Maximal inequalities for the best approximation operator and Simonenko indices

Sonia Acinas^{1,2,*} and Sergio Favier^{1,3}

 ¹ Instituto de Matemática Aplicada San Luis, IMASL, Universidad Nacional de San Luis and CONICET, Ejército de los Andes 950, D5700HHW San Luis, Argentina.
 ² Departamento de Matemática, Facultad de Ciencias Exactas Naturales, Universidad Nacional de La Pampa, L6300CLB Santa Rosa, La Pampa, Argentina.
 ³ Departamento de Matemática, Universidad Nacional de San Luis, D5700HHW San Luis, Argentina.

Abstract. In an abstract set up, we get strong type inequalities in L^{p+1} by assuming weak or extra-weak inequalities in Orlicz spaces. For some classes of functions, the number *p* is related to Simonenko indices. We apply the results to get strong inequalities for maximal functions associated to best Φ -approximation operators in an Orlicz space L^{Φ} .

Key Words: Simonenko indices, Maximal Inequalities, Best Approximation. **AMS Subject Classifications**: 41A10, 41A50, 41A45.

1 Introduction

In this paper we denote by \mathcal{I} the set of all non decreasing functions φ defined for all real number x > 0, such that $\varphi(x) > 0$ for all x > 0, $\varphi(0+) = 0$ and $\lim_{x \to \infty} \varphi(x) = \infty$.

We say that a non decreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies the Δ_2 condition, symbolically $\varphi \in \Delta_2$, if there exists a constant $\Lambda_{\varphi} > 0$ such that $\varphi(2x) \leq \Lambda_{\varphi}\varphi(x)$ for all $x \geq 0$.

Now, given $\varphi \in \mathcal{I}$, we consider $\Phi(x) = \int_0^x \varphi(t) dt$. Observe that $\Phi: [0, \infty) \to [0, \infty)$ is a convex function such that $\Phi(x) = 0$ if and only if x = 0. In the literature, a function Φ satisfying the previous conditions is known as a Young function. In addition, as $\varphi \in \mathcal{I}$ we have that Φ is increasing, $\frac{\Phi(x)}{x} \to 0$ as $x \to 0$ and $\frac{\Phi(x)}{x} \to \infty$ as $x \to \infty$. Thus, according to [6], a function Φ with this property is called an *N*-function.

If $\varphi \in \mathcal{I}$ is a right-continuous function that satisfies the Δ_2 condition, then

$$\frac{1}{2}(\varphi(a)+\varphi(b)) \le \varphi(a+b) \le \Lambda_{\varphi}(\varphi(a)+\varphi(b))$$

*Corresponding author. *Email addresses:* sonia.acinas@gmail.com (S. Acinas), sfavier@unsl.edu.ar (S. Favier).

http://www.global-sci.org/ata/

©201x Global-Science Press

for every $a, b \ge 0$.

Also note that the Δ_2 condition on Φ implies

$$\frac{x}{2\Lambda_{\varphi}}\varphi(x) \le \Phi(x) \le x\varphi(x)$$

for every $x \ge 0$.

If $\varphi \in \mathcal{I}$, we define $L^{\varphi}(\mathbb{R}^n)$ as the class of all Lebesgue measurable functions f defined on \mathbb{R}^n such that $\int_{\mathbb{R}^n} \varphi(t|f|) dx < \infty$ for some t > 0 and where dx denotes the Lebesgue measure on \mathbb{R}^n . For a convex function Φ , $L^{\Phi}(\mathbb{R}^n)$ is the classic Orlicz space (see [10]). And, if $\Phi \in \Delta_2$ then $L^{\Phi}(\mathbb{R}^n)$ is the space of all measurable functions f defined on \mathbb{R}^n such that $\int_{\mathbb{R}^n} \Phi(|f|) dx < \infty$.

A non decreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies the ∇_2 condition, denoted $\varphi \in \nabla_2$, if there exists a constant $\lambda_{\varphi} > 2$ such that $\varphi(2x) \ge \lambda_{\varphi}\varphi(x)$ for all $x \ge 0$.

We claim that a non decreasing function $\varphi: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies the Δ' condition, symbolically $\varphi \in \Delta'$, if there exists a constant K > 0 such that $\varphi(xy) \leq K\varphi(x)\varphi(y)$ for all $x, y \geq x_0 \geq 0$. If $x_0 = 0$ then φ satisfies the Δ' condition globally (denoted $\varphi \in \Delta'$ globally).

With the aim of comparing functions in Orlicz spaces, some partial ordering relations were treated in Chapter II of [10]. In [9] Mazzone and Zó introduce the quasi-increasing function's concept, they define the relation \prec between two non negative functions and they determine some properties of the relation. Later, in [1], it is defined and thoroughly studied another relation \prec_N . Both relations are used to obtain strong type inequalities as follows.

Let $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ be a non decreasing function such that $\varphi(0) = 0$ and satisfies a weak type inequality like

$$\mu(\lbrace f > a \rbrace) \le C_w \int_{\lbrace f > a \rbrace} \frac{\varphi(g)}{\varphi(a)} d\mu \text{ for all } a > 0,$$

or an extra-weak type inequality like

$$\mu(\{f > a\}) \leq 2C_w \int_{\{f > a\}} \varphi\left(\frac{g}{a}\right) d\mu \text{ for all } a > 0,$$

where $f,g: \Omega \to \mathbb{R}_0^+$ are two fixed measurable functions. Then, in [9] and [1] it has considered functions $\Psi \in C^1([0,\infty))$, $\Psi(x) = \int_0^x \psi(t) dt$ and $\varphi \prec \psi$ or $\varphi \prec_N \psi$, which allows us to get strong type inequalities like

$$\int_{\Omega} \Psi(f) d\mu \leq 2C_w \rho \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu.$$
(1.1)

In this paper we set $p \in \mathbb{R}$, very related to Boyd indices of φ , such that $\varphi \prec x^p$ or $\varphi \prec_N x^p$ in order to obtain strong inequalities like

$$\int_{\Omega} f^{p+1} d\mu \le \tilde{K} \int_{\Omega} g^{p+1} d\mu, \qquad (1.2)$$

with *f* and *g* non negative, measurable functions.

In Section 2, we recall the definitions of the relations \prec and \prec_N and we enumerate some of their properties that will be useful in the searching of the real number p to have (1.2) Then, we determine sufficient conditions on p to have $\varphi \prec x^p$ or $\prec_N x^p$. From such conditions, we generate bounds for p in the case that φ is a non decreasing, differentiable function; next, we extend the results to a class of non decreasing and non differentiable functions.

In Section 3, we estimate p by using a class of Boyd indices in Orlicz spaces called Simonenko indices. These indices were defined by Simonenko in [11] and they were studied in Chapter 11 of [8]. In [3], Simonenko indices are used to get Harnack's type inequalities and regularity conditions for some integral operators. In [12], relationships between Simonenko indices and other indices in Orlicz spaces are established.

In Section 4, we apply the results to a maximal function associated to best Φ -approximation operators in an Orlicz space L^{Φ} and one-sided operators related to the classical Hardy-Littlewood maximal function.

2 On relations between non negative functions

We begin recalling a concept introduced by Mazzone and Zó in [9].

Definition 2.1. A function $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ is quasi-increasing if and only if there exists a constant $\rho > 0$ such that

$$\frac{1}{x} \int_0^x \eta(t) dt \le \rho \eta(x) \text{ for every } x \in \mathbb{R}^+.$$

Hereinafter, we will call ρ the quasi increasing constant.

In [9], the relation \prec between non negative functions was presented as follows.

Definition 2.2. Let $\varphi, \psi : \mathbb{R}^+ \to \mathbb{R}^+$. $\varphi \prec \psi$ if and only if $\frac{\psi}{\varphi}$ is a quasi-increasing function; that is, if and only if there exists a constant $\rho > 0$ such that

$$\frac{1}{x} \int_0^x \frac{\psi(t)}{\varphi(t)} dt \le \rho \frac{\psi(x)}{\varphi(x)} \text{ for every } x \in \mathbb{R}^+.$$

In Theorem 2.4 of [9], the authors employ the relation \prec to get a strong type inequality like (1.1). In [1], following an analogous pattern with an extra-weak type inequality as starting point, the relation \prec_N is defined.

Definition 2.3. Let $\varphi, \psi: \mathbb{R}^+ \to \mathbb{R}^+$. $\varphi \prec_N \psi$ if and only if $\{\psi(x)\varphi(\frac{\alpha}{x})\}_{\alpha \in \mathbb{R}^+}$ is a collection of quasi-increasing functions with

the same quasi increasing constant; namely, if and only if there exists a constant $\rho > 0$ such that

$$\frac{1}{x} \int_0^x \psi(t) \varphi\left(\frac{\alpha}{t}\right) dt \le \rho \psi(x) \varphi\left(\frac{\alpha}{x}\right).$$

for every $x \in \mathbb{R}^+$ and for every $\alpha \in \mathbb{R}^+$.

Remark 2.1. Note that \prec is a reflexive relation while \prec_N is not (see [1, p. 2183]).

Next, we set conditions to assure $\varphi \prec x^p$ or $\varphi \prec_N x^p$ for some $p \in \mathbb{R}$.

Proposition 2.1. Let φ : $\mathbb{R}^+ \to \mathbb{R}^+$.

a) If $\frac{1}{\varphi(x)}$ is a quasi-increasing function, then $\varphi \prec x^p$ for every $p \ge 0$.

b) If $\{\varphi(\frac{\alpha}{x})\}_{\alpha \in \mathbb{R}^+}$ is a collection of quasi-increasing functions with the same quasi increasing constant, then $\varphi \prec_N x^p$ for every $p \ge 0$.

Proof. Definition 2.2 and Definition 2.3 imply that $\varphi \prec 1$ and $\varphi \prec_N 1$, respectively. Now, applying Proposition 3.5 of [1] with $M(x) = x^p$ for $p \ge 0$, we obtain $\varphi \prec_N x^p$ and $\varphi \prec_N x^p$ for every $p \ge 0$, respectively.

Proposition 2.2. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non decreasing function. If $\varphi \in \Delta_2$ with $\Lambda_{\varphi} < 2$, then $\varphi \prec x^p$ and $\varphi \prec_N x^p$ for every $p \ge 0$.

Proof. We take $\psi(x) = x^p$ with $p \ge 0$ in Proposition 3.11 of [1].

Example 2.1. Let $\varphi(x) = \ln(\sqrt[3]{x}+1) \in \Delta_2$ with $\Lambda_{\varphi} < 2$, then $\ln(\sqrt[3]{x}+1) \prec x^p$ and $\ln(\sqrt[3]{x}+1) \to x^p$ for every $p \ge 0$.

It is easy to see that every non decreasing function is a quasi-increasing one (see [1, Prop. 3.4]). An immediate consequence of this fact is the following result.

Proposition 2.3. Let $p \in \mathbb{R}$.

a) If $\frac{x^p}{\varphi(x)}$ is a non decreasing function from \mathbb{R}^+ into itself, then $\varphi \prec_N x^p$.

b) If $x^p \varphi(\frac{\alpha}{x})$ is a non decreasing function from \mathbb{R}^+ into itself for every $\alpha > 0$, then $\varphi \prec_N x^p$.

Proposition 2.4. Let φ : $\mathbb{R}^+ \to \mathbb{R}^+$. Assume there exists $\tilde{\varphi}$: $\mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\tilde{\varphi}(x) \le \varphi(x) \le C \tilde{\varphi}(x)$$
 for every $x > 0.$ (2.1)

If there exists $p \in \mathbb{R}$ such that $\tilde{\varphi} \prec x^p$ or $\tilde{\varphi} \prec_N x^p$, then $\varphi \prec x^p$ or $\varphi \prec_N x^p$.

Proof. If there exists $p \in \mathbb{R}$ such that $\tilde{\varphi} \prec x^p$, then there exists $\rho_1 > 0$ such that

$$\frac{1}{x} \int_0^x \frac{t^p}{\tilde{\varphi}(t)} dt \le \rho_1 \frac{x^p}{\tilde{\varphi}(x)} \text{ for every } x > 0.$$
(2.2)

By (2.1) and (2.2), we get

$$\frac{1}{x}\int_0^x \frac{t^p}{\varphi(t)}dt \leq \frac{1}{x}\int_0^x \frac{t^p}{\tilde{\varphi}(t)}dt \leq \rho_1 \frac{x^p}{\tilde{\varphi}(x)} \leq \rho_1 C \frac{x^p}{\varphi(x)},$$

for every x > 0. Therefore, from Definition 2.2, we have $\varphi \prec x^p$. Now, if there exists $p \in \mathbb{R}$ such that $\tilde{\varphi} \prec_N x^p$, then there exists $\rho_2 > 0$ such that

$$\frac{1}{x} \int_0^x t^p \tilde{\varphi}\left(\frac{\alpha}{t}\right) dt \le \rho_2 x^p \tilde{\varphi}\left(\frac{\alpha}{x}\right),\tag{2.3}$$

for every x > 0 and for every $\alpha > 0$. By (2.1) and (2.3), we obtain

$$\frac{1}{x}\int_0^x t^p \frac{1}{C}\varphi\left(\frac{\alpha}{t}\right) dt \leq \frac{1}{x}\int_0^x t^p \tilde{\varphi}\left(\frac{\alpha}{t}\right) dt \leq \rho_2 x^p \tilde{\varphi}\left(\frac{\alpha}{x}\right) \leq \rho_2 x^p \varphi\left(\frac{\alpha}{x}\right),$$

for every x > 0 and for every $\alpha > 0$. Thus, Definition 2.3 implies that $\varphi \prec_N x^p$.

Now, given $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ a non decreasing function, we use Proposition 2.3 to set conditions which assure that $\frac{x^p}{\varphi(x)}$ and $x^p \varphi(\frac{\alpha}{x})$ are non decreasing functions. We first consider the case p > 0.

Theorem 2.1. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non decreasing, differentiable function. If there exists p > 0 such that $\frac{\varphi'(x)}{\varphi(x)} \leq \frac{p}{x}$ for every x > 0, then $\varphi \prec x^p$ and $\varphi \prec_N x^p$.

Proof. By elementary algebraic operations and the hypothesis on φ and p, we have

$$\left(\frac{x^p}{\varphi(x)}\right)' = \frac{px^{p-1}\varphi(x) - x^p\varphi'(x)}{\varphi^2(x)} \ge 0 \text{ for every } x > 0.$$

Thus $\frac{x^p}{\varphi(x)}$ is a non decreasing function and, by Proposition 2.3, we get $\varphi \prec x^p$.

On the other hand, exchanging x by $\frac{\alpha}{x} > 0$ in the hypothesis and operating, we get

$$\left(x^{p}\varphi\left(\frac{\alpha}{x}\right)\right)' = px^{p-1}\varphi\left(\frac{\alpha}{x}\right) + x^{p}\varphi'\left(\frac{\alpha}{x}\right)\left(\frac{-\alpha}{x^{2}}\right) \ge 0,$$

for every x > 0 and for every $\alpha > 0$.

Then, $x^p \varphi(\frac{\alpha}{x})$ is a non decreasing function for every $\alpha > 0$; and, Proposition 2.3 implies that $\varphi \prec_N x^p$.

Example 2.2. Let $\varphi(x) = x^q$ for q > 0. As $\frac{p}{x} \ge \frac{\varphi'(x)}{\varphi(x)}$ for every x > 0 provided that $p \ge q > 0$, then $x^q \prec x^p$ and $x^q \prec_N x^p$ for every $p \ge q > 0$.

Example 2.3. Let $\varphi(x) = \ln(x+1)$. Since $\frac{\varphi'(x)}{\varphi(x)} \le \frac{p}{x}$ for every x > 0 provided that $p \ge 1$, then $\ln(x+1) \prec x^p$ and $\ln(x+1) \prec_N x^p$ for every $p \ge 1$.

Theorem 2.1 allows us to give a necessary condition in order that $\frac{x^p}{\varphi(x)}$ and $x^p \varphi(\frac{\alpha}{x})$ are non decreasing functions.

Corollary 2.2. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be non a decreasing, differentiable function. If $\frac{x^p}{\varphi(x)}$ and $x^p \varphi(\frac{\alpha}{x})$ are non decreasing with p > 0, then $\frac{\varphi'(x)}{\varphi(x)} \to 0$ as $x \to \infty$.

Proof. Since $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is non decreasing and differentiable, then $\frac{x^p}{\varphi(x)}$ and $x^p \varphi(\frac{\alpha}{x})$ are non decreasing with p > 0. Next, elementary calculations as in the proof of Theorem 2.1, give us

$$0 \leq \frac{\varphi'(x)}{\varphi(x)} \leq \frac{p}{x} \text{ for } x > 0,$$

which implies the wished result.

Example 2.4. Let $\varphi(x) = e^x - x - 1$, then $\frac{\varphi'(x)}{\varphi(x)} \to 1$; thus, there does not exist p > 0 such that $\frac{x^p}{e^x - x - 1}$ and $x^p \left(e^{\frac{\alpha}{x}} - \frac{\alpha}{x} - 1 \right)$ are non decreasing functions.

In a similar way to that developed in the proof of Theorem 2.1 but requesting that the derivatives of $\frac{x^p}{\varphi(x)}$ and $x^p \varphi(\frac{\alpha}{x})$ are negative, we obtain the following result.

Proposition 2.5. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non decreasing, differentiable function. If there exists p > 0 such that $\frac{p}{x} < \frac{\varphi'(x)}{\varphi(x)}$ for every x > 0, then $\frac{x^p}{\varphi(x)}$ and $x^p \varphi(\frac{\alpha}{x})$ are decreasing.

As Lemma 3.1 of [9] establishes the background in which non increasing functions become quasi-increasing, we employ that result together with Proposition 2.5 and we get the following.

Theorem 2.3. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non decreasing, differentiable function. If there exists p > 0 such that $\frac{p}{x} < \frac{\varphi'(x)}{\varphi(x)}$ for every x > 0 and there exists $K_p < 2^{p+1}$ such that $\frac{\varphi(x)}{\varphi(\frac{x}{2})} \le K_p$ for every x > 0, then $\frac{x^p}{\varphi(x)}$ and $x^p \varphi(\frac{\alpha}{x})$ are quasi-increasing, i.e. $\varphi \prec x^p$ and $\varphi \prec_N x^p$.

Example 2.5. Let $\varphi(x) = x^q$ with q > 0, then $\frac{p}{x} < \frac{\varphi'(x)}{\varphi(x)}$ for every x > 0 provided that p < q and $\frac{\varphi(x)}{\varphi(\frac{x}{2})} < 2^{p+1}$ for p > q-1. Thus, $x^q \prec x^p$ and $x^q \prec_N x^p$ in the case of max $\{q-1,0\} .$

Remark 2.2. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non decreasing function. If φ is non differentiable, invoking Proposition 2.4, the above results for the case of differentiable functions can be employed provided that (2.1) holds.

If $p \le 0$, it is not possible to use Theorem 2.3. However, we can establish some conditions to guarantee a relationship between φ and x^p by \prec and \prec_N for such values of p, as stated below.

Theorem 2.4. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non decreasing function. If there exists $p \in (-1,0]$ such that $\frac{\varphi(x)}{\varphi(\frac{x}{2})} \leq K_p < 2^{p+1}$ for every x > 0, then $\varphi \prec x^p$ and $\varphi \prec_N x^p$.

Proof. As φ is a non decreasing function on \mathbb{R}^+ and $p \in (-1,0]$, then $\eta_1(x) = \frac{x^p}{\varphi(x)}$ and $\eta_2(x) = x^p \varphi\left(\frac{\alpha}{x}\right)$ are non increasing functions on \mathbb{R}^+ . In addition, $\frac{\eta_1\left(\frac{x}{2}\right)}{\eta_1(x)} \leq K_p$ and $\frac{\eta_2\left(\frac{x}{2}\right)}{\eta_2(x)} \leq K_p$ for every x > 0 and with $K_p < 2^{p+1} < 2$. Consequently, by Lemma 3.1 of [9] η_1 and η_2 are quasi-increasing, i.e. $\varphi \prec x^p$ and $\varphi \prec_N x^p$ for $p \in (-1,0]$.

Remark 2.3. In Theorem 2.4, it is required that $\varphi \in \Delta_2$ with $1 \le \Lambda_{\varphi} < 2$ as it has done in Proposition 3.10 of [1]. But in that case, *p* were positive; while here, *p* belongs to the set of real negative numbers.

Example 2.6. Let $\varphi(x) = \ln(\sqrt{x}+1)$. Then $\frac{\varphi(x)}{\varphi(\frac{x}{2})} \le \sqrt{2} < 2^{p+1}$ provided that $p > -\frac{1}{2}$ and as it is necessary that $p \le 0$, then $\ln(\sqrt{x}+1) \prec x^p$ and $\ln(\sqrt{x}+1) \prec_N x^p$ for $p \in (-\frac{1}{2},0]$.

3 Simonenko indices

Let $\Phi \in \mathcal{I}$ be an increasing, continuous function. If $h_{\Phi}(\lambda) = \sup_{t>0} \frac{\Phi(\lambda t)}{\Phi(t)}$ with $\lambda > 0$, then the numbers

$$i(\Phi) = \lim_{\lambda \to 0^+} \frac{\ln h_{\Phi}(\lambda)}{\ln \lambda} = \sup_{0 < \lambda < 1} \frac{\ln h_{\Phi}(\lambda)}{\ln \lambda},$$
(3.1)

and

$$I(\Phi) = \lim_{\lambda \to \infty} \frac{\ln h_{\Phi}(\lambda)}{\ln \lambda} = \inf_{1 < \lambda < \infty} \frac{\ln h_{\Phi}(\lambda)}{\ln \lambda},$$
(3.2)

are called lower index of Φ and upper index of Φ respectively, or fundamentals indices of Φ . The numbers $i(\Phi)$ and $I(\Phi)$ are also known as *indices of Orlicz spaces* or *Matuszewska-Orlicz indices*.

From (3.1) and (3.2), it is clear that $1 \le i(\Phi) \le I(\Phi)$. And, it is well known that $I(\Phi) < \infty$ if and only if $\Phi \in \Delta_2$ (see [8, Thm. 11.7]).

Moreover, if Φ and Ψ are complementary Young functions, then

- $i(\Phi) > 1$ if and only if $\Psi \in \Delta_2$;
- the pairs $i(\Psi)$, $I(\Phi)$, and $i(\Phi)$, $I(\Psi)$ satisfy

$$\frac{1}{i(\Phi)} + \frac{1}{I(\Psi)} = \frac{1}{I(\Phi)} + \frac{1}{i(\Psi)} = 1$$

(see [8, Cor. 11.6]);

• $\Phi \in \Delta_2$ is equivalent to the existence of $p_0, p_1 \in [1, \infty)$, $p_0 \le p_1$ such that

$$C^{-1}\min(\lambda^{p_0},\lambda^{p_1})\Phi(t) \le \Phi(\lambda t) \le C\max(\lambda^{p_0},\lambda^{p_1})\Phi(t),$$
(3.3)

for some constant C > 0 and for every $\lambda, t \ge 0$; and, $\sup p_0 = i(\Phi)$ and $\inf p_1 = I(\Phi)$ ([4]);

• from (3.3) other formulae for $i(\Phi)$ and $I(\Phi)$ are obtained, i.e.

$$i(\Phi) = \sup\left\{ p: \inf_{\substack{u>0\\\lambda \ge 1}} \lambda^{-p} \frac{\Phi(\lambda u)}{\Phi(u)} > 0 \right\},\$$
$$I(\Phi) = \inf\left\{ p: \sup_{\substack{u>0\\\lambda \ge 1}} \lambda^{-p} \frac{\Phi(\lambda u)}{\Phi(u)} < \infty \right\}$$

(c.f. [8, Thm. 11.13]).

In [11] and [8] other indices, related to (3.1) and (3.2), are introduced.

Definition 3.1. Let $\Phi \in \mathcal{I}$ be an increasing, differentiable function and assume that $\Phi = \int_0^x \varphi(t) dt$.

If there exist $p,q \in \mathbb{R}$ such that

$$p\Phi(t) \le x\varphi(x) \le q\Phi(x) \text{ for every } x \in \mathbb{R},$$
(3.4)

then the best p and q that verify (3.4) are called Simonenko indices and they satisfy

$$p(\Phi) = \inf_{x>0} \frac{x\varphi(x)}{\Phi(x)}$$
 and $q(\Phi) = \sup_{x>0} \frac{x\varphi(x)}{\Phi(x)}$.

Remark 3.1. The relationship between Simonenko indices and indices of Orlicz spaces is given by the following inequality

$$p(\Phi) \leq i(\Phi) \leq I(\Phi) \leq q(\Phi),$$

that was proved in Theorem 11.11 of [8].

If Φ and Ψ belong to C^1 and they are complementary *N*-functions, then

- $\Phi \in \Delta_2$ if and only if $q(\Phi) < \infty$ (c.f. [10, Cor. 4, pp. 22-23]);
- $\Psi \in \Delta_2$ if and only if $1 < p(\Phi)$ (c.f [10, Cor. 4, pp. 22-23]);
- $\Phi \in \Delta_2 \cap \nabla_2$ if and only if $1 < p(\Phi) \le q(\Phi) < \infty$.

• As in the case of indices of Orlicz spaces, Simonenko indices of complementary, *N*-functions behave as the conjugate exponents of the power functions, i.e.

$$\frac{1}{p(\Phi)} + \frac{1}{q(\Psi)} = 1 = \frac{1}{p(\Psi)} + \frac{1}{q(\Phi)}$$

([10, Cor. 6, p. 27]).

Now, we get power functions related to some function Φ by \prec or \prec_N employing Simonenko indices.

Theorem 3.1. Let $\Phi \in C^1$ be an *N*-function that satisfies the Δ_2 condition. If $q(\Phi)$ is the upper Simonenko index, then 1) $\Phi \prec x^{q(\Phi)}$ and $\Phi \prec_N x^{q(\Phi)}$; 2) $\Phi \prec x^q$ and $\Phi \prec_N x^q$ for every $q \ge q(\Phi)$.

Proof. 1) Since Φ is a differentiable, *N*-function that satisfies the Δ_2 condition, there exists $q(\Phi) < \infty$ such that $\frac{\varphi(x)}{\Phi(x)} \le \frac{q(\Phi)}{x}$ for every x > 0. Next, by Theorem 2.1 we have $\Phi \prec x^{q(\Phi)}$ and $\Phi \prec_N x^q(\Phi)$.

2) By the definition of $q(\Phi)$, we have $\frac{\varphi(x)}{\Phi(x)} \leq \frac{q}{t}$ for every $q \in [q(\Phi), \infty)$ and for every x > 0, then $\Phi \prec x^q$ and $\Phi \prec_N x^q$ for every $q \geq q(\Phi)$.

Remark 3.2. If $\Phi \in \Delta_2$, then $1 \le \frac{x\varphi(x)}{\Phi(x)} \le 2\Lambda_{\varphi}$ for every x > 0 and therefore $1 \le p(\Phi) \le q(\Phi) < \infty$. If, in addition, $\Phi \in \nabla_2$, then Theorem 3.1 is satisfied with $q(\Phi) \in (1,\infty)$.

Example 3.1. c.f. [8].

If $\Phi(x) = x^p \left(1 + \frac{1}{\sqrt{5}}\sin(p\ln x)\right)$ for $x \in (0,\infty)$ and with $p \ge 6$, then Φ is an *N*-function such that $\Delta_2 \cap \nabla_2$ and $p(\Phi) = \frac{1}{2}p$ y $q(\Phi) = \frac{3}{2}p$. Now, by Theorem 3.1, $\Phi \prec x^{\frac{3}{2}p}$ and $\Phi \prec_N x^{\frac{3}{2}p}$ with $p \ge 6$.

Theorem 3.2. Let $\Phi \in C^1$ be an N-function that satisfies the Δ_2 condition and let $p(\Phi)$ be the lower Simonenko index.

1) If there exists $K_{p(\Phi)} < 2^{p(\Phi)+1}$ such that $\frac{\Phi(x)}{\Phi(\frac{x}{2})} \leq K_{p(\Phi)}$ for every x > 0, then $\Phi \prec x^{p(\Phi)}$ and $\Phi \prec_N x^{p(\Phi)}$.

2) If $0 and there exists <math>K_p < 2^{p+1}$ such that $\frac{\Phi(x)}{\Phi(\frac{x}{2})} \le K_p$ for every x > 0, then $\Phi \prec x^p$ and $\Phi \prec_N x^p$.

Proof. 1) If Φ is a differentiable, *N*-function such that $\Phi \in \Delta_2$, then there exists $0 < p(\Phi) < \infty$ such that $\frac{\varphi(x)}{\Phi(x)} \ge \frac{p(\Phi)}{x}$ for every x > 0. If there also exists $K_{p(\Phi)} < 2^{p(\Phi)+1}$ such that $\frac{\Phi(x)}{\Phi(\frac{x}{2})} \le K_{p(\Phi)}$ for every x > 0 then, by Theorem 2.3, $\Phi \prec x^{p(\Phi)}$ and $\Phi \prec_N x^{p(\Phi)}$.

2) From the definition of $p(\Phi)$, we have $\frac{\varphi(x)}{\Phi(x)} \ge \frac{p}{x}$ for every $p \in (0, p(\Phi)]$ and for every t > 0; and, as there exists $K_p < 2^{p+1}$ such that $\frac{\Phi(x)}{\Phi(\frac{x}{2})} \le K_p$ for every x > 0, then $p \le p(\Phi)$ and therefore $\Phi \prec x^p$ and $\Phi \prec_N x^p$.

Remark 3.3. If it is also assumed that $\Phi \in \nabla_2$, then Theorem 3.2 holds for $p(\Phi) \in (1,\infty)$.

Example 3.2. If $\Phi(x) = x^{\alpha}$ with $\alpha \ge 1$, then $p(\Phi) = q(\Phi) = \alpha$. In addition, if $\Phi \in \Delta_2$ with $\Lambda_{\Phi} < 2^{\alpha+1}$, then $\Phi \prec \Phi$ and $\Phi \prec_N \Phi$.

Let $0 such that <math>\alpha - 1 < p$, then $\Phi \in \Delta_2$ with $\Lambda_{\Phi} < 2^{p+1}$ and therefore $x^{\alpha} \prec x^p$ and $x^{\alpha} \prec_N x^p$ for 0 .

Main Result 4

Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space.

A subset $\mathcal{L} \subset \mathcal{A}$ is a σ -lattice if and only if $\emptyset, \Omega \in \mathcal{L}$ and \mathcal{L} is closed under countable unions and intersections.

A function $f: \Omega \to \mathbb{R}$ is said to be \mathcal{L} -measurable if $\{f > a\} \in \mathcal{L}$ for all $a \in \mathbb{R}$.

We denote by $L^{\Phi}(\mathcal{L})$ the set of all \mathcal{L} -measurable functions in $L^{\Phi}(\Omega)$.

Definition 4.1. A function $g \in L^{\Phi}(\mathcal{L})$ is called a best Φ -approximation to $f \in L^{\Phi}(\Omega)$ if and only if $\int_{\Omega} \Phi(f-g) d\mu = \min_{h \in L^{\Phi}(\mathcal{L})} \int_{\Omega} \Phi(f-h) d\mu.$

Let $\mu(f, \mathcal{L})$ be the set of all best Φ -approximations to $f \in L^{\Phi}(\Omega)$. It is well known that for each $f \in L^{\Phi}(\Omega)$, the set $\mu(f, \mathcal{L})$ is not empty (see [7]).

Suppose that \mathcal{L}_n is an increasing sequence of σ -lattices, i.e. $\mathcal{L}_n \subset \mathcal{L}_{n+1}$ for every $n \in \mathbb{N}$. Let f be a non negative function of $L^{\Phi}(\Omega)$ and let f_n be any selection of functions of $\mu(f,\mathcal{L}_n).$

In [9] it is defined the maximal function $f^* = \sup f_n$ and the authors obtain strong type

inequalities in some L^{Ψ} spaces.

Next, we will get strong type inequalities for f^* in some L^p spaces employing the results of the previous sections where Simonenko indices are involved.

Theorem 4.1. Let $\Phi \in C^2([0,\infty))$ and let φ be its derivative. Assume that φ is an N-function such that $\varphi(0) = 0$ and $\varphi \in \Delta'$ globally.

If $q(\varphi)$ is the upper Simonenko index, then

$$\int_{\Omega} (f^*)^{q(\varphi)+1} d\mu \leq 2KC_q \left(\frac{2}{c}\right)^{q(\varphi)+1} \int_{\Omega} f^{q(\varphi)+1} d\mu, \tag{4.1}$$

for some c > 0 and with KC_q independent of f.

If $p(\varphi)$ is the lower Simonenko index and there exists $K_{p(\varphi)} < 2^{p(\varphi)+1}$ such that $\frac{\varphi(x)}{\varphi(\frac{x}{2})} \leq K_{p(\varphi)}$ for every x > 0, then

$$\int_{\Omega} (f^*)^{p(\varphi)+1} d\mu \leq 2KC_q \left(\frac{2}{c}\right)^{p(\varphi)+1} \int_{\Omega} f^{p(\varphi)+1} d\mu, \tag{4.2}$$

for some c > 0 and with KC_q independent of f.

Proof. As $\varphi(0) = 0$ and $\varphi \in \Delta'$ globally, by [AF12, Thm. 4.5] we have

$$\mu(\{f^* > a\}) \le K \int_{\{f^* > a\}} \varphi\left(\frac{f}{a}\right) d\mu \text{ for every } a > 0, \tag{4.3}$$

with *K* depending on Λ_{Φ} .

Since $\varphi \in C^1([0,\infty))$, it is also true that $\varphi(0+) = 0$. Now, from [1, Lemma 2.1], there exists c > 0 such that

$$\mu(\{f^* > a\}) \le 2K \int_{\{f > ca\}} \varphi\left(\frac{f}{a}\right) d\mu \text{ for every } a > 0.$$
(4.4)

On the other hand, by Theorem 3.1 we have $\varphi \prec_N x^{q(\varphi)}$; and, from Theorem 3.2, we get $\varphi \prec_N x^{p(\varphi)}$ provided that there exists $K_{p(\varphi)} < 2^{p(\varphi)+1}$ such that $\frac{\varphi(x)}{\varphi(\frac{x}{2})} \leq K_{p(\varphi)}$ for every x > 0. Finally, by (4.4) and [1, Thm. 3.17], we obtain (4.1) and (4.2).

Example 4.1. Let $\varphi(x) = x^{\alpha} \left(1 + \frac{1}{\sqrt{5}} \sin(\alpha \ln x) \right)$ for $x \in (0,\infty)$ and $\alpha \ge 6$, then $\varphi(0+) = 0$ and $\varphi \in \Delta'$. The characteristics of φ guarantee that (4.3) and (4.4) are satisfied.

On the other hand, by Example 3.1 we have $\varphi \prec x^{\frac{3}{2}\alpha}$ and $\varphi \prec_N x^{\frac{3}{2}\alpha}$ with $\alpha \ge 6$ being $p(\varphi) = \frac{1}{2}\alpha$ and $q(\varphi) = \frac{3}{2}\alpha$ the lower and upper Simonenko indices of φ , respectively. As a consequence,

$$\int_{\Omega} (f^*)^{\frac{3}{2}\alpha+1} d\mu \leq 2KC_q \left(\frac{2}{c}\right)^{\frac{3}{2}\alpha+1} \int_{\Omega} f^{\frac{3}{3}\alpha+1} d\mu$$

for $\alpha \ge 6$ and where *f* is a non negative function in $L^{\Phi}(\Omega)$.

Remark 4.1. If φ is not an *N*-function, but φ is the right continuous derivative of a Young function Φ , $\varphi(0) = \varphi(0+) = 0$, and $\varphi \in \Delta'$, we have that Proposition 2.1 or Proposition 2.2, provides some p > -1 such that $\varphi \prec_N x^p$, depending on the properties of φ . Then,

$$\int_{\Omega} (f^*)^{p+1} d\mu \leq 2KC_q \left(\frac{2}{c}\right)^{p+1} \int_{\Omega} f^{p+1} d\mu$$

for every $f \in L^{\Phi}(\Omega)$.

In [9, Thm. 1.1], it is proved that

$$\mu(\{f^* > a\}) \le \frac{C}{\varphi_+(a)} \int_{\{f^* > a\}} \varphi_+(f) \, d\mu \text{ for every } a > 0, \tag{4.5}$$

with *C* depending only on Λ_{Φ} and where φ_+ is the right derivative of the Young function Φ , $\varphi_+ \in \Delta_2$ and $\varphi_+(0) = 0$. Then, by a similar procedure to that developed in the proof of Theorem 4.1, strong type inequalities for f^* in some L^p spaces can be obtained by means of the relation \prec instead of \prec_N ([9, Cor. 2.4]). However, we point out that it is not possible to carry out such a procedure assuming only $\varphi_+(0) = \varphi_+(0+) = 0$. In fact, it is necessary to ask an additional condition on φ_+ , which is the existence of a constant $r \in (0,1)$ such that $\varphi_+(rx) \leq \frac{1}{2}\varphi_+(x)$ for every x > 0 (c.f. [9, Lemma 2.2]).

Example 4.2. Let $\varphi(x) = \ln(x+1)$. Then, $\varphi(0) = \varphi(0+) = 0$ and $\varphi \in \Delta'$ globally. Then (4.5) and (4.3) are satisfied and there also exists c > 0 such that (4.4) holds. In Example 2.3 we have seen that $\ln(x+1) \prec_N x^p$ for every p > 1, then we obtain

$$\int_{\Omega} (f^*)^{p+1} d\mu \leq 2KC_q \left(\frac{2}{c}\right)^{p+1} \int_{\Omega} f^{p+1} d\mu$$
(4.6)

for every $f \in L^{\Phi}(\Omega)$ and with p > -1 such that $\varphi_+ \prec_N x^p$.

Now, as there does not exist $r \in (0,1)$ such that $\ln(rx+1) \le \frac{1}{2}\ln(x+1)$ for every x > 0, we cannot get (4.6) having (4.5) as a starting point, because we cannot apply [9, Lemma 2.2], although (4.5) is valid and $\ln(x+1) \prec x^p$ for every p > 1.

4.1 Final remarks on some one-sided operators

Proposition 5.1 of [1] allows us to obtain valid weak type inequalities on proper subsets of \mathbb{R} for the classical Hardy-Littlewood maximal function M and the one-sided Hardy-Littlewood maximal functions M^{\pm} , from weak type inequalities that hold true on the whole \mathbb{R}^n . In Theorem 2, Theorem 3 and Theorem 5 of [2] conditions on $\varphi \in \mathcal{I}$ to have weak type inequalities for M^{\pm} on the whole \mathbb{R} were established; next, by Proposition 5.1 of [1], we obtain

$$|\{x \in \mathbb{R} : |M^{\pm}f(x)| > \lambda\}| \le C \int_{\{x : |f(x)| > \frac{\lambda}{2}\}} \varphi\left(\frac{2Cf(x)}{\lambda}\right) dx$$

for all $\lambda > 0$ and where the constant *C* is independent of the function *f*. Then, (1.1) holds with $f = M^{\pm}$ and for values of *p* that depend on the characteristics of φ , that is,

$$\int_{\mathbb{R}} (M^{\pm} f)^{p+1} dx \leq \tilde{K} \int_{\mathbb{R}} f^{p+1} dx, \qquad (4.7)$$

for every non negative function $f \in L^1_{loc}(\mathbb{R})$, with p > -1 such that $\varphi \prec_N x^p$ and where \tilde{K} is independent of f.

Remark 4.2. In Theorem 7 of [2] strong type inequalities for M^{\pm} are characterized, as it has done in [5] for the Hardy-Littlewood maximal function *M*.

One-sided maximal operators \mathcal{M}^{\pm} , associated to one-sided best approximation by constants, were defined and studied in [2, pp. 155-160]. The relationship between \mathcal{M}^{\pm} and \mathcal{M}^{\pm} is established in Lemma 1 of [2]. Using this relationship, strong type inequalities for the one-sided maximal operators \mathcal{M}^{\pm} like (1.1) can be obtained from (4.7).

A similar situation occurs with the operators M_p^{\pm} (see [2, pp. 160-161]) because they were defined from the one-sided Hardy-Littlewood maximal functions M^{\pm} .

Funding

This paper was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Luis (UNSL) with grants PIP 11220110100033CO and PROICO 317902, respectively.

Acknowledgments

The authors would like to thank the referees for their valuable comments and suggestions.

References

- S. Acinas and S. Favier, Maximal Inequalities in Orlicz spaces, Int. J. Math. Anal. (Ruse), 6:41-44 (2012), 2179-2198.
- [2] S. Acinas and S. Favier, Inequalities for one-sided operators in Orlicz spaces, Actas del XII Congreso Dr. Antonio A. R. Monteiro, 12 (2014), 149-161.
- [3] A. Fiorenza and M. Krbec: Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin., 38:3 (1997), 433-451.
- [4] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Mathematica, 60:1 (1977), 33-59.
- [5] V. Kokilashvili, M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, Singapore, 1991.
- [6] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, The Netherlands, 1961.
- [7] D. Landers, L. Rogge, Best approximants in L_{Φ} -spaces, Z. Wahrsch. Verw. Gabiete, 51 (1980), 215-237.
- [8] L. Maligranda, Orlicz Spaces and Interpolation, Seminarios de Matemática, Campinas SP., Brasil, 1989.
- [9] F.D. Mazzone, F. Zó, On Maximal Inequalities Arising in Best Approximation, J. Inequal. Pure and Appl. Math., 10:2 (2009), Article 58, 10 pp.
- [10] M. Rao, Z. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc., New York, 1991.
- [11] I. B. Simonenko, Interpolation and extrapolation of linear operators in Orlicz spaces, Dokl. Akad. Nauk; SSSR, 151 (1963), 1288-1291.
- [12] Yakiang Yan, Relationship between Matuszewska-Orlicz, Semenov and Simonenko indices of Φ functions, Publ. Inst. Math. (Beograd) (N.S.), 73(87), 2003, 139-147.