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ABSTRACT

Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis widely 

reported in the Gran Chaco ecosystem. The disease is caused by different species from 

the genus Paracoccidioides, which are all endemic to South and Central America. Here, 



we sequenced and analyzed 31 isolates of Paracoccidioides across South America, with 

particular focus on isolates from Argentina and Paraguay. The de novo sequenced 

isolates were compared with publicly available genomes. Phylogenetics and population 

genomics revealed that PCM in Argentina and Paraguay is caused by three distinct 

Paracoccidioides genotypes, P. brasiliensis (S1a and S1b) and P. restrepiensis (PS3). 

P. brasiliensis S1a isolates from Argentina are frequently associated with chronic forms 

of the disease. Our results suggest the existence of extensive molecular polymorphism 

among Paracoccidioides species, and provide a framework to begin to dissect the 

connection between genotypic differences in the pathogen and the clinical outcomes of 

the disease.
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INTRODUCTION

Paracoccidioidomycosis (PCM) is a systemic mycosis endemic to Latin America 

that occurs in locations from Mideastern Mexico to Argentina and Uruguay. The disease 

is caused by fungi in the genus Paracoccidioides (Onygenales, Ascomycota), which are 

thermally dimorphic fungi that transition between mycelium and yeast (Martinez, 2017; 

Restrepo et al., 2001). The saprophytic stage grows as multifilament mycelia that 

produce airborne infectious conidia, which may be inhaled by susceptible hosts. Upon 

inhalation, aerosolized propagules transform to a multi-budding yeast phase that can 

colonize alveolar macrophages in a mammal host (Martinez, 2017; Restrepo et al., 

2001). Clinical forms of PCM vary from a mild pneumonia to a chronic and debilitating 

disease. The acute form is less common, has been associated with the depression of 

cellular immunity, and can eventually lead to death. Severe dissemination may occur in 

patients due to comorbidities like HIV/AIDS, hematological neoplasia, and pregnancy 

(Martinez, 2017; Shikanai-Yasuda et al., 2017). PCM is at least 10 times more common 

in adult males, and causes an average of 150 deaths per year in Brazil with new annual 

cases estimated to be over 3,000 (Martinez, 2017; Prado et al., 2009). Other countries 

have PCM patients, but morbidity has not been systematically measured outside of 

Brazil.

Paracoccidioides is composed of at least five species, which differ both 

genotypically and phenotypically (Matute et al., 2006; Munoz et al., 2016; Teixeira Mde 

et al., 2014; Teixeira et al., 2009; Teixeira et al., 2014; Turissini et al., 2017): P. lutzii, 

P. brasiliensis sensu stricto, P. americana, P. restrepiensis, and P. venezuelensis. 

Divergence times between species pairs range between 0.03 and 33.00 million years. 

This range of divergence times makes Paracoccidioides an intriguing model for 

assessing how genome differentiation accrues as speciation proceeds in fungal 



pathogens. P. brasiliensis sensu stricto also shows strong population structure, which 

has led to the proposal of two strongly isolated demes (S1a and S1b) (Munoz et al., 

2016). Notably, the species of Paracoccidioides show geographic range overlap. Both 

Brazil and Venezuela are thought to harbor more than one species of Paracoccidioides, 

opening the possibility of gene exchange between these species. P. americana and P. 

venezuelensis coexist in Venezuela (Teixeira et al., 2014); and P. americana, P. 

brasiliensis sensu stricto, and P. lutzii co-occur in Brazil (Munoz et al., 2016; Teixeira 

et al., 2014). In some cases, isolates from two different species have been collected from 

the same mammal carrier (Arantes et al., 2016; Hrycyk et al., 2018). 

Given the relatively limited number of samples from most of the South and 

Central American countries, the precise range of Paracoccidioides species remains 

relatively unexplored. Brazil and Colombia have led the collection efforts for 

Paracoccidioides, and most of the known isolates come from these two countries 

(Matute et al., 2006; Teixeira et al., 2014; Turissini et al., 2017). However, 

Paracoccidioides is also common in Argentina. Paracoccidioidin skin test surveys 

performed in Argentina demonstrated infection rates ranging from 1.6% to 21.3% of the 

total reactive population depending on the region (Mangiaterra et al., 1996; van 

Gelderen de Komaid et al., 1999). Thus, the prevalence of the disease is comparable 

with Brazil (Rodrigues and de Resende, 1996), and higher than in Colombia (Restrepo 

et al., 1968). In Argentina, Paracoccidioides has been isolated from soil (Martinez, 

2017), and PCM is distributed in two well-defined endemic areas (Giusiano et al., 

2018b). The first is located in northwestern Argentina (NWA), including the 

predominantly warm and subtropical Yunga ecoregion of the Salta, Jujuy, and Tucumán 

provinces with a predominance of acute forms (up to 40%) of the disease (Davel and 

Canteros, 2007; Giusiano et al., 2018a). The second and more extensive area is located 



in northeastern Argentina (NEA), including portions of seven different state provinces 

with a high predominance of chronic forms of the disease (Tracogna et al., 2018). This 

second endemic area extends into Paraguay (Araujo et al., 2016; Rolón, 2004). The 

early 2010s saw an increase in the acute and chronic forms of PCM in Argentina 

(Giusiano et al., 2018a; Giusiano et al., 2018b) and Paraguay. Chaco province records 

the highest incidence of cases in Argentina, a four-fold increase of PCM rates compared 

to previous years was reported during 2013 and 2014 (Tracogna et al., 2018).

The genetic diversity of the Paracoccidioides genus in this region of South 

America remains to be studied. To date only four strains from Argentina and Paraguay 

have been genotyped using ten sequenced nuclear loci, and all four isolates belonged to 

P. brasiliensis sensu stricto (Matute et al., 2006; Turissini et al., 2017).  Determining 

the demographic dynamics of the species might inform if a particular genotype was 

associated with the increase of PCM cases in the 2010s. We used previously published 

Paracoccidioides genomes and 31 newly sequenced isolates to resolve the extent of 

Paracoccidioides’ genetic diversity in the southern portion of South America. Our 

results suggest that this region harbors multiple Paracoccidioides species, and reveal the 

importance of systematic sampling in defining the geographic range of a pathogen.



MATERIAL AND METHODS

1.1 Fungal strains and DNA extraction and sequencing

Thirty-one Paracoccidioides isolates from Argentina, Bolivia, Brazil, Paraguay, 

Peru and Venezuela were sequenced de novo (Table 1). Cultures of Paracoccidioides 

were maintained in yeast form in semi-solid Fava-Netto media (1.0 % peptone, 0.5 % 

yeast extract, 0.3 % proteose peptone, 0.5 % beef extract, 0.5 % NaCl, 4 % glucose, and 

1.5 % agar, pH 7.2) at 37°C. DNA extractions were performed (see Supplementary 

Appendix 1) and the concentration of the resulting DNA measured using a NanoDrop® 

1000 (Thermo Fisher Scientific). Approximately 1μg of purified DNA per sample was 

used for sequencing library preparation via KAPA library preparation kit for Illumina 

NGS sequencing (Kapa Biosystems). Each library was indexed with unique 8-bp 

nucleotide tags and the library concentration was verified using a KAPA library 

quantification kit (Kapa Biosystems) on a 7900HT Instrument (Life Technologies). All 

libraries were sequenced to a read length of 100bp using v3 or v4 chemistries on an 

Illumina HiSeq 2500 instrument (Illumina, San Diego, CA). 

1.2 Single Nucleotide Polymorphism identification

We compared the genomes variation in the newly sequenced Paracoccidioides 

strains with previously published genomes (Munoz et al., 2016). The Illumina reads 

were de-multiplexed and single nucleotide polymorphism (SNP) profiling was assessed 

using the NASP pipeline (Sahl et al., 2016). Poor quality reads and adapters were 

filtered and removed using Trimmomatic v 0.36 (Bolger et al., 2014). Remaining reads 

were aligned to P. brasiliensis strain Pb18v2 assembly (ABKI00000000.2) with the 

Burrows-Wheeler Aligner v0.7.7 (Li and Durbin, 2009; Munoz et al., 2016) – unaligned 

reads were discarded. The resulting bam files were merged using Samtools 0.1.1 (Li et 

al., 2009), and the resulting alignment processed with RealignerTargetCreator and 



IndelRealigner (GATK v3.3-0; (DePristo et al., 2011; McKenna et al., 2010)) to realign 

around indels. The GATK UnifiedGenotyper tool was used to call SNPs, and the 

parameter “het” set to 0.01 to account for a haploid organism. The resulting .vcf files 

were filtered using the following parameters: QD = 2.0 || FS_filter = 60.0 || MQ_filter = 

30.0 || MQ_Rank_Sum_filter = -12.5 || Read_Pos_Rank_Sum_filter = -8. Finally, all 

sites with a coverage lower than 10X across all samples, or greater than the 99th quantile 

of the genomic coverage distribution for the given line, were excluded, as these sites 

might be duplications or misassembled regions.

1.3 Population structure

Next, we studied whether there was evidence of strong population structure 

within the Paracoccidioides genus. Initially, we inferred the most likely number of 

clusters using fastSTRUCTURE v1.0. (Raj et al., 2014). fastSTRUCTURE uses a 

Bayesian framework to calculate the posterior probabilities of an individual belonging 

to a given cluster and allows for inference of the most likely number of populations in a 

sample (K). We used the admixture model and assumed all SNPs are assumed to be 

unlinked. Likelihood values were calculated for scenarios that ranged from K=2 to 

K=10 populations. Changes in log likelihoods were compared for fastSTRUCTURE 

runs with sequential values of k using a likelihood ratio test as implemented in the 

chooseK.py script (Raj et al., 2014). Second, the partition of genetic variation was 

visualized using Principal Component Analysis (PCA) with the R package adegenet for 

multivariate analysis of genetic data (Jombart and Ahmed, 2011). Biallelic SNPs were 

extracted using the function fasta2genlight within adegenet to compute the principal 

components (PCs) using the function glPca. We only refer to the first two PCs as they 

explained most of the genetic variance (see results). Finally, we calculated FST as a 

proxy for genetic differentiation between species using vcftools ((Danecek et al., 2011); 



See Technical Appendix 1). 

1.4 Phylogenetic tree and gene exchange

The resulting .vcf file had 59 fully sequenced P. brasiliensis sensu stricto, P. 

americana, P. restrepiensis, and P. venezuelensis genomes. Four P. lutzii isolates were 

included in this dataset as an outgroup. Genealogical relationships among these 63 

isolates were inferred using a Maximum Likelihood (ML) approach. To generate the 

tree, IQ-TREE (Nguyen et al., 2015) using -m MFP option (ModelFinder) to 

automatically select the best-fitting sequence evolution model (Kalyaanamoorthy et al., 

2017) was employed. To calculate individual branch support, we calculated 1,000 

ultrafast bootstraps replicates and followed them with a Shimodaira–Hasegawa-like 

approximate likelihood ratio test (SH-aLRT) (Minh et al., 2013). 

Finally, we surveyed for evidence of introgression in the nuclear genome of 

Paracoccidioides using the model implemented in TreeMix (Pickrell and Pritchard, 

2012). TreeMix estimates the most likely evolutionary history of a group of populations 

by estimating the levels of genetic drift at a set of markers. To select the most likely 

admixture scenario, five different scenarios (from 1 to 5 migration/admixture events) 

were inferred, and then selected using sequential Likelihood Ratio Tests (LRT) and 

Akaike weights (wAIC).  See detailed information in the Technical Appendix 1. 

RESULTS

2.1 Data availability

We sequenced thirty-one new Paracoccidioides genomes from Argentina, 

Bolivia, Brazil, Paraguay, Peru and Venezuela (Table 1), which increases the total of 

publicly available Paracoccidioides genomes to sixty-three. The raw Illumina reads for 



all the sequenced genomes are available at the Sequence Repository Archive under the 

following: SRASRR9736748-SRR9736778 (Technical Appendix II). 

2.2 Population structure

First, we studied how the genetic variation was apportioned in the P. brasiliensis 

species complex. The approach was twofold, as both fastSTRUCTURE and Principal 

Coordinate Analysis (PCA) were used in the analysis. First, we ran nine clustering 

scenarios using polymorphic sites within the P. brasiliensis species complex. Pairs of 

nested scenarios were compared sequentially using LRT. The results suggest that the 

most likely scenario involves the existence of five clusters (Figure 1A). Technical 

Appendix 1 shows the likelihood values for all scenarios. Three of the five populations 

are the previously proposed Paracoccidioides species within P. brasiliensis sensu lato: 

P. americana (PS2), P. restrepiensis (PS3), and P. venezuelensis (PS4) (Figure 1A). 

The two additional populations correspond are two strongly structured populations of P. 

brasiliensis sensu stricto: P. brasiliensis (S1a) and P. brasiliensis (S1b). The vast 

majority of isolates were classified with a level of confidence over 99% with two 

exceptions: Pb113 (Brazil) and Pb124 (Peru). The probability of these isolates 

belonging to P. brasiliensis S1b and P. restrepiensis, respectively, is reasonably high 

(over 70%). Because fastSTRUCTURE cannot infer the reasons for this uncertainty, we 

discuss potential causes below.  

The results from PCA are consistent with the results from fastSTRUCTURE. 

We focus on the first two PCs as they explain over 50% of the genetic variance. PCA 

suggests the presence of five distinct lineages among P. brasiliensis sensu lato (Figure 

1B). PC1 explains 33.94% of the total variance and mostly discriminates P. brasiliensis 

S1a (and to a lesser extent S1b) from the other groups. On the other hand, PC2 explains 



20.19% of the total variance and separates P. brasiliensis S1b, P. americana (PS2), P. 

restrepiensis (PS3), and P. venezuelensis (PS4) (Figure 1B). Notably, four isolates 

appear as intermediate in the PCA (marked with asterisks in Figure 1B): Pb391 (P. 

brasiliensis S1a), Pb18 and Pb113 (P. brasiliensis S1b), and T10B1 (P. americana) all 

dispersed along PC2. These results suggest but do not confirmthat these 

individuals might represent admixed individuals. As expected, FST values between the 

most divergent species pairs, P. lutzii, and other Paracoccidioides species, were high 

(FST = 0.92–0.96) which is in agreement with previous analysis (9). The FST value 

between the most-recently diverged groups, P. brasiliensis S1a and P. brasiliensis S1b, 

was the lowest (FST = 0.44-0.79). All pairwise comparisons showed high FST values 

which were in turn much higher than the any  value observed for any species or group. 

These results confirm the observation that between species differentiation is much 

higher than within species diversity (Figure 1C).

2.3 Phylogenomic analysis

We evaluated the phylogenetic placement of the newly typed strains by adding 

P. lutzii as outgroup; in total our alignment had 821,941 variable sites. As expected, the 

longest branch in the tree is the one that separates P. lutzii and all the other species 

within the P. brasiliensis species complex (Figure 2). The speciation event that gave 

rise to P. lutzii and the rest of the Paracoccidioides species is thought to be older than 

30 million years ago (Teixeira et al., 2009; Turissini et al., 2017).

The rest of the genealogy is largely consistent with the clusters inferred by 

fastSTRUCTURE (Figure 1A). First, all the Paracoccidioides species appear as 

reciprocally monophyletic groups (Figure 2). Second, P. restrepiensis and P. 

venezuelensis are sister species (consistent with their close arrangement in the PCA plot 



(Figure 1B). This dyad is the sister to P. brasiliensis sensu stricto. P. americana is sister 

to the triad of all the other species in the species complex. These observations match 

previous species delimitations and reciprocal relationships among Paracoccidioides.

The inferred geographic ranges of P. americana and P. venezuelensis was not 

expanded with the addition of new samples. However, that was not the case for P. 

restrepiensis. Two isolates from Argentina (Pb395 and Pb396) and one isolate from 

Peru (Pb124) are nested within P. restrepiensis suggesting that this species has a 

broader geographic range than originally thought outside Colombia (Figure 2).

Additionally, and also consistent with fastSTRUCTURE and PCA, P. 

brasiliensis sensu stricto is divided into S1b and S1a. The S1a lineage contains 

Argentinean and Brazilian isolates (N=23). The tree suggests the existence of two 

monophyletic clades with P. brasiliensis S1a harboring isolates from Argentina/Western 

Brazil (S1a-ARG) and Southeastern Brazil (S1a-BR); these clusters were not apparent 

with fastSTRUCTURE or PCA (Figure 1 and 2). The FST value between S1a-ARG and 

S1a-BR is 0.435, which is low relative to other pairwise comparisons (Figure 1). The 

S1b clade harbors isolates from São Paulo state (Southeastern Brazil), Argentina, and 

Paraguay (Figure 2). 

2.4 Paracoccidioides admixture history

Finally, we studied whether there has been genetic exchange between species of 

Paracoccidioides. The absence, or rarity, of gene exchange is one of the trademarks of 

speciation. As allele exchange across population boundaries ceases, reproductive 

isolation builds up more easily (Coyne and Orr, 2004). Studying gene exchange is also 

important as it addresses the possibility of hybridization leading to interspecific hybrids 

with new combinations of traits. 



Both LRT and wAIC indicate that, of the five tested models, the one with the 

best fit to the data was m=2 (LRTm=1vs.m=2 =11.27,  P=7.89  10-4; wAIC=85.99%; 

Figure 3). The two migration edges suggest reciprocal gene exchange between P. 

brasiliensis sensu stricto and P. americana. This result is puzzling because our 

expectation was that the majority of gene exchange should occur between populations 

within P. brasiliensis sensu stricto, but no migration was detected between these 

populations. Whether or not these potential events of gene exchange constitute true 

cases of introgression will require studying local ancestry along the genome among 

multiple species of Paracoccidioides. 



DISCUSSION

Frequently, species boundaries in fungi have been defined using a small number 

of loci. These assessments are limited because gene genealogies and species trees are 

not equivalent (Matute and Sepulveda, 2019). To date, the most ambitious approach 

assessed diversity among Paracoccidioides isolates using 15 loci to define species 

boundaries (Turissini et al., 2017). However, individual gene genealogies reveal the 

evolutionary history of a gene, but not necessarily that of a species. One way to 

overcome this issue is to use whole-genome data, which can reveal a clearer perspective 

of the differentiation among groups. Our results using WGST are consistent with 

previous approaches and confirm the existence of at least five different species of 

Paracoccidioides (Munoz et al., 2016; Turissini et al., 2017). Our genome-wide 

approach also confirms that two P. brasiliensis sensu stricto clusters (S1a and S1b) are 

reciprocally monophyletic. We argue there is a sore need for assessments of genome 

concordance, measurements of gene flow, and metadata comparisons before formally 

describing these populations as isolated species.

One of the features of speciation is the cessation of gene exchange between 

species through fertile hybrids. Several approaches have proposed the possibility of 

hybridization between species of Paracoccidioides, mainly based on discordance 

between gene genealogies (Teixeira et al., 2009; Turissini et al., 2017). Our results 

suggests that there is a signature of introgression in only one species pair out of ten 

possible pairs in Paracoccidioides. The results shown here also show that P. 

restrepiensis coexist with P. brasiliensis sensu stricto in the same localities and thus 

have the chance to interbreed. Other Paracoccidioides species pairs also show 

geographic range overlap: P. brasiliensis coexists with P. lutzii and P. americana, while 



P. venezuelensis coexists with P. americana. This extensive overlap among species 

suggest that in spite of the opportunities for interbreeding, gene flow between species is 

not pervasive. Because of the ability to coexist in sympatry, we hypothesize that the 

Paracoccidioides species must have accrued barriers to gene flow that maintain species 

boundaries. These results should be considered suggestive, but not conclusive, because 

Treemix detects deviations from a covariance matrix based on the allele frequencies of 

each group and does not precisely identify the alleles that have potentially crossed 

species boundaries. 

Hybrid individuals might play an important role on speciation because 

maladaptive hybridization can complete the speciation process (reviewed in (Brasier, 

2000)), and also because hybrids can show fitness advantages over the parentals (hybrid 

vigor (Lippman and Zamir, 2007)). In the case of fungi, adaptive introgression might 

have been linked to the transference of alleles involved in antifungal resistance 

(Maxwell et al., 2018). In some instances, new fungal species can originate through 

hybridization ((Leducq et al., 2016; Mixao and Gabaldon, 2018) but see (Hibbins and 

Hahn, 2019)). Systematic analyses that quantify not only whether alleles have been 

transferred between species of Paracoccidioides but also whether there is variation that 

segregates before speciation (and thus a source of shared variation across species 

boundaries) are sorely needed. 

Our results have implications beyond the recognition of cryptic species. Our 

results suggest that the southern part of South America represents a center of diversity 

for Paracoccidioides in which at least two different species coexist. Investigating the 

geographic range of each of the species allows us to obtain a genetic portrait of the 

epidemiology of the different species that cause PCM using whole genome data. Figure 

4 shows the approximate position of each Paracoccidioides strain to each respective 



country via macro-region (i.e. Argentina) or state (i.e. Brazil) since the precise exposure 

location is unknown. 

Even though, the assessment of geographic range of the Paracoccidioides 

species is still in its infancy, several patterns emerge from this biogeographic survey. 

First, our genome-wide phylogenetic tree shows that Argentina harbors at least two 

different populations of P. brasiliensis (S1a and S1b) but also P. restrepiensis (isolates 

Pb 395 and Pb 396; Figure 1A). The Peruvian strain (Pb124) also clusters with P. 

restrepiensis. This latter species was initially thought to be endemic to Colombia but 

our results show the species is more widely distributed than initially thought (Matute et 

al., 2006; Teixeira et al., 2009). Second, S1a isolates were found in Brazil and 

Argentina, but not in Paraguay. This biogeographic pattern might be caused by 

sampling bias, or to particular ecological characteristics of the Paraguayan ecosystems, 

or both. Our current sampling and patient metadata does not allow us to discern between 

these options. Third, S1b seems to be more common in Western Brazil and Paraguay 

compared to Argentina. Only two isolates from NEA (PbA100 and Pb103) clustered 

within P. brasiliensis S1b. Most of isolates from NEA (13 out of 15 – 83.3%, Bayesian 

binomial confidence intervals=56.4%-96.5%) belong to P. brasiliensis S1a, which also 

occurs in the São Paulo region from Brazil. More work must be done to fully 

characterize the precise distribution of these species and populations and to determine 

whether there are differences in the form of PCM they cause.

Our results come with caveats that should be considered. Clinical isolates might 

have been acquired in a different region from the place they were diagnosed (Tracogna 

et al., 2018). This means that the actual environmental origin of the isolates might be 

obscured by the site of the diagnosis. Because the data are comprised of mostly clinical 

isolates, the infections might have occurred elsewhere but the diagnoses and isolate 



recovery occurred in Argentina. For example, the Argentinian isolates of P. 

restrepiensis could be clinical isolates from patients who came from other countries 

where P. restrepiensis is known to circulate (e.g., Colombia). This is an unlikely 

explanation because most PCM patients are rural workers that often reside the same 

location for decades (Bicalho et al., 2001), but we argue it will be important to consider 

traveling patterns of patients in isolate metadata. More ecological studies aiming to 

identify circulating Paracoccidioides genotypes in soil or migrating secondary hosts 

might help to precisely delimit the geographical range of these species.

Additionally, our sampling may not be completely random and thus might not 

represent the whole genetic diversity of the species. Most of our Argentinian and 

Paraguayan isolates came from a case series observed in these two localities in 2010 and 

2014, respectively. One possibility is that the isolates are related and that the outbreaks 

were caused by just a handful of genotypes, as has happened in other mycotic outbreaks 

(Bryce et al., 1996; Fraser et al., 2005; Teixeira Mde et al., 2015). A proper analysis of 

cryptic relatedness among isolates is needed to assess whether serial infections of PCM 

are caused by a few genotypes that are closely related.

3.4 Conclusions and future directions

Molecular epidemiology has substantially evolved in the past decade with the 

technological advances of next generation DNA sequencing coupled with the ability to 

precisely identify the infectious disease agents in a given area of exposure. In the case 

of PCM, epidemiological surveys have revealed the importance of sex and geography, 

but the genotype of the fungus and of the hosts remain unexplored. For example, 

different species of Paracoccidioides might show differences in virulence (Macoris et 

al., 2006; Molinari-Madlum et al., 1999), as occurs in Histoplasma (Sepulveda et al., 

2014), Sporothrix (Della Terra et al., 2017) and Cryptococcus (Hagen et al., 2015). If 



this is the case, then the study of genetic differentiation can also inform the evolution of 

differences in virulence. Systematic collection of isolates from both clinical and 

environmental samples and the combination of population genetics with 

epidemiological studies can answer whether the various species of Paracoccidioides 

show differences in clinical importance or whether they are similar in the 

phenomenology of the disease they cause.
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TABLES

TABLE 1. Clinical and molecular characteristics of the 31 whole genome-sequenced 

Paracoccidioides isolates included in this study.

Strain Country Region Collection Date Clinical Form Species (genotype)

PbA28 Argentina NEA 2014 Chronic P. brasiliensis (S1a)

Pb33 Argentina NEA 2014 Chronic P. brasiliensis (S1a)

Pb43 Argentina NWA 2014 Acute P. brasiliensis (S1b)

PbA48 Argentina NEA 2014 Chronic P. brasiliensis (S1a)

PbA49 Argentina NEA 2014 Chronic P. brasiliensis (S1a)

PbA57 Argentina NEA 2014 Chronic P. brasiliensis (S1a)

Pb65 Argentina NEA 2015 Chronic P. brasiliensis (S1a)

PbA71 Argentina NEA 2015 Chronic P. brasiliensis (S1a)

Pb85 Argentina NEA 2015 Chronic P. brasiliensis (S1a)

PbA93 Argentina NEA 2016 Unifocal Bone 

PCM

P. brasiliensis (S1a)

Pb100 Argentina NEA Chronic P. brasiliensis (S1b)

PbA102 Argentina NWA 2004 Chronic P. brasiliensis (S1a)

Pb103 Argentina NEA 1981 Acute P. brasiliensis (S1b)

Pb405 Argentina NWA Acute P. brasiliensis (S1b)

Pb395 Argentina 2004 P. restrepiensis (PS3)

Pb396 Argentina NEA 2004 Chronic P. restrepiensis (PS3)

Pb67 Bolivia 2015 Chronic P. brasiliensis (S1b)

Pb391 Brazil Guaranésia Chronic P. brasiliensis (S1a)



Pb101 Paraguay Chronic P. brasiliensis (S1b)

PbP42 Paraguay 2014 Acute P. brasiliensis (S1b)

Pb59 Paraguay 2014 Chronic P. brasiliensis (S1b)

Pb98 Paraguay 1999 Chronic P. brasiliensis (S1b)

Pb111 Paraguay PCM P. brasiliensis (S1b)

Pb124 Peru PCM P. restrepiensis (PS3)

Pb304 Venezuela Barinas 1988 Chronic P. venezuelensis (PS4)

Pb305 Venezuela Vargas 1988 Chronic P. venezuelensis (PS4)

Pb307 Venezuela Vargas 1991 Chronic P. venezuelensis (PS4)

Pb309 Venezuela Miranda 1994 Chronic P. venezuelensis (PS4)

Pb384 Venezuela Anzoátegui 1971 Chronic P. venezuelensis (PS4)

Pb387 Venezuela Miranda 1983 Acute P. venezuelensis (PS4)

Pb444 Venezuela Miranda 2004 Chronic P. venezuelensis (PS4)

NEA: northeast of Argentina; NWA: northwest of Argentina; PCM: 

Paracoccidioidomycosis (without data related to clinical form). 



FIGURE LEGENDS

FIGURE 1. Genome wide genetic variation is portioned across species boundaries 

in Paracoccidioides. A. Probability of belonging to a cluster when K=5, the most likely 

clustering, in Paracoccidioides based on Bayesian algorithm fastSTRUCTURE. Each 

column represents the genotype of an individual. B. Genetic variation in natural 

Paracoccidioides populations inferred by Principal Component Analysis (PCA). Only 

the first two PCs are plotted as they encompass over 50% of the genetic variance. The 

bar plots of eigenvalues (the inset plot) show the number of retained principal 

components. PC1 explains 33.94% while PC2 explains 20.19% of the total variance 

respectively. Individuals marked with asterisks represent potentially admixed strains. C. 

Triangular matrix showing the mean Fst value in all pairwise comparisons within the P. 

brasiliensis species complex.

FIGURE 2. The genealogical relationships among Paracoccidioides isolates. A. 

Maximum Likelihood phylogenetic tree generated by whole-genome SNP typing 

reveals the five genetic clusters: P. brasiliensis (S1a), P. brasiliensis (S1b), P. 

americana (PS2), P. restrepiensis (PS3), and P. venezuelensis (PS4). A. Branch length 

is proportional to mutations accumulated for each lineage. P. lutzii was used as the 

outgroup and the phylogenetic groups are highlighted and supported by both ultrafast 

bootstraps or Shimodaira–Hasegawa-like approximate likelihood ratio tests (SH-aLRT). 

FIGURE 3. Phylogenetic network showing the population splits and mixtures within 

Paracoccidioides deduced by TreeMix analysis. The most likely migration scenario 

involves two events (m=2) of gene exchange between P. brasiliensis and P. americana. 



The length of the black branches is proportional to the genetic drift (branch lengths) of 

each population and scale bars show ten units of standard error (s.e.). According to the 

direction of the colored hybridization edges P. venezuelensis, P. restrepiensis, and P. 

americana have emerged from P. brasiliensis (S1a-ARG, S1a-BR or S1B) populations. 

The migration edges’ weight is represented by colors and details the proportion of 

ancestry derived from a given migration edge.

FIGURE 4. Geographic distribution of Paracoccidioides species and populations in 

South America. The map shows the approximate location (green areas of the maps) and 

the number of clinical and/or environmental isolates sampled in the main endemic areas 

of the disease in Latin America. The pie chart size is proportional to the number of 

typed strains. The colors of each pie chart represent the proportion of a given 

Paracoccidioides genotype to its respective endemic area; color conventions are shown 

in the inset.



Highlights

 Paracoccidioidomycosis is a systemic mycosis reported in the Gran Chaco 

ecosystem

 Paracoccidioides brasiliensis and P. restrepiensis were found in Argentina and 

Paraguay 

 P. brasiliensis S1a specimens from Argentina are associated with chronic forms.

 In Paraguay, P. brasiliensis S1b was only the genotype observed. 

 The coexistence of these species in a common area suggests reproductive 

isolation.
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