
Adapting Distributed Evolutionary Algorithms
to Heterogeneous Hardware

Carolina Salto1, Enrique Alba2

1 Universidad Nacional de La Pampa - CONICET, General Pico, Argentina
saltoc@ing.unlpam.edu.ar

2 Universidad de Málaga, Málaga, Spain
eat@lcc.uma.es

Abstract. Distributed computing environments are nowadays composed
of many heterogeneous computers able to work cooperatively. Despite
this, the most of the work in parallel metaheuristics assumes a homo-
geneous hardware as the underlying platform. In this work we provide
a methodology that enables a distributed genetic algorithm to be cus-
tomized for higher efficiency on any available hardware resources with
different computing power, all of them collaborating to solve the same
problem. We analyze the impact of heterogeneity in the resulting per-
formance of a parallel metaheuristic and also its efficiency in time. Our
conclusion is that the solution quality is comparable to that achieved by
using a theoretically faster homogeneous platform, the traditional envi-
ronment to execute this kind of algorithms, but an interesting finding is
that those solutions are found with a lower numerical effort and even in
lower running times in some cases.

1 Introduction

Parallel and distributed computing environments became popular in the past
decades as a way to provide the needed computing power to solve complex
problems, representing an effective strategy for the execution of distributed evo-
lutionary algorithms (dEAs) [27]. Most of the reported results on dEAs assume
that the underlying computing environments have identical features (homoge-
neous environment) regarding not only hardware (processors, memory, network)
but also software (operating system) components [2, 20]. This kind of hardware
homogeneity is increasingly difficult to find in modern labs. It is quite hard to
maintain a cluster of similar processors along a period of time, because of their
failures and the new and different hardware replacing them. Furthermore, the
rapid development of technology in designing processors, networks, and data
storage devices together with the constantly decreasing ratio between cost and
performance allow researchers to use new up-to-date computational resources.
As a consequence, the coexistence of new and old equipment in a computing
environment has shown the grow of heterogeneous parallel platforms, which are
nowadays very common in any laboratory, company, and research institution.



Despite the widespread scenario from the point of view of heterogeneous ar-
chitectures, the field of metaheuristic algorithms that exploits the heterogeneous
architectures in a especialized way has been seldom addressed. A seminal work
dealing with heterogeneous computing environments and dEAs can be found
in [3]. More recent works about heterogeneous environments can also be found
in [6, 12, 15, 17, 22, 23]. These works were focused on solving a given problem,
and not much in building a methodology that researchers could use when fac-
ing heterogeneous settlements. In this sense, in [12] authors made an original
advance in the proposal of a general model to design heterogeneous algorithms
depending on the underlying heterogeneous platform.

In the present article we propose a new methodological procedure, and a sub-
sequent algorithmic design, to deal with heterogeneous parallel environments.
We called it HAPA: Hardware Aware Parallel Algorithms methodology. The
goal is to guide an efficient and numerically accurate deployment of a meta-
heuristic like a dEA or a dGA (distributed genetic algorithm) onto a set of
machines with processors running at different clock speeds, dissimilar principal
memory capacities, and operating systems. The dGA considered in this work is a
multi-population (island) model which performs sparse exchanges of individuals
(migration) between the component subpopulations. In short, we address two
interesting research questions:

Q1 Can we build an algorithm using the HAPA methodology with a final ac-
curacy comparable to that of existing algorithms running on faster homoge-
neous platforms?

Q2 Does the use of heterogeneous hardware allow to solve the problem in com-
petitive execution times?

The methodology devised in this work is targeted to address these two ques-
tions (real challenges), and it can be summarized as follows. In a first phase,
HAPA will analyze the heterogeneous hardware with several different bench-
mark programs and with the running times obtained from the dGA. These two
different measures will allow us to obtain a quantitative measure for the speed
of the different hardware involved. This quantitative value is obtained following
a well defined methodology, what represents a deeper contribution than only the
value itself. With this information, in a second phase, we will develop a novel
mechanism to be used in the design of a dGA, engineered to get profit from a
computing platform composed of both new and old computational equipment.
Finally, in order to answer the two previous questions about the behaviour of the
algorithms using HAPA, we have compared a dGA using our proposal against a
traditional dGA executed on a homogeneous environment.This constitutes the
third phase of the methodology related to the validation of the results.

After using HAPA we hope to be able to report that a dGA using our proposal
can obtain similar hit rates as a dGA running over homogeneous hardware. We
will show this in this work, as well as we will report on a reduction in the number
of function evaluations needed by the new techniques, thus reinforcing the idea of
the usefulness of HAPA in the design of competent dGA families of algorithms.



The remainder of this article is structured as follows. Section 2 provides a
brief review of the literature dealing with dGAs and heterogeneous hardware.
Section 3 presents the HAPA methodology. Section 4 introduces the test prob-
lem and the parameterizations used in the experimentation. Section 5 is devoted
to describe the heterogeneous hardware. Section 6 provides two possible instan-
tiations in the design of a dGA. Section 7 presents and examines the results
validating our proposal. Section 8 summarizes our conclusions and sketches our
future work.

2 Background

Let us suppose a company or laboratory has bought a cluster, composed of work-
stations interconnected by a communication network. Any (even new) cluster of
computers will become old with time, and possibly heterogeneous due to changes
in its components (partial memory or CPU updates, for example). These com-
ponents are replaced with different (possibly more powerful) ones. In essence,
the cluster is only homogeneous (if at all) when first installed. Additionally, any
necessary increment in performance or capacity is usually achieved by replacing
old/broken components with more powerful ones. This leads to the coexistence
of “leftovers” from the previous installation and “new-comers” that are recently
purchased, leading to the emergence of a heterogeneous computing environment
in terms of performance and capacity. A situation as the one previously described
is sketched in Figure 1.

There exist only a few works proposing new algorithms for heterogeneous
platforms, and none on developing a methodology to do so. A seminal proposal
concerning the heterogeneous execution of parallel metaheuristics was proposed
by Alba et al. [3]. In this work, the authors analyzed the way in which het-
erogeneous environments affect the genetic search to solve a problem, reporting

Fig. 1. Heterogeneous computing platform



a very significant reduction in the number of steps needed to solve the prob-
lem when using heterogeneous hardware. In another interesting work, Chong [9]
analyzed the impact of the asynchronous and synchronous communication on
a heterogeneous hardware platform and concluded that communication should
be non-blocking (i.e. asynchronous) and buffered, a result that has been also
confirmed in [4, 6, 19].

Branke et al. [8] considered an island model targeted at heterogeneous com-
puter grids and examined different aspects of migration, like the connectivity
pattern or the time for migration. They experimented with different ways of
sorting the islands: a random sorting of the heterogeneous processors on the
ring topology and a minimum and maximum difference sum sorting of the pro-
cessor velocity. They compared the performance of the standard island model on
the homogeneous and the heterogeneous network. They simulated the underlying
computer network. Their conclusion was that the result of sorting the computers
appropriately in the ring structure is competitive to homogeneous networks. An-
other significant result was that convergence-based migration leads to a further
significant improvement both in homogeneous and heterogeneous environments.
Another proposal in this line is the work of Gong et al. [17], which also analyzed
the influence of different arrangements of heterogeneous computing resources in
the execution of dGAs.

A parallel genetic algorithm with a hierarchical distribution was presented
in [18], developed using heterogeneous grid computing environments. In each
cluster a subpopulation is evolved while the chromosome evaluation is carried
out in a different node of the cluster. A theoretical analysis of the speed-up
was presented. The empirical study was oriented to analyse the behavior of
the algorithm under diverse grid environments having different communication
protocols, cluster sizes, computing nodes, and geographically disparate clusters.
The authors showed that speed-up can be attained. Garćıa et al. [15] and Meri
et al. [22] considered the use of free cloud storage services to communicate a
pool of distributed island running in a heterogeneous platform.

Bazterra et al. [7] defined performance metrics to understand the parallel
efficiency of an algorithm running on heterogeneous systems. They proposed
an adaptive parallel genetic algorithm which consists in a client-server model for
heterogeneous environments. The server node evolves the population and assigns
the evaluation of individuals at each processor depending of their processing
velocity. They evaluated the performance of the proposal in a homogeneous and
heterogeneous environment, achieving a higher efficiency in the last one. In this
line of client-server models, Mostaghim [23] proposed a hybrid method using
Multi-objective Particle Swarm optimization and Binary search methods for a
multi-objective optimization task independent from the speed of the processors.

More recently, Dominguez and Alba [11, 12] proposed Ethane and HydroCM,
two new heterogeneous parallel search algorithms specifically designed for their
execution in a heterogeneous hardware platform. The proposed search algo-
rithms, inspired by the chemical structures of ethane and hydrocarbons, were
based on genetic algorithms (GA) and simulated annealing (SA). The objective



was to give a general kind of parallel search technique that could later be cus-
tomized to be used with different behavioral algorithms depending on the under-
lying hardware architecture. The reported results have shown that Ethane and
HydroCM can perform better in terms of time and numerical effort when run
in heterogeneous software/hardware systems than the component algorithms.
Thus, it seems clear that this topic deserves more research since it is both inter-
esting and not well-known at present.

3 The HAPA Methodology

In this section we present the basics of the proposed methodology.HAPA is a
methodology in which a distributed population-based metaheuristic can deal
with the differences between relative clock speeds of the processors present in a
heterogeneous platform. Our methodology consists in computing (once) a rank-
ing of processors in an offline fashion, plus an online use of this information
inside the running distributed algorithm in some way (like defining new stop-
ping conditions). This also goes in the sense of “measure once, use many” that
can help modern labs to better build algorithms and better use their hardware
at the same time. The HAPA methodology comprises three phases:

– Phase 1: Know your Platform.
– Phase 2: Design your Algorithm.
– Phase 3: Get the Results.

Phase 1 numerically describes the heterogeneous computing platform used
in the work, with the aim of finding a ranking of processors. Consequently,
this phase involves the computation of the relative differences in the velocity
of each machine, taking the fastest one as a reference point. For this purpose,
we use two different measures to evaluate the performance of machines: the
scores from a standard scientific benchmarking software and a fresh ranking
coming from the actual execution of a traditional dGA. The rationale behind
this is that traditional benchmarks, although useful, are designed to run a set of
operations that could not be fully representative of the operations performed in
metaheuristics [5]. The objective is to determine which traditional benchmark
software, if any, is able to rank the processors in the same order as that the actual
dGA running benchmarking, and to use that information for the application of
the HAPA methodology. This produces information to numerically know the
hardware. Once a ranking is established, a relative velocity factor between each
processor B and the fastest processor A can be obtained, denoted as V F (B).

With the ranking obtained in the previous step, Phase 2 consists in the
algorithm design of the dGA to deal with the heterogenous platform and to
present the HAPA methodology. This online phase is carried out by all the
component islands in an organized way. In a first step, each island i of our
dGA using the HAPA methodology asks for the features of the processor where
it was launched (let us say processor B), obtaining the V F (B) value. Let us
suppose, then, the considered parameter value for the island running in the



fastest processor is set to X. Therefore, in a second step, each island i proceeds
to locally compute the parameter value to a value equal to X divided by V F (B);
in that way the islands are coordinating the parameter values depending on the
features of the processor where each one was launched. So, the methodology
helps to have a more informed decision-making of the distributed algorithm’s
parameter values in each subpopulation, such as the total number of generations,
the migration frequency, and so on. This methodology also prevents the situation
that one of the islands is doing most of the work if there is a CPU much faster
than the others.

Finally, Phase 3 consists in the evaluation of the proposed dGAs using the
HAPA methodology to validate the assumptions made in the Introduction re-
lated to their comparative performance with respect to dGAs running in homo-
geneous platforms regarding final accuracy and execution times.

In Section 6, we explain two possible instantiations of the proposed method-
ology in the design of a dGA. In Section 6.1 we describe an application of the
HAPA methodology to set the number of generations used as stop condition on
each island, while in Section 6.2 we explain the use of HAPA to define the mi-
gration frequency. In both cases, the aim is a meaningful dynamic determination
of the parameter values to profit from the differences in the hardware involved
to build a more efficient/accurate algorithm. The two algorithms derived from
HAPA set one parameter at a time, in order to identify the reasons of possible
improvements in their performance.

4 Experimental Setup

In this section we present the necessary information to reproduce the experiments
that have been carried out in this article. First we will introduce the problem
used to assess the performance of our proposal: the Knapsack Problem (KP), a
classical combinatorial optimization problem. In the present study we are not
focusing on the solution of a particular problem (many different and specific
heuristics exist for this [26]), but our aim is simply to use it to evaluate our
proposals. Second, we will justify the parameters that our dGA will use.

4.1 The Knapsack Problem

The Knapsack Problem (KP) belongs to the class of NP-hard problems [16].
Given a knapsack capacity C, and a set N of n items with associated profit
pi > 0 and weight wi > 0, the goal is to choose a subset of items such that
maximizes the total profit keeping the total weight below the C capacity of the
knapsack. We may assume that wi < C, for i = 1, . . . , n to ensure that each
item considered fits into the knapsack, and that the total weight of all the items
exceeds C to avoid trivial solutions. The KP can be formulated as an integer
programming model as presented in Equation 1, where xi is the binary decision
variable of the problem that indicates whether the item i is included or not in
the knapsack.



Table 1. KP instances

Instance n R C Optimal Profit
KP1-1k 100 1000 1001 9147
KP1-10k 100 10000 10001 81021
KP2-1k 200 1000 1001 11238
KP2-10k 200 10000 10001 106285
KP3-1k 300 1000 1001 13643
KP3-10k 300 10000 10001 129441
KP4-1k 400 1000 1001 15939
KP4-10k 400 10000 10001 141774

maximize
n∑

i=1

pixi

subject to :
n∑

i=1

wixi ≤ C,

xi ∈ {0, 1}, ∀i = 1, . . . , n

(1)

Four randomly generated data instances are considered as listed in Table 1,
with n varying from 100 to 400 items and with two different C capacities (1001
and 10001). These instances were obtained using the generator described in [25]
choosing the uncorrelated data instances type, i.e., pj and wj which are randomly
distributed in [1, . . . , R] (no correlation between the weight and the profit of
an item, in order to make the problem harder). The optimal solution of each
instance (reported in Table 1) was found using the Minknap algorithm [24], an
exact method based on dynamic programming.

4.2 Parameters

In our experiments, the global pool of solutions of the dGA is set to 512 solutions,
which are organized into 8 islands of 64 solutions each. The tentative solutions
for the KP are encoded as binary strings. The genetic operators are: binary
tournament selection, two point crossover, and bit flip mutation. The crossover
and mutation rates are 0.65 and 1/n (where n is the length of the solutions),
respectively. Proportional selection is used to build up the next population from
the set of parent and offspring solutions. The base migration frequency is set
to 128 generations. A copy of the best individual of each subpopulation is sent
and replaces the worst solution on the target island, only if it is better (only one
individual is sent in each exchange). We would like to remind that the communi-
cation between islands is entirely asynchronous, so there are no sync points in the
migration operation. The topology follows a unidirectional ring communication
pattern. Table 2 summarizes the parameters used in the experimentation.

The code was developed using MALLBA [14], a C++ software library foster-
ing rapid prototyping of hybrid and parallel algorithms, running under Linux.
The considered hardware resources are the ones shown in Table 3 which are
described in the next section.

Due to the stochastic nature of the algorithms, the final results are obtained
after averaging the running times of 30 independent runs. A statistical analysis



Table 2. Experimental parameters of all dGAs

Population size 512 individuals
Number of islands 8 islands
Selection of parents Binary tournament
Recombination two-point, pc = 0.65
Bit mutation Bit-flip, pm = 1/n
Replacement Rep better
Migration frequency 128 generations

has been performed in order to provide the results with statistical confidence and,
therefore, obtain meaningful conclusions. We use the non-parametric Kruskal-
Wallis test, to distinguish meaningful differences between the mean results of all
algorithm. We have considered a level of significance of α = 0.05, in order to
indicate a 95% confidence level in the results.

5 HAPA Phase 1: Know your Platform

We now proceed to explain the first phase of the HAPA methodology (offline
phase). It consists of three parts: getting general knowledge on the platform, fine
tuning this knowledge for the class of algorithms we are interested in, and a final
third part in which we summarize all this knowledge into a mathematical func-
tion to be able of designing algorithms based on it. In consequence, Section 5.1
introduces a characterization of the heterogeneous hardware. Section 5.2 shows
the scores from a standard scientific benchmarking software to get a general
knowledge, while Section 5.3 presents a ranking coming from the actual execu-
tion of a traditional dGA, the class of algorithms we are interested in. Once the
machine performance has been obtained (i.e. the hardware has been transformed
into numerical knowledge), the last Section 5.4 presents how to obtain the rel-
ative velocity factor between each processor and the fastest one by applying a
mathematical function; this factor is the basis for the application of the HAPA
methodology (online phase).

5.1 Hardware Description

The heterogeneous computing system consists of a wide range of diverse CPUs
belonging to different families of processors, including single and multicore, single
and multithreaded, mono and multiprocessors, 32 and 64 bits, and different
processor vendors. The details about our heterogeneous environment are shown
in Table 3, where specifications of each node (CPUi) are included, regarding
processor, clock speed, memory, number of cores, number of nodes, and release
year. From that table we can see that there is a number of commodity commercial
computers and the release date of nodes corresponds to a wide range of years.
Our heterogeneous computing platform is made up of one machine of each class
of processor, except in the case of CPU7, where eight identical machines are
included. All these machines are connected by a Gigabit Ethernet. Figure 2
sketches the heterogeneous hardware.



Table 3. Heterogeneous computing environment

Name Features RAM(GB) #cores #nodes year
CPU1 AMD Athlon XP2000+ at 1.67 GHz 0.5 1 1 2002
CPU2 Intel Pentium IV at 2.8 GHz 0.5 1 1 2003
CPU3 AMD Athlon XP3000+ at 2 GHz 0.5 1 1 2003
CPU4 AMD Sempron 2800+ at 2 GHz 0.5 1 1 2004
CPU5 AMD Athlon XP3200+ at 2.11 GHz 1 1 1 2005
CPU6 AMD Athlon XP4000+ at 2.11 GHz 0.5 2 1 2006
CPU7 AMD Phenom8450 at 2GHz 2 3 8 2008
CPU8 Intel CI7 2600 at 3.40GHZ 4 4 1 2011

Fig. 2. Heterogeneous computing platform for experiments

5.2 Ranking Using Standard Benchmark Software

We have used scientific benchmarking software to obtain a quantitative measure
of the speed of the different processors involved in our heterogeneous platform.
The reason behind the use of such benchmarking software is the difficulty to know
in advance which class of program will be run in the heterogeneous platform.
Particularly, a GA manages many data types: integers (population size, number
of generations, alleles, etc.), floats (fitness values, probabilities, alleles, etc.),
among others. The different considered data types also depend of the problem to
be solved. Consequently, the corresponding compiled program is full of different
types of data. These standard benchmarks are very popular and widely used
in the professional computer market. So, we first go for them and then, in the
second part of this phase, we will try to fine tune the findings got here.

Six different widely-used benchmarking programs have been employed, namely
Whetstone [10], Dhrystone version 1 and 2 [28], Livermore Loops [21], and fi-
nally Linpack [13] (see [5] for a classification and detailed explanation). The



Table 4. Normalize score value for each benchmark and CPU

Dhrystone1 Dhrystone 2 Whetstone Livermore Linpack Mean
CPU1 4.40 4.45 2.46 3.52 3.51 3.67
CPU2 4.66 4.45 2.48 3.27 2.25 3.42
CPU3 3.53 3.69 2.29 3.15 3.16 3.17
CPU4 3.66 3.71 2.39 3.11 3.04 3.18
CPU5 3.18 3.35 2.05 2.78 2.83 2.84
CPU6 3.04 3.22 1.97 2.67 2.83 2.75
CPU7 3.90 3.25 2.00 2.57 2.83 2.91
CPU8 1.00 1.00 1.00 1.00 1.00 1.00

source code can be obtained in Roy Longbottom’s PC Benchmark Collection3.
By running these benchmarking programs on each machine we obtain the scores
after an operation that takes a few seconds (less than 10 seconds on average),
independently of the benchmark used.

Table 4 presents the score values with respect to the fastest processor (base-
line processor). Each benchmark gives different rankings for the processors, but
all agree that CPU8 is the fastest one and CPU1 or CPU2 the slowest ones. Due
to the diversity in the ranking obtained by each software benchmark, the last
column of Table 4 shows the mean normalize score value for each machine. This
new value is considered as the final score for each machine in our heterogeneous
platform, generating the following global ranking of CPUs: 1, 2, 4, 3, 5, 7, 6,
and 8. This ranking confirms our assumptions about the performance of each
machine.

5.3 Ranking Using Traditional dGAs

In this section, we present an analysis of the relative velocities of the processors
belonging to the heterogeneous computing environment from another point of
view: the execution of the dGA for each problem instance. This analysis is based
on the fact that a processor with a good score, running a general benchmark, may
not be relevant for our metaheuristic, because of its specific kind of operations.
The stop condition has been to reach a maximum number of generations (5000 for
all the instances) in order to measure the elapsed time for the dGA executed by
each processor of Table 3 under the same computational effort. The parameters
of the dGA are the ones listed in Table 2.

Table 5 shows the relative performance of the processors regarding the base-
line processor (CPU8) for each problem instance. From the analysis of the pre-
vious table, we can see that there are important differences in velocities between
the considered processors. For example, CPU1 is more than four times slower
than CPU8. CPU6 and CPU7 show similar relative velocities and their position
in the ranking is hard to differentiate. A machine rank can be established from
slow to fast processors: 1, 2, 4, 3, 5, 6/7, 8. Most of the used scientific bench-
mark software packages rank the processors in a different way than the running
time does (let us compare Table 4 and Table 5), but the rank matches the one
obtained by averaging the mean scores of the standard benchmark software (last

3 http://www.roylongbottom.org.uk/



Table 5. Relative velocities between processors discriminated by instances (fastest
processor CPU8 as baseline processor). Stop condition: to reach a maximum number
of generations

KP1-1k KP1-10k KP2-1k KP2-10k KP3-1k KP3-10k KP4-1k KP4-10k Mean
CPU1 4.40 4.39 4.67 4.68 4.60 4.60 4.75 4.75 4.61
CPU2 3.50 3.49 3.58 3.58 3.55 3.56 3.58 3.58 3.55
CPU3 2.66 2.64 2.77 2.76 2.78 2.78 2.81 2.82 2.75
CPU4 3.20 3.19 3.39 3.39 3.50 3.51 3.60 3.59 3.42
CPU5 2.43 2.42 2.54 2.55 2.58 2.58 2.63 2.64 2.55
CPU6 2.23 2.23 2.32 2.33 2.36 2.36 2.43 2.43 2.34
CPU7 2.25 2.24 2.35 2.34 2.42 2.42 2.45 2.44 2.36
CPU8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

column of Table 4). Thus, we successfully matched the general benchmarks and
our particular dGA benchmark into one single common ranking, what offers us
a grounded way of thinking in the relative speeds of the processors so as to use
it in the design of the algorithms later.

5.4 Mathematical Approximation of Running Times

As mentioned in Section 3, the application of the HAPA methodology requires
the computation of the relative velocity factor between machines involved in the
heterogeneous platform. Therefore, a comparison between benchmark and run-
time results is carried out, by using the mean normalized benchmark scores and
the normalized relative velocities shown in the two previous sections. However,
it should be impractical to run also (all) the target algorithm to determine the
ranking. Therefore, we need a mathematical function to reflect that relation, as
a way to predict the running times depending on the node where an island is to
be assigned, and to enable us to compute the velocity factor. Also, determining
this mathematical function which encapsulates the practical knowledge allows
us to extend the use of the methodology to other algorithm applications.

For that purpose (encapsulating the knowledge of the previous experiments
into a mathematical tool), we have used the Open Source project Pythonequa-
tions 4. Pythonequations is a collection of Python equations that can fit them-
selves to both 2D and 3D data sets (curve fitting and surface fitting).

Among the best fitting equations, we have chosen the Hyperbolic G 2D equa-
tion because it was the best one in the consistency with the expected behaviour
of the processors, with a reasonably low number of coefficients. The resulting
formula is outlined in Equation 2 while the coefficient values and error statistics
of the regression are shown in Table 6.

f(x) =
a× x

b+ x
+

c× x

d+ x
(2)

In Equation 2, the x value corresponds to the mean scores obtained by sci-
entific benchmark for each CPUi machine (shown in the last column of Table 4)

4 https://code.google.com/p/pyeq2/



Table 6. Coefficient (left) and fitting statistics (right)

coeff. value
a -0.766
b -4.508
c 1.616
d 1.074

metric value

R2 0.9708
Adjusted R2 0.9489
Root mean squared error 0.1698

Fig. 3. Real time fitting

and the f(x) value means the mean relative velocities regarding execution times
of the dGA for that machine. This last value is important to apply the methodol-
ogy devised in Section 3, because it is used to compute the velocity factor (VF)
value which is necessary to set some parameters of every local dGA, such as
maximum number of generations or migration frequency.

In Figure 3 we can see the curves representing the f(x) values for each ma-
chine calculated by using Equation 2, and the real running times obtained in our
tests. Consequently, Equation 2 can be efficiently used to predict the running
times of the dGA and the f(x) can be used to compute the VF for a particular
machine. For example, if we should need to incorporate a new machine to the
computational environment in a future, we should only obtain the scores for each
software benchmark, and compute the average. This last value corresponds to
the x value in Equation 2. After that, we obtain an approximation of the mean
score time regarding execution times of the dGA for that incorporated machine.
At this point, it is important to remark that no new runs of the dGA is needed
in this new machine. Finally, we only have to compute the VF for that machine
in order to be used in the algorithm.

The considered hardware platform is a very heterogeneous cluster (see Ta-
ble 3), then there is no reason to think that the method (not the concrete results)
will not work for other machines, because the same measures could be applied
and the same conclusions should be produced: that is the basis of a methodology.



6 HAPA Phase 2: Design your Algorithm

This section is dedicated to the second phase of the methodology, which consists
in the design of the dGA fitted to be run in the heterogeneous hardware platform.
For that purpose, we describe the two possible instantiations of the proposed
methodology in the design of a dGA.

6.1 dGA HAPA: A First Algorithm Derived from HAPA

In this first algorithm derived from the HAPA methodology, we search for the
unification of the completion time of the algorithm on all the islands. For that,
the derived dGA establishes in an online way how many generations a subpop-
ulation has to evolve depending on its underlying CPU. If the population in the
fastest processor evolves for G number of generations (maxgens parameter), each
island i of our dGA HAPA executing in a slower processor B has to set its local
number of generations (maxgens−i) to a value equal to G divided by V F (B) (the
computed relative velocity factor for processor B). In a first step, each island
of our dGA derived from the HAPA methodology asks for the features of the
processor where it was launched (obtaining the V F (B) value), and also reads
the configuration file where the number of generations parameter is generically
set to G. With this information it proceeds to locally compute the maximum
number of generations. Algorithm 1 shows how a dGAi node is developed from
the HAPA methodology.

The rationale in this design is to avoid big deviations during the search
process, usually making just one or two of the islands to produce interesting
results, while the rest are stuck in old and lower quality solutions. Heterogeneity
could easily produce this behavior, and we want to find out whether our two
research questions (accuracy and efficiency) hold in this HAPA design.

Algorithm 1 dGAi using the HAPA methodology

V F=get(local Velocity Factor of processor)
maxgens−i = maxgens/V F
t = 0; {current generation}
initialize(Pi(t));
evaluate(Pi(t));
while (t < maxgens−i) do

P ′
i (t) = evolve(Pi(t)); {recombination and mutation}

evaluate (P ′
i (t));

P ′
i (t) = send/receive individuals from dGAj ;

Pi(t+ 1) = select new population from P ′
i (t) ∪ Pi(t);

t = t + 1;
end while



6.2 dGA HAPA-FM: A Second dGA Derived from HAPA

The proposed HAPA methodology can, of course, be used to derive other algo-
rithms. As a second example, we here now considered the migration frequency
in such a way that all islands will finally receive the same number of migrants
during the evolution. The aim is to prevent that fast islands probably end their
evolution without information from slow islands, also a normal non-desired be-
havior of plain heterogeneous algorithms.

The same process as the one previously described to compute the maximum
number of generations on each island depending on the processor’s velocity is
carried out (similar pseudocode, thus not shown). If the migration frequency is
set to M generations on the fastest island, then this value is divided by the rela-
tive velocity factor V F (B) of the rest of processors executing other island GAs.
With this operation, the number of generations between consecutive steps of
sending/receiving (the migration frequency parameter) is obtained, thus achiev-
ing an indirect numerical synchronization between the islands. This implicit
synchronization comes from the proportional rate that the islands have between
consecutive sending (in that way all islands exchange the same number of indi-
viduals during the evolution on average).

7 HAPA Phase 3: Obtaining the Results

This section is devoted to the third phase of the methodology, where the HAPA
performance in the developing of dGAs to be run in the heterogeneous hardware
platform is evaluated. For that purpose, we consider the two dGAs described
in the previous section: dGA HAPA and dGA HAPA-FM. The heterogenous
environment considered for their execution is made up of one node of each CPUi,
with i ∈ {1, . . . , 8}.

For comparison purposes we include the results of traditional dGAs under
different homogeneous execution scenarios: i) running a traditional dGA in a
concurrent manner, i.e., mapping the eight islands onto only one processor,
denominated dGA 1CPUi (CPUi with i = 1, 2, . . . , 8) thus obtaining a dGA
variant for each CPU shown in Table 3 and, ii) running a traditional dGA
in parallel (dGA hom) using a parallel homogeneous configuration, where each
island is mapped to a ring of eight processors (using the CPU7 hardware con-
figuration). With this comparison we aim at determining whether using HAPA
in dGAs has been useful to provide similar and even better results than dGAs
running in homogeneous hardware platforms. The stop condition for all algo-
rithms has been established to reach the optimum solution for each instance or
the maximum number of generations, whichever happens first.

In what follows, we measure basic parameters such as the hit rate, numerical
effort/time to locate a solution, and speedup. The goal is to offer a thorough
study of dGAs using HAPA as a way to validating this idea when executing
in heterogeneous computers. The section ends with an analysis of the search
diversity to examine the behavior of the studied dGAs.



Table 7. Hit rate obtained by dGA 1CPUi, dGA hom and HAPA variants for each
problem size

dGA 1CPUi dGA dGA dGA
1 2 3 4 5 6 7 8 hom HAPA HAPA-FM

KP1-1k 93 83 77 87 83 73 93 80 87 63 80
KP1-10k 97 90 77 93 90 100 100 93 90 93 93
KP2-1k 57 77 70 87 73 73 77 70 70 60 50
KP2-10k 0 0 0 0 0 0 3 0 0 0 0
KP3-1k 13 13 7 0 3 7 7 7 7 7 13
KP3-10k 47 40 27 40 43 50 43 33 27 17 27
KP4-1k 0 3 3 0 3 0 0 3 0 0 3
KP4-10k 0 0 0 0 0 7 0 0 3 0 0

7.1 Hit Rate Analysis

The first considered quality indicator will be the hit rate, i.e., the number of
times at which an algorithm finds the optimal solution for an instance, out of a
constant number of 30 independent runs. Table 7 displays the obtained results.
Let us begin by analyzing the results of the dGA running on one single processor
(dGA 1CPUi) for all our processors independently. As expected, the different
dGA 1CPUi present similar hit rate values, which can be explained by the fact
that the dGA is exactly the same in all the tests (numerically speaking), being
the processor velocity the only difference between them. The dGA running in
the homogeneous hardware (dGA hom), where each island is mapped onto a
processor (8 islands and 8 equal processors), also obtains similar results as the
different dGA 1CPUi, except for KP3-10k whose hit rate is nearly the half of the
ones of dGA 1CPUi. Finally, the dGAs executed in a heterogeneous computing
environment (dGA HAPA and dGA HAPA-FM) are able to find the optimal
solution in a similar number of runs as those of the different dGA 1CPUi and
dGA hom. In general, the hit rate values are higher than the 60% for the three
first instances (except for KP2-1k). In the case of instances KP2-10k, KP4-
1k, and KP4-10k the dGA was in general not able to find the optimal solution
independently of the hardware used, but our actual target is not problem solving,
but algorithm design.

7.2 Numerical Effort Analysis

Table 8 shows the numerical effort to locate a solution, i.e., the number of evalua-
tions of the objective function needed to locate the optimum (Table 1). There are
no important differences between the results of the dGA 1CPUi and dGA hom.
However, an encouraging finding is this: dGA HAPA variants reach the optimal
solutions in a smaller number of evaluations than the rest, except for KP2-1k.
The Kruskal-Wallis test confirms this situation, indicating that there are sta-
tistically significant differences between groups of ranks (p-values lower than
10−5). There seems to be no statistical difference between the dGA executed
in a uniprocessor environment. However, dGA HAPA-FM presents statistically
significant differences with respect to the rest of the algorithms (in its favor) for



Table 8. Numerical effort obtained by dGA 1CPUi, dGA hom and dGA HAPA vari-
ants for solving each problem size

dGA 1CPUi dGA dGA dGA
1 2 3 4 5 6 7 8 hom HAPA HAPA-FM

KP1-1k 65459 67646 64835 74102 69062 59774 54932 55964 72635 47739 35991
KP1-10k 56188 60197 46273 91385 50131 55569 55569 56493 49282 69662 42794
KP2-1k 88733 91411 92270 126219 92788 67321 92492 88828 94397 81542 83723

KP2-10k – – – – – – 110439 – – – –
KP3-1k 145552 145599 144567 – 202702 157149 135002 220203 190293 63336 67106

KP3-10k 157951 151096 173798 164674 150141 157023 176838 146770 154821 86918 99457
KP4-1k – 106168 93726 – 127657 – – 252246 – – 61282

KP4-10k – – – – – 154351 – – 110824 – –

KP1-1k, KP1-10k and KP4-1k. In the case of KP2-10k and KP4-10k the optimal
solution was too difficult to find for all the algorithms.

In the first two instances, the percentage of numerical effort reduction achieved
by dGA HAPA-FM with respect to dGA 1CPUi and dGA hom is between 22%
(dGA 1CPU3 for KP1-10k) and 61% (dGA 1CPU4 for KP1-10k) and for KP2-
1k the values decrease by more than the 50%. For the rest of the instances the
values decrease by the 75%. Analyzing the number of evaluations of dGA HAPA
with respect to dGA 1CPUi and dGA hom for KP2-1k, a reduction of over 30%
is achieved, while for KP3-1k and KP3-10k the values decrease by more than
the 67%. Consequently, the exploration of the search space made by dGA HAPA
and dGA HAPA-FM is not the same as for the other algorithms, because the
final number of function evaluations is fairly smaller. The truly interesting point
is that, even with such a lower effort, the hit rate is highly competitive compared
to the ones of the other non-HAPA algorithms analyzed.

All the previous observations, i.e., similarities in hit rate values and numerical
effort, represent a promising result, remarking the feasibility of merging different
old hardware with new machines as a unified heterogeneous platform to execute
a dGA. With these results, we can positively answer the first question (Q1) made
in the introduction (Section 1): HAPA can help in designing new algorithms for
heterogeneous hardware with competitive times (compared to new hardware)
and with better problem-solution accuracy.

7.3 Runtime Analysis

Another interesting measure for a dGA is the total runtime needed to reach
a solution, which is shown in Figure 4. In this case, the mean runtime in sec-
onds is displayed. From the point of view of the uniprocessor configurations, we
can see that dGA 1CPU8 is the fastest configuration, followed by dGA 1CPU6,
dGA 1CPU7, and so on, i.e., the resulting ranking matches the underlying tech-
nologies’ state of the art, an expected situation. The two HAPA variants are
the fastest hardware configurations (lowest execution time). All the differences
are statistically significant according to the Kruskal-Wallis test (p-values bellow
to 10−5), dGA HAPA-FM and dGA hom have ranks significantly different from
dGA HAPA. These results are the basis to answer the second question (Q2)



Fig. 4. Execution times obtained by the dGA for each problem size

formulated in Section 1: we do not observe a degradation in the execution time
with the use of the heterogeneous computing environment (slower computers on
it), which again is an interesting finding. Homogeneous dGAs can be only better,
in theory, if all CPUs involved in the computing environment are equal to the
fastest hardware configuration belonging to the heterogeneous parallel platform.

Related to the runtime measure, we have also studied the speedup sm, which
compares the run time of the parallel algorithm on one processor against the run
time of the same algorithm on m processors to solve a particular problem [1].
For non-deterministic algorithms, the speedup is the ratio between the mean
execution time of the dGAs on a uniprocessor configuration, denoted as E[T1],
and the mean execution time of the dGAs on m processors, denoted as E[Tm]
with m = 8 (see Equation 3). The speedup has been computed here with respect
to the fastest processor (CPU8, worst case analysis).

sm =
E[T1]

E[Tm]
(3)

Figure 5 graphically shows the speedup values for each dGA (the line in this
figure expresses the ideal linear speedup) . The dGA HAPA-FM speedup is the
best of the three algorithms for the most of the instances. Although the speedup
is sub-linear (sm < m), the heterogeneous results are quite good because they are
approximately at 80% of the ideal speedup value, except for instances KP1-1k,
KP4-1k and KP4-10k where the values are very small (less than 2.7). This last
fact could be explained by the huge difference between the power of the different
hardware configurations used: we must remember that the reference point for
speedup is the best performing processor, a very fast one in global terms.



Fig. 5. Speedup obtained by the dGAs for each problem size

(a) KP2-1k (b) KP3-1k

Fig. 6. Evolution of the mean fitness for two illustrative problems

7.4 Search Diversity Analysis

We proceed now with an analysis of the evolution of the fitness and the diversity
of the dGA hom, dGA HAPA and dGA HAPA-FM. For this purpose, we are
going to track the value of the best fitness and the mean population entropy
along the search, which are the mean of ten runs made for each algorithm. We
did just ten runs because it is a fairly stable process, as the results will show.

Figure 6 shows the evolution of the best fitness along the execution of each
algorithm for some problem instances used as example (similar situations are
observed in the rest of the instances). In the bottom right corner of each subfig-
ure, we make a zoom into detailed moments of the evolution. Regardless of the
problem dimension, the population diversity of dGA HAPA-FM leads to good
solutions faster than the rest. This observation suggests that the cooperation of



0.0 0.5 1.0 1.5

0

1

2

3

4

time

en
tr

op
y

dGA_HAPA−FM
dGA_HAPA
dGA_hom

(a) KP2-1k

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

time

en
tr

op
y

dGA_HAPA−FM
dGA_HAPA
dGA_hom

(b) KP3k-1k

Fig. 7. Evolution of the entropy for two illustrative problems

slow processors and faster processors, together with the adjustment of the mi-
gration frequency, lead to work out high quality solutions. After an initial period
of evolution, the curves belonging to dGA HAPA and dGA hom overlapped to
the dGA HAPA-FM.

Figure 7 presents the evolution of the mean population entropy along the
search for each algorithm analyzed (measured for every bit position in all the
individuals of a population). In this case, we show the accumulated entropy
values over time. We are going to analyze this figure and compare values with
the aforementioned evolution of the fitness. We can see how the fitness curve has
a maintained growth rate for the dGA HAPA-FM population, suggesting that
it was able to sustain a higher diversity within its population during the whole
search, which helps to produce good solutions. The algorithm dGA hom reaches
good entropy levels compared to the dGA HAPA one.

Another factor to analyse is the quality of immigrants with respect to the best
solution in the target population. Our aim is to give a measure of the degree of
cooperation between the different subpopulations of an algorithm. We compute
the percentage of times the incoming solution has a higher quality than the best
solution in the target population. Table 9 shows the mean percentages for all
dGAs and problem instances. In general, the percentages decrease as the com-
plexity of the instances increases. The dGA hom algorithm obtains the higher
percentages than the rest, a typical excess of elitism that renders unproductive
the algorithm. In most of the cases, the dGA HAPA-FM has a higher percent-
age of acceptance than the dGA HAPA, meaning that the received solution is
incorporated to the target population. In a way, previous observations indicate
the beneficial influence of collaboration between the subpopulations in different
stages of the evolution. The exchange of solutions not only benefits slower islands
(by the reception of optimized solutions) but also benefits faster islands because
of solutions having portions of the optimum in them.



Table 9. Percentage of acceptance of the received solutions into de local subpopulation

% dGA hom dGA HAPA dGA HAPA-FM
KP1-1k 94.48 80.22 90.03
KP1-10k 91.15 71.90 84.90
KP2-1k 86.59 76.56 79.26
KP2-10k 82.01 78.54 73.43
KP3-1k 83.56 71.07 72.98
KP3-10k 82.19 73.63 73.95
KP4-1k 76.31 70.25 70.11
KP4-10k 75.54 67.77 62.20
Mean 83.60 73.74 75.86

8 Conclusions and Future Research

This article deals with the execution of a dGA using heterogeneous computing
resources, where the processing nodes show a high level of heterogeneity: differ-
ent CPUs belonging to a wide range of fabrication years and technologies. We
developed a methodology, called HAPA, to deal with that heterogeneity and the
execution of metaheuristics. HAPA consists of three phases: i) the computation
of a ranking of processors in order to know the platform (an offline phase), ii)
the algorithm design derived from the previous phase, and iii) the validation
of the proposed dGAs (an online phase). In this work, the HAPA methodology
was applied to regulate the stopping conditions (dGA HAPA algorithm) and the
migration frequency (dGA HAPA-MF algorithm).

We have performed a set of tests in order to assess the performance of our
proposal, and we compared both algorithms derived from the HAPA method-
ology against a dGA running in a homogeneous computing environment. The
results indicate that similar levels of accuracy and efficiency can be attained,
but with a lower number of function evaluations, by using the proposed HAPA
methodology, thus confirming RQ1. We have shown that the dGA HAPA-MF
algorithm can perform a search in a faster way than the homogeneous dGAs,
while maintaining a higher diversity within the population, exhibiting a bet-
ter balance between exploration and exploitation. Therefore, we can also finally
confirm RQ2.

In short, we have contributed in this article with a way of avoiding pure ad-
hoc design of algorithms for heterogeneous platforms, as well as we give a new
line of research in how to inject hardware knowledge into software parameters
of the algorithms. In addition of being innovative, this has shown to also be
numerically competitive and within reduced run times.

Further research is necessary to understand the effects of factors such as
the influence in the topology of communication between islands. We will also
consider a self-control of the parameters of the distributed genetic algorithm
during the evolution under a heterogeneous environment taking care of both,
numerical and hardware issues.



Acknowledgments

We acknowledge the UNLPam, the ANPCYT, CONICET and PICTO-UNLPam-
0278 in Argentina from which Dr. Salto receives regular support. The work of
Prof. Alba has been partially funded by the University of Málaga UMA/FEDER
FC14-TIC36, programa de fortalecimiento de las capacidades de I+D+I en las
universidades 2014-2015, de la Consejeŕıa y Economı́a, Innovación, Ciencia y
Empleo, with European FEDER, and also by the UMA Project 8.06/5.47.4142
with the VSB-Technical University of Ostrava (CR). Finally, we acknowledge the
funding by the Spanish MINECO project TIN2014-57341-R (http://moveon.lcc.uma.es).

References

1. E. Alba. Parallel evolutionary algorithms can achieve super-linear performance.
Information Processing Letters, Elsevier, 82(1):7–13, 2002.

2. E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley, 2005.
3. E. Alba, A.J. Nebro, and J.M. Troya. Heterogeneous computing and parallel ge-

netic algorithms. Journal of Parallel and Distributed Computing, 62:1362–1385,
2002.

4. E. Alba and J.M. Troya. Analyzing synchronous and asynchronous parallel dis-
tributed genetic algorithms. Future Generation Computer Systems, 17(4):451–465,
2001.

5. J. Dominguez E. Alba. A methodology for comparing the execution time of meta-
heuristics running on different hardware. In Jin-Kao Hao and Martin Middendorf,
editors, Evolutionary Computation in Combinatorial Optimization, volume 7245 of
Lecture Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2012.

6. J. Baugh and S. Kumar. Asynchronous genetic algorithms for heterogeneous net-
works using coarse-grained dataflow. In Proceedings of the 2003 international con-
ference on Genetic and evolutionary computation: PartI, GECCO’03, pages 730–
741, Berlin, Heidelberg, 2003. Springer-Verlag.

7. Victor E. Bazterra, Martin Cuma, Marta B. Ferraro, and Julio C. Facelli. A general
framework to understand parallel performance in heterogeneous clusters: analysis
of a new adaptive parallel genetic algorithm. Journal of Parallel and Distributed
Computing, 65(1):48 – 57, 2005.

8. Jrgen Branke, Andreas Kamper, and Hartmut Schmeck. Distribution of evolu-
tionary algorithms in heterogeneous networks. In Kalyanmoy Deb, editor, Genetic
and Evolutionary Computation GECCO 2004, volume 3102 of Lecture Notes in
Computer Science, pages 923–934. Springer Berlin Heidelberg, 2004.

9. F. Chong. Java based distributed genetic programming on the internet. Technical
report, School of Computer Science, University of Birmingham, 1999.

10. H.J. Curnow and B.A. Wichmann. A synthetic benchmark. The Computer Journal,
19(1):43–49, 1976.

11. J. Dominguez and E. Alba. Ethane: A heterogeneous parallel search algorithm for
heterogeneous platforms. DECIE11, 2011.

12. J. Dominguez and E. Alba. Dealing with hardware heterogeneity: a new parallel
search model. Natural Computing, 12(2):179–193, 2013.

13. J. Dongarra. Performance of various computers using standard linear equations
software in a fortran environment. Simulation, 49(2):51–62, 1987.



14. E. Alba et al. MALLBA: A Library of Skeletons for Combinatorial Optimisation,
volume 2400 of LNCS, pages 927–932. Springer, 2002.

15. M. Garćıa-Arenas, J. Merelo, P. Castillo, J. Laredo, G. Romero, and A. Mora.
Using free cloud storage services for distributed evolutionary algorithms. In Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’11, pages 1603–1610, New York, NY, USA, 2011. ACM.

16. M.R. Garey and D.S. Johnson. COmputers and Intractability: a Guide to the
Theory of NP-Completeness. Freeman, 1979.

17. Y. Gong, M. Nakamura, and S. Tamaki. Parallel genetic algorithms on line topology
of heterogeneous computing resources. In Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation, GECCO ’05, pages 1447–1454, 2005.

18. Dudy Lim, Yew-Soon Ong, Yaochu Jin, Bernhard Sendhoff, and Bu-Sung Lee. Ef-
ficient hierarchical parallel genetic algorithms using grid computing. Future Gen-
eration Computer Systems, 23(4):658 – 670, 2007.

19. P. Liu, F. Lau, andd J. Lewis, and C. Wang. Asynchronous parallel evolutionary
algorithm for function optimization. In Parallel Problem Solving from Nature, page
405409. Springer, 2002.

20. G. Luque and E. Alba. Parallel Genetic Algorithms: Theory and Real World Ap-
plications, volume 367 of Studies in Computational Intelligence. Springer, 2011.

21. F.H. McMahon. The Livermore Fortran Kernels: A Computer Test Of The Nu-
merical Performance Range. Lawrence Livermore National Laboratory, 1986.

22. K. Meri, M. Arenas, A. Mora, J. Merelo, P. Castillo, P. Garca-Snchez, and
J. Laredo. Cloud-based evolutionary algorithms: An algorithmic study. Natural
Computing, 12(2):135–147, 2013.

23. S. Mostaghim, J. Branke, A. Lewis, and H. Schmeck. Parallel multi-objective op-
timization using master-slave model on heterogeneous resources. In Evolutionary
Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelli-
gence). IEEE Congress on, pages 1981 –1987, 2008.

24. D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Re-
search, 45:758–767, 1997.

25. D. Pisinger. Core problems in knapsack algorithms. Operations Research, 47:570–
575, 1999.

26. D. Pisinger. Where are the hard knapsack problems? Computers & Operations
Research, 32:2271–2282, 2005.

27. R. Tanese. Distributed genetic algorithms. Proceedings of the Third International
Conference on Genetic Algorithms, pages 434–439, 1989.

28. R.P. Weicker. Dhrystone: a synthetic systems programming benchmark. Commu-
nications of the ACM, 27(10):1013 – 1030, 1984.


