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Abstract. In this paper we describe a two-factor model for a defaultable discount bond, assuming log-normal
dynamics with bounded volatility for the instantaneous short rate spread. Under some simplified hypothesis, we
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Introduction

The approaches to modeling credit risk can be broadly classified into two types. The first
includes the so called structural models, based on the firm’s value approach introduced in
Merton (1974), extended in Black and Cox (1976), and Longstaff and Schwartz (1995)
among others.

More recent is the type of the generally termed reduced-form models, in which the as-
sumptions on a firm’s value are dropped, and the default is modeled as an exogenous stochas-
tic process. Reduced-form models have been proposed in Jarrow and Turnbull (1995), Duffie
and Kan (1996), Jarrow, Lando, and Turnbull (1997), Schonbucher (1998), Cathcart and
El Jahel (1998), Duffie and Singleton (1999), Duffie, Pedersen, and Singleton (2000),
Schonbucher (2000), and others.

∗ Corresponding author.
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A survey of both classes can be seen in Schonbucher (2000), and in Bohn (1999) (models
published before 1998). For a detailed overview of reduced-form models published before
1997 see Lando (1997).

The objective of this paper is to describe a two-factor model where the price of a risky
bond is derived as a function of the risk-free short rate and the instantaneous short spread,
and the requirement is that the short spread must be positive. The dynamics of the spread
is assumed to satisfy a log-normal diffusion with bounded volatility, and the default occurs
if the spread reaches an upper barrier.

Our approach is motivated by a remark in Schonbucher (2000) stating that an alternative
to his model of the term structure of defaultable bonds, based on the Heath-Jarrow-Morton
(HJM) model (cf. Heath, Jarrow, and Morton, 1992), would be a two-factor model using an
arbitrage-free model for the risk-free rate and a model for the forward spread that generates
a positive short rate spread.

Our model relates to the one presented in Cathcart and El Jahel (1998), since it is also a
reduced-form model, solved by a structural approach, that leads to a barrier-type solution;
in their model they assume that the default occurs when a signaling process hits some
predefined lower barrier.

An extension of Cathcart and El Jahel model is proposed in Lo and Hui (2000), where
foreign exchange rates are chosen as the signaling barrier and the dynamics of the default
barrier depends on the volatility and drift of the signaling barrier.

Blauer and Wilmott (1998) also use the Black and Scholes option pricing technique to
develop a two-factor model applied to Brady bonds, but they took expectation on the risk
of default instead of hedging it, so our pricing equation and its solution are different from
theirs.

The remainder of the paper is organized as follows. The bond pricing equation is derived
in Section 1. In Section 2 we obtain the solution for a log-normal dynamics of the short
spread without recovery and with constant recovery. Section 3 shows the numerical results
of expected implied recovery rates for Argentina and Brazil during the first months of the
Argentinean default crisis. The last section contains the conclusions and comments on future
work.

1. The Pricing Equation

We work in a continuous time framework, in which rd (t) is the defaultable short rate if a
default event has not occurred until t , r (t) is the risk-free short rate, and the spread h(t) is
defined as

h(t) = rd (t) − r (t)

Our assumptions are:

(i) at any time t , risk-free discount bonds and defaultable discount bonds of all maturities
are available,
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(ii) the dynamics of r (t) and h(t) are governed by diffusion equations

dr (t) = µr (r, t)dt + σr (r, t)dW1,

dh(t) = µh(h, t)dt + σh(h, t)dW2,

where W1 and W2 are uncorrelated standard Brownian motions,
(iii) the spread is positive, h(t) > 0.

To derive a general equation for the defaultable bond, we set a portfolio � containing a
defaultable bond P(r, h, t, T ), of maturity T , a number � of risk-free bonds B(r, t, T1), of
maturity T1, and a number �1 of defaultable bonds P1(r, h, t, T2) of maturity T2,

� = P(r, h, t, T ) − �B(r, t, T1) − �1 P1(r, h, t, T2),

and look for values of � and �1 that eliminate the randomness in d�.
From Itô’s lemma it follows that

�1 =
∂ P
∂h
∂ P1
∂h

, � = 1
∂ B
∂r

[
∂ P

∂r
−

∂ P
∂h
∂ P1
∂h

∂ P1

∂r

]
,

and by non-arbitrage arguments we arrive at the pricing equation of the defaultable bond

∂ P

∂t
+ 1

2
σ 2

r (r, t)
∂2 P

∂r2
+ 1

2
σ 2

h (h, t)
∂2 P

∂h2
+ φ(r, t)

∂ P

∂r
+ ψ(h, t)

∂ P

∂h
− rP = 0,

where

φ(r, t) = µr (r, t) − λr (r, t)σr (r, t), ψ(h, t) = µh(h, t) − λh(h, t)σh(h, t)

are the risk adjusted drifts, and λr (r, t) and λh(h, t) are, respectively, the market prices of
rate risk and the risk associated with the spread.

Since r and h were not correlated, a solution

P(r, h, t, T ) = Z (r, t, T )S(h, t), (1)

where Z (r, t, T ) is the solution of a risk free bond1 (e.g. Hull & White), separates the
problem, and leads to

∂S

∂t
+ 1

2
σ 2

h (h, t)
∂2S

∂h2
+ ψ(h, t)

∂S

∂h
= 0, (2)

with the final condition

S(h, T ) = 1

if a default has not occurred until maturity.
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2. Modeling the Spread

The log-normal assumption for the dynamics of h(t) is the natural and simplest way to
assure its positivity. In Hogan (1993) it has been shown that this assumption is not suitable
for continuously compounded interest rates, since it implies that expected accumulation
factors over any finite time interval are infinite with positive probabilities. This problem
has been addressed, e.g., in Sandmann and Sondermann (1994), Miltersen, Sandmann,
and Sondermann (1994), and Goldys, Musiela, and Sondermann (1996), where alternative
log-normal type term structures that preclude explosion of rates are proposed.

However, for a log-normal term structure model with bounded volatility, the spread is
positive and remains finite. As it becomes (or it is perceived to become) more likely that the
bond may default the spread increases. But it does not increase unboundedly; in practice
there is a finite upper barrier, even when it is not known in advance.

For a log-normal diffusion, imposing an upper bound Hb to the short spread, 0 < h ≤
Hb < ∞, is equivalent to defining a bounded volatility process, i.e.

dh(t) = µh(h, t)dt + σ (h, t)dW2,

with

σh(h, t) = min(Hb, h(t))σh(t),

where σh(t) is a deterministic function and, as shown in HJM (1992) this volatility process
gives finite positive rates (spread in this case).

The simplified assumption that

k = 2

(
µh(t)

σ 2
h (t)

− λh(t)σh(t)

)
(3)

is a positive constant, allows us to obtain a closed-form solution.
With the above choices for h, equation (2) reduces to

∂S

∂t
+ 1

2
σ 2

h h2 ∂2S

∂h2
+ [µh − λhσh]h

∂S

∂h
= 0, 0 ≤ t < T, 0 < h < Hd , (4)

where Hd (<Hb) is the default boundary, with the final condition

S(h, T ) = 1

if default has not occurred until T .
Requiring that, for spread tending to zero, P(r, h, t, T ) should approximate to the solution

of a risk-free discount bond, gives us the first boundary condition, namely

lim
h→0

S(h, t) = 1
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The second boundary condition arises from the assumption that default occurs if h ever
reaches the barrier Hd . Therefore, for zero recovery we must have

P(r, Hd , t, T ) = 0,

which implies S(Hd , t) = 0.
With the usual change of variables

h = ex , t = T − 2τ

σ 2
h

, S(h, t) = eαx+βτ u(x, τ ),

for α = −1

2
(k − 1), β = −1

4
(k − 1)2, (5)

where k is given by (3),the problem (4) becomes

∂u

∂τ
= ∂2u

∂x2
, τ > 0, −∞ < x < ln Hd , (6)

with initial condition

u(x, 0) = e
1
2 (k−1)x ,

and boundary conditions

u(ln Hd , τ ) = 0, lim
x→−∞ u(x, τ ) = e

1
2 (k−1)x+ 1

4 (k−1)2τ .

The solution to (6) is

u(x, τ ) = e
1
4 (k−1)2τ

[
e

1
2 (k−1)x N (d1) − e

1
2 (k−1)(2 ln Hd−x) N (d2)

]
,

where

d1,2(x, τ ) = (+, −)
ln Hd − x√

2τ
− 1

2
(k − 1)

√
2τ ,

and N (x) is the cumulative probability distribution function for a normally distributed
variable with mean zero and variance 1.

Going back to (5), we can write the solution to the problem (2) with zero recovery, in
financial variables, denoted by S0(h, t), as

S0(h, t) = N (d1) −
(

Hd

h

)(k−1)

N (d2), (7)

where

d1,2(h, t) = (+, −)
ln( Hd

h )

σ
√

(T − t)
− 1

2
(k − 1)σ

√
(T − t), (8)
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It is easy to see that the final condition and the boundary condition at Hd are verified by
construction.

For t = T , N (d1) = 1 and N (d2) = 0. Hence S0(h, T ) = 1. At h = Hd , d1 = d2 =
− 1

2 (k − 1)σ
√

(T − t), which yields S0(Hd , t) = 0.
The boundary condition for h → 0

lim
h→0

S0(h, t) = lim
h→0

[
N (d1) −

(
Hd

h

)(k−1)

N (d2)

]
.

remains to be checked, Since for h → 0, d1 → ∞, then limh→0 N (d1) = 1.
Using the asymptotic expression for the cumulative normal probability distribution func-

tion (c.f. Abramovitz and Stegun, 1970) it is easy to show that

lim
h→0

(
Hd

h

)(k−1)

N (d2) = 0,

and, therefore, limh→0 S0(h, t) = 1
Introducing a recovery is equivalent to specifying a boundary condition

S(Hd , t) = Q(t),

and due to this contribution, there will be an extra term SQ(h, t) added to the solution (7).
For the particular case of a recovery paid in cash, or when it is a fraction of the face value,

Q(t) = Q is constant; this makes the problem mathematically equivalent to the modeling
of a constant rebate for an up-and-out barrier. The additional term takes the form

SQ(h, t) = Q

[
N (−d2) +

(
Hd

h

)(k−1)

N (−d1)

]
. (9)

The factor related to the spread, S(h, t), given by the sum of (7) and (8), can be written as

S(h, t) = Q + (1 − Q)

[
N (d1) −

(
Hd

h

)(k−1)

N (d2)

]
, (10)

with d1,2(h, t) given by (8).

3. An Application of the Model: Argentina and Brazil’s Sovereign Bonds During
the Argentine Crisis

The market data of the sovereign debt of Argentina and Brazil were fitted into the pricing
model developed in previous sections of this paper with the aim of obtaining the implied
market expectations over the recovery rate of these bonds and studying their dynamics
during the period of unfolding of Argentina’s Debt Crisis. To this end, we fed daily market
data from Argentinean and Brazilian bonds belonging to JP Morgan’s EMBI+ Argentina
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Figure 1. This figure plots the Exponentially Weighted Moving Average volatility for the EMBI+ Indexes of
Argentina and Brazil. The left panel shows the log-volatility of the EMBI+ Argentina, σAR , from September 2001
to the end of November 2001. The right panel shows the log-volatility of the EMBI+ Brazil, σBR, from November
2001 to the end of May 2002.

Index and JP Morgan’s EMBI+ Brazil Index, respectively, to the specification of the model
given by Equation (1).

In Equations (10) and (8), h(t)is the EMBI+ time series, σ and µ, are the log-volatility
and drift of the process, and the spread value at default is Hd = 0.4722 for Argentina, and
was set to Hd = 0.5 for Brazil.

Instead of modeling the risk-free term structure we use the present value of risk-free cash
flows, and we take as Ti the average life of each bond.

An additional hypothesis, needed for our calculations, is an equal recovery factor Q for
all the bonds of the same issuer.

The log-volatilities were estimated by the Exponentially Weighted Moving Average
(EWMA) method. Figure 1 shows the behavior of the volatilities for Argentina and Brazil.

As the model assumes constant volatility, we partitioned the time interval studied and
used the set of periods and average values shown in Table 1.

In order to completely specify the model, we used synchronous values of the EMBI+
bonds to estimate cross-sectionally the parameters k and Q, for a series of days, and then
examined the time series of parameters produced by the estimation procedure to test whether
the empirical results validated or rejected the model.

Let us consider the sum of the squares of the deviations between model and market bond
prices

x2 =
N∑

i=1

ni [Bi − Zi Si (Q, k)]2, (11)

where N is the number of bonds used in the calculation of the EMBI+, ni is the weight
of bond i in the EMBI+, Bi is the observed daily mid-market bond price, and Zi is the
risk-free price. We look for the set of parameters k and Q that minimizes (11). Since one of
the parameters appears as argument of an exponential function, the minimization problem
is strongly non-linear, and we must search for an adequate local minimum.
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Table 1. Average volatilities for each period

Panel A: Argentina Panel B: Brazil

Period EMBI+AR volatility Period EMBI+BR Volatility

From 05-Sep-01 to 04-Oct-01 0.60 From 05-Nov-01 to 13-Dec-01 0.42

From 05-Oct-01 to 31-Oct-01 0.48 From 14-Dec-02 to 10-Ene-02 0.35

From 01-Nov-01 to 30-Nov-01 0.67 From 11-Jan-02 to 31-Jan-02 0.30

From 01-Feb-02 to 07-Mar-02 0.24

From 08-Mar-02 to 17-Apr-02 0.22

From 18-Apr-02 to 30-May-02 0.27

Notes: This table shows the average log-volatility used in the calculations for each period of constant volatility
considered. Panel A, shows the periods and averages volatilities used for the EMBI+ Argentina Index, while Panel
B does the same for the EMBI+ Brazil Index.

Let us recall that k does not have an obvious economic meaning, but is only a dimen-
sionless parameter defined for the convenience of the solution of the partial differential
equation, while Q, also a dimensionless parameter, expresses the recovery as a fraction of
the risk-free price.

From the parameters k and Q obtained through minimization we derived the series of
daily implied average expected recovery rates R.

In Figures 2 and 3 we present the plot of the series of the two mentioned implied param-
eters for Argentina, and the expected recovery rates coupled with the spread of the EMBI+
Argentina Index, during the period running form the beginning of September 2001 to the
end of November 2001. After this period, the worst of the crisis, the model ceases to provide
a good fit to the market data.

In Figures 4 and 5 we present the plot of the same set of parameters for Brazil, and
the recovery rates coupled with the EMBI+Brazil Index, during the period running from
November 2001 to May 2002.

The first step to test the validity of the model is to examine the daily series of the estimated
parameters. In our model k and Q are not functions of time, hence if the model is correct,
the estimation procedure should produce the same estimates over time. In fact, it is to be
expected that the parameters will not be exactly constant but fluctuating within a statistical
noise.

As it is apparent from Figure 4, the minimization parameters for Brazil lie in a plausible
range. kBR oscillates around different constant values, its jumps corresponding to the changes
of the average volatility, while QBR only exhibits a small jump, on January 11. Furthermore,
it fluctuates around two very close average values: 0.42 at first, and later 0.39.

In Figure 2 the Argentinean parameters show a similar behavior in the first two periods.
However, in the third period, as the EMBI+AR Index increases approaching to the default
value, the oscillations of kAR and Q AR become more significant. After November 30th.
2001, the lack of stability of the minimization parameters or the inability of the minimization
procedure to produce an adequate set of parameters, leads to believe that the model could
no longer be validated as a reasonable description of the real process.
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Figure 2. This figure plots the series of the dimensionless parameters k and Q that minimize Equation (11) based
on the data of Argentina from September 2001 to the end of November 2001. The left panel shows the evolution of
the parameter kAR, while the right panel shows QAR, which expresses the market implied recovery as a function
of the risk-free price.

Figure 3. The solid line plotted in this figure shows the evolution of the EMBI+Argentina Index, while the
dotted line corresponds to the expected Recovery Rate for the Argentinean sovereign bonds, RAR. Both series are
shown from September 2001 to the end of November 2001.

Looking at Figures 3 and 5 we find, as expected, a significant negative correlation between
the EMBI+ Index for each country and the corresponding expected recovery rate, suggesting
that the recovery rate is largely determined by the evolution of the credit spread. In closer
examination, we find that the correlation coefficient between these two variables is, in
absolute terms, greater in Argentina than in Brazil (−0.96 vs. −0.73). We believe the
explanation is based on the fact that although the credit spread represents essentially the
risk of default, it also has a component that depends on the expectations regarding payoff
in case of default. As the probability of default approaches 1, this component becomes
more important, given the fact that investors are nearly certain of the upcoming default
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Figure 4. This figure plots the series of the dimensionless parameters k and Q that minimize Equation (11) based
on the data of Brazil from November 2001 to the end of May 2002. The left panel shows the evolution of the
parameter kBR, while the right panel shows QBR, which expresses the market implied recovery as a function of
the risk-free price.

Figure 5. The solid line plotted in this figure shows the evolution of the EMBI+ Brazil Index, while the dotted
line corresponds to the expected Recovery Rate for the Brazilian sovereign bonds, RBR. Both series are shown
from November 2001 to the end of May 2002.

and the only source of value left is the expected recovery rate after default. We found this
explanation also consistent with the fact that the absolute value of the mentioned coefficient
of correlation for Argentina grows constantly as the country approaches default.

The values observed for R in Figures 3 and 5 also provide interesting information about
the levels of the expected recovery rate. At the beginning of the dataset, Argentina shows
an average expected rate of recovery of approximately 47% of the face value of the bonds.
This level is similar to the worst expected recovery rate showed by Brazil (49%) and not
very far from Brazil’s average of 55% that remains pretty stable during the whole sample.
Later on, as the scenario worsens for Argentina,2 from the last days of October onward,
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R drops and finally stabilizes around a level of 25%. This level is significantly lower than
the evidence for recovery rates from Altman and Eberhart (1994) for US corporate debt
(50%), Altman, Cooke, and Kishoe (1999) (40%) and Merrick (1999) for sovereign issues
of Argentina during the period of Russia’s GKO default crisis in 1998 (50%).

Summarizing the findings of the empirical application of the model, we found that the
implied recovery rate level for Brazilian sovereign bonds has persisted during the period of
study around 55%, a value not completely out of line with Merrick’s findings for Argentina
during the Russian crisis. In the case of Argentina the results are quite different, since
the model shows very low expected recovery values in comparison with previous cases of
default, and very much in line with the proposals of record haircut made by the Argentinean
government to the bondholders.

4. Conclusions

Under simplified assumptions, and modeling the spread as a log-normal random walk with
bounded volatility, we have obtained a barrier type closed-form solution for a two-factor
model of a defaultable discount bond. Furthermore, the model has proved useful for the
analysis of the expected recovery rates of Argentina and Brazil during the development of
Argentina’s financial breakdown.

This log-normal type model for the spread is the simplest one that satisfies the requirement
of positivity, and by relaxing some of the hypothesis it may be improved to better agree with
observed phenomenological facts. In particular, in Duffie (1999) it is pointed out that the
empirical instantaneous risk of default is mean-reverting under the real measure. Therefore,
our next step shall be to consider a mean-reverting log-normal type random walk for the
spread, and preliminary calculations show that, in this case, a quasi-closed-form solution
may be obtained in terms of the confluent hypergeometric functions.
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Notes

1. For a full description of interest rate models see Rebonato (1998).
2. On October 17th, Standard & Poor’s, Moody’s Investor Service and Fitch warned that they would rate Argentina

in technical default if bondholders lost any money in a planned domestic swap. Shortly afterwards, Fitch stated
that bondholders could be facing losses of UDS 10 billion. Finally, on November lst., the president of Argentina
and his ministry of economy gave confirmation of the details of a debt swap that resulted in a significant loss
of value for domestic investors.
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