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1. Introduction

In recent years, a lot of effort has been devoted to the imple-
mentation of calculation techniques to describe the electronic 
structure of strongly correlated complex materials. This is a 
complicated and challenging task in view of the many degrees 
of freedom involved. One of the most successful approaches 
in this direction was the implementation of dynamical mean 
field theory (DMFT) [1–3]. Numerically, the most challenging 
part of DMFT is the solution of the Anderson impurity model 

[4] within the DMFT self-consistent loop that maps the lattice 
problem into a single impurity one.

There are two well-known numerically exact techniques to 
solve this impurity model, namely, the quantum Monte Carlo 
(QMC) in its Hirsch-Fye (HF-QMC) or continuous time  
(CT-QMC) versions [5, 6], and the numerical renormalisa-
tion group (NRG) [7, 8]. Recently, substantial technical 
progress [9] has been achieved in both approaches. On one 
hand, the advent of continuous-time quantum Monte Carlo 
methods [10] eliminated the time discretisation error inherent 
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We assess the reliability of the one-crossing approximation (OCA) approach in a quantitative 
description of the Mott transition in the framework of the dynamical mean field theory 
(DMFT). The OCA approach has been applied in conjunction with DMFT to a number of 
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recent studies in the framework of impurity models pointed out serious deficiencies of OCA 
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phase diagram for the particle-hole symmetric case obtained by OCA is in good agreement with 
that of QMC, with the metal–insulator transition captured very well. We find, however, that the 
insulator to metal transition is shifted to higher values of U and, simultaneously, correlations 
in the metallic phase are significantly overestimated. This counter-intuitive behaviour is due 
to simultaneous underestimations of the Kondo scale in the metallic phase and the size of the 
insulating gap. We trace the underestimation of the insulating gap to that of the second moment 
of the high-frequency expansion of the impurity spectral density. Calculations of the system 
away from the particle-hole symmetric case are also presented and discussed.
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to the HF-QMC and extended the range of applicability of 
the QMC to much lower temperatures and realistic Coulomb 
repulsion vertices. On the other hand, very fast implementa-
tions of NRG applied to multi-band systems have been devel-
oped using Abelian and non-Abelian symmetries on a generic 
level [11].

In spite of recent technical improvements, those exact 
methods still encounter certain difficulties. QMC solvers 
suffer from the well-known ‘fermion sign problem’, which 
can be especially severe when the degeneracy of the cor-
related shell is large and significant off-diagonal terms are 
present in the hybridisation function. Moreover, QMC calcu-
lations are carried out in the imaginary-time domain and an 
analytic continuation is required to obtain real-energy spec-
tral functions from QMC data. The NRG approach becomes 
computationally expensive in multiorbital cases with broken 
orbital symmetries (for instance, when interactions like pair-
hopping prohibit the use of symmetries that reduce the size of 
the matrix to be diagonalised [12], leading to an exponential 
increase in the Hilbert space). Because of these limitations the 
necessity of having faster and more reliable impurity solvers 
is evident.

Hence, several approximate schemes have been proposed 
for solving the DMFT impurity problem like the local moment 
approximation (LMA) [13], iterative perturbation theory 
(IPT) [14], exact diagonalisation [15], rotationally invariant 
slave bosons [16] and conserving diagrammatic approxima-
tions based on self-consistent hybridisation expansion (SCH) 
[17], among others.

Regarding the SCH, the non-crossing approximation 
(NCA) [18] represents the simplest family of these self-
consistent treatments and provides an accurate calcula-
tion of the impurity Green function, as well as many other 
properties, when the Coulomb repulsion is taken to be large 
enough as compared with the other energy scales involved in 
the problem. However, when more than one charge fluctua-
tion needs to be included ( → −N N 1 and → +N N 1, being 
N the impurity valence), NCA has failed to give the correct 
Kondo scale (TK). The next leading order in the self-consistent 
expansion that partially solves this pathology is often known 
as the one-crossing approximation (OCA) [19–21]. Within 
this extended formalism other classes of problems have been 
investigated [22–24]. Among them, its major application is in 
the context of the dynamical mean field theory as an impurity 
solver [3].

In particular, the OCA solver has the advantage of being 
formulated at the real frequency axis and it gives the cor-
rect order of magnitude for the Kondo scale of the impurity 
problem. It successfully captures the correct temperature 
dependence of transport properties of a single impurity level 
[21], and it has been employed as the DMFT impurity solver 
in the search for signatures of a non-Fermi liquid behav-
iour in the Hubbard model with van Hove singularities [24]. 
Furthermore, it has been generalised to an arbitrary number of 
orbitals and interactions [23]. The multiorbital generalisation 
of OCA was employed in a study of the itinerant and local-
moment magnetism in the three-band Hubbard model [26]. 
In combination with ab initio  +DMFT calculations, the OCA 

solver has been applied to real strongly correlated materials, 
for example, to heavy-fermion compounds [3, 22, 23, 25].

However, the OCA solver also has several limitations. It 
cannot be applied to arbitrarily low temperatures due to viola-
tions of the Fermi-liquid properties (in the impurity model, 
OCA works well for T  >  0.1 TK) [21, 27–29], and it also vio-
lates the sum rules for the coefficients of the high-frequency 
expansion of the self-energy [30]. While the former pathology 
can be controlled by restricting its application to high enough 
temperatures, the latter is intrinsic and will always be present. 
As was pointed out recently, the OCA method is more accu-
rate in the strongly-correlated limit [30], and it describes the 
insulating phase particularly well [31]. It has also been shown 
that OCA overestimates the correlations in the metallic phase 
and it has been conjectured that this overestimation of correla-
tion effects reflects the fact that the OCA tends to favour the 
insulating state.

One important issue that has not been studied to date is 
the actual quantitative performance of the OCA solver within 
DMFT in describing the metal–insulator Mott transition [32]. 
Hence, we address this issue in the present work by calculating 
the critical Uc values for the Mott transition within DMFT as 
a function of temperature using OCA as the impurity solver, 
and comparing them with the corresponding ones obtained 
with the CT-QMC. We also compare the DMFT local self-
energies obtained within the two approaches as well as the 
corresponding quasi-particle effective masses in the metallic 
phase. Our calculations are carried out for the single band 
Hubbard model with a semicircular non-interacting density of 
states.

Our main conclusion is that the OCA metal-to-insulator 
transition for the particle–hole symmetric case is in remark-
ably good agreement with that of the CT-QMC. However, 
we find that insulator-to-metal transition is shifted to higher 
values of U despite the fact that the correlations of the metallic 
phase are overestimated. This counter-intuitive behaviour is 
explained as a combination of two factors: the underestima-
tion of the effective Kondo temperature in the metallic phase 
and the underestimation of the gap in the insulating one. The 
fact that OCA underestimates the gap in the insulating regime 
comes from an analysis of the high-frequncy expansion sum 
rules of the Green function. Our results are in contradiction 
with the conjecture of OCA favouring the insulating phase. 
We show that although OCA overestimates the strength of 
correlations in the metallic phase, it does not favour the insu-
lating one because the critical values of the metal-to-insulator 
transition are very well captured.

We also study the same model in the non-symmetric case, 
obtaining similar agreement between both techniques. We 
verify that the OCA approximation does not violate the Friedel 
sum rule in the metallic phase for the range of temperatures of 
the obtained phase diagram, and that the interacting part of the 
OCA self-energy always remains causal.

This paper is organised as follows: we describe the theoret-
ical formalism in section 2, we present the numerical results 
for the particle–hole symmetric case in section 3.1, we discuss 
the results obtained for the system away from half-filling in 
section 3.2 and finally we conclude in section 4.

J. Phys.: Condens. Matter 27 (2015) 485602
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2. Model and formalism

We start with the single-band Hubbard Hamiltonian,

( )† †∑ ∑= − + +
σ
σ σ σ σ

< >
↑ ↓H

t

z
c c c c U n n ,

ij
i j j i

i
i i (1)

where the first term is the kinetic energy, t is the hopping 
between nearest neighbours on a lattice, z is the coordination 
number and U is the energy of the on-site Coulomb repulsion. 
The operator †

σci  creates an electron with the spin σ on the site i 

and †=σ σ σn c ci i i . We use the semicircular non-interacting den-

sity of states ω ω= −
π

N t4
t

1

2
2 2

2( ) , ω| | < t2  corresponding 

to a Bethe lattice with coordination →∞z , for which the 
DMFT approximation becomes exact. In the following we use 
the half bandwidth as our unit of energy D  =  2t  =  1.

We solve the Hamiltonian (1) by means of DMFT, which 
maps the lattice model onto a single-impurity Anderson 
one within a self-consistent cycle. The hopping between 
the impurity and the conduction band, Vk, defines the 
hybridisation function for the single-impurity problem 

( ) ( )ω ωΓ = ∑ − εVi / ik k k
2 , where εk is the conduction energy of 

the impurity model. Within the DMFT and in the case of the 
Bethe lattice, the DMFT hybridisation function is given by the 
self-consistency condition ( ) [ ( )]ω ωΓ = Γt Gi i2 , where ( )ωG  is 
the local Green function obtained from the impurity model.

Starting from the metallic non-interacting solution of the 
model, the system turns into an insulator for large enough 
values of the Coulomb repulsion U due to the vanishing of the 
quasi-particle weight. The value of =U Uc2 defines this transi-
tion. On the other hand, starting from an insulating solution, 
the systems becomes metallic due to the collapse of the gap 
between the Hubbard bands, for ⩽U Uc1, with <U Uc1 c2 when 
T is lower than the second-order end point of the first-order 
Mott transition Tc. The critical values < <U U Uc1 c2 as a func-
tion of the temperature T determine a phase diagram.

The phase diagram of the Mott transition for the present 
model was previously obtained using the QMC [33–35], IPT 
[1], exact diagonalisation [15, 36, 37] and NRG [8] impurity 
solvers. The determination of the exact boundaries of the 
coexistence region previously required a significant effort due 
to their sensitivity to calculational parameters, as well as due 
to the critical slowing down of the DMFT convergence close 
to those boundaries [34]. Hence, we have employed up to 220 
DMFT cycles for each point in the {U, T} space and used 
a dense mesh along the U-axis with the spacing between U 
values down to 0.005 in the vicinity of the Uc1 line. We have 
used the CT-QMC implementation provided by the TRIQS 
package [38, 39]. The DMFT impurity problem has been 
solved by the CT-QMC using  ∼109 CT-QMC moves with 
each 200 moves followed by a measurement. The resulting 
CT-QMC phase diagram is in agreement with the extensive 
HF-QMC calculations of Blümer [35]. Within the OCA solver 
we have used the procedure described by Hettler et al for reg-
ularising the spectral functions [40] and the numerical convo-
lution sketched in [22] when computing the self-energies and 
the Green function.

3. Numerical results

In this section, we present the numerical results obtained using 
the OCA solver for the DMFT loop and a detailed comparison 
with the CT-QMC calculations.

3.1. Mott transition for the particle–hole symmetric case

In order to get the critical values ( )U Tc1  and ( )U Tc2  for a given 
temperature T within the OCA solver, we take advantage of its 
self-consistent nature building an external loop running in the 
U values. Starting from a metallic solution we slowly increase 
U by δU retaining the previous ionic self-energies and Green 
function as the initial guess for the following δ+U U DMFT 
cycle, until an insulator solution is reached, and then we 
decrease U by δ− U until we go back to the initial U.

In figure 1(a) we show the spectral weight at the zero-fre-
quency, ( ) [ ( )]ω ω π= = − =IA m G0 0 / , as a function of U for 
an inverse temperature β = 80. We show both the increasing 
U results from the metallic to insulator solutions as well as 
the decreasing ones. A hysteresis curve is formed, giving rise 
to two different critical values, ( )U Tc1  and ( )U Tc2 . We define 
these critical values following the criteria given in [8] from the 
U-value, for which ( )ω| = |′A 0  reaches its maximum intensity.

In figure 1(b) we show the variation of the quasi-particle 

weights, ( )= − |ω
ω ω

∂ Σ
∂ =

−⎡
⎣

⎤
⎦Z 1 Re

0

1
, as a function of U for 

β = 80. In order to compare with the CT-QMC, we first obtain 
the interacting part of the OCA self-energy ( )ωΣ , removing 
the non-interacting offset given by the hybridisation term. 

Figure 1. (a) Spectral weight ( )ω =A 0  for the inverse temperature 
β = 80 as a function of U both for increasing (black lines, squares) 
and decreasing (red lines, circles) U values. The CT-QMC (OCA) 
data are displayed with the solid (dashed) lines and empty (filled) 
symbols, respectively. (b) The quasi-particle residue Z as function of 
U for the same temperature. The notation is the same as in panel (a).
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Secondly, from a Hilbert transform of ( )ωΣIm , we compute 
the corresponding self-energy in the Matsubara domain,

( )   ( )
∫ω

π
ω

ω
ω ω

Σ = −
Σ
−

i
1

d
Im

i
.n

n
 (2)

Finally, we approximate the derivative ( ) | =ω
ω ω

∂ Σ
∂ =

Re
0

 

i
Im i

i 0
n

n n→
( ) |ω
ω ω

∂ Σ
∂

 by a cubic fitting of the first four Matsubara 

frequencies of ( )ωΣIm i n .
Although the vanishing of Z defines the critical value Uc 

only at zero temperature [8], it has been used as a common 
criteria even for finite temperatures (see for instance [41]) 
From figure  1 it can be seen that both approaches (from 

( )ω =A 0  or from Z ) define the same energy scales for Uc1 and 
Uc2. More importantly, the OCA critical U-values are in rea-
sonable agreement with the CT-QMC ones. While the OCA 
value for Uc2 is obtained within an error of less than 0.5% with 
respect to the CT-QMC one, the calculated Uc1 is larger than 
the CT-QMC one by around 3%. We will discuss the origin of 
this discrepancy for Uc1 later in this section.

It is important to remark that the OCA values of Z in the 
metallic region, i.e. <U U U,c1 c2, are smaller than the CT-QMC 
ones. The same behaviour was found by Schmitt et al [26] using 
OCA for a body-centered-cubic lattice in comparison with the 
NRG calculations. While OCA gives the correct low energy 
scale for the impurity model, this energy scale is still slightly 
underestimated [20], and therefore within OCA the system feels 
a larger effective Coulomb repulsion giving rise to a reduced 
quasi-particle weight. However, it is important to remark that 
the underestimation of Z is less important close to the transition.

In figure 2 we show the imaginary part of the self-energy in 
the imaginary frequency domain for the increasing U regime 
at β = 60 and for two different values of U, one below and 
one above Uc2, U  =  2.3 and U  =  2.4. As can be observed from 
this plot, for the metallic case OCA overestimates the abso-
lute magnitude of the self-energy at low frequencies. Similar 
to the underestimation of the quasi-particle weight at the low 
temperatures described above, this behaviour of ( )ωΣIm i n  can 
be also understood as arising due to an effectively larger value 
of U. On the other hand, in the insulating region the agreement 
between OCA and the CT-QMC is remarkable. We found 
that for a correct comparison between the two techniques it 
was very important to have the same degree of precision of 
the convergence criterion of the DMFT loops, especially for 
points close to the Mott transtion. For large frequencies, an 
additional test can be done using the sum rules that ( )ωΣ i n  
should satisfy.

In the inset of figure  2 we plot the imaginary part of 
the OCA self-energy scaled by ωn for = <U U2.3 c2 and 
= >U U2.4 c2, together with the exact coefficient Σ1 for each 

U, which corresponds to the first moment in the self-energy 

high-frequency expansion,   ( )∫ ωΣ = Σω
π

Im ,1
d  and that deter-

mines the asymptotic ω1/ n behaviour. In [30], Rüegg et al cal-
culated the exact value expected for Σ1, being Σ = −U /41

2  for 
the symmetric case4. For the parameters shown in figure 2, we 

obtain a deviation of the OCA Σ1 coefficient of the order of 
5% in the metallic phase, while in the insulator one the error 
is reduced to less than 2%.

In what follows we discuss the phase diagram of the Mott 
transition. In figure 3 we show the T versus U diagram with 
the calculated Uc1 and Uc2 obtained from the zero-frequency 
spectral function ( )ω =A 0  (upper panel), as well as the 
quasi-particle residue Z (lower panel). The general trend of 
the critical ( )U Tc  obtained by OCA is in reasonable agree-
ment with the corresponding CT-QMC ones. Even though a 
very well-defined coexistence region is captured by OCA, this 
coexistence region is reduced with respect to the CT-QMC 
one. While the agreement is remarkable for the ( )U Tc2  transi-
tion, the ( )U Tc1  values are slightly shifted to higher energies 
in OCA.

Regarding the critical temperature (Tc) below which two 
different spinodal lines define the coexistence region of the 
insulating and metallic regimes of the Mott transition, OCA 
gives ∼T 0.02c  in reasonable agreement with the CT-QMC 
∼T 0.025c . The slight underestimation of Tc is a consequence 

of the corresponding underestimation of TK by OCA at the 
effective impurity level. For comparison, we also include in 
the inset of the upper panel of figure 3 the finite-U NCA phase 
diagram for the particle–hole symmetric case. We stress here 
that this simple approximation severely underestimates all the 
energy scales involved, Tc and both ( )U Tc1  and ( )U T ,c2  as a 
consequence of the underestimated Kondo scale. On the other 
hand, we want to mention here that the IPT results [1, 8] are 
considerably shifted to higher energies overestimating both 

( )U Tc1  and ( )U Tc2  due to the exaggerated overestimation of the 
Kondo scale at the impurity level.

Figure 2. Comparison of the imaginary part of the self-energy as a 
function of the Matsubara frequency between OCA and the  
CT-QMC at β = 60 for two different values of U, one below Uc2 and 
the other one above. The inset shows the imaginary part of the OCA 
self-energy scaled by ωn. The dashed and solid lines indicate their 
expected theoretical values given by the high-frequency expansion 
sum rule, Σ = −U /41

2 .

0,1 1 10 100 1000
ω

n
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Im
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iω
n)

QMC U=2.3
QMC U=2.4
OCA U=2.3
OCA U=2.4

10 20 30ω
n

-1,4

-1,35

-1,3

ω
nIm

Σ(
iω

n)

4 The rule Σ = −U /41
2  follows from the spinless model analyzed in [30] 

(with a missed minus sign).
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Despite its approximate nature, the coexistence region 
given by OCA is in the correct energy range and the critical 
temperature Tc is in very good agreement with the CT-QMC 
results. We want to remark that for the whole range of temper-
atures studied in the presented phase diagram, the OCA self-
energy remains causal, that is, ( )ωΣIm i n  is negative. For very 
low temperatures ( ∼�T 1/500 0.1 T c

OCA), it can turn positive, 
signalling the breakdown of the approximation.

We turn now to the discussion regarding the slight overesti-
mation of Uc1 that can be observed in figure 3. While the value 
of Uc2 is given by the critical U for which the quasi-particle 
weight at zero frequency vanishes, Uc1 is related to the cor-
responding U for which the Hubbard bands collapse and the 
gap in the spectral function is closed. We found that the size 
of the gap in the insulator regime given by OCA is somewhat 
underestimated, and therefore it closes for a larger value of U 
than expected for the CT-QMC. This statement follows from 
an analysis of the high-frequency expansion of the local Green 
function. As described in [30], the high-frequency expansion 
in the imaginary domain of ( )ωG i n  is given by

( )
( )

∑ω
ω

=
=

∞
−G

M
i

i
,n

k

k

n
k

1

1 (3)

where, in the spectral representation of the Green function, 
the coefficients are related to the moments of the spectral 

density as   ( )∫ ω ω ω= ∞

∞
M Adk

k .5 Exact relations for the 

coefficients can be found from thermodynamic expectation 
values [30]: M0  =  1, = +εM Un /2d d1  (0 at half filling), and 

( )= +∆ + +ε εM U U n2 /2d d d2
2

1 . Here, εd and nd are the 
energy level and total occupancy of the effective Anderson 
model. M0 and M1 are related to the normalisation and parity 
of ( )ωA  so that they are exactly reproduced by OCA.

Regarding the coefficient M2, the parameter ∆0 represents 
the zero moment in the hybridisation high-frequency expan-

sion,   ( )   ( )∫ ∫ω ω ω ω∆ = − Γ = ∆
π π∞

∞

∞

∞
Imd d0

1 1 , where 

( ) ( )ω π ρ ω∆ = V2
c , and ρc is the conduction density of states. 

Using the self-consistency condition ( ) [ ( )]ω ωΓ = Γt Gi i2  for 
the present case of the Bethe lattice, we arrive at the fol-

lowing relation: ( ) ( ) ( )ω π ω ω∆ = = πt A AD2
4

2

. Therefore, 

  ( )∫ ω ω∆ = =∞

∞
AdD D

0 4 4

2 2

. Taking into account that for the 

symmetric situation + =ε U2 0d  and M1  =  0, the coefficient 

M2 reads

= +M
U D

4 4
.2

2 2

 (4)

The second moment M2 of the spectral function contains 
indirect information about the size of the Mott gap. In fact, it 
carries information about the centre position and width of each 
Hubbard band. For instance, in the simplest case in which the 
Hubbard bands have a semicircular shape centered at  ±ω0 and 
width D, the second moment becomes ω= +M D /42 0

2 2 ; by 
comparing with equation (4), one can infer that ω = U /20 . In 
this simple picture, the gap is opened when U is larger than 
2D and the size of the gap is of the order of δ = −U D2 . In 
figure 4, we show the spectral density in the insulating region 
when decreasing the Coulomb repulsion from U  =  3 to 

Figure 3. The T versus U phase diagram of the Mott transition 
obtained from the zero-frequency spectral function ( )ω =A 0  (upper 
panel) and the quasi-particle residue Z (lower panel). The inset in 
the upper panel indicates the phase diagram obtained using the 
finite-U NCA in the symmetric case as the impurity solver.
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Figure 4. Spectral density in the insulating region when decreasing 
the Coulomb repulsion from U  =  3 to U  =  2.6. The inset shows 
the ratio of the second moment obtained within OCA and its 
exact value from equation (4) (squares) as a function of U and its 
deviation from the unity (solid line).
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5 With our notation the moments Mk are equal to the coefficients ck+1 defined 
in [30].
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U  =  2.6. It can be observed that the gap is continuously closed 
when U is lowered until the critical value Uc1 is reached. In the 

inset of figure 4 we show the values of   ( )∫ ω ω ω
+ ∞

∞
Ad

U D

4 2
2 2  

(squares), which represent the ratio of the second moment 
obtained within OCA and its exact value from equation (4), as 
a function of U and its deviation from the unity (solid line). It 
can be seen that OCA underestimates the second moment of 
the spectral function by  ∼15%.

Unfortunately, the centre position and width of each 
Hubbard band enter a combination within M2 and we cannot 
know from this coefficient alone whether OCA underesti-
mated the centre position or width, or even both. However, an 
underestimation in both quantities brings about a reduction of 
the gap that gives rise to larger values of Uc1 as compared with 
the exact CT-QMC ones.

3.2. Non-symmetric case

In this subsection, we compare the calculations done by OCA 
and the CT-QMC for the one band Hubbard model on the Bethe 
lattice away from half-filling. We consider 2.5  <  U  <  5.0 
and the impurity level of the effective Anderson model at 

µ= − +∆εd
U

2
, with µ∆ = −1.0 and β = 60.

In figure 5, the spectral densities calculated by OCA for 
different values of U are shown. One may see that for the 
smallest value of U, the system is metallic with a large quasi-
particle resonance that overlaps with the upper Hubbard band 
giving rise to large charge fluctuations pertaining to a mixed 
valence regime. In the other extreme, for the largest value of 

U, the system is an insulator with the Hubbard bands located 
symmetrically with respect to µ∆ . The value of the gap in 
this case is of the order of 2D. In order to be able to describe 
accurately solutions with large gaps, we implemented a three-
centered logarithmic mesh.

By integrating ( )ωA  weighted by the Fermi function for 
the corresponding temperature, we obtained the local occu-
pancies in a very good agreement with the CT-QMC ones. 
It is not obvious that this quantity can be correctly evaluated 
within approximate analytical solvers. Hence, the fact that it is 
captured within OCA is important for the applicability of the 
method to non-symmetric cases.

In the inset of figure 5 we show ( )ω =A 0  as a function of U 
in comparison with the CT-QMC. One sees that both the OCA 
and the CT-QMC indicate that the system turns an insulator 
for ⩾U 4.5. For this level of doping there is no coexistence 
region and the OCA critical value Uc agrees with the CT-QMC 
one within 5%.

Overall, we show that OCA seems to give a reasonable 
description of the Mott metal-insulating transition for the 
Hubbard model away from half-filling. However, a more gen-
eral study of this regime is needed.

4. Summary and conclusions

The self-consistent hybridisation expansions in their different 
forms (NCA, OCA, symmetric finite-U NCA etc) have been 
widely used not only in the context of the impurity problem, 
but also in the framework of DMFT applied both to different 
lattice models and realistic cases, describing strongly corre-
lated materials from first-principles. However, to the best of 
our knowledge, a detailed and quantitative study of the Mott 
transition, one of the essential problems of strongly correlated 
systems, has not been carried out up to now with these kind of 
approximate techniques.

In this work, we asses the reliability of the OCA impu-
rity solver in the context of the DMFT method to describe 
the Mott metal-insulator for the one band Hubbard model in 
the Bethe lattice at half-filling within DMFT. We present the 
temperature-local repulsion U phase diagram in comparison 
with the numerically exact CT-QMC. We show that OCA can 
provide a very good quantitative description of the metal–
insulator transition of the present model. We obtain the metal-
to-insulator transition, Uc2, within an error of less than 0.5% 
while the insulator-to-metal Uc1 values are shifted to higher U 
(about 3%) with respect to the CT-QMC one. We explain the 
overestimation of Uc1 from an analysis of the second moment 
of the spectral density, M2. We find that the expected theoret-
ical value for M2 is underestimated by OCA. Since M2 is equal 
to the second moment of the spectral weight, we infer that the 
size of the gap in the insulating phase is also underestimated 
so that the Hubbard bands collapse for higher values of U than 
for the CT-QMC.

Aside from the Mott transition itself, we confirm previous 
results [30, 31] regarding the better performance of OCA in 
the insulating phase than in the metallic one. The high-fre-
quency sum rules for the imaginary part of ( )ωΣ i  are obtained 

Figure 5. Spectral density ( )ωA  calculated by OCA for a non-
symmetric case taking 2.5  <  U  <  5.0 and an energy shift of  −1.0 
from the corresponding symmetric case for each value of U. The 
inverse temperature is β = 60. In the inset we show ( )ω =A 0  as a 
function of U. The CT-QMC (OCA) data are displayed as the solid 
(dashed) lines and empty (filled) symbols, respectively.
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reasonably well in both phases, with the deviation in the insu-
lating case being slightly smaller than in the metallic one. 
On the other hand, in the small frequency region the correla-
tions are overestimated in the metallic case. This effect is also 
apparent in the value of the quasi-particle weight that is under-
estimated by OCA, especially far away from the transition. 
This overestimation of the correlations in the metallic phase 
does not imply that OCA favours the insulating state, as was 
previously stated in [31], since we show the transition U is well 
reproduced, especially the Uc2 values. Furthermore, we show 
that the gap of the insulating phase is underestimated by OCA.

Finally, we study the performance of OCA for several 
cases away from half-filling, obtaining an overall reasonable 
agreement with the CT-QMC, and a very similar critical value 
of U for the Mott transition at the considered temperature. 
The study of non-symmetric cases are particularly relevant for 
applications to real materials. Further studies are needed to 
assess the reliability of OCA all over the full-phase diagram 
of the non-symmetric case.

In the present work we study a single-band non-magnetic 
model, the magnetic and multi-band cases are beyond the 
scope of the present paper and certainly deserve further study.

Despite the above-mentioned deviations of OCA from the 
exact results, we are not aware of any other approximated 
technique yielding a phase diagram with this level of agree-
ment with numerically exact many-body methods.
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