
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

The Journal of Systems and Software 86 (2013) 1482– 1497

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Toward automated refactoring of crosscutting concerns into aspects

Santiago A. Vidala,b,∗, Claudia A. Marcosa,c

a ISISTAN Research Institute, Faculty of Sciences, UNICEN University, Campus Universitario, B7001BBO Tandil, Buenos Aires, Argentina
b CONICET, Concejo Nacional de Investigaciones Científicas y Técnicas, Argentina
c CIC, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina

a r t i c l e i n f o

Article history:
Received 8 November 2011
Received in revised form
18 December 2012
Accepted 18 December 2012
Available online 28 December 2012

Keywords:
Software evolution
Separation of concerns
Aspect refactoring

a b s t r a c t

Aspect-oriented programing (AOP) improves the separation of concerns by encapsulating crosscutting
concerns into aspects. Thus, aspect-oriented programing aims to better support the evolution of systems.
Along this line, we have defined a process that assists the developer to refactor an object-oriented system
into an aspect-oriented one. In this paper we propose the use of association rules and Markov models
to improve the assistance in accomplishing some of the tasks of this process. Specifically, we use these
techniques to help the developer in the task of encapsulating a fragment of aspectizable code into an
aspect. This includes the choice of a fragment of aspectizable code to be encapsulated, the selection of
a suitable aspect refactoring, and the analysis and application of additional restructurings when neces-
sary. Our case study of the refactoring of a J2EE system shows that the use of the process reduces the
intervention of the developer during the refactoring.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The separation of concerns is an important issue in software
engineering (Parnas, 1972). This becomes relevant when one tries
to develop reusable, adaptable, extensible, and modifiable systems.
Systems that have these quality attributes are easier to maintain
and evolve than those system without them. A high degree of
separation of concerns can be achieved with the adoption of object-
oriented programing (OOP); however, there are some concerns
that orthogonally crosscut the components of a system and whose
encapsulation is almost unviable with this paradigm making sys-
tem evolution difficult and costly (Eaddy et al., 2008). These kinds
of concerns are called crosscutting concerns (CCCs) (Kiczales et al.,
1997). Aspect-oriented programing (AOP) (Kiczales et al., 1997)
complements OOP (as well as other paradigms) by providing mech-
anisms to construct these kinds of systems by encapsulating the
CCCs into aspects. Thus, when the better separation of concerns
provided, the more legible, maintainable, and evolvable system
achieved (Garcia et al., 2005; Ferrari et al., 2010; Hanenberg et al.,
2009). For example, when a CCC needs to be modified, the change
is reduced to a single functional unit. For these reasons, in order to
improve the evolution of OO systems it is useful to migrate them to

∗ Corresponding author at: ISISTAN Research Institute, Faculty of Sciences, UNI-
CEN University, Campus Universitario, B7001BBO Tandil, Buenos Aires, Argentina.
Tel.: +54 2494 439840x42.

E-mail addresses: svidal@exa.unicen.edu.ar (S.A. Vidal),
cmarcos@exa.unicen.edu.ar (C.A. Marcos).

aspect orientation (Garcia et al., 2005; Kiczales et al., 1997; Tonella
and Ceccato, 2005; Mens and Tourwe, 2008). This can be achieved
through the application of aspect refactorings (Kellens et al., 2007)
based on information provided by aspect mining (Kellens et al.,
2007) of those crosscutting concerns that may potentially become
aspects (candidate aspects).

Taking into consideration the above, we have defined, in a previ-
ous work, a refactoring process (Vidal et al., 2009; Vidal and Marcos,
2009b) which has as input an object-oriented system and its iden-
tified candidate aspects, and it has as output an aspect-oriented
system. It is an iterative process that restructures the code by apply-
ing aspect-oriented refactorings at each cycle of the iteration. The
process has been implemented as a tool called AspectRT1 (Aspect
Refactoring Tool). While this process guides and assists the devel-
oper to encapsulate the CCCs of a system, some activities are done
manually (i.e. without assistance) by the developer. These man-
ual activities are time consuming for the developer and delay the
process of migration. For example, the following activities, are man-
ually accomplished by the developer:

1. The selection of a fragment of aspectizable code to be encap-
sulated based on information provided by the aspect mining
process.

2. The selection of a suitable aspect refactoring to be applied on a
fragment of aspectizable code.

1 Available from http://sites.google.com/site/legacyandaop/Home/ar.

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.12.045

Author's personal copy

S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497 1483

3. The execution of additional restructurings, after applying an
aspect refactoring, when necessary. These additional restructur-
ings are small changes in the code performed to preserve the
behavior of the system or improve the resultant code.

We think that the use of tool assistance can reduce the time develo-
pers spend on this kind of activities. Along this line, in this work we
propose assistance for these activities of the process through the
use of association rules (Agrawal and Srikant, 1994) and Markov
models (Rabiner, 1989).

Since we perform refactorings in a system using AspectRT, the
way in which the developer applies restructurings to the system
can be registered (e.g. the fragment of code selected, the refactor-
ing applied, additional restructurings made, etc.). The context in
which a refactoring is applied is also recorded. By context we mean
the kind of fragment of code refactored (e.g. a statement, a method,
a field, etc.) and information related to it such as visibility or other
modifiers (e.g. concrete, abstract, etc.). Along this line, the Markov
model is used to assist the developer while performing activities 1
and 3. The Markov model represents the interaction of the devel-
oper with the process by recording the order in which the developer
performs refactoring activities. Then, using a Markovian algorithm
that analyses the recorded interaction, the most probable action is
proposed to the developer. These actions will be suggestions of a
particular fragment of code to be refactored (activity 1) or the rec-
ommendation of additional restructurings after applying an aspect
refactoring (activity 3).

In activity 2, the use of an association rule algorithm helps to
select a suitable aspect refactoring to be applied to a fragment of
aspectizable code by identifying similarities between context. The
algorithm analyses a database of previous refactorings and the con-
text in which they were applied in order to generate association
rules. Then, when an aspect refactoring must be applied in a par-
ticular context, it is proposed based on the search of the rules that
contain a similar context.

Along this line, the main contribution of this paper is provid-
ing assistance for a refactoring process that encapsulates CCCs
into aspects by means of machine learning techniques. The exper-
imental results of applying our approach to a J2EE system provide
evidence of the benefits of assisting the developer during the pro-
cess using artificial intelligence techniques.

The rest of this paper is structured as follows: Section 2 presents
a brief introduction to AOP, Section 3 describes the aspect refac-
toring process and presents its strengths and weakness, Section 4
explains our proposal to use association rules and Markov models
to automate the refactoring process, Section 5 discusses the algo-
rithms configurations, Section 6 evaluates the approach by means
of migrating a J2EE system, Section 7 presents the results of the
migration, Section 8 assesses how the approach helps developers by
conducting a controlled experiment, Section 9 presents the threats
to validity of the case studies, Section 10 introduces some work in
the area of aspect refactoring related to this research, and Section 11
presents the conclusions.

2. Aspect-oriented programing

Aspect-oriented programing (AOP) (Kiczales et al., 1997) is a
programing paradigm that allows the encapsulation of those con-
cerns that orthogonally crosscut the components of a system, called
crosscutting concerns (CCCs), into a new component called an
aspect. In this way, AOP increases software modularity and reduces
the impact of change propagations when the systems are modified
(Garcia et al., 2005).

As current programing languages, like Java or C++, do not
have the necessary support for this separation of concerns,

aspect-oriented languages and frameworks that support aspects
have emerged. Some of the most popular of these, such as AspectJ2

and Spring/AOP3, support aspect orientation, supplying mech-
anisms to encapsulate the concerns. Generally, aspect-oriented
programs are divided into two parts (Iwamoto and Zhao, 2003):

• Base code The classes, interfaces, and so on that define the basic
functionality of the system are located in this code.

• Aspect code The aspects that encapsulate the crosscutting con-
cerns are located in this code.

In these new languages and frameworks, we need to link the aspects
with a statically (or dynamically) identifiable point in the compu-
tation of the base code in order to establish a relationship between
them through a process called weaving. The identifiable points are
well defined points in the system execution where the aspects will
be executed. For example, in AspectJ this mechanism is called join
point (Mens and Tourwe, 2008). Also, a set of join points can be
specified through a notation called pointcut (Mens and Tourwe,
2008). For instance, the pointcut call(void Point.setX(int))
captures all the calls to the method setX(int) of the class Point.

Also, other important mechanism is the advice declaration. An
advice defines the code representing the CCC functionality that
must be executed when a join point is activated. This mechanism
can be executed before, after, or around the pointcut. For example,
the advice:
after(): call(void Point.setX(int)){

System.out.println(...);

is executed after the activation of the pointcut defined above and
it prints a message.

3. Aspect refactoring process

In order to obtain a better separation of concerns through the
use of AOP, we have proposed a process (Vidal and Marcos, 2009b)
which assists the developer during the refactoring process of an
object-oriented system into an aspect-oriented one. It is an itera-
tive process which applies aspect refactorings in each cycle of the
iteration. This aspect refactoring process has as input an object-
oriented system and candidate aspects (previously identified by an
aspect mining technique), and it has as output an aspect-oriented
system. The candidate aspects are instances of a CCC. For each CCC
there may be more than a candidate aspect.

In order to support the refactoring process, a tool called Aspec-
tRT was constructed. It is a plug-in for the Eclipse IDE4 and it is
integrated with AspectJ plug-in (AJDT).5 AspectRT helps architects,
designers, and developers to migrate object-oriented systems to
aspect-oriented ones, providing a set of aspect refactorings. The
tool is based on graphical wizards that assist the developer during
the refactoring process. This tool allows the generation of AOP code
to be used in AspectJ.

To encompass a wide range of situations that may occur dur-
ing the refactoring process, different kinds of aspect refactorings
are used: Aspect-aware OO refactorings, refactorings for AOP con-
structs and, refactorings of CCCs (Hannemann, 2006). This feature
also ensures that crosscutting concerns are not only encapsulated
into aspects, but that the internal structure of the aspects is also
improved. The whole process, that we have proposed, relies on a set
of steps (Abait et al., 2010; Vidal and Marcos, 2009b) to accomplish
these goals. The purpose of these steps are three: encapsulating a
CCC into an aspect, enabling the application of a refactoring of CCC

2 http://www.eclipse.org/aspectj/.
3 http://www.springsource.org/.
4 http://www.eclipse.org/.
5 http://www.eclipse.org/aspectj/.

Author's personal copy

1484 S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497

Fig. 1. Refactoring process delineated.

over a CCC when the application of the refactoring is not possible,
and improving the internal structure of aspects. In this paper we
focus on those steps whose purpose is to analyze and improve the
way in which the CCCs are encapsulated into aspects. As shown in
Fig. 1, the steps are as follows:

1. Get evidence of aspectizable code A piece of aspectizable code
is obtained from a list defined in the aspect mining stage. This
list is an XML file that contains information related to the cross-
cutting concerns to be migrated. Each CCC contains one or more
candidate aspects that can be spread among several language
elements such as classes, interfaces, methods, fields, statements,
implements declarations and inner classes (Fig. 2). During this
step a language element of a candidate aspect is selected to be
encapsulated into an aspect.

2. Analyze possible refactorings of CCCs This step selects a
special kind of aspect refactoring, called refactoring of CCCs
(Hannemann, 2006), whose goal is the encapsulation of a code
fragment into an aspect. In order to determine a set of suit-
able aspect refactorings of CCCs (i.e. which restructuring will be
applied to the code fragment), the analysis of a language element
of the candidate aspect selected in the previous step must be con-
ducted. The reason for this analysis is the fact that most of the
aspect refactorings are applied over a well defined language ele-
ment. However, since the process uses different kinds of aspect
refactorings from different catalogs, usually there is more than
one refactoring that can be applied to a language element. In
these cases, the analysis must take into account the language
element structure and the goals of the refactorings. For exam-
ple, Monteiro’s catalog (Monteiro et al., 2004, 2005) presents 4
refactorings whose target code is a class. If the language element
refactored is of this kind, the developer must analyze the struc-
ture of the class and the goals of the aspect refactorings to decide
which of them is the most suitable to encapsulate the class into
an aspect.

3. Apply refactoring of CCCs The refactoring/s selected pre-
viously is/are applied, so that every crosscutting concern is
extracted from the object-oriented code and inserted as an
aspect. Once the target code and the refactoring to be applied are
selected, the refactoring is automatically executed by AspectRT.

Fig. 2. Candidate aspects XML hierarchy.

We found some limitations in our previous work in reference
to these steps. Specifically, we noticed a high intervention of the
developer in several activities. For example, the selection of a piece
of evidence of aspectizable code (Step 1) is accomplished manu-
ally by the developer using the AspectRT interface. Also, in Step 2,
the analysis and selection of a suitable aspect refactoring of CCCs
is accomplished by the developer by choosing from a menu of
possible refactorings. In this regard, we previously presented an
approach based on rules (Vidal and Marcos, 2009a) that restricts
the possible refactorings to be applied. These were simple rules
that for a given kind of language element returned a list of pre-
computed possible refactorings. However, this technique was not
precise enough to identify all the possible refactorings. Another
limitation found was that, even though the aspect refactorings are
applied automatically by the process (Step 3), on some occasions
the developer’s intervention is necessary for some decisions. Such
interventions cannot be avoided because the developer needs to
know precisely what changes are going to be made to the sys-
tem. However, in these kinds of situations, in which the rate of
the developer’s intervention is high, the use of tool assistance can
be useful.

Another situation in which the tool assistance can be used is
when on some particular occasions, the application of an aspect
refactoring is not sufficient to encapsulate a language element of
a candidate aspect, with the result that additional restructurings
must be performed manually. These situations occur because some-
times there is no refactoring to properly encapsulate a specific
fragment of code into an aspect (or a specific refactoring is not
implemented in the tool). In these cases, low complexity OO refac-
toring and aspect refactorings (e.g. Extract Method (Fowler, 1999),
Extract Fragment into Advice (Monteiro et al., 2004),Move Method
from Class to Inter-type (Monteiro et al., 2004)) are tried to encap-
sulate the fragment of code and then completing the extraction by
additional manual restructurings. These additional restructurings
can be proposed automatically by means of the analysis of previous
interactions.

The common problem of the aforementioned limitations is that
the developer must intervene too much during the refactoring
process. These interventions cause a delay in the refactoring that
consumes valuable time. In this paper we focus on the analysis of
various techniques to solve these limitations by providing provide
an assisted aspect refactoring process.

4. Assistance in the application of aspect refactorings

In order to improve the assistance during the identification
and application of aspect refactorings in the process, we propose
the use of artificial intelligence techniques. We use this kind of
techniques because they can be useful for capturing the user’s6

knowledge when he/she is dealing with complex tasks, and later for

6 The words developer and user are used indistinctly in this article.

Author's personal copy

S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497 1485

Fig. 3. Automatic refactoring process.

recognizing the user intentions in similar cases. In this way, previ-
ous situations and experiences can be taken into account at the time
of restructuring a new system. For example, in Step 2 of the process
the aspect refactoring/s that should be applied to encapsulate a lan-
guage element into an aspect must be determined. This is a complex
task owing to the need for extensive knowledge of the goal of each
aspect refactoring, limitations of use, mechanisms of application,
and so on. Also, the manual selection and application of an aspect
refactoring is time-consuming. For these reasons, we propose the
tool assistance application using association rules (Agrawal and
Srikant, 1994), during the identification of the aspect refactorings.
Association rules contribute to the automatic recommendation of
aspect refactorings by means of the analysis of previous experi-
ences.

In Step 3, another complex situation emerges when the appli-
cation of an aspect refactoring is not adequate to encapsulate a
language element of a candidate aspect, causing additional man-
ual restructurings. These changes are carried out to complete the
encapsulation of a candidate aspect or to fix problems in the source
code so as to allow correct compilation. When the application of an
aspect refactoring is not sufficient to encapsulate a language ele-
ment of a candidate aspect this situation can be solved in two ways.
On the one hand, some specific aspect refactorings, as those pre-
sented by Laddad (2003a), can be used to completely encapsulate
the candidate aspect. However, the application of a specific refac-
toring causes a scalability problem. That is to say, every time a new
specific situation emerges, a specific refactoring must be imple-
mented and integrated into the tool. On the other hand, simple
aspect refactorings (as those presented by Monteiro et al. (2004,
2005)) can be used to encapsulate a candidate aspect and then apply
manual changes in order to complete the encapsulation. Usually,
these manual changes are simple and repeatable. For this reason,
we propose the automatic identification and application of these
changes using Markov models (Rabiner, 1989).

We also propose the use of Markov models to determine the
order in which the aspectizable code should be refactored (Step 1).
By using Markov we want to assist the developer during the process
by selecting the aspectizable code to be refactored.

The use of these techniques in the identification and application
of aspect refactorings in the refactoring process is shown in Fig. 3
and it is explained in detail in the following sections.

4.1. Aspect refactoring proposition through association rules

Association rules is an artificial intelligence technique widely
used in data mining. It describes the relationships between the
items in a set of relevant data. Let I = {i1, i2, . . ., im} be a set of items
and D = {T1, T2, . . ., TN} a set of transactions, where each transaction
T is a set of items such that T ⊆ I. An association rule is an implica-
tion of the form A ⇒ B, where A ⊂ I, B ⊂ I and A∩ B = ∅ (Agrawal and
Srikant, 1994). A is the antecedent of the rule and B is its conse-
quent. The rule A ⇒ B holds in the transaction set D with support s,
where s is the percentage of transactions in D that contains A ∪ B.
That is, the support of this rule is the percentage of transactions
containing all items from A and from B. The rule A ⇒ B has confi-
dence c in the transaction set D if c is the percentage of transactions
in D containing B, from among the transactions that contain A. That
is, from all the transactions containing A, c indicates the percentage
of transactions that also contain B. In a more formal definition:

support(A ⇒ B) = �(A ∪ B)
N

confidence(A ⇒ B) = �(A ∪ B)
�(A)

where

�(X) = |{Ti|X ⊆ Ti, Ti ∈ D}| and X is an itemset.

Rules that satisfy both a minimum support (minsup) threshold and
a minimum confidence (minconf) threshold are called strong (Han
and Kamber, 2000), and they are the output of an association rules
algorithm.

We use association rules in order to assist the user in the iden-
tification of the aspect refactoring (or a set of them) which must
be applied given a specific fragment of aspectizable code. To gen-
erate the rules that will be useful to propose aspect refactorings,
the Apriori algorithm (Agrawal and Srikant, 1994) is adopted. As
shown in Fig. 3, the assistance process consists of the followings
stages:

(a) Generating the association rules based on the analysis of a
database of refactoring information.

(b) Saving the rules into a database of generated rules.

Author's personal copy

1486 S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497

Fig. 4. Database transaction.

(c) Selecting automatically an appropriate aspect refactoring for a
language element of a candidate aspect using the association
rules.

(d) Applying the aspect refactoring.
(e) Saving to the refactoring database the information from the

aspect refactoring that was applied.

Stage (a) is executed using the Apriori algorithm. This stage
has as input a database of previous aspect refactoring experiences,
and it has as output a set of association rules. The database con-
tains information about the context in which a refactoring was
applied in previous system’s migrations. Specifically, the context
that indicates each transaction is composed by 9 fields indicating
the language element over which the refactoring was applied, data
related with this language element (such as if it is abstract or con-
crete, or if it is a constructor method), and information connected
with the remaining language elements to be migrated (e.g. the
number of methods related with the candidate aspect that remains
to be migrated). That is to say, the remaining language elements
are those elements of the candidate aspect that have not yet been
migrated (Fig. 4). In this way, the context not only contains informa-
tion about the code that is refactored but also contains information
about the order in which the user accomplishes this task. For exam-
ple, consider a candidate aspect that is composed by a field and
two methods. If the field is encapsulated into an aspect first, the
remaining language elements will be the two methods.

In this first stage, the Apriori algorithm analyses the transactions
of the database to find all the itemsets that satisfy a minimum sup-
port threshold. Later, it uses these itemsets to generate the rules
that have a confidence greater than the minimum confidence. In
our case the algorithm’s itemsets are composed of elements from a
transaction of the database (an aspect refactoring, a language ele-
ment and information related to it, such as, if it is abstract or a
constructor, etc.). An important issue in the implementation of the
algorithm is how to filter out the unimportant and non-applicable
rules. For this reason, we use item constraints (Srikant et al., 1997)
to obtain only a subset of rules that are significant. Specifically, we
look for rules having as an antecedent at least one language ele-
ment and as a consequent an aspect refactoring. The reason of this
constraint is that most of the aspect refactorings are applied over a
well-defined language element. Once association rules have been
generated, they are stored in a database as shown in stage (b).

Stage (c) is run in Step 2 of the refactoring process. When a lan-
guage element of a candidate aspect is analyzed, a selection of an
appropriate aspect refactoring is accomplished. This selection is
based on the association rules generated in stage (a). In order to
select a suitable aspect refactoring, a naive hierarchical selection
process is used. When a language element of a candidate aspect
is analyzed, the same fields of context information that compose
the refactoring database are obtained. Later, this information can
be compared with the resultant association rules. In this way, the
goal of the hierarchical algorithm is to find a rule whose context
(antecedent) is equal or as similar as possible to the context of

Fig. 5. Context obtaining from a language element of a candidate aspect.

the language element that is going to be refactored. When a rule
is found, the consequent is suggested as aspect refactoring to be
applied over the language element. This hierarchical selection pro-
cess starts by obtaining the context data of the aspectizable code
under analysis. Subsequently, the algorithm tries to find a suitable
refactoring. With this goal in mind, the rules of a specific size for an
antecedent are obtained. The beginning size is the full context size
(that is, the most specific case), that is the rules whose antecedent is
of the same size as the full context (in our case, size 9) are obtained.
The next step implies iterating over these rules in order to deter-
mine if the antecedent of a rule r is contained in context data of
the aspectizable code under analysis. When this happens, the con-
sequent of the rule is proposed as aspect refactoring. If no rule is
found, the algorithm tries to find a rule whose antecedent matches
with a subset of the context. For example, as shown in Fig. 5, given
method A and assuming there are no more classes, methods, fields
or statements to be encapsulated, when method A is analyzed the
context � of size 9 is obtained. Then using the hierarchical naive
algorithm a rule whose antecedent matched with the context is
sought. If a rule is found, its consequent is proposed. If it is not,
the algorithm tries again with the context subsets of size 8 and
so on until the algorithm finds a rule or if a rule is not found the
developer has to choose the refactoring to apply. In the event that a
rule is found and an aspect refactoring is proposed, if the developer
does not accept it, the selection process of stage (c) continues with
the set of rules of lesser size. Considering the rules presented in
Table 1 as the refactoring database and the context shown in Fig. 5
as a language element to be refactored, the aspect refactoring Move
Method from Class to Inter-type is proposed when a context of size
4 is analyzed.

Stage (d) occurs in Step 3 of the refactoring process. If an aspect
refactoring is found and accepted by the developer in stage (c), the
process automatically applies the aspect refactoring in the third
stage and the context data with the selected refactoring is saved in

Author's personal copy

S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497 1487

Table 1
Example of rules.

Context size Rules

1 languageElement.Field ⇒
refactoring.MoveFieldFromClassToIntertype
languageElement.Method ⇒
refactoring.MoveMethodFromClassToIntertype

2 languageElement.Field, abstract.false ⇒
refactoring.MoveFieldFromClassToIntertype
languageElement.Method, constructor.false ⇒
refactoring.MoveMethodFromClassToIntertype

3 languageElement.Field, abstract.false, constructor.false ⇒
refactoring.MoveFieldFromClassToIntertype
languageElement.Method, abstract.false, constructor.false ⇒
refactoring.MoveMethodFromClassToIntertype

4 languageElement.Field, abstract.false, constructor.false,
remainingFields.false ⇒
refactoring.MoveFieldFromClassToIntertype
languageElement.Method, abstract.false, constructor.false,
remainingMethods.false ⇒
refactoring.MoveMethodFromClassToIntertype

the refactoring database in stage (e). For example, in the case of the
aforementioned method A, if the proposed refactoring is accepted
by the developer, a transition that contains the context shown in
Fig. 5 and the name of the refactoring is saved into the database.

4.2. Language element identification and additional restructuring
recommendation through Markov models

A hidden Markov model (HMM) is a doubly stochastic process
comprising an underlying stochastic process that is not directly
observable but can only be visualized through another set of
stochastic processes that produce the sequence of observations
(Rabiner, 1989). A Markov model describes a process that goes
through a sequence of discrete states. The model is called hidden
because the state of the model at a time t is not observable directly.
A HMM has the Markov assumption that is that given the present
state, future states are independent of past states.

The main elements of an HMM are the following (Rabiner, 1989):

• N states that are denoted individually as {S1, S2, . . ., SN}.
• The actual state at time t is denoted as qt.
• The state transition probability distribution is the matrix A = {aij}

where aij is the probability of the model transitioning from state
i to state j.

• M distinct observable actions per state that are denoted individ-
ually as V = {v1, v2, . . . , vM}.

• The action probability distribution is the matrix B = {bj(k)} where
bj(k) is the probability of observing action vk at a time when the
model is in state qj.

• The action observed at time t is denoted as Ot.

We use the ON-line Implicit State Identification (ONISI) algorithm
(Gorniak and Poole, 2000) in order to identify the future user action
through a Markov model. In our context, this algorithm observes
the developer interaction with AspectRT and, given a state, it pre-
dicts future developer actions. ONISI assigns probabilities to all
possible actions in the currently observed state. These probabilities
are calculated estimating how much observed history supports an
action in the current context. This estimation is accomplished using
a k-nearest neighbors scheme that ranks the actions in the state tak-
ing into account the length of the sequences of actions in observed
history that match the actions the developer just performed. In this
way, ONISI approximates the check of the Markov assumption for
the current context (Gorniak and Poole, 2000). When the current

state is observed by ONISI, probabilities to all possible actions from
that state are assigned and ranked. The algorithm is configurable
by means of two parameters: k to indicate number of maximum
length pairs of 〈state, action〉 to be consider; and 0 ≤ ̨ ≤ 1 to indi-
cate the weight between the histories length and the frequency at
which they occur.

In our context, we use the ONISI algorithm to help in the iden-
tification of which candidate aspect must be refactored (Step 1 of
the refactoring process). We also use the ONISI algorithm in order
to identify the additional restructurings that must be performed (at
the end of Step 3 of the refactoring process) in case the refactoring
is not sufficient. In order to fulfill these tasks, we create a model that
represents the interaction between the developer with AspectRT.
It has 3 simple states (Fig. 6):

1. Candidate aspect view This state represents the situation when
a candidate aspect has been selected. The state is so named
because AspectRT provides a view where the candidate aspects
are listed.

2. Refactoring a language element of a candidate aspect This state
occurs when an aspect refactoring has been selected and it is
going to be applied or it has been applied.

3. Additional refactorings This state represents the situation
when additional restructurings have to be done after applying
an aspect refactoring.

As shown in Fig. 6, to transition to State 1 a language element of
a candidate aspect must be selected. When the model is in State
1, it can only transition to State 2 with the selection of an aspect
refactoring. In State 2, the model remains in the same state when an
aspect refactoring is applied. If after applying an aspect refactoring,
manual changes are made over a code structure, instead of select-
ing a new candidate aspect, the model transitions to State 3. Some
structures that can be added, modified or deleted are language
elements from the classes, or aspects.

The states and the actions that allow the transition between
them are updated in each step of the refactoring process and saved
into an observed history database (As was shown at the top of Fig. 3).
Specifically, the database saves pairs of states and actions 〈Si, vj〉
where vj is the action occurred in the model and Si is the state to
which the model is going to transition. For example, if the model
is in State 3 and a method of a candidate aspect is selected in the
Candidate aspect view of AspectRT, the pair 〈state, action〉 saved
will be:

〈Candidate aspect view, candidate aspect Method selected〉
When a candidate aspect must be refactored, there usually are

a set of possible language elements, of which it is composed, to be
chosen. The order in which these are selected can produce prob-
lems of compilation or encapsulation in the resultant system. This
order depends on the structure of the candidate aspects. This is
why the order must be identified during the refactoring process.
For example, consider the following code.

publi c class Fo o {
private in t x ;
. . .
private doSome thi ng () {

. . .
x=3 ;

}
. . .

}

If the field x and the statement in the method doSomething
belong to a candidate aspect, the order of refactoring should be:

Author's personal copy

1488 S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497

Fig. 6. AspectRT model.

1. Encapsulate x into an aspect using Move Field from Class to Inter-
type declaring the aspect as privileged temporarily.

2. Encapsulate the statement into the aspect using Extract Fragment
into Advice declaring the aspect as public.

Encapsulating the statement first might lead to compilation errors.
In order to identify the refactoring order, the ONISI algorithm is

run in Step 1 of the refactoring process and the first ranked result
is proposed to the developer. There are two situations to analyze in
this task: (1) the selection of the first language element of a candi-
date aspect to be encapsulated and (2) the selection of a language
element of a candidate aspect after the encapsulation of other lan-
guage element of the same candidate aspect. In this case, task 1 will
be the selection of the field x and then, task 2 will be the selection of
the statement. In order to be able to distinguish between these situ-
ations, the actions of selecting a candidate aspect must be different
for each situation. This is achieved by adding a distinctive token to
the action (of a 〈state, action〉 pair) when it is the first refactoring
that is applied on a candidate aspect.

Another case that needs to be automated occurs when after
applying a refactoring, some manual changes are needed. This sit-
uation is due to the presence of some complex concerns in the
system to which a general refactoring must be applied followed
by some manual changes. These additional manual changes must
be performed in order to preserve the behavior of the system or
improve the resultant code. We use a Markov algorithm to iden-
tify these situations and automatically propose changes when they
are necessary, this is why the ONISI algorithm is run after Step 3 of
the refactoring process. As it was shown in the model (Fig. 6), all
the changes that are made by the developer when he/she applies a
refactoring are made over a code structure. These changes can be
the addition, deletion or modification of such structures. Examples
of possible structures are access modifiers, pointcut declarations,
try/catch blocks, etc.

An important point to be discussed is why these automations are
not fulfilled with association rules. While in practice this would be
possible, the reason why we can not use association rules to identify
the fragments of code to be migrated and to recommend additional
restructurings is that the association rules technique is not flexible
enough to identify new problems without regenerating the associa-
tion rules through the association rules algorithm. Since most of the
aspect refactorings are applied over a well known language element
(e.g. a method, a field, etc.), association rules excel in the sugges-
tion of aspect refactorings if all of the supported aspect refactorings
have been considered in the training. Regarding the identification
of fragments of code to be migrated and the recommendation of
additional restructurings, while the Markov approach could not
correctly identify, for example, an additional restructuring from the
first time that it is analyzed, this approach learns quickly without
the need of re-running a training phase.

5. Algorithms configuration

An important issue to take into account is how to properly
configure the algorithm parameters. In the case of the Apriori algo-
rithm, the value of minimum support determines which association
rules are generated and which are not. A high value will probably
make us miss some important association rules. Thus, we have to
determine a value for minimum support that enables us to discover
an aspect refactoring to be applied to a specific situation. In our case,
the refactoring database contains the context in which a refactor-
ing was applied. Supposing that there are N different instances of
a refactoring situation stored in the database, the main problem is
that they are not equally probable. So, a small minimum support
value will be needed to capture a significant number of aspect refac-
torings. On the other hand, the minimum confidence value should
be high since it indicates the probability that a refactoring was
used under a context situation. Otherwise, higher minimum confi-
dence values can cause the loss of important rules. These hypothesis
were confirmed after running an experiment in which the database
of aspect refactorings was generated. The generation was based
on small examples, taken from our own experience, in which all
the aspect refactorings supported by AspectRT were applied. These
examples belong to candidate aspects of the concerns Command,
Undo, Observer, Persistence, and Composite (Marin et al., 2007)
of the application JHotDraw.7 Specifically, nearly 50 aspect refac-
torings were applied. While the number of times in which each
refactoring was applied was not the same, the examples were
selected in order to ensure that each aspect refactoring supported
by AspectRT was applied on at least one occasion. Fig. 7 presents the
variation of rules that were generated with different values of sup-
port and confidence. As can be seen, rules are only generated for low
values of support. Also, we found, by comparing the results of run-
ning Apriori with different configuration values, that the number of
rules generated for high numbers of confidence is not significantly
lower than the number of rules generated for low values. After the
analysis of the variations shown in Fig. 7, and taking into account
our previous considerations, we found that an appropriate value for
minsup is 0.1 and for minconf is 0.9. As was said, the main consider-
ation to select these values is the fact that we need to generate rules
that take into account all the aspect refactorings implemented in
the tool (although some are applied more frequently than others)
at the same time that we ensure that the context situation contem-
plated in the rule is one of the usual context in which the refactoring
is applied.

With regard to the values of the k and ̨ parameters that are used
in the ONISI algorithm, we determine them by adopting the fol-
lowing considerations. We use a 0.7 ≤ ̨ ≤ 0.9 in order to give more

7 http://www.jhotdraw.org, version 5.4b1.

Author's personal copy

S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497 1489

Fig. 7. Rules generated with support and confidence variation.

importance to the match length measure normalized rather than
the frequency measure normalized. The next scenario will help to
explain this decision. When the model is in the state “Candidate
aspect view” the selection of an aspect refactoring is expected. So,
in a situation like this, it is not important how many times a deter-
mined refactoring in this state was selected (which is measured by
the frequency measure); however, it is important the frequency
that an aspect refactoring was selected after the selection of a
language element (which is measured by the match length mea-
sure). With respect to the k parameter, Gorniak and Poole (2000)
claim that low values show the same performance as high val-
ues. Therefore we propose a 3 ≤ k ≤ 5 value in order to make faster
calculations.

6. Case study

In this section we conduct a case study in which the system
Java Pet Store Demo8 is refactored. This system is a J2EE demo
application built with the goal of demonstrating the J2EE platform
capabilities (especially, EJB technology). Also, it illustrates the use
of good design practices such as the use of design patterns (Gamma
et al., 1995).

In this case study, 4 crosscutting concerns found in Java Pet Store
Demo are refactored: Exception Wrapping and Business Delegate,
Service Locator, Serializable Interfaces, and Precondition Checking.
These are the same crosscutting concerns that have been iden-
tified by other works in the field of aspect mining (Marin et al.,
2007; Mesbah and van Deursen, 2005). For this reason, we use these
candidate aspects’ information as an entry to the process.

In order to generate the association rules that capture a sig-
nificant number of aspect refactoring, the Apriori algorithm was
run with minsup = 0.1 and minconf = 0.9. A small minimum support
value is needed to contemplate all the possible aspect refactorings
while the minimum confidence value should be high since it indi-
cates the probability that a refactoring was used under a context
situation. In addition, the ONISI algorithm was configured with k = 4
to consider four pattern matches (i.e. the algorithm will look for the
4 longest sequences in the recorded history that match the imme-
diate history) and ̨ = 0.8 to give more importance to the match
length measure.

8 http://java.sun.com/blueprints/code/jps132/docs/index.html, version 1.3.2.

For the purpose of training the tool, smalls examples, taken
from our own experiences and other’s experiences (Laddad, 2003b;
Gradecki and Lesiecki, 2003; Colyer et al., 2004),were refactored
before starting the refactoring of the system Pet Store. This train-
ing allows the tool to generate a database of aspect refactorings
to be used in the Apriori algorithm. Specifically, during the training
16 aspect refactorings were applied in different situations (i.e. each
refactoring was applied in more than one occasion). These appli-
cations generated more than 700 database transactions and more
than 1500 rules when the Apriori algorithm was run. In contrast
with the association rules approach, no training of the ONISI algo-
rithm was conducted. Moreover, the observed history database was
reset before starting the case study. This was accomplished in order
to show how the ONISI algorithm learns the developer behavior
during the refactoring.

To start the refactoring process, the XML that contains the can-
didate aspects is loaded in the tool showing all the aspectizable
language elements in the candidate aspects view (Fig. 8). Then, the
tool selects the first language element from the list and the process
of refactoring begins.

In the following sections the refactoring process of the 4 CCCs is
described.

6.1. Exception Wrapping and Business Delegate

This crosscutting concern affects the exception handling of 41
classes in Pet Store. Specifically, when an exception is thrown it
is caught and a new exception of a different type is rethrown. For
this reason, the language elements of this CCC are try/catch blocks.
There are almost 80 language elements pertaining to 31 candidate
aspects.

The first language element of this concern links to the construc-
tor method of the AdminRequestBD class. The language element is
a try statement whose catch clauses throw an exception of type
AdminRequestBD (Fig. 9). This exception handling should be encap-
sulated into an aspect, improving the separation from the primary
base code (i.e. the code inside the try clause).

When the language element is analyzed, the aspect refactoring
proposition button (Fig. 8) should be clicked. In this case, the aspect
refactoring Extract Fragment into Advice (Monteiro et al., 2004) is
proposed and applied by the tool creating a new aspect called
AdminRequestBDException with a suitable pointcut and advice.
Extract Fragment into Advice is proposed because it has as a goal

Author's personal copy

1490 S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497

Fig. 8. Candidate aspect view.

the encapsulation of a fragment of aspectizable code into an aspect
creating a new advice and a pointcut.

However, this restructuration is not sufficient to properly
encapsulate the CCC. Therefore, additional restructurings must be
applied. These are proposed by the process by means of the sugges-
tion label shown at the top of Fig. 8. As expected, the first time that
the additional restructurings should be proposed, they are not iden-
tified because the algorithm has not learned similar cases yet. This
is because the training, previous to the refactoring of the system,
did not contain cases similar to this. The additional restructurings
to encapsulate this language element are:

1. add a SoftException to the advice in order to wrap a caught excep-
tion.

2. create a suitable declare Soft for each catch clause.
3. delete the try/catch block from the class.

The second of these additional restructurings varies depending on
the number of catch clauses related to the try statement. In the first
case 3 declare Soft statements are created. Also, in the first case, the
refactoring is accomplished manually by the developer and all the
information related to the changes is saved by the tool in order

to be used in similar cases in the future. The aspect that results
from applying these restructuration to the first language element
is shown in Fig. 10. As in the case of the refactored class, the try
catch block is removed.

Having finished the encapsulation, the process proposes this
candidate aspect’s next statement to be refactored. Once all the
candidate aspects are refactored, a language element of the next
candidate aspect is proposed. The remainder of the language ele-
ments are encapsulated in a similar fashion (i.e. applying the Extract
Fragment into Advice refactoring and similar additional restructur-
ings). With regard to the proposition of additional restructurings
to a refactoring, these are proposed by the process from the
refactoring of the second language element of the first refactored
candidate aspect. When the process recognizes these restruc-
turings in subsequent refactorings, they are proposed in the
suggestion label as “Add a SoftException to the aspect”, “Add a
declare soft to the aspect” and, “Delete the try/catch block in
the class”. The percentage of activities successfully proposed by
the process increases as the algorithm learns the restructurings
implemented by the developer. For example, in the first cases
some activities were not properly proposed because they did not
appear in the first place on the ONISI ranking. That is because the

Fig. 9. Exception Wrapping and Business Delegate concern.

Author's personal copy

S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497 1491

Fig. 10. Exception Wrapping and Business Delegate aspect.

observed history did not have enough support of similar cases
and because of the small variations between the language ele-
ments.

6.2. Service Locator

This crosscutting concern is a J2EE pattern that is used to central-
ize the getting of services (Gamma et al., 1995). This is a special case
of a CCC in Java Pet Store Demo because it is unique. That is, there is
only one occurrence of the CCC that was indicated as aspectizable
by aspect mining.

The candidate aspect is spread on a field and a method of the
ServiceLocator class. As is mentioned by Marin et al. (2007), the
main problem of this concern is the number of external methods
that call to the service locator (namely, 30 calls). Moreover, the
inversion of control pattern is usually used in J2EE applications to
avoid the direct calls (Fowler, 2004). For this reason, its encapsula-
tion into an aspect is a possible solution. To begin the refactoring,
the field and the method language elements were encapsulated
using the aspect refactorings Move Field from Class to Inter-type and
Move Method from Class to Inter-type (both were properly proposed
by the process). Then, some additional restructurings were neces-
sary. These restructurings are performed manually because the tool
did not have a registered history related to this kind of additional
restructuration.

6.3. Serializable Interfaces

This crosscutting concern represents the serializable role that
a class plays when it implements the Serializable interface. The
CCC is spread across 31 classes. It was represented as a single can-
didate aspect that contains all the references to the implements
declarations. In order to obtain clear classes, the implements dec-
larations should be encapsulated into an aspect as a declare parents
statement.

The refactoring begins when the process proposes the first
implement declaration of the list to be encapsulated. Afterwards,
the application of the aspect refactoring Encapsulate Implements
with Declare Parents (Monteiro et al., 2004, 2005) is proposed.
Once the language element is encapsulated, there is no need for
additional restructurings. So, the process recommends the encap-
sulation of the next implements declaration of the candidate aspect.

The process of refactoring this CCC continues in a similar fashion
until all the language elements of the candidate aspect are encap-
sulated. Then, the encapsulation of a language element of the next
concern is proposed.

6.4. Precondition Checking

The Precondition Checking concern is spread in 9 methods
called fromDOM(Node). These methods are implemented in differ-
ent classes. As is shown in Fig. 11, in order to return an instance
of the class that contains the method, the structure of the Node is
checked. If the structure is not as expected, an exception is thrown.
Therefore, this mechanism of checking a precondition and throwing
an exception should be encapsulated into an aspect.

Each candidate aspect is composed of the statement that con-
tains the throw clause. In order to start the refactoring of this CCC
the process suggests the selection of one of the throw statements to
be encapsulated. In the case presented in Fig. 11, after the selection
of the throw statement, the aspect refactoring Extract Fragment into
Advice is proposed and applied by encapsulating the throw clause
into a new aspect called AddressPrecondition. Then, some additional
restructurings are necessary to properly verify the checking condi-
tion. Six additional restructurings to achieve this refactoring are
applied:

1. restructure the Element variable declaration in fromDOM(Node)
method;

2. apply the OO refactoring Extract Method to the if clause creating
a new method called isPreChecked(Node);

3. move this new method to the aspect;
4. change the advice in order to throw the exception only when the

check is false;
5. delete all the calls to isPreChecked in the fromDOM method;
6. delete the isPreChecked method.

The aspect that results after applying this restructuring is shown
in Fig. 12 (developer interaction was needed to simplify the final
structure of the aspect). After encapsulating the concern, the state-
ment of the next candidate aspect is proposed by the process to be
encapsulated.

Author's personal copy

1492 S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497

Fig. 11. Precondition Checking concern.

Table 2
Efficacy in process automation.

Assistance efficacy % of Language elements

Automatically refactored 70
Fail in one or more

recommendations
30 (Unsuccessful Java element
identification 1%, Unsuccessful additional
restructuring recommendation 24%,
Unsuccessful identification and
recommendation 5%)

7. Discussion

In this case study, 140 language elements pertaining to 51
candidate aspects of 4 CCC were refactored and encapsulated in
aspects. As shown in Table 2, of these language elements, 70% were
automatically refactored, by this we mean that the language ele-
ment to be encapsulated, the aspect refactoring, and additional
restructurings were identified and proposed correctly for each lan-
guage element. The majority of the remaining 30% failed in the
recommendation of one or more additional restructuring for a lan-
guage element (24%). Others failed during the identification of the
aspectizable code to be encapsulated (1%), or during both identifi-
cation and recommendation (5%). As it is shown, failures were not
observed during the recommendation of an aspect refactoring for

Table 3
Distribution of aspect refactorings applied.

Aspect refactoring % of application

Extract fragment into advice 76
Encapsulated implements with declared parents 22
Move field from class to inter-type 1
Move method from class to inter-type 1

a language element. These results are discussed in the following
sections.

7.1. Evaluation of the use of association rules

During the Java Pet Store Demo refactoring 140 aspect refactor-
ings were proposed and applied (one for each language element).
All the aspect refactorings were properly identified by the process
allowing the automatic application of them. However, in 77% of the
cases, after applying an aspect refactoring, the application of some
additional restructurings was necessary.

The good performance of the algorithm based on rules is due
to the fact that the algorithm relied on a comprehensive database
of aspect refactoring and also because, throughout the refactor-
ing of the language elements, no atypical cases were found. With
the objective of refactoring the CCCs 4 aspect refactorings were
used (Table 3), which resulted in no major difficulties during the

Fig. 12. Precondition Checking aspect.

Author's personal copy

S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497 1493

proposition of the aspect refactorings. For example, in most of
the cases where a method must be encapsulated, a simple aspect
refactoring, such as Move Method from Class to Inter-type, should
be applied. In contrast, if the method to be encapsulated is a
constructor method, a more specific aspect refactoring such as Par-
tition Constructor Signature (Monteiro et al., 2004, 2005) should be
applied. That is to say, the aspect refactoring can not be properly
identified when there is no minimum support or confidence to
generate a rule where a specific aspect refactoring is applied in a
determined context. However, these cases are those which appear
to a lesser extent.

7.2. Evaluation of the use of Markov models

The process properly identified 93% of the language elements
to be encapsulated during the refactoring of the system. It was
observed that most errors related to identification occurred when
the encapsulation of a crosscutting concern was completed and
then the process continued into the next CCC without recogniz-
ing the different structure of that concern. This is because ONISI
bases its predictions of the next action on the latest actions for a
specific state (by this we mean that the predictive accuracy of the
algorithm improves after refactoring the first language element of
a candidate aspect). That is why when the first candidate aspect
of a CCC is refactored there is a period during which the algo-
rithm learns the order in which the language elements must be
encapsulated. For the same reason, the effectiveness of the iden-
tification could be reduced if the language elements that compose
the candidate aspects of a CCC are very dissimilar or the developer
switches between the refactoring of the elements of different CCCs.
However, the use of a Markovian algorithm with these character-
istics is also an advantage because it facilitates the fast adaptation
to new situations. For this reason, we can think of the Markovian
algorithm as an algorithm that it is always under training. While
only one example of the structure of a candidate aspect has to be
refactorized to be taken into account by the algorithm, the whole
history of refactorings needs to be registered to run the algorithm.
In this way, the algorithm recognizes new cases rapidly. However,
the number of candidate aspects that a developer needs to refac-
torize before the algorithm successfully suggests solutions depends
on each CCC.

Additionally, during the refactoring of the system, 320 addi-
tional restructurings were applied. In total, 81% of these were
properly recommended by the process. In this case, problems in
the recommendation were found when there were too many vari-
ations in the encapsulation of the language elements of candidate
aspect. For example, during the refactoring of the Exception Wrap-
ping and Business Delegate concern, the major variations were due
to the number of catch clauses for a try statement. However, as
shown in Fig. 13, variations tend to decrease as the process has more
recorded history with reference to the concern encapsulation. In
this figure the effectiveness in identifying additional restructurings
for each candidate aspect of the Exception Wrapping and Business
Delegate concern is shown. The effectiveness for a candidate aspect
is calculated as∑

additional activities successfully proposed∑
additional activities required

where the sums run over all the language elements of the candidate
aspect. As it is shown, the percentage of effectiveness in the identi-
fication of candidate aspects that contain too many variations was
increasing during the course of refactoring. The drops in the curve
are additional restructurings that were not properly recommended
by the process because of variations in the structure of the language
elements under refactoring.

Fig. 13. Recommendation effectiveness of additional restructuring for the Exception
concern.

Finally, an interesting remark to be taken into account in future
works is the analysis of how the suggestions made through the
Markovian algorithm depends on an specific application. That is,
it is necessary to analyze how frequently the structures of candi-
date aspects and additional restructurings are detected, in different
applications. This kind of analysis would allow us to identify if the
database of observed history should be preserved after refactoring
an application or, conversely, it should be reset for each applica-
tion. Our work in the field indicates that the patterns detected are
valid for different applications, especially if they present similar
concerns. However, we think that a deeper analysis is needed.

7.3. Resulting code analysis

In order to show that the refactoring applied by means of the
automatic algorithm increases the modularity of the source code,
some metrics were collected. Significant improvements were iden-
tified in inheritance, coupling, and size in regard to the classes
related to the refactored CCCs. Table 4 shows the measures obtained
for the CCCs:

• Coupling Between Objects (CBO) The CBO metric quantitatively
measures the coupling between classes (Chidamber and Kemerer,
1994). The more independent a class is, the easier reuse it
becomes. So, a low value of CBO improves the modularity and
the encapsulation of the system. To take into account the aspects
we use an extension of this metric called Coupling between Com-
ponents (CBC) (Garcia et al., 2005). In this case, as it is shown in
Table 4, this value in the aspect-oriented system was reduced on
average by 5.29% in regard to the object-oriented one (the val-
ues shown in the table are the percentage of change between the
OO system and the AO one after summing of the values of the
metric for each of the classes involved). That means that some
couplings between components have been removed increasing
the independence of classes and improving the reuse.

• Data Abstraction Coupling (DAC) The DAC measures the cou-
pling caused by the abstract data types defined in a class (Li and
Henry, 1993). Low values of DAC indicate better reuse. In the case
of this CCC the AO refactored system reduced the values of DAC by

Table 4
Algo.

Concern CBO DAC DIT MPC LOC

Exception Wrapping −7.55% −7.59% 0% −25.34% −2.37%
Service Locator −2.17 −2.22 0% −8.16% −1.84%
Serializable Interfaces −3.20% −3.17% −15.16% −0.15% 1.15%
Precondition Checking −8.26% −8.23% 0% −26.55% −2.85%

Average −5.29% −5.3% −3.79% −15.05% −1.48%

Author's personal copy

1494 S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497

5.3% on average. This reduction is greater in Exception Wrapping
and Precondition Checking due to the encapsulation of the excep-
tions (whose declarations are abstract data type) in aspects. Like
the previous metric this result indicates an improving in the reuse
of classes.

• Depth of Inheritance Tree (DIT) The DIT measures the number
of super classes that can affect a class (Chidamber and Kemerer,
1994). The higher the value of DIT is, the greater the reuse
of inherited methods it is. In this case, the value of DIT was
unchanged in three of the CCCs because the encapsulation of
these concerns is not directly related to inheritance. However,
significant improvements were found in Serializable Interfaces
with an improvement of 15.16%.

• Message Passing Coupling (MPC) The MPC measures the
dependency of the method of a given class to a method imple-
mented in other classes by means of its calls (Li and Henry, 1993).
Low values of MPC imply more modularity. The aspect-oriented
implementation of the CCCs Exception Wrapping and Precondition
Checking reduced by more than 25% the value of MPC regarding
the object-oriented implementation increasing the modulariza-
tion of the system and as consequence improving the reuse and
evolution. The change of the value of Serializable Interfaces is slight
because its refactoring is focused on interface declaration rather
than methods.

• Lines of Code (LOC) This metric counts the lines of code of
a software entity (The aspects were taken into account during
the calculation). In this case, the aspect-oriented system needed
fewer operations than the object-oriented one (including the size
of pointcut and advice declarations). In this way the LOC value
was reduced on average by 1.48% as a result of the refactoring.
Contrary to what might be expected, we have not found an impor-
tant reduction in the number of lines of code. This is because, for
example, in the Serializables Interfaces concern the LOC needed
to create an aspect with the declare parents statements is larger
than the LOC removed from the classes.

8. Experiment with users

Scoping. With the goal of evaluating if our approach helps deve-
lopers to achieve the task of refactoring an OO system into an
AO one, we conducted an experiment with undergraduate stu-
dents. Specifically, we wanted to analyze if the refactoring time
is reduced when AspectRT is used, compared with the refactor-
ing without assistance. Experiment planning. We performed the
experiment in the context of a university course of aspect-oriented
software development. For this reason, the experiment is run off-
line. The undergraduate students are in their fourth and fifth year
at the university. All of the students had previous experience with
Java and OOP. Also, all of them had attended course classes, a tuto-
rial on AspectJ and two laboratory classes where they practiced
how to implement aspects. Additionally, they attended a tutorial of
AspectRT in which how to use it was explained. For these reasons,
it is possible to assume that their experience in AOP is, in general,
the same. The research question that we have to answer is: Will a
developer accelerate the refactoring of CCCs of a system by using
AspectRT? In consequence, the null hypothesis of the experiment
is:

• H0: students that use AspectRT will spend on average the same
time in refactoring CCCs as those students without assistance
from AspectRT.

while the alternative hypothesis is:

Table 5
Time expended in refactoring.

Using AspectRT Without assistance

102 m 117 m
95 m 107 m
87 m 112 m

Average 94.6 m 112 m
Std. Dev. 6.13 m 4.08 m
Variance 37.5 m 16.6 m

Table 6
Results from the Wilcoxon-test.

Factor n T+ T−

Time using AspectRT vs. without assistance 3 0 6

• H1: students that use AspectRT will refactor CCCs faster than
those students without assistance from AspectRT.

Experiment operation. The students were divided randomly into
six groups of three people (this division was motivated by the num-
ber of available PCs in the laboratory at the time the experiment
was run). Then the task of refactoring the Command Concern (Marin
et al., 2007) of JHotDraw9 was assigned to each group. We randomly
defined the 3 groups that would fulfill this task using AspectRT. The
remaining 3 groups accomplished the refactoring without tool.

The Command Concern refers to a common operation, in this case
called execute(), that is implemented in the class AbstractCommand
which is invoked by several clients. All the clients are the subclasses
of the class AbstractCommand that make the call super.execute() at
the beginning of the overwritten method execute(). In total, 17 calls
exist to super.execute() that should be refactored. As proposed by
Marin et al. (2007), in order to encapsulate the CCC, the calls to
super.execute() should be encapsulated into an aspect to avoid the
scattered code. Additionally, since AspectJ does not support the
’super’ calls, the code of the method AbstractCommand.execute()
should be moved to the aspect.

The experiment lasted 3 h: During the first 30 min we explained
the CCC to be refactored. Then, the students were given up to
2 h to complete the refactoring. The groups that used AspectRT
received an XML file with the crosscutting concerns to be refac-
tored. Those groups that accomplished the refactoring without
assistance received the same information in a TXT file.

Analysis and interpretation. During the experiment, we measured
the time each group spent to accomplish the refactoring (Table 5).
Those groups that used the tool spent, on average, 17 min less than
those groups that did not use it.

In order to prove the existence of any statistically significant
difference in the total time spent on refactoring we used the
Wilcoxon-test (Wohlin et al., 2000). From Table 6, the null hypoth-
esis (H0) can be rejected with a one tailed test with a probability
of error (or significance level) ̨ = 0.05 (i.e. there is a 5% chance
of wrongly rejecting H0) and a p-value of 0.05. Since W = min(T+,
T−) = 0 the effect size (Arcuri and Briand, 2011) is 0.

After a manual inspection of the refactored code, we found that
two of the groups that refactored the concern without assistance
partially encapsulated the concern. Specifically, they omitted to
refactor 2 and 3 of the calls to the execute method respectively.

At the end of the experiment all participants who made the
refactoring using AspectRT filled in a survey about the tool and the
refactoring experience. The survey results are shown in Table 7.
While this experiment is not completely comprehensive, it shows
that the participants found the tool easy to use, and that they found

9 http://www.jhotdraw.org, version 5.4b1.

Author's personal copy

S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497 1495

Table 7
Results of the survey.

Statement Strongly disagree Disagree Neither Agree Strongly agree

AspectRT is easy to use 1 2 6
The suggestions of fragments of code are useful 2 3 4
The suggestions of aspect refactorings are useful 2 7
The suggestions of additional restructuring are useful 2 5 2

the tool helpful to refactor a crosscutting concern. Specifically, we
found that 66.6% of the participants strongly agree that AspectRT
is easy to use. Also, 77.7% of them agree or strongly agree that the
suggestion of fragments of code are useful. The same percentage
strongly agree that the suggestions of aspect refactorings are useful.
Finally, while a 55.5% of the participants agree that the suggestions
of additional restructurings are useful only a 22.2% strongly agree.
We think that this is because very few opportunities to make this
kind of suggestions occurred during the experiment.

9. Threats to validity

Conclusion validity. While we have used a well known statisti-
cal technique a threat to conclusion validity is the low number of
subjects in the experiment with users. This may reduce statistical
power of the technique used to reveal patterns in the data. The
same is true for the case study presented in Section 6 since only
one system was refactored.

Internal validity. The main threat to internal validity in the exper-
iment with users is the selection of subjects. That is, the selection of
the subjects was not random because they were selected from the
students that were attending a course. Additionally, other threat is
that the refactoring was accomplished by groups instead of inde-
pendently. However, since all the groups had the same number of
members and their background knowledge is, in general, the same,
we think that the results are still valid. A similar problem occurs to
the threats to internal validity of the case study. For instance, the
structural variability between the candidate aspects of a CCC could
not be representative enough for the generalization of the results
to any OO system. While the refactored concerns present simi-
lar structures for the candidate aspects, further experimentation
is required.

Construct validity. A threat to construct validity of the experi-
ment with users is hypothesis guessing. That is, while the students
did not know which hypotheses were stated, they may intend to
guess what was the result of the experiment. Regarding the case
study, the main threat to construct is that the study was conducted
with a single system which may under-represent the construct.

External validity. Since the case studies have been performed
employing one project and a CCC, the external validity of the anal-
ysis is compromised. That is, the generalization of the results is
limited and further empirical results are needed to strengthen the
observations. Additionally, while the subjects of the experiment
were advanced students, the applicability of the results to the soft-
ware industry could be reduced since they were not developers.

10. Related work

The refactoring of OO systems by means of aspect refactorings
has been discussed in several papers. Some of these works have
focused their effort on the description of specific refactorings for
aspect orientation or the adaptation of existing OO refactorings to
AOP (Hanenberg et al., 2003; Iwamoto and Zhao, 2003; Laddad,
2002; Monteiro et al., 2004; Malta and de Oliveira Valente, 2009).
This group of refactorings fulfills the activities needed to migrate an
object-oriented system to an aspect-oriented one: the encapsula-
tion of a CCC into an aspect (Refactorings of CCCs), the improvement
of the internal structure of aspects (Refactorings to AOP constructs),

and the use of traditional OO refactorings which ensures the correct
update of the references to the AOP constructions (Aspect-Aware
OO refactorings) (Hannemann, 2006). Taking into account the defi-
nition of the aspect refactorings, approaches of different granularity
were presented in order to refactor and migrate OO systems to AO
ones.

Low granularity This kind of approaches are based on pro-
graming languages elements. That is to say, the refactoring is
oriented to encapsulate a CCC into an aspect focusing on the lan-
guage elements where the CCC is spread. For this reason, low
granularity approaches are usually independent of the aspect min-
ing technique used. Our approach is of this type.

At this granularity level, Ceccato and Tonella (Ceccato, 2008;
Tonella and Ceccato, 2005) present an approach restricted to
refactoring scattered methods declared by interfaces (called aspec-
tizable interfaces) and to encapsulating portions of code by means
of pointcuts. Similarly to our work, this work uses a small set of
aspect refactoring to perform the restructuring. While these refac-
torings can be applied automatically, this work does not present
an automatic identification method for them. Binkley et al. (2005)
present a semiautomatic iterative process which has 4 steps. First,
given a fragment of aspectizable code, an OO refactoring is selected
to be applied to it in order to enable the application of an aspect
refactorings. Second, the OO refactoring is applied. Third, a suitable
aspect refactoring is selected. In contrast to our approach, this task
is carried out with a prioritization scheme that helps the devel-
oper in the refactoring selection. Finally, the aspect refactoring is
applied.

van Deursen et al. (2005) propose a manual refactoring and
testing strategy which aims to guide the developer during the
migration. Hannemann et al. (2003) present two refactoring
approaches that are based on a dialog with the developer. Similar to
our work, one approach is based on the description of a crosscutting
concern in the code. The other approach tries to refactor GoF design
patterns (Gamma et al., 1995) focusing on the components of the
pattern. The main difference between these approaches and ours
is that our approach helps the developer by making suggestions
during the refactoring.

High granularity This kind of approach tries to encapsulate
into an aspect an architectural pattern that represents a CCC. That
is, these approaches are focused on the refactoring of a specific
type of concern. Generally, the high granularity processes comprise
an aspect mining process which identifies the whole pattern and
an aspect refactoring process which encapsulates the pattern into
an aspect applying a set of refactorings. Consequently, this kind of
refactoring is closely tied to the way that patterns are identified.

At this granularity level, Hannemann et al. (2005) present a
role-based refactoring approach. Toward this goal, the CCCs are
described using abstract roles. In the refactoring process, the devel-
oper chooses an appropriate refactoring for a role and then a
mapping is done between the abstract CCC description and the
program elements. Later, the refactoring is planned and exe-
cuted. Marin et al. (2005) describe a process whereby the CCCs
are described as types. Later, the described types are manually
refactored using different kinds of aspect refactorings. da Silva
et al. (2009) present an approach of metaphor-driven heuristics
and associated refactorings. The refactoring of the code proposed
is applicable on two concerns metaphors. These metaphors are

Author's personal copy

1496 S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497

recurrent code patterns that allow the identification of crosscutting
concerns. During the identification and refactoring of the concern
a developer interaction is needed. van der Rijst et al. (van der Rijst
et al., 2008; Marin et al., 2009) propose a migration strategy based
on crosscutting concern sorts. Once the CCC are described by means
of concern sorts, they are refactored through interaction with the
developer. In order to refactor the code, specific sorts that indicate
what refactorings should be applied are used. Unlike our approach,
these approaches propose refactoring strategies to specific cases of
CCCs, while our approach can refactor any kind of concern.

We think that the aspect mining outputs of this kind of granular-
ity can be easily adapted to be used in low granularity approaches.

Other works have also explored the automation of the refactor-
ing process through machine learning. Cordy et al. (2002) propose
the use of the TXL language to accomplish different code restructur-
ings by means of a rule-based approach. Baxter et al. (2004) present
an approach based on the theory of change to perform large-scale
code transformations. This work was implemented as a commer-
cial tool to assist developers in system maintenance. Tokuda and
Batory (2001) analyze the automation of refactorings in three kinds
of design evolution. The automation is based on checking condi-
tions to apply a refactoring and the preservation of the behavior of
the code. Weimer et al. (2009) present a technique to find and repair
bugs in legacy applications. This technique uses a genetic program-
ing algorithm to automate the analysis of possible solutions for a
bug. Zibran and Roy (2011) propose the automation of code clone
refactoring by analyzing the dependencies and conflicts among the
refactorings that should be applied. For this analysis, this work uses
a constraint programing approach.

11. Conclusions

The migration of OO systems into AO ones improves the sep-
aration of concerns thereby increasing the evolution, adaptation,
and maintenance capabilities of systems. However, this is a diffi-
cult and time-consuming task that requires a lot of knowledge on
the part of the developer. In this paper the assistance for a refac-
toring process that encapsulates CCCs into aspects is proposed. The
assistance is based on the use of artificial intelligence techniques
which are used to capture the user’s behavior when he/she is refac-
toring a system so that this knowledge can be used later in similar
situations. Specifically, association rules were used to determine a
suitable aspect refactoring for a fragment of aspectizable code. In
addition, Markov models were employed to identify the fragments
of code to be migrated and to recommend additional restructurings
when the application of an aspect refactoring is not sufficient.

In order to prove the benefits of the approach, the Java Pet
Store Demo system was refactored. It was observed that much
of the refactoring process was properly assisted. For this reason,
developer interventions during the refactoring were significantly
reduced. The algorithms based on association rules and Markov
performed well. However, in regard to the latter, some errors
were identified in the recommendation of additional restructurings
when the language elements that compose the candidate aspects
of a CCC differed greatly.

While the approach helps the developer during the selection of
the aspectizable code to be encapsulated and the selection of the
aspects refactorings to be used, the interaction with the developer is
necessary during the refactoring process. For example, even though
the approach can propose additional restructurings after applying
an aspect refactoring, the developer must determine if the applica-
tion of the aspect refactoring was sufficient to encapsulate the CCC
under analysis.

In future work, we will conduct other case studies with the
goal of generalizing our results of the refactoring of systems. We

also plan to focus on other steps of the entire refactoring process
(Vidal et al., 2009; Vidal and Marcos, 2009b) which involves the
application of Aspect-Aware OO refactorings and refactorings to
AOP constructs. Finally, we hope to analyze strategies for mapping
between the output of high granularity aspect mining techniques
and the input of our approach.

Acknowledgment

We would like to thank Alexandre Bergel for his helpful com-
ments and suggestions.

References

Abait, E.S., Vidal, S.A., Marcos, C.A., Casas, S.I., Osiris Sofia, A.A., 2010]. Quality and
communicability for interactive hypermedia systems: concepts and practices
for design. In: IGI Global, Ch. An Integrated Process for Aspect Mining and Refac-
toring, pp. 175–193.

Agrawal, R., Srikant, R., 1994]. Fast algorithms for mining association rules. In: Proc.
20th Int. Conf. Very Large Data Bases, VLDB, Morgan Kaufmann, pp. 487–499.

Arcuri, A., Briand, L.C., 2011]. A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In: Taylor, R.N., Gall, H., Med-
vidovic, N. (Eds.), ICSE. ACM, pp. 1–10.

Baxter, I.D., Pidgeon, C., Mehlich, M.,2004]. Dms®: program transforma-
tions for practical scalable software evolution. In: Proceedings of the 26th
International Conference on Software Engineering. ICSE ‘04. IEEE Com-
puter Society, Washington, DC, USA, pp. 625–634 http://portal.acm.org/
citation.cfm%253Fid=998675.999466

Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P.,2005]. Automated refactor-
ing of object oriented code into aspects. In: ICSM ‘05: Proceedings of the 21st
IEEE International Conference on Software Maintenance. IEEE Computer Society,
Washington, DC, USA, pp. 27–36.

Ceccato, M.,2008]. Automatic support for the migration towards aspects. In: CSMR
‘08: Proceedings of the 2008 12th European Conference on Software Mainte-
nance and Reengineering. IEEE Computer Society, Washington, DC, USA, pp.
298–301.

Chidamber, S.R., Kemerer, C.F., 1994]. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20 (June (6)), 476–493.

Colyer, A., Clement, A., Harley, G., Webster, M., 2004]. Eclipse AspectJ: Aspect-
oriented Programming with AspectJ and the Eclipse AspectJ Development Tools.
Addison-Wesley Professional.

Cordy, J.R., Dean, T.R., Malton, A.J., Schneider, K.A., 2002]. Source transformation
in software engineering using the TXL transformation system. Information and
Software Technology 44 (13), 827–837.

da Silva, B.C., Figueiredo, E., Garcia, A., Nunes, D., 2009]. Refactoring of crosscut-
ting concerns with metaphor-based heuristics. Electronic Notes in Theoretical
Computer Science 233, 105–125.

Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G., Nagappan, N., Aho,
A., 2008]. Do crosscutting concerns cause defects? IEEE Transactions on Software
Engineering 34 (July–August (4)), 497–515.

Ferrari, F., Burrows, R., Lemos, O., Garcia, A., Figueiredo, E., Cacho, N., Lopes, F.,
Temudo, N., Silva, L., Soares, S., Rashid, A., Masiero, P., Batista, T., Maldonado,
J.,2010]. An exploratory study of fault-proneness in evolving aspect-oriented
programs. In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, vol. 1. ICSE ‘10. ACM, New York, NY, USA, pp. 65–74,
http://dx.doi.org/10.1145/1806799.1806813.

Fowler, M., 1999]. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Fowler, M., 2001. Inversion of Control Containers and the Dependency Injection
Pattern. http://www.martinfowler.com/articles/injection.html

Gamma, E., Helm, R., Johnson, R.E., 1995]. Design Patterns. Elements of Reusable
Object-Oriented Software, 1st ed. Addison-Wesley Longman, Amsterdam.

Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.,2005].
Modularizing design patterns with aspects: a quantitative study. In: AOSD ‘05:
Proceedings of the 4th International Conference on Aspect-oriented Software
Development. ACM, New York, NY, USA, pp. 3–14.

Gorniak, P., Poole, D.,2000]. Predicting future user actions by observing unmodified
applications. In: AAAI/IAAI. AAAI Press/The MIT Press, pp. 217–222.

Gradecki, J.D., Lesiecki, N., 2003]. Mastering AspectJ: Aspect-Oriented Programming
in Java. John Wiley & Sons, Inc., New York, NY, USA.

Han, J., Kamber, M., 2000, September. Data Mining: Concepts and Techniques (The
Morgan Kaufmann Series in Data Management Systems), 1st ed. Morgan Kauf-
mann.

Hanenberg, S., Kleinschmager, S., Josupeit-Walter, M.,2009]. Does aspect-
oriented programming increase the development speed for crosscutting
code? An empirical study. In: Proceedings of the 2009 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement.
ESEM ‘09. IEEE Computer Society, Washington, DC, USA, pp. 156–167,
http://dx.doi.org/10.1109/ESEM.2009.5316028.

Hanenberg, S., Oberschulte, C., Unland, R., 2003]. Refactoring of aspect-oriented
software. In: Proc. Int’l Conf. Object-Oriented and Internet-based Technologies,
Concepts, and Applications for a Networked World (Net.ObjectDays), pp. 19–35.

Author's personal copy

S.A. Vidal, C.A. Marcos / The Journal of Systems and Software 86 (2013) 1482– 1497 1497

Hannemann, J., 2006]. Aspect-oriented refactoring: classification and challenges. In:
LATE ‘06.

Hannemann, J., Fritz, T., Murphy, G.C.,2003]. Refactoring to aspects: an interactive
approach. In: Eclipse ‘03: Proceedings of the 2003 OOPSLA Workshop on Eclipse
Technology eXchange. ACM, New York, NY, USA, pp. 74–78.

Hannemann, J., Murphy, G.C., Kiczales, G.,2005]. Role-based refactoring of crosscut-
ting concerns. In: AOSD ‘05: Proceedings of the 4th International Conference on
Aspect-oriented Software Development. ACM, New York, NY, USA, pp. 135–146.

Iwamoto, M., Zhao, J.,2003]. Refactoring aspect-oriented programs. In: The 4th AOSD
Modeling With UML Workshop, UML’2003. ACM, New York, NY, USA.

Kellens, A., Mens, K., Tonella, P., 2007]. A survey of automated code-level aspect
mining techniques. In: Transactions on Aspect-Oriented Software Development
(TAOSD) IV (Special Issue on Software Evolution), pp. 143–162.

Kiczales, G., Lamping, J., Mendheka, A., Maeda, C., Lopes, C.V., Loingtier, J.-M.,
Irwin, J., 1997, June. Aspect-Oriented Programming. In: Gjessing, S., Nygaard,
K. (Eds.), Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP). Lecture Notes in Computer Science, vol. 1241. Springer, Finland.

Laddad, R., 2002]. I Want My AOP: Separate Software Concerns with Aspect-
oriented Programming. http://www.javaworld.com/javaworld/jw-01-2002/
jw-0118-aspect.html

Laddad, R., 2003a]. Aspect-oriented Refactoring. http://www.theserverside.com/
news/1365184/Part-2-The-Techniques-of-the-Trade

Laddad, R., 2003b]. AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning Publications Co., Greenwich, CT, USA.

Li, W., Henry, S., 1993 May. Maintenance metrics for the object-oriented paradigm.
In: Proc. IEEE Symp. Software Metrics, pp. 52–60.

Malta, M.N., de Oliveira Valente, M.T., 2009]. Object-oriented transformations for
extracting aspects. Information and Software Technology 51 (1), 138–149.

Marin, M., Moonen, L., van Deursen, A.,2005]. An approach to aspect refactoring
based on crosscutting concern types. In: MACS ‘05: Proceedings of the 2005
Workshop on Modeling and Analysis of Concerns in Software. ACM, New York,
NY, USA, pp. 1–5.

Marin, M., van Deursen, A., Moonen, L., 2007]. Identifying crosscutting concerns
using fan-in analysis. ACM Transactions on Software Engineering and Method-
ology 17 (1), 1–37.

Marin, M., van Deursen, A., Moonen, L., Rijst, R., 2009]. An integrated crosscutting
concern migration strategy and its semi-automated application to JHotDraw.
Automated Software Engineering 16 (2), 323–356.

Mens, T., Tourwe, T., 2008]. Evolution issues in aspect-oriented programming. In:
Mens, T., Demeyer, S. (Eds.), Software Evolution. Springer, pp. 203–232.

Mesbah, A., van Deursen, A.,2005]. Crosscutting concerns in J2EE applications. In:
WSE ‘05: Proceedings of the Seventh IEEE International Symposium on Web
Site Evolution. IEEE Computer Society, Washington, DC, USA, pp. 14–21.

Monteiro, M.P., Fernandes, Jo, a.M.,2004]. Object-to-aspect refactorings for feature
extraction. In: Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD’2004). ACM Press, p. 2004.

Monteiro, M.P., Fernandes, Jo, A.M.,2005]. Towards a catalog of aspect-oriented
refactorings. In: AOSD ‘05: Proceedings of the 4th International Conference on
Aspect-oriented Software Development. ACM, New York, NY, USA, pp. 111–122.

Parnas, D.L., 1972]. On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15 (12), 1053–1058.

Rabiner, L.R., 1989 Feb. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE 77 (2), 257–286.

Srikant, R., Vu, Q., Agrawal, R.,1997]. Mining association rules with item constraints.
In: Proceedings of the Third International Conference of Knowledge Discovery
and Data Mining. AAAI Press, Menlo Park, CA, pp. 67–73.

Tokuda, L., Batory, D., 2001]. Evolving object-oriented designs with
refactorings. Automated Software Engineering 8 (January), 89–120
http://portal.acm.org/citation.cfm%253Fid=591992.592064

Tonella, P., Ceccato, M., 2005]. Refactoring the aspectizable interfaces: an empirical
assessment. IEEE Transactions on Software Engineering 31 (10), 819–832.

van der Rijst, R., Marin, M., van Deursen, A.,2008]. Sort-based refactoring of crosscut-
ting concerns to aspects. In: LATE ‘08: Proceedings of the 2008 AOSD Workshop
on Linking Aspect Technology and Evolution. ACM, New York, NY, USA,
pp. 1–5.

van Deursen, A., Marin, M., Moonen, L., 2005]. A Systematic Aspect-oriented
Refactoring and Testing Strategy, and its Application to JHotDraw. CoRR
abs/cs/0503015.

Vidal, S., Abait, E.S., Marcos, C., Casas, S., Díaz Pace, J.A.,2009]. Aspect mining meets
rule-based refactoring. In: PLATE ‘09: Proceedings of the 1st Workshop on Link-
ing Aspect Technology and Evolution. ACM, New York, NY, USA, pp. 23–27.

Vidal, S., Marcos, C., 2009a]. Identificacin automtica de refactorings. In: Tenth
Argentine Symposium on Software Engineering (ASSE 2009), 38 JAIIO (Jornadas
Argentinas de Informtica).

Vidal, S., Marcos, C., 2009b]. Un proceso iterativo para la refactorizacin de aspectos.
Revista Avances en Sistemas e Informtica 6 (1), 93–103.

Weimer, W., Nguyen, T., Goues, C.L., Forrest, S.,2009]. Automatically finding patches
using genetic programming. In: ICSE. IEEE, pp. 364–374.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000].
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, Norwell, MA, USA.

Zibran, M.F., Roy, C.K., 2011]. Conflict-aware optimal scheduling of code clone refac-
toring: a constraint programming approach. In: ICPC, pp. 266–269.

Santiago Vidal graduated in system engineer from UNICEN University, Argentina
in 2008. He is a Ph.D. candidate in Computer Science at ISISTAN Research Insti-
tute. Currently is a scholarship holder of the National Council for Scientific and
Technological Research of Argentina (CONICET). His main research interests include
aspect-oriented software development, software evolution and system mainte-
nance.

Claudia Marcos has been a Professor in the School of Computer Science at UNI-
CEN since 1991. From 2000 to 2005 she was co-director of the ISISTAN Research
Institute. She is a CIC (Committee for Scientific Research of the Buenos Aires
province) researcher. Her main research area is in software evolution, aspect-
oriented development, and agile development. She teaches several undergraduate
and postgraduate courses at the UNICEN and has also national and international
publications in the area. She leads several university research projects in Argentina
as well as abroad. At present, Dr. Marcos is advising postgraduate and under-
graduate students. Dr. Marcos received her B.S. degree in 1993 from the UNCPBA
State University in 1993. She obtained her Ph.D. degree in Computer Science
in 2001.

