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Abstract This study aimed to evaluate oxidative stress

parameters in juvenile tambaqui (Colossoma macropo-

mum) exposed to 3.88 mg l-1 Mn2? for 96 hours. Bio-

markers of oxidative stress, such as thiobarbituric acid

reactive substances (TBARS), superoxide dismutase

(SOD), catalase (CAT), and glutathione-S-transferase

(GST) activities, as well as content of reduced glutathione

(GSH), were analyzed in gill, liver, brain, and kidney. The

presence of Mn2? in the water corresponded to increased

levels of Mn2? accumulation according to the following

sequence: gill [ kidney [ brain [ liver. There was a sig-

nificant increase in TBARS levels (40 %) and SOD activity

(80 %) in addition to a significant decrease in GSH content

(41 %) in gills of fish exposed to waterborne Mn2?. In

hepatic tissue of the exposed animals, TBARS levels

decreased significantly (35 %), whereas SOD (82 %) and

GST activities (51 %) as well as GSH content (43 %)

increased significantly. In brain of exposed juvenile fish,

only significant decreases in SOD (32 %) and CAT

activities (65 %) were observed. Moreover, the kidney of

exposed fish showed a significant increase in TBARS

levels (53 %) and a significant decrease in SOD activity

(41 %) compared with the control. Thus, the changes in

biomarkers of oxidative stress were different in the tissues,

showing a specific toxicity of this metal to each organ.

Manganese (Mn2?), an essential trace metal, is found in all

tissues of bacteria, plants, humans, and fish because it is

required for normal amino acid, lipid, protein, and carbo-

hydrate metabolism in vivo (Erikson et al. 2004). This

metal is one of the most abundant elements and is widely

used in industry (Gerber et al. 2002), pesticide formula-

tions (Belpoggi et al. 2002), glass and ceramic production,

and manufacture of dry cell (Srivastava et al. 1991; Mer-

gler et al. 1994; Bader et al. 1999). It is also present at very

high concentrations in formation water (produced water or

oil field brine) from oil and gas extraction (Baldisserotto

et al. 2012). Whereas Mn2? deficiency is extremely rare,

toxicity due to Mn2? overexposure is more prevalent

(Crossgrove and Zheng 2004). Mn2? undergoes oxi-

reduction reactions and may have negative physiological

effects owing to oxidative stress induction (Huang et al.

2011).

Oxidative stress occurs due to either the overproduction of

reactive oxygen species (ROS) or a decrease in cellular

antioxidant levels. As a metal ion, Mn2? is toxic because it

enhances ROS formation and catecholamine oxidation by

products (Prabhakaran et al. 2008; Falfushynska et al. 2011).

ROS generated in tissues and subcellular compartments are

efficiently scavenged by the antioxidant defense system,

which is composed of antioxidant enzymes, such as super-

oxide dismutase (SOD), catalase (CAT), glutathione-S-

transferase (GST) and nonenzymatic antioxidants, such as
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reduced glutathione (GSH). These antioxidant defenses can

protect cells from lipid peroxidation (LPO), protein oxida-

tion, and DNA damage (Halliwell and Gutteridge 1999).

There are several studies on exposure to Mn2? and other

metals in different aquatic species. In general, these studies

aimed to analyze mortality and metal bioaccumulation in

tissues (Nath and Kumar 1987; Seymore et al. 2006;

Crafford and Avenant-Oldewage 2011). Only a few

investigations have evaluated possible oxidative damage

involved in aquatic animals exposed to Mn2? (Jena et al.

1998; Falfushynska et al. 2011).

Tambaqui (C. macropomum) is an abundant species in

the Amazon basin and is very important to the local

economy (Affonso et al. 2002). This species has great

longevity and high tolerance to changes in dissolved oxy-

gen levels and pH (Marcon and Wilhelm 1999; Milsom

et al. 2002; Florindo et al. 2004). Such characteristics make

of tambaqui a good model for the study of metals.

Experiments with metals and native fish have become

essential to assess the risk of environmental contamination.

Thus, the purpose of this study was to evaluate oxidative

stress generated in several organs of tambaqui exposed to

high waterborne Mn2? levels for 96 hours.

Materials and Methods

Chemicals

All reagent-grade chemicals were purchased from Sigma

(St. Louis, MO).

Fish

Juvenile tambaqui (100–300 g) were obtained from Faz-

enda Santo Antônio in Rio Preto da Eva, Amazonas, Brazil.

Fish were transported to the Laboratory of Ecophysiology

and Molecular Evolution, National Institute of Amazon,

and maintained in aerated well water for at least 21 days

and were fed commercial dry food pellets once a day.

Water parameters were as follows: temperature 28 �C, pH

6.3, Ca2? 11 lmol l-1, Na? 34 lmol l-1, Cl- 28 lmol l-1,

Mg2? 0.8 lmol l-1, K? 15 lmol l-1, dissolved organic

matter 0.9 mg C l-1, background Cu2? 1.7 lg l-1, and

background Cd2? 0.3 lg l-1. The experimental protocol

was approved by the Animal Health Committee of Federal

University of Santa Maria, Rio Grande do Sul, Brazil.

Exposure to Mn

Stock solutions were prepared by dissolving manganese

chloride (MnCl2) in water and added it to the experimental

aquarium after the acclimation period. Juvenile fish were

randomly separated into two 72–l aquaria (n = 10 each

aquarium), one exposed to 3.88 ± 0.239 mg l-1 Mn?2

(measured level) and another nonexposed to the metal

(control) for 96 hours. The water was not renewed during

the experimental period. Then the fish were placed in

containers filled with water and ice for 5 minutes for an-

aesthetization, after which blood was sampled from the

caudal vein with heparinized syringes; the fish were killed

by section of the spinal cord. The gills, liver, brain, and

kidneys were removed and immediately frozen in liquid

nitrogen. The tissues were stored at -70 �C for measure-

ment of oxidative stress parameters or at -20 �C for pos-

terior digestion with concentrated nitric acid (HNO3, 1 N;

Merck). Mn concentrations in digested tissues and water

samples were analyzed using graphite furnace–atomic

absorption spectrophotometry (inductively coupled

plasma–mass spectrometry (Elan DRCII Perkin Elmer

SCIEX–Canada). Certified standards provided by the

manufacturer were used throughout this study. Mn activity

was calculated using the speciation program Visual MIN-

TEQ version 3.0 (Gustafsson 2012).

Water Parameters

Water samples were collected from each aquarium to

determine water-quality parameters at the beginning and at

the end of the experiment. Water alkalinity (10.83 ± 0.48

mg l-1 CaCO3) was determined by the sulfuric acid method

(Eaton et al. 2005). Measurements of dissolved oxygen (YSI

model Y5512 oxygen meter) and water pH (7.1 ± 0.04)

(Quimix 400A pH meter) were performed daily. Water

hardness (13.22 ± 0.66 mg l-1 CaCO3) was determined by

the ethylene diamine tetraacetic acid titrimetric method, and

total ammonia (NH3 ? NH4
?, final value 1.23 ± 0.05

mg l-1) was determined by the direct nesslerization method

(Eaton et al. 2005).

Oxidative Stress Parameters

The tissues were homogenized as described previously by

Azambuja et al. (2011). The homogenates were centrifuged

at 1000 9 g for 10 minutes at 4 �C to discard nuclei and

cell debris, and the supernatant fraction obtained was fro-

zen at –70 �C for analyses of oxidative stress parameters.

Lipid peroxidation (LPO) was measured by TBARS

assay (Buege and Aust 1978). Results were expressed as

nmol mg protein-1. Commercially available malonalde-

hyde was used as a standard. Protein content was measured

by the method of Lowry et al. (1951) using bovine serum

albumin as standard.

Total SOD activity was based on the inhibition rate of

autocatalytic adenocrome generation at 480 nm in a reac-

tion medium containing epinephrine and glycine/NaOH
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(pH 10.2). The enzyme activity was expressed as

USOD mg protein-1. One SOD unit was defined as the

amount of enzyme needed for 50 % inhibition of adeno-

chrome formation as described by Misra and Fridovich

(1972). CAT activity was evaluated according to the

decrease in the 240 nm absorption in a reaction medium

consisting of phosphate buffer (pH 7.4) and hydrogen

peroxide (H2O2), thereby determining the pseudo–first

order reaction constant (k’) of the decrease in H2O2

absorption. This was reported as nmol mg protein-1 (Bo-

veris and Chance 1973). GST activity, expressed as

lmol min-1 mg protein-1, was determined according to

Habig et al. (1974). The assay was performed using

potassium phosphate buffer (pH 6.5) with reduced gluta-

thione (GSH) and 1-chloro-2,4-dinitrobenzene. Activity

was calculated from the changes in absorbance at 340 nm

(e340 nm = 9.6 mM-1 cm-1). One unit of GST activity

was defined as the amount of enzyme catalyzing the con-

jugation of CDNB with GSH/min at 25 �C. Tissue sulf-

hydryl groups, an indirect measure of GSH, were evaluated

at 412 nm after reaction with 5,5’-dithiobis-(2-nitrobenzoic

acid). Proteins were eliminated through the addition of

perchloric acid. The final product formed is the yellow

2-nitro-5-mercapto-benzoic acid. The results were reported

as nmol protein-1 using e412 nm = 13.6 mM-1 cm-1

(Ellman 1959).

Statistical Analysis

The results are expressed as the means ± SEs. Levene’s

test was performed to evaluate the homogeneity of vari-

ances. Unpaired Student t test was used for comparison of

means. All analyses were executed by using GraphPad

Instat software (San Diego, CA). Differences were con-

sidered significant at p \ 0.05.

Results

The presence of Mn2? in the water corresponded to

increased levels of Mn2? in the gill, brain, and kidney. The

percentage of accumulation in liver was not significant.

Mn2? accumulation in the tissues occurred in the following

sequence: gill [ kidney [ brain [ liver (Fig. 1). Gills of

tambaqui exposed to waterborne Mn2? exhibited a signif-

icant increase in thiobarbituric acid reactive substances

(TBARS) levels (40 %) in addition to a significant increase

in SOD activity (80 %) and a significant decrease in GSH

content (40 %). GST activity was unaffected, whereas

CAT activity could not be detected (Fig. 2). Hepatic

TBARS levels of the fish exposed to waterborne Mn2? was

decreased (35 %) compared with the control. This tissue

also showed a significant increase in SOD (82 %) and GST

activities (51 %), as well as GSH content (43 %), whereas

no change in CAT activity was observed in animals

exposed to this metal (Fig. 3). In brain, SOD and CAT

activities were significantly decreased (32 and 65 %,

respectively) in the group exposed to Mn2? compared with

control fish. Nonetheless, GST activity and TBARS levels

were unaffected (Fig. 4). Moreover, TBARS levels

increased significantly (53 %) in kidney of tambaqui

exposed to waterborne Mn2?. SOD activity was signifi-

cantly decreased (41 %) in renal tissue of these animals,

whereas no change in CAT activity was observed (Fig. 5).

Discussion

Because fish constitute an important link in the food chain,

their contamination by toxic metals causes a direct threat

not only to the entire aquatic environment but also to

humans (Obasohan 2008). Toxicity of Mn2? in fish, despite

its highly variable levels in water (Linnik 2000) and

dependence on complexation (Liccione and Maines 1988),

has scarcely been studied (Falfushynska et al. 2011). In the

present study, the calculated Mn speciation by Visual

Minteq 3.0 showed that 97 % of total Mn existed mainly as

the free ionic species, Mn2?.

The maximum allowed concentration of Mn2? in Bra-

zilian waters is 0.1 mg L-1 (Conselho Nacional do Meio

Ambiente-CONAMA 2005), whereas this metal is present

at 6.44 mg L-1 in the formation water from Urucu

Reserve, Amazon (Baldisserotto et al. 2012). Therefore,

the concentration used in the study is in between the

maximum acceptable concentration and the concentration

present in oilfield process water. Manganese is not dis-

tributed homogeneously throughout the organs in tamb-

aqui. Most of the assessments on Mn2? bioaccumulation

are in accord with the measurement of trace metals in

Fig. 1 Mn2? levels in gill, liver, brain, and kidney of C. macrop-
omum exposed to 3.88 mg L-1 waterborne Mn for 96 hours.

*Significantly different from control by unpaired Student t test

(p \ 0.05)
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certain habitats rather than in a controlled exposure setting

(Bharti and Banerjee, 2011; Alhashemi et al. 2012).

Despite the lack of correlation between the data on bio-

accumulation and oxidative stress parameters, the greater

accumulation of the metal in tambaqui gills is in accor-

dance with a preceding work with Esox lucius and Abramis

brama (Rajkowska and Protasowicki 2012).

Fish gills represent a thin and extensive surface (B90 %

of total body surface) in intimate contact with water. They

carry out three main functions: gas exchange, ion regula-

tion, and excretion of metabolic waste products. Due to

constant contact with the external environment, gills are

the first target of waterborne pollutants (Perry and Laurent

1993) and are susceptible to damage caused by heavy

metals. Metals induce oxidative stress by the overproduc-

tion of ROS; thus, a strong antioxidant defense is essential

to neutralize the impact of these species (Ahmad et al.

2000; Kochhann et al. 2009). The increase in SOD activity

observed in gills of tambaqui exposed to Mn2? could

represent a tissue response to compensate for the increased

LPO.

SOD is a key antioxidant enzyme in the metabolism of

ROS because it removes superoxide anion (O2
•-) and pre-

vents the formation of other ROS, such as hydroxyl radi-

cals (OH•) (Enghild et al. 1999). O2
•- is the first species in

the cascade of univalent decrease of molecular oxygen and

therefore is the first indicator of increased generation of

ROS. Steady-state concentrations of O2
•- are directly pro-

portional to its rate of production and inversely propor-

tional to the activity of scavenging enzymes, such as SOD

(Ferreira et al. 2004). If there is an increase in SOD

activity, there will be a decrease in O2
•- and an increase in

H2O2 production. H2O2 is removed by two enzymes: CAT

and glutathione peroxidase (GPx). The latter uses GSH as a

cofactor to remove the H2O2. The present study data also

showed a decrease in GSH levels. Mn2? toxicity is related

to the depletion of GSH in different animal phyla,

including aquatic animals (Madejczyk et al. 2009). The

depletion of GSH can enhance Mn2? toxicity, albeit to a

lesser extent than that registered for Cu2? (Maracine and

Segner 1998; Bozocaarmutlu and Arinc Bozcaarmutlu and

Arinc 2004).

There is no pattern of antioxidant behavior in gills of

fish exposed to metals. Chromium (Cr) exposure

(10 mg l-1 Cr3? or Cr6?) for 96 hours did not change

GSSG and total GSH ratio, GST and glutathione reductase

(GR) activities, and LPO levels in gills of C. auratus.

However, Cr6? treatment resulted in decrease of carbonyl

proteins levels, whereas exposure to both concentrations

led to a decrease in CAT activity (Kubrak et al. 2010). In

turn, gills of C. auratus gibelio exposed to 1.7 mg l-1

Mn2? for 14 days showed increased SOD activity in

Fig. 2 TBARS levels (a), SOD

(b), GST activities (c), and GSH

content (d) in gill of tambaqui

exposed to 3.88 mg l-1 Mn2?

for 96 hours. Data are reported

as means ± SEs (n = 10).

*Significantly different from

control by unpaired Student

t test (p \ 0.05)
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addition to decreases in LPO and GSH levels (Fal-

fushynska et al. 2011). Moreover, exposure of Channa

punctatus to different cadmium (Cd2?) levels did not

modify the amount of LPO and CAT activity in the gills,

although Cd2? induced a significant increase in the activity

of the other enzymes, such as SOD, GPx, and GST as well

as GSH content. Finally, Arabi and Alaeddini (2005)

showed that supplementation of 5.5 mg l-1 Mn2? reverted

the deleterious effects of mercury (Hg2?) and copper

(Cu2?) to Oncorhynchus mykiss exposed because its

application inhibited LPO levels, decreased GST activity,

and increased GSH content in the gill samples.

Liver is the main organ of various key metabolic path-

ways and the most frequently studied tissue regarding

oxidative stress. Our data showed that liver LPO levels

were decreased in tambaqui exposed to Mn2?. In turn, the

activity of antioxidant enzymes, such as SOD and GST,

and the content of nonenzymatic antioxidant GSH pre-

sented an opposite pattern, whereas CAT activity was

unaffected. The increased formation of GSH in liver of

tambaqui exposed to Mn2? suggests a role in the defense of

cells against oxidative stress. Furthermore, our study also

showed that GST plays an important role in the detoxifi-

cation of the end products of LPO.

Similar results were also shown in C. auratus gibelio

exposed to 1.7 mg l-1 Mn2? for 14 days. This species

showed a decrease in levels of liver LPO associated with an

increase in Mn-SOD activity compared with the respective

control (Falfushynska et al. 2011). Moreover, Huang et al.

(2011) also described a decrease in LPO levels in addition

to an increase in GSH content in liver of rats exposed to

Mn2?. However, in opposition to our data, Casalino et al.

(2004) reported an increase in LPO levels in liver of rats 24

hours after administration of 2.0 mg kg-1 Mn2?.

Fig. 3 TBARS levels (a), SOD

(b), CAT (c), GST activities (d),

and GSH content (e) in liver of

tambaqui exposed to

3.88 mg l-1 Mn2? for 96 hours.

Data are reported as

means ± SEs (n = 10).

*Significantly different from

control by unpaired Student

t test (p \ 0.05)
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Nevertheless, these investigators found an increase in GST

activity in this organ, thus corroborating our findings in

tambaqui. Induction of GST activity depends on the type of

tissue and nature of the inducer. In another experiment,

C. punctatus exposed to sublethal concentrations of Cd2?

for 24, 48, 72, and 96 hours presented increased levels of

liver LPO and modulated activities of SOD, CAT, GPx,

GR, and GST as well as GSH content (Dabas et al. 2011).

Thus, the current results suggest that the increase in both

types of antioxidants (enzymatic and nonenzymatic) in

liver of tambaqui exposed to Mn2? is compensating for the

decrease in LPO levels.

The brain is very susceptible to oxidative damage by ROS

as it contains high amounts of unsaturated lipids and uses

approximately 20 % of total the body’s oxygen demand

(Stella and Lajtha 1987). Our data showed that LPO levels

and GST activity remained unchanged, whilst SOD and CAT

activities decreased in brain tissue of tambaqui exposed to

Mn2? compared with the respective control. This decrease

observed in SOD and CAT activities indicates oxidative

damage to organs in the presence of Mn2?.

Chtourou et al. (2010) described similar data because

they verified a decrease in the antioxidant enzymes in

cerebral cortex of rats that received Mn2? in drinking water

for 30 days. Mn2? is an important cofactor for a variety of

enzymes, including SOD (Hurley and Keen 1987). This

metal scavenges O2
•- and OH• even when SOD activity is

inhibited (Hussain and Ali 1999). However, the prooxidant

effects of Mn2? have been confirmed repeatedly in in vitro

and in vivo studies (Ali et al. 1995; Zhang et al. 2004; Jiao

et al. 2008). An in vitro analysis showed that 18.31 mg l-1

Mn2? significantly inhibited CAT activity in brain of fish

and lizards (Jena et al. 1998). Cr exposure (10 mg l-1 Cr3?

or Cr6?) of C. auratus for 96 hours resulted in increased

brain content of carbonyl protein and no changes in SOD,

CAT, and GST activities in this tissue (Kubrak et al. 2010).

The same investigators published another study in 2011, in

which they evaluated the effects of various concentrations

of cobalt (Co2?) on brain of C. auratus. Exposure to

50 mg l-1 Co2? for 96 hours did not affect LPO levels and

GR activity; however, this induced a decrease in SOD,

CAT, and glucose-6-phosphate dehydrogenase activities

(Kubrak et al. 2011). These findings are in accordance with

our data.

Finally, our results also showed that Mn?2 exposure of

tambaqui may reflect the development of renal oxidative

stress because it led to an increase in LPO levels associated

with a decrease in SOD activity, although no change was

observed in CAT activity. SOD, along with CAT, repre-

sents the first barrier against ROS and is essential to cell

Fig. 4 TBARS levels (a), SOD

(b), CAT (c), and GST activities

(d) in brain of tambaqui

exposed to 3.88 mg l-1 Mn2?

for 96 hours. Data are reported

as means ± SEs (n = 10).

*Significantly different from

control by unpaired Student

t test (p \ 0.05)
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survival (Remacle et al. 1992; Mates et al. 1999; Halliwell

2001). Travacio and Llesuy (1996) reported that different

models of oxidative stress involve a biphasic response of

antioxidant enzyme activities. At first, enzymatic activities

are markedly decreased, but with time the activity levels

increase, probably as a consequence of a new synthesis

and/or enzymatic activation.

C. punctatus exposed to Cd2? (6.7, 13.4, and

20.1 mg l-1) for various time periods (24, 48, 72, and

96 hours) presented increased levels of LPO as well as

SOD, GST, and GR activities, whereas CAT activity was

decreased (Dabas et al. 2011). In turn, C. auratus exposed

to various concentrations of Cr6? for 96 hours showed

increased renal hydroperoxide levels and SOD activity and

no significant differences in CAT activity (Velma and

Tchounwou 2010).

The results of the current research clearly show that

there were changes in the balance of pro-oxidants and

antioxidants in different organs of tambaqui. Such changes

were more evident in liver and kidney. Furthermore, there

was no correlation between the oxidative stress results and

the bioaccumulation data. Present findings may contribute

to the scarce literature regarding fish subchronic exposure

to Mn2?.
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Moraes G et al (2002) Blood parameters and metabolites in the

teleost fish Colossoma macropomum exposed to sulfide or

hypoxia. Comp Biochem Physiol C Toxicol Pharmacol

133:375–382

Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M et al

(2000) Induction of hepatic antioxidants in freshwater catfish

(Channa punctatus Bloch). Biochem Biophys Acta 1523:37–48

Alhashemi AH, Sekhavatjou MS, Kiabi BH, Karbassi AR (2012)

Bioaccumulation of trace elements in water, sediment and six

fish species from a freshwater wetland. Iran Microchem J

104:1–6

Ali SF, Duhart HM, Newport GD, Lipe GW, Slikker W (1995)

Manganese-induced reactive oxygen species: comparison

between Mn ? 2 and Mn ? 3. Neurodegeneration 4:329–334

Arabi M, Alaeddini MA (2005) Metal-ion-mediated oxidative stress

in the gill homogenate of rainbow trout (Oncorhynchus mykiss):

antioxidant potential of manganese, selenium, and albumin. Biol

Trace Elem Res 108:155–168

Azambuja CR, Mattiazi J, Riffel AP, Finamor IA, Garcia LO,

Heldwein CG et al (2011) Effect of the essential oil Lippia alba

on oxidative stress parameters in silver catfish (Rhamdia quelen)

subjected to transport. Aquaculture 319:156–161

Bader M, Dietz MC, Ihrig A, Triebig G (1999) Biomonitoring of

manganese in blood, urine and axillary hair following low-dose

exposure during the manufacture of dry cell batteries. Int Arch

Occup Environ Health 72:521–527

Baldisserotto B, Garcia LO, Benaduce AP, Duarte RM, Nascimento

TL, Gomes LC et al (2012) Sodium fluxes in tamoatá,
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