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Artificial intelligence (Al) systems for computer-aided diagnosis
and image-based screening are being adopted worldwide by med-
ical institutions. In such a context, generating fair and unbiased
classifiers becomes of paramount importance. The research com-
munity of medical image computing is making great efforts in
developing more accurate algorithms to assist medical doctors
in the difficult task of disease diagnosis. However, little atten-
tion is paid to the way databases are collected and how this
may influence the performance of Al systems. Our study sheds
light on the importance of gender balance in medical imaging
datasets used to train Al systems for computer-assisted diagno-
sis. We provide empirical evidence supported by a large-scale
study, based on three deep neural network architectures and
two well-known publicly available X-ray image datasets used to
diagnose various thoracic diseases under different gender imbal-
ance conditions. We found a consistent decrease in performance
for underrepresented genders when a minimum balance is not
fulfilled. This raises the alarm for national agencies in charge
of regulating and approving computer-assisted diagnosis sys-
tems, which should include explicit gender balance and diversity
recommendations. We also establish an open problem for the
academic medical image computing community which needs to
be addressed by novel algorithms endowed with robustness to
gender imbalance.
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Artiﬁcial intelligence (AlI) influences almost every aspect of
our daily life. The media articles we read, the movies we
watch, even the driving road map we take are somehow influ-
enced by these systems. In particular, the rise of Al in healthcare
during the last few years is changing the way medical doctors
diagnose, especially when dealing with medical images. Al sys-
tems cannot only augment the information provided by such
images with useful annotations (1, 2), but they are also start-
ing to take autonomous decisions by performing computer-aided
diagnosis (CAD) (3, 4).

Although the interest in performing fair and unbiased eval-
uations of Al medical systems has existed since the 1980s (5),
the ethical aspects of Al have gained relevance in the last few
years. It has been shown that human bias, such as gender and
racial bias, may not only be inherited but also amplified by Al
systems in multiple contexts (6-9). For example, face recognition
systems have been shown to exhibit accuracy disparities depend-
ing on gender and ethnicity, with darker-skinned females being
the most misclassified group (10). This tendency of Al systems
to learn biased models, which reproduce social stereotypes and
underperform in minority groups, is especially dangerous in the
context of healthcare (11, 12).

In recent years, the research community of gendered innova-
tions has largely contributed to create awareness and integrate
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sex and gender analyses into all phases of basic and applied
research (13). However, such assessment in the context of med-
ical imaging and CAD remains largely unexplored. In this work,
we perform a large-scale study that quantifies the influence of
gender imbalance in medical imaging datasets used to train
Al-based CAD systems. It is worth mentioning that most of
the existing work dealing with imbalanced data in the context
of deep learning focuses on cases where it is related to the
target classes (14, 15). In our study, this would translate to
an imbalance in terms of number of patients per pathology.
However, note that, in this case, the imbalance is given by a
demographic variable different from the target class: gender,
which is generally neglected. Our results show that using gender-
imbalanced datasets to train deep learning-based CAD sys-
tems may affect the performance in pathology classification for
minority groups.

Results and Discussion

A model based on deep neural networks, which achieves state-
of-the-art results when diagnosing 14 common thoracic diseases
using X-ray images (16), was implemented to perform CAD.
We employed the area under the receiver operating characteris-
tic curve (AUC) (17) to quantify its performance. Fig. 1 shows
the experimental results obtained when training the classifier
under different gender imbalance ratios. In Fig. 14, the box plots
aggregate the results for 20 experiments using fully imbalanced
datasets. The blue boxes represent the performance for models
trained only with male images, while orange boxes indicate train-
ing with female-only images. Both models are evaluated over
male-only (Fig. 1 4, Top) and female-only (Fig. 1 A, Bottom) test
images. A consistent decrease in performance is observed when
using male patients for training and female for testing (and vice-
versa). The same tendency was confirmed when evaluating three
different deep learning architectures in two X-ray datasets with
different pathologies.

We also explored intermediate imbalance scenarios, where
both female and male patients were present in the train-
ing dataset but considering different proportions (0%/100%,
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Fig. 1. Experimental results for a DenseNet-121 (18) classifier trained with images from the NIH dataset (16, 19) for 14 thoracic diseases under different
gender imbalance ratios. (A) The box plots aggregate the results for 20 folds, training with male-only (blue) and female-only (orange) patients. Both models
are evaluated given male (Top) and female (Bottom) test folds. A consistent decrease in performance is observed when using male patients for training and
female for testing (and vice versa). (B and C) AUC achieved for two exemplar diseases under a gradient of gender imbalance ratios, from 0% of female
images in training data to 100%, with increments of 25%. In B, 7 and 2 show the results when testing on male patients, while, in C, 7 and 2 present the results
when testing on female patients. Statistical significance according to Mann-Whitney U test is denoted by **** (P < 0.00001), *** (0.00001 < P < 0.0001),
**(0.0001 < P < 0.001), * (0.001 < P <'0.01), and not significant (ns) (P > 0.01).

25%|75%, and 50%/50%). Fig. 1 B and C shows the average
classification performance for two exemplar diseases, Pneumo-
thorax and Atelectasis, under such gradient of gender imbalance
ratios (indicated with the percentage of female patients used for
training). We found that, even with a 25%/75% imbalance ratio,
the average performance across all diseases in the minority class
is significantly lower than a model trained with a perfectly bal-
anced dataset. Moreover, we did not find significant differences
in performance between models trained with a gender-balanced
dataset (50% male and 50% female) and an extremely imbal-
anced dataset from the same gender. In other words, a CAD
system trained with a diverse (and balanced) dataset achieved the
best performance for both genders. Altogether, our results indi-
cate that diversity provides additional information and increases
the generalization capability of Al systems. Thereafter, it also
suggests that diversity should be prioritized when designing
databases used to train machine learning-based CAD systems.
Our study shows that gender imbalance in medical imaging
datasets produces biased classifiers for computer-aided diag-
nosis based on convolutional neural networks (CNNs), with
significantly lower performance in underrepresented groups. We
provide experimental evidence in the context of X-ray image
classification for such potential bias, aiming to raise the alarm
not only within the medical image computing community but
also for national agencies in charge of regulating and approv-
ing medical systems. As an example, let us take the US Food
and Drug Administration. Even though they have released sev-
eral documents related to the importance of gender/sex issues in
the design and evaluation of clinical trials and medical devices
(21), when looking at the specific guidelines to obtain the certifi-
cation to market medical computer-aided systems (22, 23), there
is no explicit mention of gender/sex as one of the relevant demo-
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graphic variables that should describe the sampled population.
Similar issues are observed in the medical imaging community.
Albeit a few datasets provide this information at the subject level,
most public datasets of similar characteristics do not contain
gender/sex information at the patient level to date [e.g., the
recent MIMIC-CXR (24) x-ray dataset or the Retinal Fundus
Glaucoma Challenge (REFUGE) database of ophtalmological
images (25), just to name a few]. The same tendency is observed
in many of the datasets included in a recent analysis of 150
databases from grand challenges on biomedical image anal-
ysis (26), which provides recommendations for database and
challenge design, where there is no explicit mention of the
importance of sex/gender demographic information.

In general, it is well known that CNNs tend to learn repre-
sentations useful to solve the task they are being trained for.
When we go from male to female images (or vice versa), struc-
tural changes in the images appear, leading to a change in data
distribution which explains the decrease in performance. Algo-
rithmic solutions to such “domain adaptation” problems (27)
should be engineered, especially in cases when it is difficult
to obtain gender-balanced datasets [e.g., Autism Brain Imaging
Data Exchange (ABIDE) I (28)].

Materials and Methods

Datasets. We use the NIH Chest-XRay14 dataset (16, 19), which includes
112,120 chest X-ray images from 30,805 patients, labeled with 14 com-
mon thorax diseases (including hernia, pneumonia, fibrosis, emphysema,
edema, cardiomegaly, pleural thickening, consolidation, mass, pneumotho-
rax, nodule, atelectasis, effusion, and infiltration). Labeling was performed
according to an automatic natural language processing analysis of the radi-
ology reports. The dataset provides demographic information including the
patient’s gender: 63,340 (56.5%) images for male and 48,780 (43.5%) images
for female patients. Following the demographic variables reported in the
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original dataset publication (19), we used the term “gender” to characterize
our imbalance study. However, given that some anatomical attributes are
reflected in X-ray images, the term sex could be more accurate, accord-
ing to the Sex and Gender Equity in Research guidelines (29). The CheXpert
database (30) was also used to confirm that our observations generalize for
different datasets. It contains 224,316 chest radiographs of 65,240 patients
with diagnostic information (~ 60% male and ~ 40% female). The uncer-
tainty labels included in CheXpert were interpreted as negative following
the U-Zeros approach discussed in the original paper (30).

Deep Learning Model. Deep neural networks are machine learning meth-
ods with multiple abstraction levels, which compose simple but nonlinear
modules transforming representations at one level into a representation
at a higher, slightly more abstract level (31). A special type of deep neural
network, known as CNNs, was used to implement the CAD system (19, 20).
Results shown in Fig. 1 correspond to a Densely Connected CNN (DenseNet)
architecture with 14 outputs, one for each disease (18).

We adopted a Keras implementation of the DenseNet-121 which has
been shown to achieve state-of-the-art results in X-ray image classification
(16). The network has 121 convolutional layers and a final fully connected
layer producing a 14-dimensional output, after which we apply an element-
wise sigmoid nonlinearity. A model pretrained on ImageNet (32) was used
to initialize the network weights. We trained it end to end using Adam
optimizer with standard parameters (31 = 0.9 and 52 = 0.999), a batch size
of 32, and an initial learning rate of 0.001 that was decayed by a factor
of 10 each time the validation loss plateaued after an epoch. Addition-
ally, we evaluated two other CNN architectures, the ResNet (33) and the
Inception-v3 (34), confirming that our observations generalize for different
neural models.

Methodology. Since images can be labeled with multiple diseases, we imple-
mented an automatic method to construct random splits, which guarantees
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that male and female folds will have the same number of images per pathol-
ogy. Given a frontal X-ray image, the CAD system predicts the presence
or absence of the 14 thoracic diseases. Two models were trained in each
experiment, one considering male-only datasets, while the other considered
female-only training datasets. Intermediate imbalance scenarios were also
analyzed, in which female and male images were presented in the training
dataset at different proportions (0%/100%, 25%/75% and 50%/50%). To
avoid other sources of bias, care was taken to guarantee, by training data
construction, that male and female folds include the same number of patho-
logical cases per class. For the NIH Chest-XRay 14, every split included 48,568
images. For the CheXpert dataset, every split included 27,147 images. The
same experiment was performed 20 times, using different random splits. In
the testing phase, both models were evaluated in male and female patients
separately. The classification performance was measured by the well-known
AUC (17).

Data Availability. The NIH Chest-XRay14 dataset is publicly available at
https://nihcc.app.box.com/v/ChestXray-NIHCC. The CheXpert dataset is pub-
licly available at https:/stanfordmlgroup.github.io/competitions/chexpert/.
The source code of the original CNNs is publicly available at https:/github.
com/brucechou1983/CheXNet-Keras. The modified version of this code with
our auxiliary scripts, the data splits used in our experiments, and the addi-
tional results for all of the CNN architectures in both datasets can be
accessed at https://github.com/N-Nieto/GenderBias_CheXNet.
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