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h i g h l i g h t s

• We revisit two very simple systems using the statistical complexity as quantifier.
• We uncover with the help of the statistical complexity, unexplored, interesting features of these simple systems.
• These features are seen to be related to the classical–quantum frontier.
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a b s t r a c t

The classical limit of quantum mechanics (CLQM) is a fascinating subject of perennial
interest. Here we deal with it in a novel way for two of the simplest conceivable systems:
the classical ideal gas (IG) and the Einstein crystal (EC). Even if at first sight one may not
believe that something new could be said about them, it will be seen that some statistical
quantifiers do. In particular, the statistical complexity C , seems to signal the CLQM’s zone.
The associated two C−maxima (versus temperature), for, respectively, the IG and the CG,
almost coincide.

© 2018 Published by Elsevier B.V.

1. Introduction

The classical limit of quantum mechanics is an exciting issue of continuous interest, containing beguiling challenges
and several open problems (see, for example, Refs. [1–6]). We wish here to address it in conjunction with the notion of
statistical complexity (SC) [7,8], discussing novel facets concerning aspects of the classical–quantum frontier (CQF). For an
alluring CQF-treatment, we recommend Ref. [1]. We appeal here to the idea that, sometimes, statistical quantifiers can yield
different and perhaps deeper insights than purely dynamic quantifiers.

Statistical complexity C is a quantifier that rivals entropy S somehow, in the sense that it grasps correlation structures in
the manner that S grasps disorder.

It was introduced, in what many people regard as a great leap forward, in Ref. [7], by appealing to a kind of ‘‘distance’’
to the maximum entropy instance. This distance was called disequilibrium D [8]. In these last references the distance was
determined in probability space: that of a given probability distribution (PD) to the uniform PD. This generates a sort of
hierarchy thatmakesD non-null only in cases inwhich some ‘‘privileged’’ states exist amongst the available ones.D becomes
maximal for wholly ordered systems and vanishes for completely random situations. Obviously, for S matters are exactly
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Fig. 1. Typical inverse square length t = 2πmkBT/h2 as a function of the particle density n = N/V . The blue curve is obtained for the condition t = n2/3 ,
which separates the classical from the quantum domain according to Ref. [18]. The second, magenta curve corresponds to our present study’s proposal, to
be discussed below, and given by t = tc = e−1n2/3 . We purport to show that it constitutes a better delimiter than the first one. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

reversed. In this framework, López-Ruiz, Mancini, and Calvet (LMC) [7] advanced what is today the standard form for a
measure of C , i.e.,

C = D S, (1)

a functional of the probability distribution [7]. If one deals with a finite number N particles one has

D =

N∑
i=1

(
pi −

1
N

)2

, (2)

where p1, p2, . . . , pN are the individual normalized probabilities (
∑N

i=1 pi = 1) [7], becoming amaximum for a fully ordered
state and null for equi-probable states. Above, S is the Shannon–Boltzmann entropy (or information), which is given by [9]

S = −

N∑
i=1

pi ln pi. (3)

LMC’s proposal generated an immense degree of attention (see Refs. [10–16], as a small sample), having beenused in different
scientific scenarios for the micro-canonical, canonical, and grand canonical ensembles.

1.1. Motivation and goal

Statistical quantifiers often allow for interesting insights into the intricacies of purely dynamical issues [17]. Here we are
concerned with the classic–quantum frontier (CQF) and confront, for the ideal gas (IG), the intriguing text-book graph [18]
given below, in which we learn that for the IG we confront the scenario of Fig. 1. One depicts there a multiple of the
temperature T against the molar density n(T ). The book’s author argues that such curve is a separatrix between classical
and quantum behavior [18] A second curve is also depicted there, leftwards. We will see below that it provides a better
classical–quantum delimiter than the first curve. The classical regime is attained when the mean thermal wavelength of the
particles λ = h/

√
2πmkBT is small compared to v1/3

= (V/N)1/3, the mean molecular separation [19], so that we have a
special separation dT = v1/3

h/
√
2πmkBT = v1/3

= dT . (4)

In other words, classicity regions for λ ≪ v1/3
= dT . This separatrix is certainly an interesting topic to investigate with our

statistical quantities D and C , as we do below.
Why? Becausewe see that even at this elemental level the CQF seems to emerge. The questionwewant to answer here is:

what has the statistical complexity to teach us in this respect? We turn our attention, for an answer, to the fundamentals of
the LMC ideas by critically re-examining the two LMC paradigmatic instances: the ideal gas and the perfect crystal, usually
considered as opposite examples of disorder versus order. In such contra-position, our disequilibrium–statistical complexity
analysis of these two paradigmatic systems will allow for some surprises regarding the classic–quantum frontier.
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1.2. Paper’s structure

The paper is organized as follows. Section 2 describes the SC-formalism while, in Sections 3 and 4 we present concepts
related to our two simple systems. Section 5 looks at the quantum–classical frontier. This constitutes a crucial issue. Finally,
we draw some conclusions in Section 6.

2. Formalism’s details

In this preparatory section we present important ideas developed for the canonical ensemble, in Ref. [8], where an ideal
gas in thermal equilibrium is described. Let us deal thenwith a classical system of N identical particles, confined into a space
of volume V , in thermal equilibrium at temperature T . The corresponding Boltzmann distribution becomes [19]

ρ(x, p) =
e−βH(x,p)

QN (V , T )
, (5)

with β = 1/kBT , kB the Boltzmann constant, H(x, p) the Hamiltonian, and x, p the phase space variables. The canonical
partition function reads

QN (V , T ) =

∫
dΩ e−β H(x,p), (6)

with dΩ = d3Nx d3Np/N!h3N , while the Helmholtz’ free energy A is cast as [19]

A(N, V , T ) = −kBT lnQN (V , T ). (7)

It is shown in Ref. [8] that the canonical D(N, V , T ) becomes here

D(N, V , T ) = e2β [A(N,V ,T )−A(N,V ,T/2)], (8)

where this form is valid only for continuous probability distributions. Set now T = T/2 in (7) and encounter that [8]

A(N, V , T/2) = −
kBT
2

lnQN (V , T/2). (9)

Replacing Eqs. (7) and (9) into Eq. (8) yields

D(N, V , T ) =
QN (V , T/2)
QN

2(V , T )
. (10)

The alternative D−expression is, from definitions (5) and (6),

D(N, V , T ) =

∫
dΩ ρ2(x, p), (11)

which is the orthodox form most people use (see, for example, Ref. [20]).

3. The Einstein crystal

The Einstein crystal (EC) is often regarded as a perfect model of order [7], whose statistical complexity should vanish [7].
It is a model in which each crystal-site is a three dimensional quantum harmonic oscillator of frequency ω [19]. We deal
with an N−atom’s lattice of independent particles. The pertinent, well-known canonical partition function is [19]

QN (T ) = [2 sinh(ΘE/2T )]−3N , (12)

where ΘE = h̄ω/kB is called the Einstein temperature. Accordingly, the disequilibrium becomes

D(N, T ) =

[
2 sinh2(ΘE/2T )
sinh(ΘE/T )

]3N

, (13)

while the corresponding entropy is

S(N, T ) =
3NkB(ΘE/T )
eΘE/T − 1

− 3NkB ln(1 − e−ΘE/T ). (14)
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Fig. 2. Statistical complexity c(T ) (blue curve), disequilibrium d(T ) (red curve), and specific heat Cv/3NkB (green curve) for an Einstein solid, plotted as a
function of T/ΘE . The maximum value of c is 0.608 and occurs at T/ΘE = 0.488. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Statistical complexity c (blue curve) and derivative of the specific heat Cv respect to t = T/ΘE (magenta curve) for the Einstein solid model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

For our purposes we need such expressions per particle, which are

d(T ) =

[
2 sinh2(ΘE/2T )
sinh(ΘE/T )

]3

, (15)

while the corresponding entropy is

s(T )/kB =
3(ΘE/T )
eΘE/T − 1

− 3 ln(1 − e−ΘE/T ). (16)

Therefore, the statistical complexity per particle is

c(T ) = d(T ) s(T )/kB, (17)

where d(T ) and s(T ) are obtained from Eqs. (15) and (16), respectively.
Our interest is piqued by inspecting a plot of the specific heat Cv given in Fig. 2, that reflect the effects of an internal

structure for the system. At low temperatures Cv tends to vanish, according to thermodynamics’ third law, while at high
enough T it becomes constant, according to the Dulong–Petit classical law.We are thus clearly in the presence of the classic–
quantum frontier. Fig. 2 depicts the variation of the statistical complexity, of the disequilibrium and of the specific heat with
T/ΘE .

Fig. 3 displays dCv/dt (t = T/ΘE), which exhibits a clear maximum near the t-value t = t∗ at which c becomes maximal.
Itmakes sense then to conclude that in the vicinity of t∗ we find the CQF, where the system reaches itsmaximum complexity,
as also illustrated by the behavior of dCv/dt . The CQF is the relatively small temperature-range in which Cv changes from its
quantum value towards the classic (Dulong–Petit) one. In this small range, dCv/dt rapidly varies. At the speediest rate, the
system becomes the most structurally complex, a rather convincing picture.
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4. The ideal gas

As it is well known, the model consists of N mono-atomic identical particles confined to a space of volume V and in
thermal equilibrium at temperature T , whose Hamiltonian isH =

∑N
i=1 p2i /2 m, withm the mass of the particles and pi the

related momenta, i = 1, . . . ,N . We will emphasize here questions related to the classical–quantum transition zone.
The corresponding canonical partition function is [19]

Q (0)
N (V , T ) =

1
N!

(
V
λ3

)N

, (18)

with λ the particles’ mean thermal wavelength [19]. The Helmholtz free energy, after using Stirling’s approximation (lnN! ≈

N lnN − N) becomes

A(N, V , T ) = NkBT
[
ln

(
n λ3)

− 1
]
, (19)

where n = N/V is the molar density [19].
The classical entropy, provided by the Sackur-Tetrode equation, is [19]

S/kB = − ln
(
n λ3)N

+
5N
2

= ln
(
e5N/2 (

n λ3)−N
)

, (20)

which is positive definite if we fulfill the requirement n λ3
≪ e5/2. This is an important feature, to which we refer below.

4.1. Remarks on disequilibrium and statistical complexity

We observe that, inserting Eq. (20) into the definitions (1) and (8), we obtain the disequilibrium and the LMC-statistical
complexity, given by [21]

D(N, V , T ) =
(
n λ3)N e−N 2−3N/2, (21)

and

C(N, V , T ) =
(
n λ3)N e−N 2−3N/2 ln

(
e5N/2 (

n λ3)−N
)

. (22)

We note that for N → ∞ and/or T → ∞ the quantities D and C vanish, as they should [7]. This is not the whole story,
though. Some kind of ‘‘structural’’ details will emerge if the abovementioned restrictions are lifted. These ‘‘structural’’ details
however cannot be of physical origin, because the ideal gas does not exhibit any structure. We may speak of fake-structure,
meaning that the inadequacy of the formalism at low temperatures or high densities generates complexity or disequilibrium.

In order to capture these ‘‘fake’’ structural details, it is useful to consider the values of both D and C per particle (involving
the particle-density n). First, we introduce for convenience the typical inverse square length (a function of T )

t =
2πmkBT

h2 = λ−2. (23)

Asmentioned in the Introduction, λ is the thermal de Brogliewavelength, that is, roughly, themean de Broglie wavelength of
the gas molecules at the temperature T . The mean interparticle spacing dT is, approximately, (V/N)1/3. Whenever λ is much
smaller than this dT , the gas can be regarded as classical. Contrarily, when λ is of the order of or larger than dT , quantum
effects should dominate and the gas ought to be treated as quantal. The critical temperature is the transition point between
these two regimes, and at this critical temperature, the thermalwavelengthwill be approximately equal to dT [19]. Returning
to our quantifiers per particle, we have

d(n, t) =

(n
e

) (
1
2t

)3/2

, (24)

and

c(n, t) =

(n
e

) (
1
2t

)3/2

ln
(
e5/2 n−1 t3/2

)
. (25)

From Eq. (25) we see that c ≥ 0 whenever n t−3/2
≤ e5/2. Typical behaviors of Eqs. (20), (24) and (25) are displayed in Fig. 4.



R. Branada et al. / Physica A 511 (2018) 18–26 23

Fig. 4. Statistical complexity c(n, t) (red), disequilibrium d(n, t) (blue), and entropy s(n, t) (magenta) versus t for n = 1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Statistical complexity c(n, t) (red curve) anddc(n, t)/dt (blue curve) versus t forn = 1. Themaximumof c is cmax =
√
e/8 = 0.58 for tc = e−1

= 0.36
(magenta line). The other two vertical dashed lines are located, respectively, at t = 1 (green line) which is usually regarded as signaling the classical limit,
and e−5/3 (orange line), that corresponds to a null Boltzmann’s entropy (that becomes negative for smaller t ’s, violating the requirements imposed by Eq.
(20)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

On the other hand, we note the maximum of c(n, t) is, for n fixed, cmax =
√
e/8 that occurs for a t = tc that satisfies, as

promised in the Introduction,

n t−3/2
c = e3/2 ⇒ tc = n2/3e−1, (26)

as announced in the caption of Fig. 1. This maximum is attained for all isotherms of the effective quasi-temperature t . In
Fig. 5 we show the statistical complexity c(n, t). We can interpret things this way. When the two above classicality criteria
start being violated, the statistical complexity ‘‘notes’’ it and begins to grow, because it now detects fake structural features
beginning to take place. These fake structural details arise from a regime-change, from classic to quantal. We are again in
the presence of the classic-to-quantum transition.

4.2. Details regarding the classical regime

Let us delve in deeper fashion on the validity’s region of the classical regime (CR). To illustrate this, we will consider
the occupation numbers, nϵ , of the single-particle state with energy ϵ, in the canonical ensemble [19,22]. The canonical
probability distribution is

P ≡
⟨nϵ⟩

N
=

e−βϵ

Q1(V , T )
, (27)

where ⟨nϵ⟩ is the Maxwell–Boltzmannmean occupation number of a single-particle state with energy ϵ [19]. Thus, using Eq.
(18) for the canonical partition function of one particle, we find

⟨nϵ⟩ = n λ3e−βϵ . (28)
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Fig. 6. Statistical complexity c(n, t) versus t for n = 1. The blue curve corresponds to the Einstein solid model and the red refers to the ideal gas instance.
In this plot we take the molar density of the gas n = 1 and ΘE = h2/(2πmkB). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

In the CR the occupancy of any single-particle state is ≪ 1 [19,22]. Accordingly

⟨nϵ⟩ ≪ 1, for all ϵ, (29)

and from (29) we immediately obtain

n λ3
≪ eβϵ . (30)

Since the mean kinetic energy of a gas molecule in the classical gas is ϵ = 3kBT/2 we finally reach

n λ3
≪ e3/2, (31)

which constitutes the ‘‘Maxwell–Boltzmann limit’’ [22]. Now, after the change of variables (23) we have

n t−3/2
≪ e3/2. (32)

Comparing the limit (31) with our Eq. (26) we obtain

n t−3/2
≪ n t−3/2

c , (33)

telling us that in the CR region

t ≫ tc, (34)

where tc is obtained from the maximum of the statistical quantifier C .

4.3. Illustration regarding the classical–quantum transition

An instructive picturing of our results can be visualized in Fig. 6, where we depict the statistical complexity for the two
models described in previous subsections as a function of the typical inverse square length t . It is seen that for these two
models the associated complexities reach their peaks at approximately the same t , that we can call t∗. This common inverse
square length t∗ is too high for the Einstein crystal to remain being a quantum object and simultaneously too low for the
ideal gas to remain in the classical regime. One could then convincingly assert that the statistical complexity notion is indeed
a good signal post for the classical–quantum frontier. C becomes maximal at the same temperature for two totally different
systems when they are about to change regimes, from classical to quantum and vice versa.

5. Internal degrees of freedom for diatomic molecules

Wenowconsider in this section a diatomic ideal gas. Thus, in addition to the translational part of themolecularmotion,we
have to add also the internal atomic motion. In particular, we assume that the only internal motion is due to the vibrational
states. The canonical partition function of this model reads [19]

QN (V , T ) =
1
N!

[Q (0)
1 (V , T ) ζint (T )]N , (35)
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Fig. 7. Qualitative behavior of the statistical complexity c(n, t), that incorporates quantum information regarding internal motion, versus t for n = 1. The
red curve represents c for translational degrees of freedom, and the blue color corresponds to the case of the systemwith internal degrees of freedom. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where Q (0)
1 (V , T ) corresponds to the translational degrees of freedom of the individual (identical) diatomic molecules and

ζint (T ) = ζvib(T ) is the contribution to the partition function due to internal (quantum) degrees of freedom, in particular,
associated with vibrations.

Thus, in this case, the total disequilibrium (10) is due to the contribution of the internal motion together with the
translational motion which is given by Eq. (35) and it is expressed as

D(N, V , T ) = D0(N, V , T )Dvib(N, V , T ), (36)

where D0 obviously corresponds to the translational disequilibrium, given by Eq. (21), and the disequilibrium due to the
vibrational states is Dvib, given by Eq. (13).

Therefore, after a bit of algebra, the disequilibrium finally adopts the appearance

D(N, V , T ) =
(
n λ3)N e−N2−3N/2

[
2 sinh2(ΘE/2T )
sinh(ΘE/T )

]3N

, (37)

where we have added quantum information to D.
To calculate the statistical complexity we need first to find the total entropy of the system. Thus, from the additivity

property of the entropy by using Eqs. (14) and (20), i.e., S = S0 + Svib, we immediately get [19]

S = NkB ln
[
e5/2n−1λ−3 (

1 − e−ΘE/T )−3
e3ΘE/(T (eΘE /T

−1))
]
. (38)

Finally, the statistical complexity per particle c(n, T ) = D1/NS/NkB is constructed by joining Eqs. (37) and (38), obtaining
a complexity-measure that incorporates information regarding internal quantum motion. This new c is depicted in Fig. 7.
We appreciate in this figure as the maximum of the system, when we incorporate the quantum vibrational internal degrees,
moves towards the left of the classical–quantum frontier, as one should expect. The quantum information added forces the
c−maximum to move further into the quantum region.

6. Conclusions

We have studied in this effort the classical–quantum frontier from the view point of two very simple models: (1) the
Einstein crystal and (2) the ideal gas. These models are paradigms for, respectively, perfect order and total randomness. This
factmakes them relevant for our complexity-exploration, as onewould expect their statistical complexities to vanish [7]. The
fact that it does not is due to the presence of the quantum–classical transition zone. This fact is indeed the focus of our interest
here and the motivation for our present research. Now, the specific heat Cv in the case of model (1) clearly shows that,
according to the temperature T , there is a classical region (Dulong–Petit validity) and a quantum one (third law compliance).
For model (2), one has to appeal to Fig. 1 for a somewhat similar situation.

Accordingly, structural details emerge that make c non-null in the quantum–classical transition zone. These details are
physical ones for the Einstein crystal. For the ideal gas they reflect on the inadequacy of the model at low enough temperatures.
In both cases, the CQF plays a protagonist role. Remarkably enough, critical temperatures that are too high for the EC coincide
with those that are too low for the IG. These critical temperatures are thus CQF signatures.

Summing up:

• We have revisited two very simple systems using the statistical complexity as quantifier.
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• Wehave uncoveredwith the help of the statistical complexity, unexplored, interesting features of these simple systems.
• These features are seen to be related to the classical–quantum frontier.
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