-Uribe et al., 2015;
Camelo-Rusinque et al., 2017). Scaling-up a biotechnological process to
pilot scale enables the evaluation of the operational condition changes
associated with industrial processes as well as the production of enough
amounts of the product for market prospection or product registration
(Schmidt, 2005; Trujillo-Roldán et al., 2013).

8. PGPR formulation development

An inoculant properly produced, formulated and applied can guar-
antee that the product will provide all the benefits that it is supposed to
afford. Generally, many private companies offer commercial inoculants
on the international market, where there is an increasing demand for a
highly productive and effective product for a wide range of soils.
However, the inoculants offered are often low quality ones. In devel-
oping and developed countries, some of the products used did not
contain rhizospheric microorganisms or, if they did, these micro-
organisms showed contamination with other strains (Herrmann and
Lesueur, 2013; Yadav and Chandra, 2014). This situation causes an
inconsistency in the beneficial effect of inoculants in the field, thus

affecting the market. Some inoculants fail to demonstrate their specific
functions when their application is made, an outcome resulting from
problems associated with their production and formulation (Vassilev
et al., 2015; Biradar and Santhosh, 2018).

Inoculants should be developed as products with long-storage sta-
bility. The requirements with respect to their shelf life vary from 2 to 3
months at room temperature to1-2 years. Maximizing the initial
amount of viable cells in inoculants is a strategy to make up for the fast
deterioration rate (He et al., 2015; Martínez-Álvarez et al., 2016;
Oliveira et al., 2017). Anyway, storage conditions should be optimized
to support long-term cell survival (Joe et al., 2014; Berger et al., 2018;
Berninger et al., 2018). There are studies that clearly show the re-
lationship between number of bacteria applied on plants and crop
yields (Bernabeu et al., 2018). Inoculant quality standards, which vary
slightly between countries, establish that the amount of microorgan-
isms must range from 107 to 109 colony forming units per gram or per
milliliter of formulation (CFU/g or CFU/mL) (Malusá and Vassilev,
2014). Another approach to inoculum standards considers the number
of viable cells per seed after the application as recommended by the
producer. The minimum amounts of bacteria per seed are in the order
of 103 for small-sized seeds, 104 for medium-sized seeds, and 105 for
large-sized seeds (Bashan et al., 2014; Bharti et al., 2017).

The heterogeneity of soils is a huge obstacle for inoculants, because
the bacteria introduced are unable to find an empty niche in them. The
inoculated bacteria must compete against a better adapted indigenous
microbiota and survive predation by soil microfauna, especially when
they are inoculated in an unprotected form. Thus, inoculants should
provide a more suitable microenvironment combined with physico-
chemical protection over a long period of time, which would prevent
the fast decrease of the bacteria introduced (Berninger et al., 2016;
Shahzad et al., 2017; Liffourrena and Lucchesi, 2018). Therefore, the
purpose of inoculant formulations is to allow higher survival of PGPR
both during storage and in the application site, in both suitable and
available forms. Inoculants can be formulated as liquid or solid-based
products, the latter being dry or wet formulations (Oliveira et al., 2017;
Berninger et al., 2017; Berger et al., 2018). Fig. 3 summarizes some
aspects to consider in order to develop appropriate liquid and solid
formulations of PGPR.

8.1. Liquid formulations

Liquid inoculants are whole cultures or microbial suspensions
combined with different compounds such as water, oil, or polymeric
substances, which can increase adhesion, stability, and surfactant and
dispersion capacity (Lee et al., 2016). The main advantages of liquid
inoculants are their easier processing and lower costs compared to
solid-based formulations (Kumaresan and Reetha, 2011). This is why
liquid formulations constitute a significant percentage of the inoculant
market (Lee et al., 2016).

Table 2 shows some recent studies on liquid formulations for po-
tential use as inoculants for different crops. The presence in the culture
medium of protective agents -or their addition after bacterial growth-
can prolong cell survival during storage (Lee et al., 2016; Anith et al.,
2016; Valetti et al., 2016; Pastor-Bueis et al., 2017; Bernabeu et al.,
2018). However, although liquid inoculants can be packaged and stored
for long periods of time, microorganisms are subject to abiotic stress,
which can be caused by nutrient depletion, thermal shock or hypoxia,
among other causes, resulting in a drastic decrease in viable and/or
active cells (He et al., 2015; Berger et al., 2018; Bernabeu et al., 2018).
The main challenge in this respect is to improve formulations to
maintain the high quality of liquid inoculants (Lee et al., 2016).

Among protective substances, natural polymers (e.g., carrageenan,
arabic gum, xanthan gum, gelatin, alginate, etc.), synthetic polymers
(e.g., polyvinyl alcohol and polyvinylpyrrolidone), horticultural oil,
glycerol, and mono- and disaccharides (e.g., glucose and lactose) are
suitable for liquid formulation development (Table 2). In several liquid

Fig. 3. Parameters to consider in the development of an inoculant formulation.
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formulations, PGPR maintained at least the minimal number of viable
cells required for several inoculants (around 107 CFU/mL or CFU/g) for
six months of storage at room or refrigeration temperature (He et al.,
2015; Anith et al., 2016; Valetti et al., 2016). Moreover, the beneficial
effects of PGPR on different crops were evidenced after different storage
times.

The various physiological mechanisms of action of protective agents
include mainly nutrient provision, improvement of physical char-
acteristics and osmoprotection of bacterial cells (Lee et al., 2016;
Berninger et al., 2017). For instance, natural and synthetic polymers
provide a protective microenvironment for bacterial cells, are able to
limit heat transfer and possess high water activity (aw), all of which
promote bacterial survival under different storage conditions (Mugnier
and Jung, 1985). Horticultural oil is a safe and low-cost additive that
can be catabolized by some bacteria such as Rhodopseudomonas palustris
PS3 (Lee et al., 2016). Thus, it can act as an additional nutrient source
to support bacterial growth during storage (Table 2). Other low-cost
additives (pero-dexin, a by-product of the starch industry, and coconut
water, an industrial waste) can also act as bacterial nutrients (Abbas
et al., 2014; Anith et al., 2016). Moreover, their inclusion in PGPR
formulations contributes to a significant decrease in inoculant pro-
duction costs.

Glycerol is an economical polyol, well-known as a protective cell
agent for its ability to protect bacterial cells from abiotic stress and
participate in osmotic pressure balance and regulation of transmem-
brane traffic (Li et al., 2009). Moreover, glycerol is a carbon source for
bacteria, has a high water-binding capacity, and can protect cells from
the effect of desiccation by decreasing the drying rate. Its fluidity also
promotes fast seed covering (Singleton et al., 2002). On the other hand,
lactose is a disaccharide that acts as an effective protector because of its
water-binding capacity, which decreases ice crystal formation when
storing liquid formulations at low temperatures. Lactose is known to
stabilize cell membranes and preserve the structure and function of
proteins (Leslie et al., 1995). Moreover, the presence of eight hydroxyl
groups in lactose molecules protects bacterial cells against free radicals
produced during storage (Zárate et al., 2005).

Glycerol and lactose were used as protective agents in liquid for-
mulations of P. tolaasii IEXb developed by our research group (Table 2;
unpublished results). The procedure was as follows: cell suspensions of
P. tolaasii IEXb, produced in a low-cost culture medium (Table 1), were
combined with 20% glycerol or 10% lactose. In order to determine the
shelf life of the formulated P. tolaasii IEXb cells, the different for-
mulations prepared were stored at refrigeration temperature (4 °C) and
at room temperature for six months. Liquid formulations of P. tolaasii
IEXb were able to retain the minimal concentration of viable cells ac-
cepted for bioproducts containing PGPR (around 107 CFU/mL) but only
during storage at refrigeration temperature. At this temperature, sev-
eral processes are either prevented or delayed (e.g. microbial cell di-
vision and metabolic rate, nutrient depletion, toxic metabolite accu-
mulation and moisture loss), favoring long-term storage of
microorganisms (Mejri et al., 2013).

An interesting approach for the development of an improved in-
oculant technology is the use of biofilm-based biofertilizers (Das et al.,
2017). Recently, a liquid formulation was developed including PGPR
immobilized by biofilm formation on a fungal matrix (Table 2). Mi-
crobial immobilization in biofilms presents several advantages since it
is a strategy based on a spontaneous microbial process that can be
carried out through easy and inexpensive methods, and microbial cells
in biofilms show increased survival with respect to planktonic (free)
cells (Rabin et al., 2015). Moreover, bacterial cells in biofilms often
exhibit higher plant growth promoting activity than their planktonic
counterparts (Das et al., 2017).

8.2. Solid formulations

Solid formulations can be based on organic or inorganic carriers and

prepared as granules or powders. They are classified on the basis of
their particle size or their applications (Lee et al., 2016). In both
granular and powder products, the organic or inorganic carrier is one of
the most important component, and thus constitutes a crucial para-
meter in formulation processes. Tables 3 and 4 show several solid wet
and dry formulations carried out with PGPR and different bacterial cell
protectors, additives and carriers. Some studies evidenced that certain
solid wet and dry formulations of PGPR showed appropriate stability
during elaboration and storage of inoculants. However, in most of the
works included in Tables 3 and 4, shelf life data of formulations were
not available.

In solid wet formulations, no drying method was applied during
formulation development; therefore, bacterial cells were exposed to a
high water content during storage and/or application. As shown in
Table 3, solid wet formulations of PGPR were based on alginate (Joe
et al., 2014; Loján et al., 2017; Liffourrena and Lucchesi, 2018), clay
(Schoebitz et al., 2014), peat (Oliveira et al., 2017; Zhou et al., 2017),
biochar (Tripti et al., 2017) and biogas sludge combined with enriched
soil (Mukhtar et al., 2017), among other materials. The selection cri-
teria of carriers should include cost, availability, chemical stability,
toxicity levels and farmer convenience with respect to management and
flexibility (Malusá et al., 2012; Bashan et al., 2014).

In most solid wet formulations in Table 3, PGPR were immobilized
using different methods such as adhesion/biofilm formation on solid
supports or entrapment in alginate beads. As mentioned above, im-
mobilization processes protect bacterial cells against various harsh
environmental conditions (Rabin et al., 2015). Marcelino et al. (2016)
successfully immobilized Azospirillum brasilense Ab-V5 using biofilm
formation on an innovative biodegradable foam, which was formed by
conventional compounds combined with several low-cost industrial by-
products (e.g., cassava starch, sugarcane bagasse and glycerol). In the
case of bacterial entrapment in alginate beads, the inclusion of perlite
(a natural inorganic material with high chemical, physical and biolo-
gical resistance) favored the mechanical stability of beads and the
bacterial survival of Pseudomonas putida A (ATCC 12633) in the for-
mulation (Liffourrena and Lucchesi, 2018). On the other hand, na-
noimmobilization of PGPR by electrospinning is an alternative emer-
ging method of bacterial immobilization (De Gregorio et al., 2017).
Once in the soil, bacteria could be gradually released from macro- and
microbeads or nanofiber matrixes (De Gregorio et al., 2017; Liffourrena
and Lucchesi, 2018).

Dry formulations with low water content can extend microbial
survival for longer periods and at higher temperatures than liquid
formulations, thus reducing marketing and maintenance costs since
refrigeration is not required (Melin et al., 2006). Dry formulations can
be rehydrated to obtain cell suspensions to cover seeds, immerse roots,
or be distributed on the soil (Malusá et al., 2012; Berninger et al.,
2017). In contrast, liquid formulations can always be used directly, with
no need for rehydration.

Dry inoculants can be produced using air drying, desiccation, freeze-
drying (lyophilization) and spray drying, among other technologies
(Table 4). Shade drying and air drying are low-cost drying methods
(Ruíz-Valdiviezo et al., 2015; Berninger et al., 2017; Prasad and Babu,
2017; Basheer et al., 2018). In contrast, lyophilization and spray drying
require specific equipment and are energy-consuming procedures;
therefore, they are more expensive compared to other drying methods
or to the development of liquid and solid wet formulations (Berninger
et al., 2017). Freeze-drying is widely used to preserve the microbial
viability of PGPR formulations (Cabrefiga et al., 2014; Berninger et al.,
2016; Tamreihao et al., 2016). It is considered a soft dehydration
method in which a cell-protector mixture is first carried out, forming a
matrix to incorporate cells and protect them against hostile conditions
(Wessman et al., 2013).

Several powder formulations have been produced using talc as a
natural carrier (Table 4). Talc has relative hydrophobicity and reduced
moisture absorption; moreover, it prevents the formation of hydrate
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bridges, favoring long-term storage (Martínez-Álvarez et al., 2016). On
the other hand, dry systems of PGPR immobilized by entrapment/mi-
croencapsulation in alginate or zeolite have been successfully devel-
oped (Campos et al., 2014; Berninger et al., 2016, 2017). In several
granular and powder dry formulations, carrier materials were com-
bined with adhesive/protective substances such as carboxymethyl cel-
lulose (Martínez-Álvarez et al., 2016; Prasad and Babu, 2017; Basheer
et al., 2018), gelatin (Berninger et al., 2017), arabic gum (Berninger
et al., 2016), maltodextrin (Campos et al., 2014), disaccharides such as
lactose and sucrose (Cabrefiga et al., 2014; Molina-Romero et al., 2017)
and milk-derived compounds (Berninger et al., 2017). The use of pro-
tectors is a viable way to increase bacterial survival rates during drying
and storage (Schoebitz et al., 2012). However, protector efficacy de-
pends largely on the microbial species and strains involved, so each
strain requires a specific optimization (Morgan et al., 2006).

A recent study performed by our group evidenced that a drying
medium composed of 10% whey and 5% sodium glutamate effectively
protected P. tolaasii IEXb cells during the lyophilization process, as no
loss in viability was observed (Table 4; unpublished results). Lyophili-
zation was mainly evaluated to compare the bacterial stability of liquid
formulations with that of dry formulations (Tables 2 and 4). However,
we do not advocate lyophilization as a large-scale drying method to
produce a P. tolaasii IEXb inoculant since it is an expensive process.
After six months of storage at refrigeration temperature, the mean value
of viable cells recovered from P. tolaasii IEXb dry formulation was
higher than the minimal number of viable cells accepted for several
inoculants (Table 4; unpublished results).

Sodium glutamate, a dicarboxylic amino acid, can increase cell
membrane fluidity and stabilize the headgroups, promoting membrane
conservation and increasing bacterial resistance to the drying process
(Martos et al., 2007). Proteins and lactose from whey could form a
matrix embedding the bacterial cells and protecting them against sev-
eral detrimental stresses during freezing and drying such as the for-
mation of intracellular ice. Milk proteins allow the stabilization of
protein structures by means of reactions between amino groups of
bacterial cell proteins and the carrier (Sharma et al., 2014). Lactose also
protects bacterial cells during storage at low temperatures (Urbański
et al., 2017). In a similar way to glycerol and maize bran residue
(Vassilev et al., 2017; Zhang et al., 2018), whey is a low-cost compound
that can be used as a nutrient and a protective agent in biomass pro-
duction and in formulation processes, respectively. Additional studies
must be performed to evaluate innovative technologies (e.g., emerging
strategies of immobilization/co-immobilization) for the development of
cost-effective P. tolaasii IEXb-based formulations with improved effi-
ciency and applicability in the commercial field.

9. Concluding remarks

PGPR, including PSB, exert beneficial effects on plant growth and
yields through different mechanisms of action. Several PGPR have been
isolated and included in formulations to be used as inoculants in agri-
culture, as a smart alternative to reduce the use of chemical fertilizers.
The large-scale inoculant production using industrial by-products or
wastes as components of culture media and formulations is a strategy to
decrease the costs of beneficial agricultural technologies. PGPR cells are
formulated in potential application forms, to provide a favorable mi-
croenvironment and to promote long-term microbial stability. Several
liquid and solid-based formulations containing PGPR were able to
promote the growth and yields of numerous crops. Liquid formulations
are usually more easily prepared and applied than solid formulations,
which is a relevant benefit, especially when substantial amounts are
required. Moreover, the development of liquid formulations is less ex-
pensive compared to some drying processes. The selection criteria of
the optimal strategy to develop the final bioproduct will depend on the
balance between stability, efficacy, economic feasibility and ease of use,
in addition to the generation of a more sustainable and eco-friendly

agricultural practice.
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