Invasive Plant Science and Managemenr 2012 5:155-163

Detectin

Cutleaf Teasel (Dipsacus

laciniatus) along a Missouri Hng way with
Hyperspectral Imagery

Diego J. Bentivegna, Reid J. Smeda, and Cuizhen Wang*

Cutleaf teasel is an invasive, biennial plant that poses a significant threat to native species along roadsides in

Missouri. Flowering plants, together with understory rosettes, often grow in dense patches. Detection of cutleaf

teasel patches and accurate assessment of the infested area can enable targeted management along highways. Few

studies have been conducted to identify specific species among a complex of vegetation composition along roadsides.

In this study, hyperspectral images (63 bands in visible to near-infrared spectral region) with high spatial resolution

(1 m) were analyzed to detect cutleaf teasel in two areas along a 6.44-km (4-mi) section of Interstate I-70 in mid

Missouri. The identified classes included cutleaf teasel, bare soil, tree/shrub, grass/other broadleaf plants, and water.

Classification of cutleaf teasel reached a user’s accuracy of 82 to 84% and a producer’s accuracy of 89% in the two

sites. The conditional K value was around 0.9 in both sites. The image-classified cutleaf teasel map provides a

practical mechanism for identifying locations and extents of cutleaf teasel infestation so that specific cutleaf teasel

management techniques can be implemented.
Nomenclature: Cutleaf teasel, Dipsacus laciniatus L.

Key words: Roadside, hyperspectral remote sensing, weed detection.

Invasive weeds are highly competitive and spread quickly
in most habitats (Czarapata 2005). For many invasive plants,
distributions are not homogenous in natural areas. Instead,
those species often aggregate into patches depending on seed
dispersal, soil adaptation, microclimate, and topography
(Shaw 2005a). Management of invasive weeds is a major
challenge for land managers primarily because of limited
resources and diverse patterns of weed distribution.

Cutleaf teasel (Dipsacus laciniatus L.) is an invasive,
noxious weed in Missouri. It was first introduced in the
1840s from France for the textile industry in New York to
align wool fibers (Terres and Ratcliffe 1979). The spread of
cutleaf teasel has been facilitated by the construction of the
interstate highway systems (Solecki 1993).

As a biennial plant, cutleaf teasel grows as a rosette in the
first year and flowers during the summer of the next year. A
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smgle flowering plant may produce more than 33,000 seeds

' (Bentivegna 2006), which could be dispersed up to
1 5 m (4.9 ft) around the parent plants (Werner 1975).
Seed dispersal can also be facilitated by mowing or floating
on water (Solecki 1993). As flowering plants die, open
areas are filled by existing rosettes, as well as by new
seedlings emergent in infested areas. Seedling emergence is
relegated primarily to spring and fall (Bentivegna 2000).
Rosette plants produce a dense canopy that ultimately
excludes desirable species.

Dense patches of cutleaf teasel aggressively colonize low
maintenance areas, such as roadside rights-of-way, which
often serve as sced-dispersal corridors (Hoffman and
Kearns 1997; Solecki 1993). Tall, flowering plants along
highways can reduce traffic visibility and increase hazards
to motorists (R. Swanigan, personal communication).
Cutleaf teasel reduces the diversity of native, desirable
species and prominent grasses, such as tall fescue [Lolium
arundinaceum (Schreb.) S.J. Darbyshire]. Taproots of
cutleaf teasel reduce the infiltration of water and increase
water erosion compared with the presence of grasses (Lacey
et al. 1989). Therefore, control of cutleaf teasel is needed to
reduce the negative effects along roadsides.

Typical management of cutleaf teasel involves mowing
and herbicide application. Mowing rosettes decreases the
competitiveness of plants, but the time of mowing is

Bentivegna et al.: Detecting cutleaf teasel « 155



Interpretative Summary

Cutleaf teasel is an exotic weed that infests roadside
environments in Missouri. As a growing biennial, the plant
develops as a rosette during the first year and bolts during the
second. Dense patches contain flowering plants with understory
rosettes. The objective of this work was to develop approaches for
detecting cutleaf teasel patches with accurate assessment in a
complex of species along a roadside. Thus, management of cutleaf
teasel could be located at specific sites. Two hyperspectral images
(63 bands with 1-m spatial resolution) were analyzed to detect
cutleaf teasel along the Interstate Highway 1-70 in mid Missouri.
Classification of cutleaf teasel reached a user’s accuracy of 82 to
84% and a producer’s accuracy of 89% at the two sites. The
image-classified teasel map provides a practical mechanism for
identifying the locations and extents of cutleaf teasel infestation so
that specific management techniques can be implemented.

critical. Plants mowed before flowering initiate new growth
and produce viable seeds (Glass 1991). Mowing plants
during flowering enhances the dispersal of seeds (Chees-
man 1998) because viable seeds are produced within 12 d
of flowering initiation (Bentivegna 2008). Herbicides
commonly used for cutleaf teasel control include growth
regulators and acetolactate synthase inhibitors. These
compounds are applied postemergence. To reduce the
expense and environmental effects of these herbicides, site-
specific herbicide application is often desirable, with only
the infested areas treated (Shaw 2005a, 2005b). However,
detection of cutleaf teasel patches via field surveys is time
consuming and dangerous along highways. For example, an
estimated 40,000 vehicles d " use Interstate 70 in Missouri
(R. Swanigan, personal communication).

Remote-sensing technology provides an effective method
for large-area detection of plants growing in distinct patches.
Currently, aerial digital photographs in true color or color
infrared have been used widely to detect plants with unique
spectral signatures (Wang et al. 2008). These photos are
often called multispectral images because only three or four
spectral bands (visible to near infrared) are used to record
data. Although these multispectral images could reach
meter-scale resolution, their application in identifying
specific weed species in heterogeneous landscapes is limited
primarily because of large variation in plant species,
phenology, and biophysical conditions (Lawrence et al.
2006).

Hyperspectral remote sensing can record data in the
visible to infrared region at much higher spectral resolutions.
Instead of three to four broad bands from typical aerial
images, hyperspectral images generate hundreds of bands at
narrow bandwidths in the same spectral region. These
narrow-band images can discriminate subtle, spectral
differences between weeds and native species and thus
improve the capability of separating target plants from other
species (Lass et al. 2002). In past studies, hyperspectral

imaging has been used to detect non-native species, such as
Hottentot fig [Carpobrotus edulis (L.) N.E. Br.] (Underwood
et al. 2003), spotted knapweed (Centaurea stoebe L.) (Lass
et al. 2002; Lawrence et al. 2006), lead tree [Leucaena
leucocephala (Lam.) de Wit] (Tsai and Chen 2004), and
sericea lespedeza [Lespedeza cuneata (Dumont) G. Don)
(Wang et al. 2008). Ustin et al. (2002) found that, among
various classifiers, supervised methods were superior to
unsupervised classifiers, and images with contiguous bands
provided better results than did those with selected bands or
band ratios (e.g., vegetation indices).

Most of these published studies were conducted in
relatively monotypic landscapes, such as croplands and
pastures. Only limited studies have been conducted re-
garding weed detection in highly heterogeneous environ-
ments, such as riparian habitat (DiPietro et al. 2002;
Hamada et al. 2007) and native communities (Underwood
et al. 2003). In a preliminary study, Wang et al. (2010)
compared several hyperspectral classifiers in detecting cutleaf
teasel in a highly diverse highway environment. The results
showed that, when non-teasel land covers were masked out
of the roadsides, the spectral angle mapper (SAM) classifier
(Kruse et al. 1993) provided the best classification results.
However, with limited ground truthing data because of the
complexity of species composition along highways, its
accuracy was 15% lower than the maximum-likelihood
classifier (MLC) in a regular classification process (Benti-
vegna 2008). The present research aimed at reducing the
dependency of training data and improving the validity of
cutleaf teasel mapping using hyperspectral imagery along the
Interstate Highway 70 (I-70) in mid-Missouri.

Materials and Methods

Study Area and Vegetation Composition. Two areas
along a 6.44-km (4-mi) section of Interstate Highway 70
in Cooper County, MO, were explored in this study. A
driving survey revealed several spots infested with cutleaf
teasel. One was around Exit 89 (hereafter, Exit 89 site), and
the other was close to the Lamine River (hereafter, Lamine
site). Soil type at Exit 89 was loam with 5.4% soil organic
matter (35% sand, 42.5% silt, and 22.5% clay), and at the
Lamine site, soil was clay loam with 5.4% of organic
matter (40% sand, 32.5% silt, and 27.5% clay). Tall fescue
was the dominant plant species along I-70. Other species
included sericea lespedeza, johnsongrass [Sorghum halepense
(L.) Pers.], and common milkweed (Asclepias syriaca L.).
Some shrub and tree species, such as oak (Quercus spp.),
hickory (Carya spp.), and pine (Pinus spp.), were also
observed.

A reference site with pure stands of cutleaf teasel was
established in the 2,250 m? (24,219 ft*) Bradford Research
and Extension Center (BREC), University of Missouri. It
was located 64 km east and 4 km south of the Lamine site.
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This site comprised stands of pure rosette and flowering
plants. Spectra of these stands were extracted from a
hyperspectral image and served as reference spectra in this
study. Soil at this site was a Mexico silt loam (fine,
smectitic, mesic Vertic Epiaqualfs) (NRCS 2008).

Data Collection. At 10:00 A.Mm. to 2:00 p.M. on July 25,
20006, three hyperspectral images were acquired by the
Center for Advance Land Management Information
Technologies (CALMIT) at the University of Nebraska-
Lincoln and Aviation Institute of the University of
Nebraska-Omaha, supported by the Nebraska Airborne
Remote Sensing Program. The platform of the sensor was a
Piper Saratoga aircraft (NIS6CA, Piper Aircraft Inc, 2926
Piper Drive, Vero Beach, FL 32960), with a flight height of
1,538-m aboveground level. The hyperspectral image was
acquired with the AISA (Airborne Imaging Spectroradi-
ometer for Application) sensor, a pushbroom imaging
spectrometer built by Spectral imaging Ltd. Company
(P.O. Box 110, Teknologiantie 18A, Oulu, 90571, Fin-
land). Each image contained 63 bands at 9.8-nm bandwidth
in a spectral region of 401 to 981 nm (visible to near-
infrared wavelength), with a pixel size of 1 m (3.3 f1).

Weather conditions were conducive for data collection
during the flight time. Average weather conditions were clear
with 32 C (89.6 F) air temperature, 39% relative humidity,
4ms ' (13 fcs~') wind speed, and 815 W m ™ spectral
radiations. The AISA images delivered by CALMIT were
corrected radiometrically, atmospherically, and geometrical-
ly with the Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes algorithm in the ENVI software (ENVI
1999; Exelis Visual Information Solutions, 4990 Pearl East
Circle, Boulder, CO 80301). Each pixel was assigned a
digital number to represent surface reflectance.

Image Classification. The highway environment was
represented by patches of diverse land covers: bare soil,
water, tall fescue—dominated grasses, cutleaf teasel, and other
plant species, such as broadleaf forbs, shrubs, and trees.
Grasses were more evident along the Exit 89 site, whereas
more tree/shrub patches were observed along the Lamine
site. For patches with similar vegetation types, spectral
responses at different locations could vary based on
heterogeneous biophysical conditions, such as plant height
and density, soil fertility, and water availability. Therefore, it
was difficult to identify representative training data sets from
the AISA images at the two study sites. A stepwise,
unsupervised/supervised hybrid classification algorithm was
applied in this study to detect cutleaf teasel patches in a
multi-step process.

Unsupervised classification groups image pixels statisti-
cally into a predefined number of clusters in an /N-
dimensional feature space and then extracts land-cover
classes with the analyst’s posteriori knowledge (Jenson
2004). It does not require training signatures for land covers

and, therefore, minimizes the uncertainties of training-data
selection in a heterogeneous environment (Schowengerdt
2007). In this study, we applied a commonly accepted,
unsupervised classifier, the ISODATA (Iterative Self-
Organizing Data Analysis Techniques) module in ERDAS
Imagine V9.0. ERDAS Imagine 9, 2005; ERDAS, Inc. 5051
Peachtree Corners Circle, Norcross, GA 30092-2500). With
iterative optimization, pixels of the AISA image were
grouped into 300 clusters with the criteria of minimal
spectral distances from cluster means and standard devia-
tions. A convergence threshold of 0.95 was selected, which
indicated that the process stopped when 95% of pixels
remained unchanged between two adjacent iterations. Based
on the analyzer’s familiarity with the study sites, these
clusters were visually compared with the AISA image and
assigned to representative land cover types.

In this study, we assigned 20 classes to represent complex
land covers and subtle variations in each cover type. For
example, because of the extremely heterogeneous herba-
ceous cover along the highway, we assigned 10 classes of
grasses/broadleaf forbs. Detailed information on the 20
classes is described in the results and discussion. To
improve the validity in identifying cutleaf teasel, its
signatures in both study sites were compared with pure
stands of rosette and flowering plants in the reference site.

Spectral signatures of these ISODATA-extracted 20
classes were then recorded as a priori training data to
perform a supervised classification process. Here, we
adopted the MLC algorithm to classify the original AISA
images. The 20-class MLC calculated N-space (» = 63
total bands in this study) variance and covariance to build a
joint-probability density function for each class. Each pixel
was assigned to the class with the highest probability.
Although mathematically complex and computationally
slower, the MLC was more accurate and provided higher
spatial contiguity than did the ISODATA algorithm that
was based on in-band statistics only. Because cutleaf teasel
was the target species in this study, the 20 classes were
regrouped into cutleaf teasel, water, bare soil, tree/shrub,
and grass/broadleaf. Finally, a 5-by-5 majority filtering
process was conducted to reduce noise in the classified
patches (Lass et al. 2002; Okamoto et al. 2007).

Accuracy Assessment. To assess the unsupervised/super-
vised class maps in the two study sites, we adopted an error
matrix approach for accuracy assessment (Congalton and
Green 1999). With a stratified random-sampling rule
(Congalton and Green 1999), 50 points for each class were
extracted from a class map. For cutleaf teasel, ground truth
at those points was confirmed with field surveys. Other
classes, such as bare surface, water, grass/broadleaf, and
trees, were easily identified via visual interpretation of
50-cm (19.7-in) resolution aerial photos taken by local
vendors along I-70 in July 2007.
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By comparing the image-classified and reference class
types for the 250 points, an error matrix was constructed to
specify the numbers that were correctly identified and those
that were mis-identified as other classes. The overall
accuracy, producer’s accuracy, and user’s accuracy of the
classification were then calculated (Congalton and Green
1999; Jensen 2005). The overall accuracy was the ratio
between the number of correct points (the points at which
the classes were correctly identified) and all points used in
the assessment (250 in this study). This ratio explained the
general agreement between image-derived classes and
ground-reference data. The producer’s and user’s accuracies
could be better applied in examining the accuracy of a
specific class, e.g., cutleaf teasel in this study. Producer’s
accuracy was the ratio between the number of correctly
identified points of a specific class and all reference points
of this class (ground truth). Therefore, it was a measure of
omission error, indicating the underestimation that a patch
was not identified in the classification. User’s accuracy, on
the other hand, was the ratio between the number of
correct points of a specific class and all points that are
assigned to that class (50 in this study). User’s accuracy
was a measure of commission error or assigning a patch to
a class to which it did not belong (overestimation).
Producer’s and user’s accuracies of cutleaf teasel explained
the possibilities of its underestimation and overestimation
in image-based teasel mapping at each study site.

Another commonly applied technique of accuracy
assessment is K analysis. The 1 coefficient of agreement
(x value) is a multivariate statistic used to measure the
agreement between the image-classified and ground-
reference data (Jensen 2005). The range of x values is
from 0 to 1. A higher x value indicates greater accuracy for
the overall classification. Similarly, the conditional ¥ value
was calculated as a measure of classification accuracy of a
specific class. These variables provided a way to quantita-
tively evaluate the creditability of remote-sensing tech-
niques for cutleaf teasel mapping.

Cross validation was also performed in both study sites
to test the repeatability of the unsupervised/supervised
approach in this study. Classification of one site was
conducted using the training signatures of the other site.
Then, its accuracies were compared with the ones using the
original spectral signatures. In this way, we were able to
assess the robustness of the approach and its feasibility if
adopted in different areas or time frames.

Results and Discussion

Cutleaf teasel along I-70 was flowering at the time of
acquiring the AISA image. The patches were composed of
tall, flowering plants (up to 2.2-m with white flowers) and
understory rosettes. Although flowering plants were not

significantly shading understory plants (Werner 1977),
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Figure 1. Sampled spectra of pure rosettes and flowering plants
at Bradford Research and Extension Center (BREC) and mixed
flowering/rosette plants of cutleaf teasel at the Exit 89 and
Lamine, MO, sites.

rosettes intercepted up to 95% of the light (Bentivegna
2006). The spectral characteristics of flowering and rosette
plants could be different based on photosynthetic rates and
light interception. Consequently, the spectra of cutleaf
teasel patches along I-70 varied with mixed composition of
flowering and rosette plants.

At each study site, one sample patch of cutleaf teasel was
selected, and its reflection spectrum was extracted from the
AISA image. These spectra were a mixed response of
flowering and rosette plants. Reference spectra of pure
rosette and flowering plants were extracted at the reference
site. (BREC). In Figure 1, differences of the spectral
signatures were evident between pure stands at BREC
and mixed stands along I-70. Mature plants at BREC were
in full flower, whereas flowering of highway plants was
almost complete. Cutleaf teasel at BREC was established
on a more-productive soil, which resulted in more fertile
plants with less overall stress. As a result, cutleaf teasel at
BREC exhibited a stronger spectral response than did
plants at the Exit 89 and Lamine sites.

Spectral differences in Figure 1 could also be explained
with plant physiology. Rosette plants absorbed more red
light (the trough at bands 30-35) than did flowering plants
at BREC, indicating that rosette plants were more
photosynthetically active. Flowering plants at the highway
sites had a similar spectral reflectance. However, the red
absorption trough (bands 30-35) from chlorophyll in
teasel leaves was more observable at the Lamine site than it
was at the Exit 89 site. The green reflection peak from leaf
chlorophyll was not clear at the Exit 89 site and its near-
infrared reflection from internal leaf structures was lower
than that at the Lamine site. These characteristics indicated
that the sampled cutleaf teasel patch at the Lamine site
contained a greater level of coverage with rosette plants.
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Figure 2. Spectra of the 20 training signatures (in five land cover
categories) at the (A) Exit 89 site and the (B) Lamine, MO, site.
The numbers in parentheses represent the number of classes in
each land cover type.

Spectra of the 20 training signatures (in five land cover
types) were extracted after regrouping the 300 clusters from
unsupervised classification of the AISA images (Figure 2).
Because of a heterogeneous landscape along the highway
environment, multiple classes were often observed in a
single land cover type. At the Exit 89 site, there were ten
grass/broadleaves, four tree/shrubs, three bare soils, two
waters, and one cutleaf teasel class among the training data
sets. At the Lamine site, there were eight tree/shrubs, eight
grass/broadleaves, two bare soils, one water, and one cutleaf
teasel class among the training data sets. As shown in
Figure 2, bare soil surfaces were characterized by a high
response in visible bands (bands 1 to 31) and low slopes
between visible and near-infrared bands (bands 31 to 40).
Water surfaces had distinctively low reflectance in near-
infrared bands. The vegetative classes, e.g., cutleaf teasel,
grass/broadleaves, and tree/shrubs, had similar spectra,
featuring a peak in green reflection, a trough in red
absorption, and high near-infrared reflection in the spectra.

With the training signatures in Figure 2, the class map
was developed using a supervised MLC method. Figure 3

describes the detailed information on cutleaf teasel at the
Exit 89 site. To demonstrate, a ground picture of a cutleaf
teasel patch (taken in July 2006) is shown in Figure 3A,
which was also observed and marked in the enlarged AISA
image (Figure 3B). The AISA image of the whole site is
shown in Figure 3C (in color compositions of 472.35,
544.67, and 638.19 nm as blue, green, and red,
respectively). In the class map at this site (Figure 3D),
most cutleaf teasel patches were detected along the
roadsides of I-70.

As an invasive plant, cutleaf teasel covered only limited
area along the roadsides, whereas the Exit 89 site had three-
fold more pixels of cutleaf teasel than did the Lamine site.
The Missouri Department of Transportation (MoDOT)
frequently mows the center median and the first 4.5 m along
the edge of the east- and west-bound lanes. Therefore,
cutleaf teasel likely could not survive in those areas. Most
cutleaf teasel patches were observed along the roadside,
where slopes were often steeper than 18° and where rocks
were present. In those areas, human disturbance was limited,
and mowing was not possible. For management of teasel in
those areas, establishment of competitive, desirable plants or
repeated applications of selective herbicides are necessary.

The unsupervised/supervised classification approach in
this study reached similar accuracies at the two study sites.
When all five land-cover categories were considered, the
overall accuracy was 92% at the Exit 89 site (Tables 1 and
2) and 90% at the Lamine site (Tables 3 and 4). The x
value was approximately 0.9 at both study sites (Table 2
and 4). With the exception of the grass/broadleaf class at
the Lamine site, the non-teasel classes had omission errors
of < 10%. In other words, more than 90% of these classes
were identified correctly. Grass/broadleaf at both sites was
most likely to be overestimated. For example, at the Exit 89
site (Table 1), 55 points were classified as grass/broadleaf,
whereas only 47 of those points belonged to that class in
the ground-truth data. At the Lamine site, 53 points were
classified as grass/broadleaf, whereas only 42 of those points
belonged to that class in the ground-truth data (Table 3).

Cutleaf teasel was classified with a producer’s accuracy
(omission error) of approximately 90% at both sites. The
user’s accuracy (commission error) ranged from 82% at the
Exit 89 site to 84% at the Lamine site. The errors were
primarily from the confusion between cutleaf teasel and
grass/broadleaf class. At the Exit 89 site, five cutleaf teasel
points were misclassified as grass/broadleaf (underestimation
of cutleaf teasel) and two grass/broadleaf points were
misclassified as teasel (overestimation of cutleaf teasel). At
the Lamine site, there were eight points in underestimation
and five points in overestimation, all confused with grass/
broadleaf points. The misclassification between cutleaf teasel
and grass/broadleaf may result from mixed pixels along I-70
where cutleaf teasel often grows in narrow, long patches. Ata
Im pixel size for the AISA images, some cutleaf teasel pixels
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Figure 3. Cutleaf teasel patches (A) along Highway I-70 in July 2006, (B) a 1-m pixel of a cutleaf teasel patch at Exit 89, (C) an AISA
(Airborne Imaging Spectroradiometer for Application) image (wavelengths of 472.35, 544.67, and 638.19 nm) of the study area, and
(D) a classification map of cutleaf teasel using maximum-likelihood classification.

Table 1. Error matrix of the maximum-likelihood classification of AISA (Airborne Imaging Spectroradiometer for Application)—
derived class map at the Exit 89 site, Cooper County, MO.*

Ground reference

Image-based class map Cutleaf teasel Water Bare soil Tree + shrub  Grass + broadleaf Row total
Cutleaf teasel 41 4 5 50
Water 50 50
Bare soil 2 46 2 50
Tree/shrub 1 47 1 50
Grass/broadleaf plants 2 47 50
Column total 46 50 51 47 55 250

*Bolded numbers (diagonal) indicate the correctly classified pixels within each category.
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Table 2. Producer’s accuracy, user’s accuracy, and K coefficient
matrix of the maximum-likelihood classification of AISA
(Airborne Imaging Spectroradiometer for Application)—derived
class map at the Exit 89 site, Cooper County, MO.

Table 4. Producer’s accuracy, user’s accuracy, and K coefficient
matrix of the maximum-likelihood classification of AISA
(Airborne Imaging Spectroradiometer for Application)—derived
class map at the Lamine site, Cooper County, MO.

Producer’s  User’s K Producer’s  User’s K
Class accuracy  accuracy  Coefficient Class accuracy  accuracy  Coefficient
Cutleaf teasel 89.1 82 0.80 Cutleaf teasel 89.4 84 0.78
Water 100 100 0.8 Water 100 90 1
Bare soil 90.2 92 0.93 Bare soil 95.9 94 0.9
Tree/shrub 100 94 0.97 Tree/shrub 87.5 98 0.93
Grass/broadleaf plants 83.9 94 0.88 Grass/broadleaf plants 79.3 84 0.92
Opverall accuracy 92.4 Opverall accuracy 90
K Coefficient 0.91 K Coefficient 0.88

were inevitably mixed with the dominant species, i.e., grass/
broadleaf class in this study.

Classification errors of cutleaf teasel may also stem from
the temporal variation between AISA image acquisition and
the ground-reference data collected for accuracy assess-
ment. Although cutleaf teasel reference points were
identified during field surveys at the time of the AISA
flight, other reference data were collected in an aerial photo
acquired in spring 2007, almost 1 yr after the AISA image
was acquired. Land cover may have changed during that
period. Some cutleaf teasel patches may have been mowed
or treated with herbicides by MoDOT. It was also possible
that some cutleaf teasel plants died and were replaced by
other species or remained bare soil. Some cutleaf teasel
patches were located in rocky areas, and that may have
affected cutleaf teasel detection. In fact, four pixels at the
Exit 89 site were classified as bare soil, although cutleaf
teasel patches were observed in the same area during field
surveys.

Cross validation, i.e., applying the signature of one site
to classify the image of the other site, did not perform as
well as classifications with their own signatures (Table 5).
The overall accuracy dropped to 68.4% at the Exit 89 site
when applying the training signature acquired at the

Lamine site, whereas it was 72.4% at the Lamine site when
applying the signature at the Exit 89 site. For cutleaf teasel,
there was apparent omission (low producer’s accuracies) at
both sites, indicating that cutleaf teasel cannot be well
recognized when its signature was not statistically repre-
sentative in the image, especially in areas at heterogeneous
land surfaces. That is reasonable because cutleaf teasel
covers only a few populations in both images and,
therefore, was more sensitive to statistical properties in
comparison with other land covers. The Lamine site had
less cutleaf teasel population, which resulted in lower
producer’s accuracy than the Exit 89 site achieved. With
cross signature, other land covers in each image also raised
high confusion errors. Grasses were mostly overestimated
at both sites (42.34 and 48.65% of user’s accuracy,
respectively), primarily because of their large spectral
variations on the ground (there were 10 grass classes at
the Exit 89 and eight at the Lamine sites.). For example, a
large piece of pond at the Exit 89 site was classified as grass
because of its impure water surface. Highways to the west
of the Lamine site were also misclassified as grasses.
Results of our cross-validation analysis agree with
DiPietro et al. (2002), who found poor accuracies in
detecting giant reed (Arundo donax L.) when applying

Table 3. Error matrix of the maximum-likelihood classification of AISA (Airborne Imaging Spectroradiometer for Application)—

derived class map at the Lamine site, Cooper County, MO.*

Ground reference

Image-based class map Cutleaf teasel Water Bare soil Tree + shrub  Grass + broadleaf Row total
Cutleaf teasel 42 8 50
Water 45 50
Bare soil 47 1 2 50
Tree/shrub 49 1 50
Grass/broadleaf plants 5 2 1 42 50
Column total 47 45 49 56 53 250

*Bolded numbers (diagonal) indicate the correctly classified pixels within each category.
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Table 5. Cross validation of the maximum-likelihood
classification at the Exit 89 and Lamine sites, Cooper

County, MO.

Exit 89 (with
Lamine signature)

Lamine (with
Exit 89 signature)

Class Producer’s User’s Producer’s User’s
Cutleaf teasel 44.44 72.73 2391 84.62
Grass/broadleaf plants 81.03 4234 7059  48.65
Tree/shrub 97.87 95.83 70 100
Bare 88 91.67 100 67.74
Water 20 100 91.11 97.62
Overall accuracy 68.4 72.4

signatures from one image to a second image acquired in a
different flight line (even in the same overflight), possibly
because of different sun angles, climate, and plant
conditions. Similarly, the low accuracy of the cross
validation in this study could come from different sizes,
phenology, and species composition of the cutleaf teasel
patches in the two sites. Dense patches of flowering plants
were observed at the Exit 89 site, whereas a higher
percentage of rosette plants grew at the Lamine site. The
Lamine site was also characterized with sparse patches of
flowering plants that grew in mixed composition with
cutleaf teasel rosette, grass/broadleaf, and bare soil. These
differences in cutleaf teasel patches resulted in different
spectral signatures (as shown in Figure 2).

Nevertheless, the multi-step, unsupervised/supervised
classification in this study reduced the necessity of accurate,
intensive ground-training data. Although these data are
often a prerequisite in most classification methods, they are
difficult to collect in heterogencous environments along
highways. The results in such an environment, in this
study, were comparable to studies conducted on relatively
stable habitats. For example, using hyperspectral images,
Lawrence et al. (2006) identified spotted knapweed and
leafy spurge (Euphorbia esula L.) with 76 and 79% of user’s
accuracy, respectively, at different sites in Montana. Also,
Ustin et al. (2002) was able to detect Arundo donax with
accuracies of 90 to 98% in California. An approximately
89% producer’s accuracy and 82 to 84% user’s accuracy
was achieved in this study, indicating that hyperspectral
remote sensing could provide an effective approach to
mapping cutleaf teasel in a unique, heterogeneous highway
environment. The stepwise, unsupervised/supervised clas-
sification method was time consuming but was an easy-to-
use approach and could be adopted by field users in local
agencies with personnel who are not remote-sensing
experts. Because cutleaf teasel patches are narrowly
distributed along highways, their detection via regular
aerial photos or ground observations is not practically
feasible. Therefore, hyperspectral mapping of cutleaf teasel

patches could provide important information for site-
specific weed management along rights of way.

It should be noted, however, despite advances in sensor
technologies and great mapping potentials, hyperspectral
remote sensing has not been widely accepted as multispec-
tral imagery because of the large image sizes and
complicated data processes. Various efforts have been
made to simplify the hyperspectral image process to
enhance its potential applications. As one example,
optimal-band selection has been tested in past years to
remove redundant spectral bands and reduce image sizes
(Bajesy and Groves 2004; Becker et al. 2005). Also,
together with increased interest in hyperspectral image
applications, advanced image processing and classification
methods are being explored to improve spectral signatures
and classification accuracies (Bagan et al. 2008; Mutanga
and Skidmore 2004; Wang et al. 2010). However, because
of the complexity of roadside environments, it is difficult to
determine the superior approaches that are reliable and
repeatable in spatial and temporal dimensions (DiPietro
et al. 2002). The low accuracies in cross validation in this
research indicate that a more-robust method of cutleaf
teasel mapping is needed. In the near future, we will
continue our research toward optimal, practical detection
of a target species in a complex highway environment.
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