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Abstract. In an abstract set up, we get strong type inequalities in Lp+1 by assuming
weak or extra-weak inequalities in Orlicz spaces. For some classes of functions, the
number p is related to Simonenko indices. We apply the results to get strong inequal-
ities for maximal functions associated to best Φ-approximation operators in an Orlicz
space LΦ.
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1 Introduction

In this paper we denote by I the set of all non decreasing functions ϕ defined for all real
number x>0, such that ϕ(x)>0 for all x>0, ϕ(0+)=0 and lim

x→∞
ϕ(x)=∞.

We say that a non decreasing function ϕ :R+
0 →R+

0 satisfies the ∆2 condition, symbol-
ically ϕ∈∆2, if there exists a constant Λϕ >0 such that ϕ(2x)≤Λϕ ϕ(x) for all x≥0.

Now, given ϕ∈I , we consider Φ(x)=
∫ x

0 ϕ(t)dt. Observe that Φ : [0,∞)→ [0,∞) is a
convex function such that Φ(x) = 0 if and only if x = 0. In the literature, a function Φ
satisfying the previous conditions is known as a Young function. In addition, as ϕ∈I we
have that Φ is increasing, Φ(x)

x →0 as x→0 and Φ(x)
x →∞ as x→∞. Thus, according to [6],

a function Φ with this property is called an N-function.
If ϕ∈I is a right-continuous function that satisfies the ∆2 condition, then

1
2
(ϕ(a)+ϕ(b))≤ ϕ(a+b)≤Λϕ(ϕ(a)+ϕ(b))

∗Corresponding author. Email addresses: sonia.acinas@gmail.com (S. Acinas), sfavier@unsl.edu.ar

(S. Favier).

http://www.global-sci.org/ata/ 1 c©201x Global-Science Press



2 S. Acinas and S. Favier / Anal. Theory Appl., x (201x), pp. 1-13

for every a,b≥0.
Also note that the ∆2 condition on Φ implies

x
2Λϕ

ϕ(x)≤Φ(x)≤ xϕ(x),

for every x≥0.
If ϕ∈I , we define Lϕ(Rn) as the class of all Lebesgue measurable functions f defined

on Rn such that
∫

Rn ϕ(t| f |)dx < ∞ for some t > 0 and where dx denotes the Lebesgue
measure on Rn. For a convex function Φ, LΦ(Rn) is the classic Orlicz space (see [10]).
And, if Φ∈∆2 then LΦ(Rn) is the space of all measurable functions f defined on Rn such
that

∫
Rn Φ(| f |)dx<∞.

A non decreasing function ϕ : R+
0 →R+

0 satisfies the ∇2 condition, denoted ϕ∈∇2, if
there exists a constant λϕ >2 such that ϕ(2x)≥λϕ ϕ(x) for all x≥0.

We claim that a non decreasing function ϕ:R+
0 →R+

0 satisfies the ∆′ condition, symbol-
ically ϕ∈∆′, if there exists a constant K>0 such that ϕ(xy)≤Kϕ(x)ϕ(y) for all x,y≥x0≥0.
If x0=0 then ϕ satisfies the ∆′ condition globally (denoted ϕ∈∆′ globally).

With the aim of comparing functions in Orlicz spaces, some partial ordering relations
were treated in Chapter II of [10]. In [9] Mazzone and Zó introduce the quasi-increasing
function’s concept, they define the relation ≺ between two non negative functions and
they determine some properties of the relation. Later, in [1], it is defined and thoroughly
studied another relation ≺N . Both relations are used to obtain strong type inequalities as
follows.

Let ϕ : R+
0 →R+

0 be a non decreasing function such that ϕ(0)=0 and satisfies a weak
type inequality like

µ({ f > a})≤Cw

∫
{ f>a}

ϕ(g)
ϕ(a)

dµ for all a>0,

or an extra-weak type inequality like

µ({ f > a})≤2Cw

∫
{ f>a}

ϕ
( g

a

)
dµ for all a>0,

where f ,g : Ω→R+
0 are two fixed measurable functions. Then, in [9] and [1] it has con-

sidered functions Ψ∈C1([0,∞)), Ψ(x)=
∫ x

0 ψ(t)dt and ϕ≺ψ or ϕ≺N ψ, which allows us
to get strong type inequalities like∫

Ω
Ψ( f )dµ≤2Cwρ

∫
Ω

Ψ
(

2
c

g
)

dµ. (1.1)

In this paper we set p∈R, very related to Boyd indices of ϕ, such that ϕ≺xp or ϕ≺N xp

in order to obtain strong inequalities like∫
Ω

f p+1 dµ≤ K̃
∫

Ω
gp+1 dµ, (1.2)
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with f and g non negative, measurable functions.
In Section 2, we recall the definitions of the relations ≺ and ≺N and we enumerate

some of their properties that will be useful in the searching of the real number p to have
(1.2) Then, we determine sufficient conditions on p to have ϕ≺ xp or ≺N xp. From such
conditions, we generate bounds for p in the case that ϕ is a non decreasing, differentiable
function; next, we extend the results to a class of non decreasing and non differentiable
functions.

In Section 3, we estimate p by using a class of Boyd indices in Orlicz spaces called
Simonenko indices. These indices were defined by Simonenko in [11] and they were
studied in Chapter 11 of [8]. In [3], Simonenko indices are used to get Harnack’s type
inequalities and regularity conditions for some integral operators. In [12], relationships
between Simonenko indices and other indices in Orlicz spaces are established.

In Section 4, we apply the results to a maximal function associated to best
Φ-approximation operators in an Orlicz space LΦ and one-sided operators related to the
classical Hardy-Littlewood maximal function.

2 On relations between non negative functions

We begin recalling a concept introduced by Mazzone and Zó in [9].

Definition 2.1. A function η : R+→R+ is quasi-increasing if and only if there exists a
constant ρ>0 such that

1
x

∫ x

0
η(t)dt≤ρη(x) for every x∈R+.

Hereinafter, we will call ρ the quasi increasing constant.

In [9], the relation ≺ between non negative functions was presented as follows.

Definition 2.2. Let ϕ,ψ :R+→R+.
ϕ≺ψ if and only if ψ

ϕ is a quasi-increasing function; that is, if and only if there exists a
constant ρ>0 such that

1
x

∫ x

0

ψ(t)
ϕ(t)

dt≤ρ
ψ(x)
ϕ(x)

for every x∈R+.

In Theorem 2.4 of [9], the authors employ the relation≺ to get a strong type inequality
like (1.1). In [1], following an analogous pattern with an extra-weak type inequality as
starting point, the relation ≺N is defined.

Definition 2.3. Let ϕ,ψ :R+→R+.
ϕ≺N ψ if and only if {ψ(x)ϕ( α

x )}α∈R+ is a collection of quasi-increasing functions with
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the same quasi increasing constant; namely, if and only if there exists a constant ρ > 0
such that

1
x

∫ x

0
ψ(t)ϕ

(α

t

)
dt≤ρψ(x)ϕ

(α

x

)
,

for every x∈R+ and for every α∈R+.

Remark 2.1. Note that ≺ is a reflexive relation while ≺N is not (see [1, p. 2183]).

Next, we set conditions to assure ϕ≺ xp or ϕ≺N xp for some p∈R.

Proposition 2.1. Let ϕ :R+→R+.
a) If 1

ϕ(x) is a quasi-increasing function, then ϕ≺ xp for every p≥0.
b) If {ϕ

(
α
x

)
}α∈R+ is a collection of quasi-increasing functions with the same quasi increas-

ing constant, then ϕ≺N xp for every p≥0.

Proof. Definition 2.2 and Definition 2.3 imply that ϕ≺ 1 and ϕ≺N 1, respectively. Now,
applying Proposition 3.5 of [1] with M(x)=xp for p≥0, we obtain ϕ≺xp and ϕ≺N xp for
every p≥0, respectively.

Proposition 2.2. Let ϕ :R+→R+ be a non decreasing function.
If ϕ∈∆2 with Λϕ <2, then ϕ≺ xp and ϕ≺N xp for every p≥0.

Proof. We take ψ(x)= xp with p≥0 in Proposition 3.11 of [1].

Example 2.1. Let ϕ(x)= ln( 3
√

x+1)∈∆2 with Λϕ < 2, then ln( 3
√

x+1)≺ xp and ln( 3
√

x+
1)≺N xp for every p≥0.

It is easy to see that every non decreasing function is a quasi-increasing one (see [1,
Prop. 3.4]). An immediate consequence of this fact is the following result.

Proposition 2.3. Let p∈R.
a) If xp

ϕ(x) is a non decreasing function from R+ into itself, then
ϕ≺N xp.
b) If xp ϕ

(
α
x

)
is a non decreasing function from R+ into itself for every α>0, then ϕ≺N xp.

Proposition 2.4. Let ϕ :R+→R+.
Assume there exists ϕ̃ :R+→R+ such that

ϕ̃(x)≤ ϕ(x)≤Cϕ̃(x) for every x>0. (2.1)

If there exists p∈R such that ϕ̃≺ xp or ϕ̃≺N xp, then ϕ≺ xp or ϕ≺N xp.

Proof. If there exists p∈R such that ϕ̃≺ xp, then there exists ρ1>0 such that

1
x

∫ x

0

tp

ϕ̃(t)
dt≤ρ1

xp

ϕ̃(x)
for every x>0. (2.2)
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By (2.1) and (2.2), we get

1
x

∫ x

0

tp

ϕ(t)
dt≤ 1

x

∫ x

0

tp

ϕ̃(t)
dt≤ρ1

xp

ϕ̃(x)
≤ρ1C

xp

ϕ(x)
,

for every x>0. Therefore, from Definition 2.2, we have ϕ≺ xp.
Now, if there exists p∈R such that ϕ̃≺N xp, then there exists ρ2>0 such that

1
x

∫ x

0
tp ϕ̃
(α

t

)
dt≤ρ2xp ϕ̃

(α

x

)
, (2.3)

for every x>0 and for every α>0. By (2.1) and (2.3), we obtain

1
x

∫ x

0
tp 1

C
ϕ
(α

t

)
dt≤ 1

x

∫ x

0
tp ϕ̃
(α

t

)
dt≤ρ2xp ϕ̃

(α

x

)
≤ρ2xp ϕ

(α

x

)
,

for every x>0 and for every α>0. Thus, Definition 2.3 implies that ϕ≺N xp.

Now, given ϕ : R+→R+ a non decreasing function, we use Proposition 2.3 to set
conditions which assure that xp

ϕ(x) and xp ϕ( α
x ) are non decreasing functions. We first

consider the case p>0.

Theorem 2.1. Let ϕ :R+→R+ be a non decreasing, differentiable function.
If there exists p>0 such that ϕ′(x)

ϕ(x) ≤
p
x for every x>0, then ϕ≺ xp and ϕ≺N xp.

Proof. By elementary algebraic operations and the hypothesis on ϕ and p, we have(
xp

ϕ(x)

)′
=

pxp−1ϕ(x)−xp ϕ′(x)
ϕ2(x)

≥0 for every x>0.

Thus xp

ϕ(x) is a non decreasing function and, by Proposition 2.3, we get ϕ≺ xp.
On the other hand, exchanging x by α

x >0 in the hypothesis and operating, we get(
xp ϕ

(α

x

))′
= pxp−1ϕ

(α

x

)
+xp ϕ′

(α

x

)(−α

x2

)
≥0,

for every x>0 and for every α>0.
Then, xp ϕ

(
α
x

)
is a non decreasing function for every α> 0; and, Proposition 2.3 implies

that ϕ≺N xp.

Example 2.2. Let ϕ(x)= xq for q>0. As p
x ≥

ϕ′(x)
ϕ(x) for every x>0 provided that p≥ q>0,

then xq≺ xp and xq≺N xp for every p≥q>0.

Example 2.3. Let ϕ(x)= ln(x+1). Since ϕ′(x)
ϕ(x) ≤

p
x for every x>0 provided that p≥1, then

ln(x+1)≺ xp and ln(x+1)≺N xp for every p≥1.
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Theorem 2.1 allows us to give a necessary condition in order that xp

ϕ(x) and xp ϕ
(

α
x

)
are

non decreasing functions.

Corollary 2.2. Let ϕ :R+→R+ be non a decreasing, differentiable function.
If xp

ϕ(x) and xp ϕ
(

α
x

)
are non decreasing with p>0, then ϕ′(x)

ϕ(x) →0 as x→∞.

Proof. Since ϕ : R+→R+ is non decreasing and differentiable, then xp

ϕ(x) and xp ϕ
(

α
x

)
are

non decreasing with p>0. Next, elementary calculations as in the proof of Theorem 2.1,
give us

0≤ ϕ′(x)
ϕ(x)

≤ p
x

for x>0,

which implies the wished result.

Example 2.4. Let ϕ(x)=ex−x−1, then ϕ′(x)
ϕ(x) →1; thus, there does not exist p>0 such that

xp

ex−x−1 and xp
(

e
α
x− α

x−1
)

are non decreasing functions.

In a similar way to that developed in the proof of Theorem 2.1 but requesting that the
derivatives of xp

ϕ(x) and xp ϕ
(

α
x

)
are negative, we obtain the following result.

Proposition 2.5. Let ϕ :R+→R+ be a non decreasing, differentiable function.
If there exists p>0 such that p

x <
ϕ′(x)
ϕ(x) for every x>0, then xp

ϕ(x) and xp ϕ
(

α
x

)
are decreasing.

As Lemma 3.1 of [9] establishes the background in which non increasing functions
become quasi-increasing, we employ that result together with Proposition 2.5 and we get
the following.

Theorem 2.3. Let ϕ :R+→R+ be a non decreasing, differentiable function.
If there exists p > 0 such that p

x < ϕ′(x)
ϕ(x) for every x > 0 and there exists Kp < 2p+1 such that

ϕ(x)
ϕ( x

2 )
≤Kp for every x>0, then xp

ϕ(x) and xp ϕ
(

α
x

)
are quasi-increasing, i.e. ϕ≺ xp and ϕ≺N xp.

Example 2.5. Let ϕ(x)= xq with q> 0, then p
x <

ϕ′(x)
ϕ(x) for every x> 0 provided that p< q

and ϕ(x)
ϕ( x

2 )
<2p+1 for p>q−1.

Thus, xq≺ xp and xq≺N xp in the case of max{q−1,0}< p<q.

Remark 2.2. Let ϕ : R+→R+ be a non decreasing function. If ϕ is non differentiable,
invoking Proposition 2.4, the above results for the case of differentiable functions can be
employed provided that (2.1) holds.

If p≤0, it is not possible to use Theorem 2.3. However, we can establish some condi-
tions to guarantee a relationship between ϕ and xp by ≺ and ≺N for such values of p, as
stated below.
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Theorem 2.4. Let ϕ :R+→R+ be a non decreasing function.
If there exists p∈ (−1,0] such that ϕ(x)

ϕ( x
2 )
≤Kp <2p+1 for every x>0, then ϕ≺ xp and ϕ≺N xp.

Proof. As ϕ is a non decreasing function on R+ and p ∈ (−1,0], then η1(x) = xp

ϕ(x) and

η2(x)=xp ϕ
(

α
x

)
are non increasing functions on R+. In addition,

η1( x
2 )

η1(x) ≤Kp and
η2( x

2 )
η2(x) ≤Kp

for every x>0 and with Kp <2p+1 <2. Consequently, by Lemma 3.1 of [9] η1 and η2 are
quasi-increasing, i.e. ϕ≺ xp and ϕ≺N xp for p∈ (−1,0].

Remark 2.3. In Theorem 2.4, it is required that ϕ∈∆2 with 1≤Λϕ < 2 as it has done in
Proposition 3.10 of [1]. But in that case, p were positive; while here, p belongs to the set
of real negative numbers.

Example 2.6. Let ϕ(x)= ln(
√

x+1). Then ϕ(x)
ϕ( x

2 )
≤
√

2<2p+1 provided that p>− 1
2 and as

it is necessary that p≤0, then ln(
√

x+1)≺ xp and ln(
√

x+1)≺N xp for p∈
(
− 1

2 ,0
]
.

3 Simonenko indices

Let Φ∈I be an increasing, continuous function.

If hΦ(λ)=sup
t>0

Φ(λt)
Φ(t)

with λ>0, then the numbers

i(Φ)= lim
λ→0+

lnhΦ(λ)

lnλ
= sup

0<λ<1

lnhΦ(λ)

lnλ
, (3.1)

and

I(Φ)= lim
λ→∞

lnhΦ(λ)

lnλ
= inf

1<λ<∞

lnhΦ(λ)

lnλ
, (3.2)

are called lower index of Φ and upper index of Φ respectively, or fundamentals indices of
Φ. The numbers i(Φ) and I(Φ) are also known as indices of Orlicz spaces or Matuszewska-
Orlicz indices.

From (3.1) and (3.2), it is clear that 1≤i(Φ)≤ I(Φ). And, it is well known that I(Φ)<∞
if and only if Φ∈∆2 (see [8, Thm. 11.7]).
Moreover, if Φ and Ψ are complementary Young functions, then

• i(Φ)>1 if and only if Ψ∈∆2;

• the pairs i(Ψ), I(Φ), and i(Φ), I(Ψ) satisfy

1
i(Φ)

+
1

I(Ψ)
=

1
I(Φ)

+
1

i(Ψ)
=1

(see [8, Cor. 11.6]);
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• Φ∈∆2 is equivalent to the existence of p0,p1∈ [1,∞), p0≤ p1 such that

C−1min(λp0 ,λp1)Φ(t)≤Φ(λt)≤Cmax(λp0 ,λp1)Φ(t), (3.3)

for some constant C> 0 and for every λ,t≥ 0; and, supp0 = i(Φ) and infp1 = I(Φ)
( [4]);

• from (3.3) other formulae for i(Φ) and I(Φ) are obtained, i.e.

i(Φ)=sup

{
p : inf

u>0
λ≥1

λ−p Φ(λu)
Φ(u)

>0

}
,

I(Φ)= inf

p : sup
u>0
λ≥1

λ−p Φ(λu)
Φ(u)

<∞


(c.f. [8, Thm. 11.13]).

In [11] and [8] other indices, related to (3.1) and (3.2), are introduced.

Definition 3.1. Let Φ∈I be an increasing, differentiable function and assume that Φ=∫ x
0 ϕ(t)dt.

If there exist p,q∈R such that

pΦ(t)≤ xϕ(x)≤qΦ(x) for every x∈R, (3.4)

then the best p and q that verify (3.4) are called Simonenko indices and they satisfy

p(Φ)= inf
x>0

xϕ(x)
Φ(x)

and q(Φ)=sup
x>0

xϕ(x)
Φ(x)

.

Remark 3.1. The relationship between Simonenko indices and indices of Orlicz spaces is
given by the following inequality

p(Φ)≤ i(Φ)≤ I(Φ)≤q(Φ),

that was proved in Theorem 11.11 of [8].

If Φ and Ψ belong to C1 and they are complementary N-functions, then

• Φ∈∆2 if and only if q(Φ)<∞ (c.f. [10, Cor. 4, pp. 22-23]);

• Ψ∈∆2 if and only if 1< p(Φ) (c.f [10, Cor. 4, pp. 22-23]);

• Φ∈∆2∩∇2 if and only if 1< p(Φ)≤q(Φ)<∞.
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• As in the case of indices of Orlicz spaces, Simonenko indices of complementary,
N-functions behave as the conjugate exponents of the power functions, i.e.

1
p(Φ)

+
1

q(Ψ)
=1=

1
p(Ψ)

+
1

q(Φ)

( [10, Cor. 6, p. 27]).

Now, we get power functions related to some function Φ by ≺ or ≺N employing
Simonenko indices.

Theorem 3.1. Let Φ∈C1 be an N-function that satisfies the ∆2 condition.
If q(Φ) is the upper Simonenko index, then
1) Φ≺ xq(Φ) and Φ≺N xq(Φ);
2) Φ≺ xq and Φ≺N xq for every q≥q(Φ).

Proof. 1) Since Φ is a differentiable, N-function that satisfies the ∆2 condition, there exists
q(Φ)<∞ such that ϕ(x)

Φ(x) ≤
q(Φ)

x for every x> 0. Next, by Theorem 2.1 we have Φ≺ xq(Φ)

and Φ≺N xq(Φ).
2) By the definition of q(Φ), we have ϕ(x)

Φ(x) ≤
q
t for every q∈ [q(Φ),∞) and for every x>0,

then Φ≺ xq and Φ≺N xq for every q≥q(Φ).

Remark 3.2. If Φ∈∆2, then 1≤ xϕ(x)
Φ(x) ≤2Λϕ for every x>0 and therefore 1≤p(Φ)≤q(Φ)<∞.

If, in addition, Φ∈∇2, then Theorem 3.1 is satisfied with q(Φ)∈ (1,∞).

Example 3.1. c.f. [8].
If Φ(x)=xp

(
1+ 1√

5
sin(plnx)

)
for x∈(0,∞) and with p≥6, then Φ is an N-function such

that ∆2∩∇2 and p(Φ)= 1
2 p y q(Φ)= 3

2 p. Now, by Theorem 3.1, Φ≺x
3
2 p and Φ≺N x

3
2 p with

p≥6.

Theorem 3.2. Let Φ∈C1 be an N-function that satisfies the ∆2 condition and let p(Φ) be the
lower Simonenko index.
1) If there exists Kp(Φ) < 2p(Φ)+1 such that Φ(x)

Φ( x
2 )
≤Kp(Φ) for every x > 0, then Φ≺ xp(Φ) and

Φ≺N xp(Φ).
2) If 0< p≤ p(Φ) and there exists Kp <2p+1 such that Φ(x)

Φ( x
2 )
≤Kp for every x>0, then Φ≺ xp

and Φ≺N xp.

Proof. 1) If Φ is a differentiable, N-function such that Φ∈∆2, then there exists 0<p(Φ)<∞
such that ϕ(x)

Φ(x) ≥
p(Φ)

x for every x>0. If there also exists Kp(Φ)<2p(Φ)+1 such that Φ(x)
Φ( x

2 )
≤

Kp(Φ) for every x>0 then, by Theorem 2.3, Φ≺ xp(Φ) and Φ≺N xp(Φ).

2) From the definition of p(Φ), we have ϕ(x)
Φ(x) ≥

p
x for every p ∈ (0,p(Φ)] and for every

t>0; and, as there exists Kp<2p+1 such that Φ(x)
Φ( x

2 )
≤Kp for every x>0, then p≤ p(Φ) and

therefore Φ≺ xp and Φ≺N xp.
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Remark 3.3. If it is also assumed that Φ∈∇2, then Theorem 3.2 holds for p(Φ)∈ (1,∞).

Example 3.2. If Φ(x)= xα with α≥ 1, then p(Φ)= q(Φ)= α. In addition, if Φ∈∆2 with
ΛΦ <2α+1, then Φ≺Φ and Φ≺N Φ.
Let 0< p≤ α such that α−1< p, then Φ∈∆2 with ΛΦ < 2p+1 and therefore xα≺ xp and
xα≺N xp for 0< p≤α.

4 Main Result

Let (Ω,A,µ) be a finite measure space.
A subset L⊂A is a σ-lattice if and only if ∅,Ω∈L and L is closed under countable

unions and intersections.
A function f : Ω→R is said to be L-measurable if { f > a}∈L for all a∈R.
We denote by LΦ(L) the set of all L-measurable functions in LΦ(Ω).

Definition 4.1. A function g∈LΦ(L) is called a best Φ-approximation to f ∈LΦ(Ω) if and
only if

∫
Ω Φ( f−g)dµ= min

h∈LΦ(L)

∫
Ω Φ( f−h)dµ.

Let µ( f ,L) be the set of all best Φ-approximations to f ∈LΦ(Ω). It is well known that
for each f ∈LΦ(Ω), the set µ( f ,L) is not empty (see [7]).

Suppose that Ln is an increasing sequence of σ-lattices, i.e. Ln⊂Ln+1 for every n∈N.
Let f be a non negative function of LΦ(Ω) and let fn be any selection of functions of
µ( f ,Ln).

In [9] it is defined the maximal function f ∗=sup
n

fn and the authors obtain strong type

inequalities in some LΨ spaces.
Next, we will get strong type inequalities for f ∗ in some Lp spaces employing the

results of the previous sections where Simonenko indices are involved.

Theorem 4.1. Let Φ∈C2([0,∞)) and let ϕ be its derivative. Assume that ϕ is an N-function
such that ϕ(0)=0 and ϕ∈∆′ globally.

If q(ϕ) is the upper Simonenko index, then

∫
Ω
( f ∗)q(ϕ)+1 dµ≤2KCq

(
2
c

)q(ϕ)+1∫
Ω

f q(ϕ)+1 dµ, (4.1)

for some c>0 and with KCq independent of f .
If p(ϕ) is the lower Simonenko index and there exists Kp(ϕ)<2p(ϕ)+1 such that ϕ(x)

ϕ( x
2 )
≤Kp(ϕ)

for every x>0, then

∫
Ω
( f ∗)p(ϕ)+1 dµ≤2KCq

(
2
c

)p(ϕ)+1∫
Ω

f p(ϕ)+1 dµ, (4.2)

for some c>0 and with KCq independent of f .
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Proof. As ϕ(0)=0 and ϕ∈∆′ globally, by [AF12, Thm. 4.5] we have

µ({ f ∗> a})≤K
∫
{ f ∗>a}

ϕ

(
f
a

)
dµ for every a>0, (4.3)

with K depending on ΛΦ.
Since ϕ∈C1([0,∞)), it is also true that ϕ(0+)= 0. Now, from [1, Lemma 2.1], there

exists c>0 such that

µ({ f ∗> a})≤2K
∫
{ f>ca}

ϕ

(
f
a

)
dµ for every a>0. (4.4)

On the other hand, by Theorem 3.1 we have ϕ≺N xq(ϕ); and, from Theorem 3.2, we get
ϕ≺N xp(ϕ) provided that there exists Kp(ϕ)<2p(ϕ)+1 such that ϕ(x)

ϕ( x
2 )
≤Kp(ϕ) for every x>0.

Finally, by (4.4) and [1, Thm. 3.17], we obtain (4.1) and (4.2).

Example 4.1. Let ϕ(x)=xα
(

1+ 1√
5

sin(αlnx)
)

for x∈(0,∞) and α≥6, then ϕ(0+)=0 and
ϕ∈∆′. The characteristics of ϕ guarantee that (4.3) and (4.4) are satisfied.
On the other hand, by Example 3.1 we have ϕ ≺ x

3
2 α and ϕ ≺N x

3
2 α with α ≥ 6 being

p(ϕ)= 1
2 α and q(ϕ)= 3

2 α the lower and upper Simonenko indices of ϕ, respectively.
As a consequence, ∫

Ω
( f ∗)

3
2 α+1 dµ≤2KCq

(
2
c

) 3
2 α+1∫

Ω
f

3
3 α+1 dµ,

for α≥6 and where f is a non negative function in LΦ(Ω).

Remark 4.1. If ϕ is not an N-function, but ϕ is the right continuous derivative of a Young
function Φ, ϕ(0)=ϕ(0+)=0, and ϕ∈∆′, we have that Proposition 2.1 or Proposition 2.2,
provides some p>−1 such that ϕ≺N xp, depending on the properties of ϕ. Then,∫

Ω
( f ∗)p+1 dµ≤2KCq

(
2
c

)p+1∫
Ω

f p+1 dµ,

for every f ∈LΦ(Ω).

In [9, Thm. 1.1], it is proved that

µ({ f ∗> a})≤ C
ϕ+(a)

∫
{ f ∗>a}

ϕ+( f )dµ for every a>0, (4.5)

with C depending only on ΛΦ and where ϕ+ is the right derivative of the Young function
Φ, ϕ+ ∈∆2 and ϕ+(0)= 0. Then, by a similar procedure to that developed in the proof
of Theorem 4.1, strong type inequalities for f ∗ in some Lp spaces can be obtained by
means of the relation ≺ instead of ≺N ( [9, Cor. 2.4]). However, we point out that it is
not possible to carry out such a procedure assuming only ϕ+(0)= ϕ+(0+)= 0. In fact,
it is necessary to ask an additional condition on ϕ+, which is the existence of a constant
r∈ (0,1) such that ϕ+(rx)≤ 1

2 ϕ+(x) for every x>0 (c.f. [9, Lemma 2.2]).
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Example 4.2. Let ϕ(x)= ln(x+1). Then, ϕ(0)= ϕ(0+)=0 and ϕ∈∆′ globally. Then (4.5)
and (4.3) are satisfied and there also exists c>0 such that (4.4) holds.
In Example 2.3 we have seen that ln(x+1)≺N xp for every p>1, then we obtain

∫
Ω
( f ∗)p+1 dµ≤2KCq

(
2
c

)p+1∫
Ω

f p+1 dµ (4.6)

for every f ∈LΦ(Ω) and with p>−1 such that ϕ+≺N xp.
Now, as there does not exist r∈ (0,1) such that ln(rx+1)≤ 1

2 ln(x+1) for every x>0, we
cannot get (4.6) having (4.5) as a starting point, because we cannot apply [9, Lemma 2.2],
although (4.5) is valid and ln(x+1)≺ xp for every p>1.

4.1 Final remarks on some one-sided operators

Proposition 5.1 of [1] allows us to obtain valid weak type inequalities on proper subsets
of R for the classical Hardy-Littlewood maximal function M and the one-sided Hardy-
Littlewood maximal functions M±, from weak type inequalities that hold true on the
whole Rn. In Theorem 2, Theorem 3 and Theorem 5 of [2] conditions on ϕ∈I to have
weak type inequalities for M± on the whole R were established; next, by Proposition 5.1
of [1], we obtain

|{x∈R : |M± f (x)|>λ}|≤C
∫
{x:| f (x)|> λ

2 }
ϕ
(2C f (x)

λ

)
dx,

for all λ>0 and where the constant C is independent of the function f . Then, (1.1) holds
with f =M± and for values of p that depend on the characteristics of ϕ, that is,∫

R
(M± f )p+1 dx≤ K̃

∫
R

f p+1dx, (4.7)

for every non negative function f ∈ L1
loc(R), with p>−1 such that ϕ≺N xp and where K̃

is independent of f .

Remark 4.2. In Theorem 7 of [2] strong type inequalities for M± are characterized, as it
has done in [5] for the Hardy-Littlewood maximal function M.

One-sided maximal operators M±, associated to one-sided best approximation by
constants, were defined and studied in [2, pp. 155-160]. The relationship betweenM±

and M± is established in Lemma 1 of [2]. Using this relationship, strong type inequalities
for the one-sided maximal operatorsM± like (1.1) can be obtained from (4.7).

A similar situation occurs with the operators M±p (see [2, pp. 160-161]) because they
were defined from the one-sided Hardy-Littlewood maximal functions M±.
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