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Abstract

The models parallel factor analysis (PARAFAC) and the recently introduced bilinear least squares (BLLS) were applied to develop second-order
calibration methods to high performance liquid chromatography with diode array detection (HPLC-DAD) data, where overlap of interferences
with the compounds of interest was observed, making the determination and resolution of the analytes possible. In this work, the simultaneous
determination of five pesticides and two metabolites in wine samples by HPLC-DAD was performed, using the second-order advantage. The results
of two chromatographic methods were compared, involving either isocratic or gradient elution. An appropriate preprocessing method was necessary
to correct the effects of time shifts, baseline variations and background. BLLS presented results that were of the same quality as PARAFAC in five
cases, but in two other situations only PARAFAC enabled analyte quantitation. Relative errors of prediction lower than 10% for all compounds
were obtained, indicating that the methodology employing HLPC-DAD and second-order calibration can handle complex analytical systems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

High performance liquid chromatography (HPLC) is a tech-
nique widely applied in routine analysis in many areas, such as
pharmaceutical, biological, environmental and food analysis. In
the majority of the cases, it can efficiently provide the separation
of all compounds of interest. However, when a complex sample
is analyzed, the overlap of the analytes with sample interfer-
ences is frequently observed, and great effort may be necessary
to optimize the chromatographic conditions of the separation.
The application of multichannel detectors, such as diode array
detection (DAD) or mass spectrometry can reduce this problem,
since ultra-violet (UV) or mass spectra are acquired as a function
of the retention time.

∗ Corresponding author. Tel.: +55 19 35213126; fax: +55 19 35213023.
E-mail address: ronei@iqm.unicamp.br (R.J. Poppi).

When HPLC-DAD is applied, the choice of a selective
wavelength is sometimes difficult or impossible, since the UV
spectra generally are constituted of wide bands. In these cases,
second-order calibration models can be an alternative due to
the possibility of mathematical separation of the instrumen-
tal signals, making determinations in the presence of unknown
interferences possible; a property known as the second-order
advantage [1].

Wine can be considered one of the most consumed drinks
in the world. In recent years, the increased use of agricultural
defenses to control parasite attacks on grapes has made the deter-
mination and monitoring of the pesticides and their metabolites
an important parameter in the quality control of wines. The
maximum residual limits for these compounds are established
by international institutions, such as the Codex Alimentarius
Commission [2]. Several methods for their determination are
based on gas chromatography using electron capture, nitrogen-
phosphorus or mass spectrometry detection [3–5]. However, the
determination of various pesticides in wine has already been
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proposed using HPLC with detection at a fixed wavelength
[6–11].

Bilinear least-squares (BLLS) is a second-order calibration
methodology that has recently been introduced [12,13], and has
been demonstrated to provide analytical results comparable to
parallel factor analysis (PARAFAC) in complex samples [14]. It
has also been shown to adequately work with analytes present-
ing equilibrating species (linear dependent systems) [15,16]. The
aim of this paper is to apply the BLLS and PARAFAC models
to two HPLC-DAD methods (isocratic and gradient elution) in
seven distinct situations, in order to determine five pesticides and
two metabolites in red wine samples. The compounds of inter-
est, all used during cultivation of grapes, were the pesticides
carbaryl (CBL), methyl thiophanate (TIO), simazin (SIM), car-
bendazin (CBZ) and dimethoate (DMT), and the metabolites are
3,5-dichloroaniline (DCA) and phthalimide (PTA). The perfor-
mances of the models were compared in situations where time
shifts, base line variation and sample interferences were cor-
rected or taken into account by either appropriate preprocessing
or by the multivariate model. Deviations of the trilinear model
were observed in two situations, where PARAFAC showed its
main advantage over BLLS. On the other hand, BLLS provided
simpler and faster solutions in the remaining situations.

2. Theory

Both the PARAFAC [17–19] and BLLS [12,13,20] models
have had been discussed in detail in the relevant references; thus
only a brief description is presented here.

2.1. Parallel Factor Analysis (PARAFAC)

For each sample measured in a HPLC-DAD equipment, a
data matrix formed by J times and K wavelengths was obtained.
When all I calibration standards and an unknown sample are
stacked on top of each other, a three-way array X, with dimen-
sions (I + 1) × J × K, is obtained. With this procedure each
unknown sample is analyzed individually, which may turn the
decomposition of the data easier, since there are several different
standard samples and just one unknown.

The PARAFAC model for X can be written as [18]:

XI,J,K =
N∑

n=1

aI,nbJ,ncK,n + eI,J,K (1)

where XI,J,K is the absorbance of the Ith sample at the Jth time
and the Kth wavelength, the values of aI,n, bJ,n and cK,n the
parameters describing the importance of the sample/variables
for each component n, N the total number of components and
eI,J,K are the residuals that contain the variation not captured by
the model. The values of aI,n, bJ,n and cK,n are usually collected
into the loading matrices A, B and C, respectively.

The model described by Eq. (1) defines the decomposition of
X, which provides access to the chromatographic and spectral
profiles, B and C, respectively, and the relative concentrations
for the individual n components in the I + 1 column vector of
matrix A. The decomposition is accomplished by PARAFAC

through an alternating least-squares minimization [17–19]. The
initialization of the algorithm can be performed with the profiles
obtained by several procedures, the most usual one being direct
trilinear decomposition (DTLD) [20]. In addition, depending on
the system under study, some constraints, such as non-negativity,
should be applied to the matrices A, B and C to obtain physically
meaningful information or better decomposition.

DTLD method can be considered an extension of the general-
ized rank annihilation method (GRAM). In contrast with BLLS
and PARAFAC, in the GRAM it is necessary just one standard
for the analysis of an unknown sample, which can be consid-
ered an advantage that reduces the elapsed time and reagents in
the standards preparation and measurements [21]. However, as
in univariate regression, the use o more than one standard with
the objective of build a calibration model can cause an improve-
ment in the precision of the results, mainly when second-order
calibration is applied and unexpected compounds occur in the
sample [22].

The number of components of the model can be accessed by a
prior knowledge of the system, or by monitoring the PARAFAC
internal parameter known as core consistency. Usually, core con-
sistency is computed for a number of trial components, and N
is chosen as one less the number for which the core consistency
drops from a high value (∼100%) to less than 50%[17].

After the decomposition is completed, the identification of
the chemical component is done by comparing the chromato-
graphic and spectral profiles obtained by the PARAFAC model
with those for a standard solution of the compound of interest.

Absolute concentrations for the analyte n are obtained after
proper regression of the reference concentrations (yn) of the
standards against the first I elements of aI+1,n:

kn = y+
n [a1,n| . . . |aI,n] (2)

where “+” indicates the pseudoinverse.
Finally, the concentration of component n in an unknown

sample (yu,n) is obtained from the last element of column aI+1,n
and the slope k:

yu,n = aI+1,n

kn

(3)

2.2. Bilinear least-squares (BLLS)

In contrast to PARAFAC, the analyte concentration is intro-
duced into the BLLS decomposition step, where only matrices
of standards are present, in order to obtain approximations of
pure-analyte matrices at unit concentration (Sn). To estimate Sn,
the calibration data are first vectorized and jointed into a JK × I
matrix Vx [23,24]:

Vx = [vec(X1)|vec(X2)| . . . |vec(XI)] (4)

where “vec” indicates an unfolding operation. Then a direct
least-squares procedure is used to obtain pure-analyte informa-
tion [23,24]:

Vs = VxyT+ (5)
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If more than one analyte is present, y will be a matrix Y
with dimensions I × Nc, where Nc is the number of calibrated
analytes. Vs contains the required Sn matrices in vectorized
form:

Vs = [vec(S1)|vec(S2)| . . . |vec(SNc)] (6)

To obtain the chromatographic and spectral profiles pre-
sented in the Sn matrices, singular value decomposition (SVD) is
employed [12,13]. The component profiles are obtained by sin-
gle component singular value decomposition (SVD1) of each
Sn matrix, obtained after appropriate reshaping of the unfolded
vec(Sn) [12,13]:

(bn, gn, cn) = SVD1(Sn) (7)

where gn is the first singular value, and bn and cn are the first left
and right singular vectors of Sn, respectively. The concentrations
in a unknown sample (whose matrix data are Xu) are estimated,
provided that no interference occurs, by a direct least-squares
procedure [12,13,23,24]:

yu = S+
cal vec(Xu) (8)

where yu is the 1 × Nc estimated concentration vector of the Nc
analytes in Xu, and Scal is a calibration JK × Nc matrix given
by:

Scal = [g1(c1 ⊗ b1)|g2(c2 ⊗ b2)| . . . |gNc (cNc ⊗ bNc )] (9)

where ⊗ indicates the Kronecker product.
When the calibrated analytes produce signals which are over-

lapped with those for interferences (int) present in Xu, a separate
residual bilinearization (RBL) process is employed to find the
interference profiles which are incorporated into an expanded
version of Scal:

Sint = [Scal|gint(cint ⊗ bint)] (10)

where gint, bint and cint are obtained by SVD of a residual matrix
(Eu) computed while fitting the data to the sum of the various
component contributions:

Eu = Xu −
Nc∑
n=1

ggbn(cT
n ) yu,n (11)

(bint, gint, cint) = SVD1(Eu) (12)

The RBL process can be performed by an iterative method
[13,23,25] or by a Gauss–Newton minimization procedure
[15,23]. It is important to note that in the BLLS model no ini-
tialization or constraining procedures are required, and that the
second-order advantage is acquired by the RBL analysis of the
residual matrix Eu. The number of interferences present can be
estimated by comparison of the residuals left out by the model in
a prediction sample with the residuals in the calibration samples
or with the instrumental noise level (obtained by suitable blank
replication).

2.3. Figures of merit

The estimation of figures of merit is an active area of research
in chemometrics, and these parameters are regularly employed
for method comparison. For multivariate calibration the esti-
mates are based on the concept of net analyte signal (NAS),
first developed by Lorber [26]. For second- or higher-orders
multivariate calibration, two independent approaches to NAS
computation were developed by Messick et al. [27] and by Ho
et al. [28]. Recently, a general expression was derived to esti-
mate the sensitivity of second-order calibration models, such as
PARAFAC and BLLS, taking into account whether the second-
order advantage is required or not [29]. Following this last
approach, the sensitivity can be obtained as [29]:

SENn=zn{[(BT
expPb,unxBexp) (CT

expPc,unxCexp)]
−1}−1/2

(13)

where Bexp and Cexp are the chromatographic and spectral pro-
files, respectively, for the calibrated analytes (provided by the
PARAFAC and BLLS models), Pb,unx and Pc,unx are projection
matrices, orthogonal to the space spanned by all unexpected
components in each mode [29]:

Pb,unx = I − BunxB+
unx (14)

Pc,unx = I − CunxC+
unx (15)

and zn is an appropriate scaling factor. In PARAFAC, zn is the
parameter converting loadings to concentration (Eq. (2)) [14],
while in BLLS it is the gn value obtained in Eq. (7). The SEN
values depend on the presence of interferences, which is sample-
specific and therefore SEN cannot be defined for the whole
multivariate method. In such cases, an average value for a set of
samples can be estimated and reported.

The limit of detection (LOD) is an important figure of merit
that has recently been discussed for several first and second-
order multivariate techniques [30–32]. An approximation to the
LOD can be obtained by the expression [14,32]:

LODn = 3
sr

SENn

(16)

where sr its an estimate of the instrumental noise. Since the SEN
is given as an average value, LOD is also reported as an average
figure.

Another important figure of merit to be estimated is the
standard error in the estimated concentrations, an active area
of research in the second-order scenario. Mathematical expres-
sions for sample-specific prediction uncertainty show consistent
results in simulated data, and they are available for PARAFAC
[32] and BLLS [13] models when they are not exploiting the
second-order advantage. Hence, they are not applicable when a
real sample, such as wine is analyzed. An useful alternative for
method comparison is to estimate a mean prediction error for
a set of test samples. This can be achieved by the well known
parameter root mean square error of prediction (RMSEP):

RMSEP =
√√√√ I∑

n=1

(yref,i − yu,i)2

I
(17)
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Fig. 1. (A) Augmented data matrices N and M, where M presents a time shift. (B) Aligned data matrices obtained by shifting the matrix M relative to N until a
minimum is reached in the percentage residual variance plot (C).

where yref,i and yu,i are the reference the estimated concentra-
tions values for each of the I test sample. By the definition of the
RMSEP, a relative error of prediction (REP) can be obtained as
[33]:

REP =
√√√√ I∑

n=1

(yref,i − yu,i)2

Iy2
ref,i

100 (18)

2.4. Time shift correction

In order to acquire the best results with the previously
described models, the correction of eventual time shifts that
may occur in the data matrices should be performed. Various
algorithms were already described for this purpose [21,34–39].
However, only the algorithms proposed by Comas et al. [37,38]
and Prazen and co-workers [21,39] take into account the second-
order structure of the data. In this paper, the methodology
proposed by Prazen and co-workers [21,39] was employed,
based on the SVD decomposition of joint N|M data matrices
N and M, where N is taken as reference and M is to be corrected
in relation to N, as expressed by [39]:

(u, s, v) = SVD(N|M) (19)

where s are the singular values, u and v are the left and right
singular vectors of N|M, respectively. The correction is done
by computing the residual variance (RES) while the matrix M is
moved in relation to N, using a pre-established number of points
that can be estimated by the inspection of the chromatograms of

N and M [39].

RES = 100

∑min(J,K)
a=A+1 s2

a∑min(J,K)
a=1 s2

a

JK

(J − A)(K − A)
(20)

where A is the number of significant singular values, ideally
equal to the number of species present in N|M. When the
matrices N and M are aligned, the RES values should reach a
minimum. In Fig. 1, this process is illustrated by the correction
of two standards samples for a situation of the isocratic method
where the compounds methyl thiophanate (TIO) and simazine
(SIM) occur (see below).

3. Experimental

3.1. Reagents and standards

The solvents for preparation and chromatographic analysis
were acetonitrile (HPLC-grade, Tedia), water (Milli-Q, Milli-
pore), phosphoric acid (Merck), ethyl acetate (Tedia), methanol
(HPLC-grade, Tedia) and isopropanol (Merck). They were
filtered using a 0.45 �m poly(vinylidene) fluoride (PVDF) mem-
brane (Millipore).

The pesticide standards were simazine (SIM) (98.3%)
obtained from Novartis, carbaryl (CBL) (99.8%) from Supelco,
carbendazin (CBZ) (99.1%) from Chem Service, methyl
thiophanate (TIO) (98.5%) and dimethoate (DMT) from Riedel-
de-Häen, and the metabolites were phthalimide (PTA) (99.9%)
and 3,5-dichloroaniline (DCA) (99.1%) from Riedel-de-Häen.

Stock solutions of each analyte were prepared with
acetonitrile in the following concentrations: 1046 �g mL−1
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Table 1
Concentration ranges, in �g mL−1, used for the analytes of interest

Analyte Range

DMT 1.00–7.50
PTA 0.10–1.40
TIO 0.50–5.37
SIM 0.10–1.24
CBL 1.00–6.00
CBZ 0.50–6.75
DCA 1.50–11.30

PTA, 1077 �g mL−1 CBL, 1028 �g L−1 TIO, 1084 �g mL−1

DCA and 1011 �g mL−1 DMT, 402.8 �g mL−1 SIM and
404.8 �g mL−1 CBZ. Intermediate solutions of each ana-
lyte were obtained by appropriate dilutions with a 50:50
(v/v) solution of acetonitrile:water of the stock solutions
yielding 20.15 �g mL−1 for PTA, 105.7 �g mL−1 CBL,
39.63 �g mL−1 TIO, 106.5 �g mL−1 DCA, 99.21 �g mL−1

DMT, 19.40 �g mL−1 SIM and 40.51 �g mL−1 CBZ. For ana-
lytes PTA, TIO, DCA and SIM two dilutions were performed.
These solutions were stored at 4 ◦C in the dark. Six calibration
standards were prepared daily covering the ranges presented in
Table 1, with concentrations distributed equally. The concen-
tration ranges were established by preliminary runs with each
analyte, obtaining the area of the chromatographic peak using
the isocratic method (IM) at 220 nm or by following the recom-
mendations of the Codex Alimentarious for maximum limits of
residuals [2].

In the IM, peak overlaps were observed between the analytes
DMT and PTA and between TIO and SIM. The accuracy and
precision of the second-order models were verified in these sit-
uations, in the absence of interferences, using nine test samples,
prepared only with the interest compounds according to a 32 fac-
torial design for these analytes and increasing concentrations for
the remaining ones. All solutions and standards were prepared
using calibrated volumetric flasks.

3.2. Chromatographic instrumentation and conditions

The HPLC system consisted of a Shimadzu VP Series Liq-
uid chromatograph equipped with a SIL-10AXL autosampler,
a model LC-10ATVP solvent pump and an SPD-10AVP DAD.
The data were acquired and exported with ClassVP software,
Version 6.1, where a wavelength range of 190–370 nm was mon-
itored, with an acquisition rate of 0.24 s for the isocratic method
and 0.64 s for the gradient method (GM). A Novapack C18 4 �m
column (150 mm × 4.6 mm) from Waters and a similar guard
column were used for the separations.

In the isocratic method, the separations were carried out with
50:50 (v/v) acetonitrile:water as mobile phase, the water was
acidified to pH 3.0 with phosphoric acid and a flow rate of
0.60 mL min−1 was used. The gradient elution (GM) was car-
ried out with a binary gradient composed of solvent A (water
acidified by adding phosphoric acid, pH 3.0) and solvent B (ace-
tonitrile) according to the following program: 15–25% B in
20 min (0.6 mL min−1); 25–30% B in 10 min (0.6 mL min−1);

30–40% B in 10 min (0.6 mL min−1); 40–50% B in 10 min
(1.0 mL min−1); 50–55% B in 5 min (1.0 mL min−1); 55% B
for 5 min (1.0 mL min−1); 55–15% B in 10 min (1.0 mL min−1);
15% B for 10 min (0.6 mL min−1) to return to the initial condi-
tions.

3.3. Solid-phase extraction (SPE)

For SPE, 1.00 mL Oasis HLB cartridges purchased from
Waters were employed. The cartridges were conditioned with
2.50 mL of methanol and 2.50 mL of water. Then 2.50 mL of red
wine were added and allowed to slowly percolate. The cartridges
were then washed with 1.50 mL of a 2% (v/v) isopropanol solu-
tion and dried for 20 min. The pesticides were directly eluted
with 3.00 mL of ethyl acetate in a Florisil laboratory-made car-
tridge, allowed to percolate through the cartridges under positive
pressure, and collected in an assay tube. The solvent was evapo-
rated to dryness at room temperature under a dry nitrogen stream.
The dry sample was redissolved with 1.00 mL of acetonitrile,
obtaining a concentration factor of 2.5. Finally, the solution was
transferred to an autosampler for analysis.

3.4. Wine samples

Samples were composed of the Juan Carrau red wine (Santana
do Livramento, Brazil). This wine was obtained from grapes that
had not been treated with synthetic pesticides. Ten samples were
spiked with the compounds of interest and analyzed by both the
isocratic and gradient procedures. For a better evaluation of the
prediction errors, in 6 of the 10 wine samples the analytes were
spiked into the extracts obtained after SPE, therefore no loss
of the target analyte due to the SPE method was considered in
these 6 extracted samples (EX). A volume of 100 �L was used
to spike the analytes into the extract, therefore the interferences
in these samples were diluted by ten percent. In the last four
wine samples, the compounds were spiked before SPE, therefore
the losses were considered (WI). Both the EX and WI samples
were spiked at four distinct levels of pesticide concentration,
distributed over the calibration range. All samples and standards
were analyzed in duplicate.

3.5. Data analysis

The data obtained from the ClassVP software, Version 6.1,
were loaded into Matlab 6.5 [40] and the calculations were car-
ried out with the PARAFAC code available from R. Bro [41]. All
PARAFAC models were developed using DTLD as initialization
method, 10−6 as convergence criterion, a maximum number of
iterations of 2500 and nonnegativity as constraints in all modes.
The BLLS scripts, as well as time-shift and baseline correction
routines were developed in our laboratory.

4. Results and discussion

Fig. 2A and B presents the chromatogram detected at 220 nm,
between 2 and 14 min using isocratic elution (IM). In the stan-
dards (Fig. 2A), it can be observed that DMT and PTA are highly
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Fig. 2. Chromatogram using the isocratic method (IM) at 220 nm. (A) Calibration standards and (B) EX and WI samples.

overlapped, presenting just one peak at approximately 2.7 min.
For TIO and SIM, a slight overlap was observed, while CBL
and the remaining compounds were resolved. It is also observed
that when a wine sample (EX or WI) is analyzed (Fig. 2B), the
interferences overlapped with DMT, PTA TIO, SIM and CBL,
leading to three distinct situations in the IM, where it is neces-
sary to apply second-order calibration models. In the GM, all
analytes are resolved in the standards (Fig. 3A), but in the EX

and WI samples an overlap of interferences with the analytes
DMT, PTA, SIM, and CBZ is observed (Fig. 3B). In Fig. 2A,
can be observed that the chromatographic analysis in the IM end
at 14 min for the standards, but for the EX and WI samples it is
necessary continue the analyses until approximately 23 min due
interferences present in the wine that are eluted later (not shown
in Fig. 2B). With gradient elution (GM) the chromatographic
analysis ends at approximately 60 min in all samples due to the

Fig. 3. Chromatogram using the gradient method (GM) at 220 nm. (A) Calibration standards and (B) EX and WI samples.
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Table 2
Preprocessing used and number of factors used for model development in the situations where the two second-order models were applied

Situation Method Preprocessing No. of factors

CBL IM Time shift correction, mean centering 2
TIO and SIM IM Time shift correction, mean centering 3
PTA and DMT IM Time shift and background correction, mean centering 3
CBZ GM Baseline and time shift correction, mean centering 2
SIM GM Baseline, background and time shift correction, mean centering 1
DMT GM Baseline and time shift correction 2
PTA GM Time shift correction 2

The mean centering operation was performed only when the BLLS model was applied.

gradient program used. Therefore, the GM was approximately
three times longer than the IM.

In Figs. 2 and 3, it is possible to observe the occurrence of
time shifts in both methods. The GM presents an additional
baseline variation, characteristic of the gradient elution of the
mobile phase. In order to achieve better results with BLLS and
PARAFAC, the time shifts should be corrected, since it repre-
sents a lose of the trilinearity of the data sets (which is required
for these models), this was performed with the method described
in Section 2.4. For the baseline variations, when it is significa-
tive it may led a sistematic error in te estimated concetrations,
thefore it was appropriated corrected based on the procedure pro-
posed by Boelens et al. [42]. Table 2 presents a description of
the preprocessing used in each situation where the second-order
calibration models were applied. Although mean centering is
not usually employed in multi-way analysis, we found that this
procedure led to better results with BLLS, probably by coping

with base line drifts. The mean centering consists of calculating
the mean matrix of all calibration samples, and subtracting the
latter one from all sample data matrices before applying BLLS,
i.e. both calibration and unknown. The number of factors repre-
sents the number of factors or components used for the models
development, which were equal for PARAFAC and BLLS (for
BLLS the factors is equal to the number of calibrated analytes
plus interferences used). Fig. 4A–F presents the chromatograms
detected at 220 nm before and after the preprocessing for the
three situations in which BLLS and PARAFAC were applied in
the IM.

Fig. 4A and B show the region where CBL is eluted, its deter-
mination using univariate regression leads to rather large relative
errors of prediction (REP), which means that a significant
interference is present. In Fig. 4B, it is observed that the time
shifts were efficiently corrected, showing the selected region
used for model development. The results obtained with the

Fig. 4. Chromatograms at 220 nm for the IM before (left) and after (right) preprocessing was applied for the standards (solid) and extract samples (dashed). (A and
B) CBL, (C and D) TIO and SIM and (E and F) DMT and PTA.
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Table 3
Figures of merit estimated for the test (T) and EX samples using the IM

RMSEPa REPb SENc LODa

T EX T EX T EX T EX

DMT 0.21 0.27 7.6 5.1 0.4 0.3 0.016 0.13
PTA 0.02 0.08 4.1 7.2 4.9 2.7 0.001 0.015
TIO 0.03 0.11 1.6 2.6 4.6 0.7 0.001 0.036
SIM 0.01 0.08 5.0 7.9 3.4 1.7 0.002 0.015
CBL 0.07d 0.08 3.0d 2.4 3.2d 5.8 0.002 0.012
DCAd 0.08 0.37 1.3 5.2 1.1 0.006
CBZd 0.12 0.24 3.2 7.2 0.9 0.007

Results expressed in: (a) �g mL−1, (b) percentage (%), (c)
105 intensity/(�g mL−1). (d) obtained with univariate regression; For
DMT, PTA, TIO, SIM and CBL the results were obtained with the BLLS
model, whereas for DCA and CBZ by univariate regression.

models developed using the preprocessing conditions presented
in Table 2 are shown in Table 3, where the figures of merit were
calculated as described in Section 2.3 (for RMSEP and REP, the
estimated values were determined for each sample individually
and the Eqs. (17) and (18) were applied). It is interesting to note
that if only the region of the CBL peak is selected for model
development (between variables 100 and 180 in the Fig. 4B),
BLLS leads to larger errors in the EX and WI samples than those
obtained with the selected region shown in Fig. 4B (between the
variables 45 and 180). When the BLLS model is built with this
smaller region and two factors (one analyte and one interferent),
the recoveries in the EX samples are approximately 10% lower
(on average) than the expected value, therefore showing a signif-

icant negative systematic error. If the model is built with a single
factor a larger error (18%) is obtained, only for the EX sample
having a low analyte concentration. However, when the decom-
position residuals left out by the model are compared with the
calibration samples, it is observed that the EX samples present
residuals that, on average, are approximately 9 times larger,
whereas using the selected region presented in Fig. 4B this
ratio is only 4 times, and the model present good results for all
samples. These results may be due to the difficulty of the BLLS
model in estimating the profile of the interference by the RBL
process when only the region of the CBL peak is selected. By
the way, this difficulty is not observed in the PARAFAC model.

Fig. 5 presents the estimated time and spectral profiles by
BLLS and PARAFAC for the three situations in the IM. It can
be observed that for all situations for the IM, the time profile
of the interferece do not present a single maximum, which rep-
resent lack of the decomvolution of the models. Inspecting the
residuals left out by the model it is observed not random varia-
tions that could not be modeled for either PARAFAC or BLLS.
However, if an additional factor is introduced, this behavior is
still observed, and the core consistency for PARAFAC drops to
lower values than the observed without this factor, furthermore
an increase of the RMSEP and REP were observed. In Fig. 5, it
is also be observed that the estimated profiles by PARAFAC and
BLLS present a very good agreement, where the larger differ-
ences were observed for DMT and PTA (Fig. 5E and F), but the
correlation coefficients between these profiles is approximately
0.975 in the time dimension and 0.997 in the spectral dimen-
sion. The comparison of theses profiles with those observed for

Fig. 5. Normalized chromatographic (left) and spectral (right) profiles obtained with the BLLS (solid) and PARAFAC (dashed) models using the IM for: (A and B)
CBL, (C and D) TIO and SIM and (E and F) DMT and PTA.
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Fig. 6. Variation of the residual variances obtained from the time shift correction
in the EX samples for TIO and SIM using the IM.

the experimental profiles for the analytes also shows a good
agreement, with correlations coefficients of at least 0.98.

In Fig. 4C and D, the chromatograms at 220 nm for TIO
and SIM are shown, before and after time shift corrections.
Apparently, a good alignment between the standards and the EX
and WI samples is observed. However, analyzing the residuals
obtained in the time shift correction process for the EX samples,
which are presented in Fig. 6, it can be observed that two lines
do not reach a minimum. These lines correspond to replicates of
the sample with the lowest concentration, and this would sug-
gest that the correction is not efficient at the lower concentration
level for these analytes in the presence of the interferences from
the sample. Both BLLS and PARAFAC present an error around
20% for this sample, while for the other samples the error is
less than 10%, therefore this sample was not considered for the
calculations of the figures of merit (presented in Tables 3–5).
Others options, for cases where the time shift correction is not
possible, is the application of models that can handle with this
kind of shift, such as PARAFAC2 and MCR-ALS.

For the test samples, DMT and PTA in the IM presented good
results, showing REP of 7.6 and 4.1%, respectively (Table 3).
These results confirm the ability of BLLS in the deconvolu-
tion of these highly overlapped analytes. Fig. 4E and F presents
the region where DMT and PTA were eluted in the IM. It can

Table 4
Figures of merit estimated for EX samples using the GM

RMSEPa REPb SENc LODa

DMT 0.17 6.3 0.05 0.084
PTA 0.03 9.6 0.8 0.008
SIM 0.02 1.5 1.5 0.004
CBZ 0.31 9.0 0.3 0.012
TIO 0.23 5.9 0.5 0.013
CBL 0.41 10 1.9 0.004
DCA 0.24 3.6 0.6 0.011

Results expressed in: (a) �g mL−1, (b) percentage (%), (c) 105 intensity over
�g mL−1. For DMT and PTA the results were obtained with PARAFAC, for SIM
and CBZ with BLLS, whereas for TIO, CBL and DCA by univariate regression.

be observed that the analyte peaks are covered by the interfer-
ences of the EX and WI samples. In this situation, the time shift
correction is not effective, and both the BLLS and PARAFAC
models fail in the determination of the analytes. However, in an
attempt to reduce the interferences, a background correction was
performed by subtracting a blank sample (avoiding negative sig-
nals) from the EX and WI samples. The resulting matrices were
aligned with the standards and the BLLS and PARAFAC models
were developed. Fig. 4F presents the results of these corrections,
and it can be observed that for some WI samples the time shift
correction was not effective. This result may be explained by the
poor recoveries of the SPE method, which makes the analyte sig-
nal too small to be corrected. For EX the time shift correction was
apparently effective and the BLLS and PARAFAC models pre-
sented poor results only for the lowest concentration, which was
not considered for RMSEP and REP calculations. Considering
the other samples the REP values obtained were approximately
7 and 5%, for PTA and DMT respectively. Fig. 5E and F presents
the chromatographic and spectral profiles estimated by BLLS,
which are in a good agreement with the expected profiles for
these analytes.

In the GM, there were four distinct situations in which
the second-order models were necessary, consisting of regions
where the compounds PTA, DMT, SIM, and CBZ were eluted.
The other compounds could be determined by univariate regres-
sion. For SIM and CBZ, and using procedures similar to that
discussed for the situations for IM (Table 2), the analytes could
be determined. The results for the EX samples are shown in
Table 4. By using either the BLLS or the PARAFAC model in
the determination of PTA and DMT, large errors (>20%) were

Table 5
Mean recovery values (%) and estimates of standard deviations (in parenthesis), obtained in EX and WI samples using both IM and GM, applying the models BLLS
(bold), PARAFAC (normal) or univariate regression (italics)

IM GM

EX WI EX WI

DMT 106 (11) 101 (5) 97 (22) 90 (26) 98 (6) 58 (13)
PTA 99 (12) 105 (6) 36 (34) 74 (21) 104 (10) 49 (19)
TIO 98 (2) 98 (2) 62 (15) 63 (14) 106 (1) 69 (16)
SIM 93 (2) 92 (2) 95 (7) 93 (6) 100 (2) 100 (2) 81 (21) 80 (19)
CBL 99 (2) 98 (2) 110 (33) 100 (3) 108 (5) 110 (11)
DCA 105 (2) 26 (12) 103 (1) 43 (10)
CBZ 106 (2) 30 (10) 107 (2) 109 (3) 47 (22) 57 (20)
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Fig. 7. Chromatographic profiles obtained for DMT (A) and PTA (B) using the GM, where: (−) Interference obtained with PARAFAC, (�) profiles for DMT and
PTA with PARAFAC (©) profiles for DMT and PTA in a standard.

obtained for EX when the model was built using the standard
samples in the calibration step. However, when the EX and WI
samples were decomposed with PARAFAC without including
the standards, a linear relation was observed, with a good agree-
ment with the amount of the analytes added to the extract. For
EX samples, the REP were approximately 6.3 and 9.6 % for
all EX samples, and 2.2 and 2.2% (discarding the sample with
the lowest concentration) for DMT and PTA, respectively. This
decomposition is possible only with PARAFAC, as the BLLS
model requires, in the calibration step, samples where all con-
centrations of the components are known. Therefore, the results
presented for these analytes in GM (Table 4) were obtained by
decomposing the 12 EX samples (6 samples in duplicate) plus a
WI sample, using the reference concentrations of the EX sam-
ples for building a model and estimating the concentrations of
both EX and WI samples. This procedure was necessary because
for these analytes the second-order advantage was not acquired
by the models. Therefore, it was not possible to build a cali-
bration with the standards and to estimate the concentration in
the samples where interferences occur. The explanation for this
fact is the difference of the peak shape for these analytes in the
standards and in the EX and WI samples. Fig. 7 presents the nor-
malized profiles for the PARAFAC model for the EX samples
and for a standard: in EX a broader peak is observed than that
observed in the standards. This means that for DMT and PTA
a data set formed by the standards and the EX or WI samples
does not follow the trilinear model assumed by PARAFAC and
BLLS.

Table 3 shows the results of the figures of merit using the IM
for the test and EX samples. For TIO, SIM, DMT and FTA, the
parameters SEN and LOD present better results in the test set
than in the EX samples, due to the presence of the interferences

in these samples, which cause a direct decrease of the sensitivity.
Comparing the two methods (Tables 3 and 4) no significant dif-
ferences for SEN and LOD values were observed. The RMSEP
and REP values show that GM presents better results for DMT,
PTA, SIM and DCA, whereas IM gives better values for TIO and
CBL, while both models give approximately the same prediction
ability for CBZ.

Table 5 presents the mean recovery values for EX and WI
samples, and shows both PARAFAC and BLLS results. Compar-
ing the results obtained by these two models, it can be observed
that they present approximately the same prediction ability in the
majority of cases. The most conflicting results were observed for
PTA and CBL using IM with WI samples. The WI samples pre-
sented the best results for CBL and SIM, with BLLS recovery
errors below 10% and estimates of standard deviations of 3 and
6%, respectively, showing that the SPE method is efficient for
these compounds. For the remaining cases low recoveries were
observed, demonstrating that they were not completely extracted
during SPE. In the estimates of standard deviations (in parenthe-
sis), it is observed that they are larger for all analytes in the WI
than in the EX samples, showing that this SPE method presents
poor reproducibility and should be improved for application in
routine analyzes.

5. Conclusions

HPLC with DAD constitutes a valuable tool for the simulta-
neous determination of pesticide residues in complex samples.
However, it has been shown that the presence of interferences
in the sample may constitute a serious problem. This paper
demonstrates that in certain circumstances this problem can be
solved by the application of second-order calibration models
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with suitable preprocessing tools. The second-order advantage
is a powerful characteristic of these methods, which mathemat-
ically separate the interferences overlapped with the analytes.
However, the results for the analytes DMT and PTA illustrate
the need for equivalent chromatographic and spectral profiles in
the standards and in the sample (meaning that the data matri-
ces in both standards and samples follow the bilinear model), in
order to apply the second-order models exploring the valuable
property of the second-order advantage.

The results obtained confirm the capability of BLLS to han-
dle complex samples, showing estimates of the concentration for
the analytes with the same quality as that obtained with the most
popular second-order model, PARAFAC. For the PARAFAC
model development the use of constraints or the chose of an apro-
priate model initialization may be necessary in some situations
for provide a better result, such as in linear dependent systems.
These parameters are tools that are very useful, and some times
provide a significant improvement in the results; however, they
also represent variables that should be optimized in the model.
On the other hand, BLLS presents the advantages of not requir-
ing initialization and constraints (even with linear dependent
systems [16]), also presenting a fast algorithm that can be easily
implemented. However, it was observed that PARAFAC presents
the great advantage of not requiring knowledge of all compo-
nents in the calibration samples, which is very important in
cases where the second-order advantage is not achieved, such as
for DMT and PTA using the GM, where the peak shape in the
standards and in the real samples were different, requiring the
application of standard addition methods.

The prediction results for the EX samples show that the GM
presented better performance than the IM just for SIM and DCA,
while IM is preferred for PTA, TIO and CBL, and approxi-
mately the same performance for DMT and CBZ. However, both
methods present relatively good results since all compounds pre-
sented REP values not larger than 10% in the EX samples. The
IM use a simpler chromatographic system with a total time three
times shorter than with the GM and the second-order advantage
was acquired in all situations where the models were applied.
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