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h i g h l i g h t s

• Exactly solvable few-fermion systems are discussed at finite temperature.
• The behavior of statistical quantifiers is investigated.
• The statistical complexity is assessed with the same criteria in large systems and for few-fermions.
• At finite temperature, remnants of phase transitions’ remain.
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a b s t r a c t

With reference to a simple (analytically solvable) model containing a few fermions, we
show that statistical quantifiers, devised for large numbers of particles (and macroscopic
bodies), surprisingly turn out to provide significant insights into the fermion-model char-
acteristics. We find that statistical complexity can be assessed with the same criteria in
large systems and in few-fermions ones.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Knowledge regarding a system’s unpredictability/randomness does not suffice for a proper grasping of the extant
correlation structures. One may long for the possibility of being in a position to get insight into the relations amongst a
system’s components via an adequate quantifier, in a manner similar to that in which entropy S captures disorder. Two
extreme situations exist: (1) Perfect order or (2) maximal randomness. These are not endowed with strong correlations [1].
Between them different degrees of correlation could exist. A quantifier reasonably called complexity might be needed. The
question how is to represent it. The response is not easy to formulate. Famously, Seth Lloyd listed about 40 ways of defining
a complexity, none of them quite satisfactory.

Obviously, a systemmay be deemed complex when it does not fit patterns viewed as simple. Think of (1) a perfect crystal
and (2) the isolated ideal gas as adequate examples of simplicity, i.e., instances of vanishing complexity. The first is totally
ordered and the second totally random. Little information suffices to describe the perfect crystal: the distances and the
symmetries that define the elementary cell. The information, or negentropy (−S), stored in this system can be considered

* Corresponding author at: Departamento de Física, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile.
E-mail address: fpennini@ucn.cl (F. Pennini).

https://doi.org/10.1016/j.physa.2017.09.041
0378-4371/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2017.09.041
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.09.041&domain=pdf
mailto:fpennini@ucn.cl
https://doi.org/10.1016/j.physa.2017.09.041


306 F. Pennini, A. Plastino / Physica A 491 (2018) 305–312

minimal. Instead, the isolated ideal gas is completely disordered. The system can be found in any of its accessible states
with the same probability. All its degrees of freedom contribute in equal measure to the information contained in the ideal
gas, that exhibits a maximum entropy. Systems (1) and (2) are extreme in the scale of order and information. This suggests
that complexity should not be expressed just in terms of order or information. One could plausibly advance a measure of
complexity by employing some kind of distance to the uniform distribution of accessible states. This is called disequilibrium
(D) in the literature [2].

In this manner, D would yield a notion of probabilistic hierarchy. It would be different from zero if there are privileged,
or more probable, states among those accessible. This by itself is not enough. D would be maximal for the perfect crystal.
For the ideal gas, D = 0. Now, for entropy (S), matters are exactly reversed S is minimal for the crystal and maximal for the
ideal gas. Such considerations led L. Ruiz, Mancini, and Calvet (LMC) [1] to propose a statistical complexity measure C of the
form C = DS, a proposal that receivedmuch attention and interest [1,3–9]. It is clear that C vanishes in the (opposite) simple
cases (1) and (2) above.

We will here show that quantifiers like S, D, and C , do yield important information regarding the behavior of a simple,
few-fermions system.

2. The model

The LipkinModel [10] has been shown to be very useful in studies concerning the validity and/or usefulness of variegated
theoretical approaches, created so as to investigate the manifold aspects of the fermionic many body problem. This model is
grounded on the SU(2) algebra and yields readily available exact solutions, which are to be compared vis a vis results gotten
by recourse to different kinds of approximations. Here we consider a simplified version of that model, advanced in Ref. [11].

The two models (discussed in Refs. [10,11]) consist of N fermions distributed between (2N)-fold degenerate single-
particle (sp) levels, separated by a sp energy gap ϵ. Two quantum numbers are associated to a generic single particle state.
One of them adopts the values µ = −1 (lower level) and µ = +1 (upper level). The other quantum number, let us denote
it by p, usually called quasi-spin or pseudo spin, singles out a state within the N-fold degeneracy. The pair p, µ can also be
regarded as a site that is occupied or empty. In this model one has

N = 2J, (1)

with J denoting an ‘‘angular momentum’’. Following Lipkin et al. [10] we introduce the well known quasi-spin operators

Ĵ+ =

∑
p

C†
p,+Cp,−, (2)

Ĵ− =

∑
p

C†
p,−Cp,+, (3)

Ĵz =

∑
p,µ

µ C†
p,µCp,µ, (4)

Ĵ2 = Ĵ2z +
1
2
(Ĵ+ Ĵ− + Ĵ− Ĵ+), (5)

where the eigenvalues of Ĵ2 are of the form J(J + 1).
Our Hamiltonian is not that of Ref. [10] but that of reference [11], that reads

Ĥ = ϵ Ĵz − Vs

(
1
2
(Ĵ+ Ĵ− + Ĵ− Ĵ+) − Ĵ

)
, (6)

or, with V = Vs/ϵ, or ϵ = 1,

Ĥ = Ĵz − V
(
1
2
(Ĵ+ Ĵ− + Ĵ− Ĵ+) − Ĵ

)
, (7)

so that the unperturbed ground state (V = 0) becomes, according to Eq. (1),

|J, Jz⟩ =|J, −N/2⟩, (8)

with energy

Eo = −N/2. (9)

Doubly occupied p-sites are not permitted. It is clear that our Hamiltonian also commutes with the two operators Ĵ2 and Ĵz .
Hence, the exact solution will belong to the J-multiplet of the unperturbed ground state, whose states we will here from
denote as |J,M⟩. One of these states will minimize the energy. The pertinent M value depends upon the strength V of the
interaction. We just saw that for the unperturbed ground state (ugs) we have M = −J = −N/2. Clearly, (Ĵ+ Ĵ− + Ĵ− Ĵ+) is a
quasi-spin flipping operator. Accordingly, it becomes themore effective themore balanced the populations of the two-levels
are.
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2.1. Phase-transitions at zero temperature

The interesting feature of this model is that, as V grows from zero, Eo is not immediately affected. It keeps it value until a
critical V -special value is reached, of 1/(N − 1). At this stage, the interacting ground state suddenly becomes |J, −N/2+ 1⟩.
If V keeps growing, additional phase transitions ensue. The phase transition between Jz = −k and Jz = −k + 1 occurs at
V = 1/(2k − 1) and the process ends when we reach either Jz = 0 (Vcrit = 1 for integer J), or Jz = −1/2 (Vcrit = 1/2 for odd
J). Thus, at such stage we have, independently of J [11]:

Vcrit = 1/2 for half − integer J or Vcrit = 1 for integer J. (10)

3. Statistical treatment at finite temperature T

This is rather simple in this model because double occupancy of a p-site is forbidden. As a consequence, the Hamiltonian
matrix is just the (2J + 1) × (2J + 1) one of the Jz = −N/2 multiplet, since the only way to get different J ’s to that above is
to have double occupancy [12].

The J = N/2 multiplet is the only one considered by Lipkin et al. in their pioneer, original paper [10]. Of course, also
by us here. Why? The reason lies in the nature of the respective Hamiltonians H . In all other multiplets, one encounters
paired particles that simultaneously occupy the same site in both upper and lover levels. In order to specify the microstates
taking into account these paired states one needs an additional quantum number called the quasi-spin seniority s [12]. For
our J = N/2 multiplet we have s = 0. Our present Hamiltonian cannot see these paired particles and cannot connect
states with different s (the pertinent matrix element vanishes). If there are paired sites, effectively, one would be dealing
with N − 2s particles (is there are s paired sites) and not with N ones. The other multiplets become relevant only if pairing
forces are included in H [12], which we intend to do in future research. Remember that our present goal is to investigate
statistical quantifiers in this environment, not the thermal analysis of the multiplet structure of the Lipkin model, that has
been exhaustively examined many years ago (see, for instance, [13] and references therein).

One has for the free energy F and partition function Z , with β the inverse temperature,

F = −T ln Z = −T ln Tr(exp(−βĤ)), (11)

where, hereafter, we set the Boltzmann constant kB = 1.
Since J is fixed, because so is the particle number, in the Trace we sum over the Jz quantum number m. Given that H

commutes with both J and Jz we get

Z =

m=J∑
m=−J

exp(−βEm), (12)

with the energy Em given by

Em = m − V (J(J + 1) − m2
− J). (13)

Note that the all important associated probabilities Pm are [14]

Pm =
exp(−βEm)

Z
, (14)

for allm = −J, −J + 1, . . . , J − 1, J . Also, the Boltzmann–Gibbs S entropy becomes

S = −

m=J∑
m=−J

Pm ln Pm, (15)

while the uniform probabilities are P (u)
= 1/(2J + 1) for allm. Finally, the LMC disequilibrium is [1]

D =

m=J∑
m=−J

(Pm − P (u))2. (16)

For details, properties, and others applications of D, see Refs. [2,9]. We emphasize that LMC define the statistical complexity
as [1]

C = S D. (17)
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3.1. Our goal

We wish to ascertain to what an extent the above statistical quantifiers are significant in providing information at finite
temperature. In particular, we are interested in the phase transitions described above at zero temperature.

• Is this structure preserved at finite T (if T is low enough)?
• Is such a fact made evident by our quantifiers?
• What are low (or too high) temperatures?

We will show below that β < 1 (arbitrary units) entails high temperature and vice versa.

4. Results and discussions

4.1. Limit t → ∞

The red curves in all Figs. 3–5 are easily obtained. Let us set β = 0 in Eqs. (12) and (14). Then, we immediately get
Z = 2J + 1 and P (u)

= 1/(2J + 1) (the uniform distribution), so that appeal to Eqs. (16) and (17) yields, in this limit,

D = C = 0 for all J, (18)

as it should, and

S = ln(2J + 1). (19)

For example, for J = 3/2, in addition to relation (18), we also have: Z = 4, and S = ln 4 = 1.38. This is illustrated by the red
line in Fig. 3(a). The same procedure was used in Figs. 3–5.

4.2. Limit T → 0

In this instance, S = 0 implying C = 0. For example, for J = 3/2, the corresponding probabilities of the multiplet are:
P1/2 = P3/2 = 0, P−3/2 = 2(1/2 − V ), and P−1/2 = 1 − P−3/2 = 2(V − 1/2), where 2(x) is the step function, leading to
S = 0. See Fig. 1 as an illustration.

4.3. General

We present below graphs for β = 0, 2, 4, 6, 10, 20, 60. Four instance are considered with regards to the fermion-
number N . We consider N = 3, 4, 5, 6. We focus our results in: probabilities Pm, disequilibrium D, entropy S, and statistical
complexity C .

Fig. 2 depicts, for J=3/2, Pm:m= − 3/2, −1/2, versus the coupling constant V . It is apparent that these two probabilities
cross at Vcrit = 1/2. For the statistical pundit, this immediately entails that at this V -value the entropy will grow and the
disequilibrium will diminish. Why? Entropy has been shown to be synonym of ignorance [15]. Here, we speak of ignorance
regarding the state of the system, which clearly augments at an occupation-probability’s level-crossing. On the other hand,
disequilibrium is distance to the uniform probability, that obviously diminishes as two of the four probabilities Pm become
equal.

All this is confirmed by Figs. 3(D), 4(S), and 5(C), which were obtained numerically using the definitions of the preceding
Section. At β = 60 the phase transitions are clearly appreciated via these quantifiers. When the temperature grows, the
quantumstructure is destabilized and its T− associated ravages becomemore andmorenoticeable, until vanishing forβ = 0.
Note that the statistical complexity exhibits structured peaks at the critical V ’s. At the top we appreciate two tiny sub-peaks
and a small sub-valley. We confirm the notion that the system becomes complex only at the critical points. Summing up:

• Entropy S displays peaks at theV ’s critical values. These peaks becomegradually attenuated as T grows, and eventually
disappear.

• Disequilibrium D suddenly drops at the V ’s critical values, displaying sharp glens that become gradually attenuated
as T grows, and eventually disappear.

• Statistical complexity displays structured peaks at the V ’s critical values, with sub-peaks just before and just after
Vcrit and a small fall at Vcrit . These peaks become gradually attenuated as T grows, and eventually disappear. This is
the signature of a complex process taking place at the critical coupling constant.

• The ordered nature of themodel, which becomes complex just at the phase transitions, survives at finite temperature,
but it is eventually killed at T high enough, as expected.
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Fig. 1. Probabilities P−3/2 in (a), P−1/2 in (b), P3/2 in (c), and P1/2 in (d) as a function of V for β = 2 (orange curve), β = 5 (magenta curve), β = 10 (gray
curve) and β = ∞ given by the step function 2(1/2 − V ) in (a) and 2(V − 1/2) in (b) (blue curves). For β = 10, P3/2 and P1/2 are so small that cannot be
seen in the figure’s scale.

Fig. 2. Probabilities Pm as a function of V for β = 5 (arbitrary units) and J = 3/2. We have considered the cases m = −3/2 and m = −1/2. We observe
that, at Vcrit = 1/2, we find equal probabilities.

An important thing to be elucidated is: what temperatures are to be regarded high in this environment? An answer is
provided by Eq. (10). In this model, the entropy is computed as a function of J , V , and β . Our tools are now density plots. In
an S-density plot, we keep either J (J = 1, 3/2, 2, 5/2, 3, 6), or V constant andwork on the plane of the other two quantities.
We construct an S-estimate which reflects on the underlying probabilities. This gives the density according to which the S
values (via the occupation probabilities) are distributed, the data being a random sample from those S-values.

Thus, we work on the first on the J − β-plane and then on the V − β-plane, which yields Figs. 6 and 7, respectively, as a
density estimation for the entropy S. The clearer the color, the higher the density, or, in different words, the darker the color,
the smaller the density.

Quantum effects are manifested by the peaks at N = odd, even (Fig. 6) or at V = 1/2 or V = 1 (Fig. 7), respectively (our
phase transitions). They are clearly erased by temperature whenever β ∼ 2. There, the peaks vanish. For larger β-values,
the transitions-peaks of our model are easily seen. This entails low enough T .
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Fig. 3. Disequilibrium D as a function of coupling V for β = 0, 2, 4, 6, 10, 20, and 60 at different J ’s: (a) J = 1, (b) J = 3/2, (c) J = 2, (d) J = 5/2, (e) J = 3,
and (f) J=6. The corresponding colors for curves are: β = 0 (red), 2 (purple), 4 (green), 6 (orange), 10 (gray), 20 (blue), while the magenta curve corresponds
to β = 60.

Fig. 4. Entropy S as a function of coupling V for β = 0, 2, 4, 6, 10, 20, and 60 at different J ’s: (a) J = 1, (b) J = 3/2, (c) J = 2, (d) J = 5/2, (e) J = 3, and
(f) J=6. The corresponding colors for curves are: β = 0 (red), 2 (purple), 4 (green), 6 (orange), 10 (gray), 20 (blue), while the magenta curve corresponds to
β = 60.
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Fig. 5. Statistical complexity C as a function of coupling V for β = 0, 2, 4, 6, 10, 20, and 60 at different J ’s: (a) J = 1, (b) J = 3/2, (c) J = 2, (d) J = 5/2,
(e) J = 3, and (f) J=6. The corresponding colors for curves are: β = 0 (red), 2 (purple), 4 (green), 6 (orange), 10 (gray), 20 (blue), while the magenta curve
corresponds to β = 60.

Fig. 6. Density plot of entropy S as a function of J and β for fixed V . To the left we find the figure corresponding to V = 1/2 and to the right that for V = 1.

5. Conclusions

Wedealtwith a simple, exactly solvable few-fermions system that exhibits phase transitions in the coupling constant.We
have seen that such zero-temperature feature remains visible at finite temperatures, if T is not too high. Howdo they become
visible? This the essence of our present contribution. They do so via statistical quantifiers devised for themacroscopic world,
even if we face here just a few fermions. We found that statistical complexity can be successfully assessed with the same
criteria in large systems (macroscopic bodies) and in few-fermions ones. We note that some statistical treatments of few
nucleon systems have been reported in Ref. [16], unrelated to the present effort.
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Fig. 7. Entropy S’s density plot as a function of V and β for: (a) J = 1, (b) J = 3/2, (c) J = 2, (d) J = 5/2, (e) J = 3, and (f) J = 6.

Summing up, for macroscopic bodies we need classical probabilities. For fermionic systems, quantum ones. But in both
situationswe use probabilities in the same fashion, to obtain the statistical quantifiers S,D, and C , that do provide interesting
insights into the system’s nature.
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