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• We specialize the notion of statistical complexity for a real gas.
• We obtain van der Waals isotherms expressed in complexity terms.
• A complexity-like equation of state is obtained.
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a b s t r a c t

We investigate the notion of LMC statistical complexity with regards to a real gas and in
terms of the second virial coefficient. The ensuing results are applied to the van der Waals
equation. Interestingly enough, one finds a complexity-interpretation for the associated
phase transition.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction: statistical complexity

Ascertaining the degree of unpredictability and randomness of a system does not automatically entail that one is
adequately grasping the extant correlation-structures. Normally, the desideratum is to be able to capture the relationship
amongst the components of a given physical system. These structures, of course, greatly influence the features of the
specific probability distribution (PD) P that describes the physical process under study. The duet randomness—structural
correlations does not have totally independent components. We are sure that the opposite extremes of (i) perfect order
and (ii) maximal randomness do not display significant structural correlations [1]. In between these two extreme situations
a great range of structural degrees may be present, that in turn should be reflected by the features of the PD we spoke
about above. How? This is a complex problem. As Crutchfield noted in 1994, ‘‘Physics does have the tools for detecting
and measuring complete order equilibria and fixed point or periodic behavior and ideal randomness via temperature and
thermodynamic entropy or, in dynamical contexts, via the Shannon entropy rate and Kolmogorov complexity. What is still
needed, though, is a definition of structure and a way to detect and to measure it’’ [2,3]. Seth Lloyd counted as many as 40
manners of defining complexity, none of them quite satisfactory.
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One would like that some appropriate functional F [(P)] would capture correlations in similar fashion as Shannon’s
entropy captures randomness. A major breakthrough came from the definition proposed by López-Ruiz, Mancini and
Calbet [1]. LMC’s complexity clearly separated and quantified the contributions of entropy and structure, the latter being
described by a concept called disequilibrium. LMC’s suitable candidate for the desired functional has come to be called
the statistical complexity (see, for instance, Refs. [1,4–9]). Our F [(P)] should vanish in the two special extreme instances
mentioned above.

In this effort we attempt a further validation of the LMC complexity notions by appeal to an example of exceptional
importance: the van derWaals phase transition. For this purpose wewill advance an LMC-complexity treatment for the real
gas, in the second order virial approximation. After applying the ensuing results to the van der Waals equation, we will be
able to provide a statistical complexity interpretation of the associated phase transition, a fact that, let us insist, gives in our
opinion a strong validation to the use of the LMC measure.

The paper is organized as follows. Section 2 introduces preliminary materials. Our results are presented beginning with
Section 3, devoted to the virial treatment of a real gas. Section 4 deals with the van der Walls gas and some conclusions are
drawn in Section 5.

2. LMC statistical complexity in the canonical ensemble

We review in this preparatory section the basic ideas advanced by López-Ruiz in Ref. [10]. He refers, in a canonical
ensemble-environment, to the behavior of the Statistical Complexity (SC) of an ideal gas in thermal equilibrium. For such
a purpose, we consider first a classical ideal system of N identical particles, confined into a space of volume V , in thermal
equilibrium at temperature T . The corresponding Boltzmann distribution in this scenario is [11]

ρ(r, p) =
e−βH(r,p)

Q (0)
N (V , T )

, (1)

where β = 1/kBT , kB the Boltzmann constant, H(r, p) is the Hamiltonian of the system, and r, p the pertinent phase space
variables. The canonical partition function reads

Q (0)
N (V , T ) =


dΩ e−β H(r,p), (2)

with dΩ = d3Nr d3Np/N!h3N . Connection with Helmholtz’ free energy A0 is established, according to Ref. [11], via

A0(V , T ) = −kBT lnQ (0)
N (V , T ). (3)

R. López-Ruiz defines in Ref. [10] the disequilibrium-concept (in a canonical ensemble) as1

D0(V , T ) = e2β [A0(V ,T )−A0(V ,T/2)]. (4)

Remember that the usual D-notion refers to the distance (in probability space) of the actual probability distribution to the
uniform one [1]. In order to better appreciate the meaning of Eq. (4), we change T by T/2 in Eq. (3) and write

A0(V , T/2) = −
kBT
2

lnQ (0)
N (V , T/2). (5)

Thus, replacing this into (4), it is easy to ascertain that

2β[A0(V , T ) − A0(V , T/2)] = −2 ln

Q (0)
N (V , T )Q (0)

N
−1/2

(V , T/2)

, (6)

which leads to

D0(V , T ) =
Q (0)
N (V , T/2)

Q (0)
N

2
(V , T )

, (7)

a useful alternative expression for the disequilibrium, given in terms of the canonical partition function. We note that, by
using definitions (1) and (2), the disequilibrium also can be written as

D0(V , T ) =


dΩ e−2βH(r,p)

Q (0)
N

2
(V , T )

=


dΩ ρ2(r, p). (8)

This alternative form is used in many applications (see, for example, Ref. [12]).

1 For convenience, we use the subscript 0 for the ideal gas.
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In addition, the LMC statistical complexity C0 is defined as [1]

C0(V , T ) = D0(V , T ) S0(V , T ), (9)

where S0(V , T ) is the thermodynamic entropy of the system. Subsequently, the definition of statistical complexity was
slightly modified by Catalan et al. in Ref. [13], in order to avoid putative negative values for C0. The new definition is
applicable to systems described by either discrete or continuous probability distributions. In the canonical ensemble, the
new C0 is given by

C0(V , T ) = D0(V , T ) eS0(V ,T ). (10)

Hence, for the classical ideal gas whose Hamiltonian is H(p) =
N

i=1 p2i /2m, the analytical expression for the partition
function is [11]

Q (0)
N (V , T ) =

1
N!


V
λ3

N

, (11)

with λ the particles’ mean thermal wavelength λ = h/(2πmkBT )1/2 [11]. The Helmholtz free energy is, using Stirlings
formula (lnN! ≈ N lnN − N) [11], given by

A0(V , T ) = NkBT

ln

Nλ3

V


− 1


. (12)

Thus, inserting Eq. (12) into definition (4), after a bit of algebra, we are led to

D0(V , T ) =


Nλ3

V

N

e−N 2−3N/2
≡ N!


λ3

V

N

2−3N/2. (13)

We know that here, as befits classical considerations, Nλ3/V ≪ 1. Therefore, for N → ∞ the disequilibrium D0(V , T )
vanishes, as it should. Additionally, we have for the classical entropy the Sackur–Tetrode equation [11]

S0(V , T )

kB
= ln


V

Nλ3

N

+
5N
2

, (14)

which is positive defined only if V/(Nλ3) ≫ 1. In terms of the disequilibrium the entropy can be cast as

S0(V , T )

kB
=

3N
2

− ln

23N/2 D0(V , T )


, (15)

or, by inverting the above equation

D0(V , T ) =

 e
2

3N/2
e−S0(V ,T )/kB . (16)

The statistical complexity is

C0(V , T ) =

 e
2

3N/2 S0(V , T )

kB
e−S0(V ,T )/kB , (17)

according to Eq. (6) of Ref. [1]. Explicitly, and after a little algebra, we can write the complexity in terms of V and T as

C0(v, T ) = N
 e
2

−3N/2


v e5/2

λ3

−N

ln


v e5/2

λ3


, (18)

where v = V/N denotes the volume per particle. We note C0(v, T ) is positive if v/λ3
≫ 1 (always true for a classical

environment). It is easy to check that, for T tending to infinity, the statistical complexity vanishes [1], as it should.

3. Real gas and second virial coefficient

Here we start developing the newmaterials of this contribution. We consider a classical mono-atomic gas of N identical
molecules, confined in a space of volume V , in equilibrium at temperature T . The Hamiltonian includes intermolecular
interactions and is given by [11]

H(r, p) =

N
i=1

p2
i

2m
+


i<j

uij, (19)



242 F. Pennini, A. Plastino / Physica A 458 (2016) 239–247

where pi is the momentum of the ith particle and uij = u(|ri − rj|) is the energy of interaction between the ith and jth
particles, being a function of the inter-particle distance only, rij = rj − ri. The sum in the second right hand term of the
Hamiltonian runs over the N(N − 1)/2 pairs of particles [11]. For such a system, the canonical partition function is [11]

QN(V , T ) = Q (0)
N (V , T ) ZN(V , T ), (20)

where ZN(V , T ) is the so-called configuration integral, given by

ZN(V , T ) =
1
VN


d3Nr e

−β

i<j

uij
. (21)

Here, Q (0)
N (V , T ) is the canonical partition function of the ideal gas given by Eq. (11) [11]. If the gas density n = N/V is low

enough, the partition function is approximated [14]

QN(V , T ) = Q (0)
N (V , T )


1 −

N
V

B2(T )

N

, (22)

where B2(T ) is the second Virial coefficient, given by

B2(T ) = −
1
2


d3r f (r), (23)

and f (r) = exp(−βu(r)) − 1 is usually called the Mayer function [11].
Let us consider now the disequilibrium. As shown above, it is given by

D(V , T ) =
QN(V , T/2)
Q 2
N (V , T )

, (24)

that in view of Eq. (22) becomes

D(V , T ) = D0(V , T )


1 −

N
V B2(T/2)

N
1 −

N
V B2(T )

2N , (25)

where we have identified the ideal disequilibrium using (8) as

D0(V , T ) =
Q (0)
N (V , T/2)

Q (0)
N

2
(V , T )

≡


Q (0)
1 (V , T/2)

Q (0)
1

2
(V , T )

N

, (26)

with Q (0)
1 (V , T ) the ideal partition function per particle. Expanding in terms of N/V , and neglecting terms of order N2/V 2,

one obtains

D(V , T ) = D0(V , T )


1 +

N
V

(2B2(T ) − B2(T/2))
N

. (27)

It is convenient to define the disequilibrium per particle, so that (cf. (26)) one has

d(V , T ) =
D(V , T )

N
=

Q (0)
1 (V , T/2)

Q (0)
1

2
(V , T )


1 +

N
V

(2B2(T ) − B2(T/2))


. (28)

Furthermore, the entropy per particle (up to first order in the density n) is [14]

h(V , T ) =
S(V , T )

NkB
=

S0(V , T )

NkB
−

N
V

∂

∂T
(TB2(T )). (29)

Hence, appealing to Eq. (10), we define the statistical complexity per particle as

c(V , T ) = d(V , T ) eh(V ,T ). (30)

Replacing Eqs. (27) and (29) into Eq. (30), we cast the statistical complexity per particle of the real gas in the fashion

c(V , T ) = c0(V , T )


1 +

N
V

(2B2(T ) − B2(T/2))


exp


−
N
V

∂

∂T
(TB2(T ))


, (31)

where

c0(V , T ) = d0(V , T ) eh0(V ,T ), (32)

with h0(V , T ) = S0(V , T )/NkB.
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4. Van del Waals gas

To illustrate the results of the previous section,we consider the following approximation for the intermolecular potential,
given by

u(r) =


∞ r < ro
e−βu(r)

≈ 1 − βu(r) r > ro,
(33)

where ro is theminimumpossible separation betweenmolecules [14]. It is easy then to compute the second virial coefficient
by recourse to Eq. (23), that in this case becomes

B2(T ) = b − βa, (34)

where

b =
2
3
πr30 , (35)

is related to the volume of a hard-sphere molecule, and

a = ⟨u(r)⟩ = 2π


∞

r0
dr r2u(r), (36)

is the mean potential energy. Given that

2B2(T ) − B2(T/2) = b, (37)

independent of temperature, and

∂

∂T
(TB2(T )) = b, (38)

a constant, we finally obtain the statistical complexity per particle

c(V ) = c0(V )


1 +

N
V

b


exp


−
Nb
V


, (39)

whichdoes not dependupon T . Expanding the exponential up to first order inN/V , withNb/V ≪ 1,wehave exp (−Nb/V ) ≈

1 − Nb/V . Thus, we are led to

c(V ) = c0(V )


1 −


Nb
V

2


, (40)

or taking into account that v = V/N is the volume-per-particle, we also get the relative statistical complexity

cr(v) =
c(v)

c0(v)
= 1 −


b
v

2

, (41)

which is the virial expansion of the statistical complexity per particle up to first order in the density n, that is independent
from T . In addition, from Eqs. (27), (37), and (38) we find the relative disequilibrium

dr(v) =
d(v)

d0(v)
= 1 +

b
v
, (42)

which increases lineally with b/v. Note that:

1. If b = 0, thismeans that themeanvolumepermolecule is null andwe recover the expression for the statistical complexity
of the ideal gas, since c(v) = c0(v).

2. Since b/v ≪ 1 (low particle-density), then c(v) < c0(v). The real gas statistical complexity is smaller than the ideal
complexity. This indicates that the real gas represents a more ordered system than the ideal gas, which seems obvious.

3. In the non-realistic scenario v = b, then the statistical complexity vanishes, since the system becomes a ‘‘solid’’.
4. The information entropy decreases for the real gas with respect to the ideal one, i.e., from Eq. (29) we get h(v) < h0(v).
5. On account of Eq. (41), cr(v) depends only upon the volume v. It can act then as a representative of the volume. This will

be useful below in allowing for a Maxwell‘s construction for the complexity.

We illustrate these comments in Fig. 1.
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Fig. 1. Relative statistical complexity cr (green line), relative disequilibrium dr (blue line) and exp(h(v) − h0(v)) (red line), as a function of b/v. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1. Van der Waals equation and statistical complexity

The thermodynamic equation of state advanced by Johannes Diderik van der Waals is of the form [15]
P +

a
v2


(v − b) = RT . (43)

where P is the pressure of the fluid, v the total molar volume of the container, T is the absolute temperature of the system,
and R is the universal gas constant.
Now, from Eq. (41) we easily get

v = b (1 − cr)−1/2 , (44)

that, replacing into van der Waals’ equation (43), immediately leads to the pressure as a function of a ratio between
complexities (real/ideal). We have

P =
RT/b

(1 − cr)−1/2 − 1
−

a
b2

(1 − cr), (45)

that we interpret as a complexity-like equation of state. We can recast it using critical variables, arising for the critical-point
equations [16]

∂P
∂V


T

= 0,


∂2P
∂V 2


T

= 0, (46)

i.e., the critical isotherm on a P − V diagram has a point of inflection. These two equations constitute a set of two equations
in two unknowns, V , and T . Solving for them (see Ref. [16] for the pertinent details) yields the critical values referred to
below, that allow one to recast the van der Waals equation into an invariant form, applicable to all fluids, by defining the
following reduced variables

pR =
P
Pc

, (47)

vR =
v

vc
, (48)

tR =
T
Tc

, (49)

where the critical values corresponds to the critical isotherm, given by the solutions to (46) (again, see Ref. [16])

Pc =
a

27b2
, (50)

vc = 3b, (51)

Tc =
8a

27Rb
. (52)
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Fig. 2. (a) Reduced pressure pR versus reduced volume vR for different values of tR . We take: tR = 0.9, 1.0, 1.1, 1.2, 1.3, 1.4. In green color we display the
critical isotherm. The blue line corresponds to the minimal value of tR considered in this figure. (b) Reduced pressure pR versus the ratio cR for different
values of tR . We take also: tR = 0.9, 1.0, 1.1, 1.2, 1.3, 1.4. Note the concavity change in the LMC statistical complexity in comparison with the critical
isotherm given by the green line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Taking into account the definitions (47), (48), and (49) we get in natural fashion the relative statistical complexity in terms
of reduced variables:

cR =
cr
crc

, (53)

where crc = 8/9 is the critical value of the relative statistical complexity. Thus, we have

cR =
9
8


1 −


b
v

2


. (54)

Therefore, using reduced variables, we recast Eq. (45) in the fashion

pR =
8 tR

1 −
8
9 cR

−1/2
− 1

− 27

1 −

8
9
cR


. (55)

We depict in Fig. 2 Eqs. (43) and (55). In (a) we plot the typical cubical equation of state in terms of reduced variables. We
compare this with Fig. (b) where we plot pR as a function of the relative statistical complexity cR in reduced variables.
One of our main results here is having encountered a complexity critical isotherm. Coexistence of phases is to be appreciated.
Notice in Fig. 2 (b) that the gas phase lies at the right of the graph, since the real complexity there is close to that of the ideal
gas. Instead, for smaller cR ratios we enter a more ordered, liquid phase.

4.2. Remarks

From Eqs. (48) and (54) we easily obtain

cR =
9
8


1 −

1
9 v2

R


. (56)

Accordingly, for vR → ∞, cR → 9/8 = 1.125. The minimum complexity value is, of course, zero, that is attained for
vR = 1/3 = 0.3333 (as one gathers from (51) and (54)). This is illustrated in the graph given in Fig. 4.

Returning now to Eq. (55), in the limit vR → ∞, cR = 9/8 and the pressure vanishes (see Fig. 2(b)). This, the collapse
there depicted at the right.

5. Conclusions

In this work we have studied features of the LMC statistical complexity for a dilute real gas using the virial coefficient B2 and
obtained some analytical results.
We obtained the statistical complexity per particle of the real gas in the fashion

c(V , T ) = c0(V , T )


1 +

N
V

(2B2(T ) − B2(T/2))


exp


−
N
V

∂

∂T
(TB2(T ))


,
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Fig. 3. Maxwell construction for a typical isotherm: (a) pR vs. vR for tR = 0.9. (b) pR vs. complexity-ratio cR for tR = 0.9.
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Fig. 4. Statistical complexity cR versus vR .

where

c0(V , T ) = d0(V , T ) eh0(V ,T ),

with h0(V , T ) = S0(V , T )/NkB.
As for the van der Waals gas we have found that

1. If b = 0, the expression for the statistical complexity becomes that of the ideal gas.
2. The van der Waals statistical complexity is smaller than the ideal complexity since the van der Waals if of course a more

ordered system.
3. In the non-realistic, but super-ordered v = b case, the statistical complexity vanishes.
4. cr(v) depends only upon the volume v. It can act then as a representative of the volume.
5. We have encountered a complexity critical isotherm, where coexistence of phases is appreciated.

Summing up: the two body interaction produces an ordering effect and reduces the complexity with relation to that for the
ideal gas. Application to the van der Waals gas allows one to see that the LMC complexity measure clearly distinguishes the
two pertinent phases. The change takes place when the ratio between the real gas complexity and the ideal gas one ranges
from 0.7 to 0.9 (Fig. 2). For cR ≤ 0.8 we encounter ourselves in a more ordered fluid phase than that of a gas (Fig. 3).
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