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Abstract

The determination of quality of the signals obtained by blind source separation is a very important subject for

development and evaluation of such algorithms. When this approach is used as a pre-processing stage for automatic speech

recognition, the quality measure of separation applied for assessment should be related to the recognition rates of the

system. Many measures have been used for quality evaluation, but in general these have been applied without prior

research of their capabilities as quality measures in the context of blind source separation, and often they require

experimentation in unrealistic conditions. Moreover, these measures just try to evaluate the amount of separation, and this

value could not be directly related to recognition rates. Presented in this work is a study of several objective quality

measures evaluated as predictors of recognition rate of a continuous speech recognizer. Correlation between quality

measures and recognition rates is analyzed for a separation algorithm applied to signals recorded in a real room with

different reverberation times and different kinds and levels of noise. A very good correlation between weighted spectral

slope measure and the recognition rate has been verified from the results of this analysis. Furthermore, a good performance

of total relative distortion and cepstral measures for rooms with relatively long reverberation time has been observed.
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1. Introduction

Blind source separation (BSS) of sound sources is
a technique aiming at recover the signals emitted by
some sound sources, from records obtained by
remote sensors, without using any information
about transfer characteristics or geometrical loca-
tion of sources and sensors [1]. BSS is a complex
process because the ambient may change the sound
.
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field due to sensors being remotely located with
respect to sources. As a consequence, the received
signals at sensors are not only mixed, but also
modified in a way that can be assimilated to
processing by a linear time-invariant (LTI) system
[2]. In free field conditions, impulse response from
each source to each sensor would be a delayed
impulse, with the amplitude related to energy decay
of sound, and delay related to transmission time in
the source-sensor path. In a closed environment,
however, sound is reflected in all free surfaces,
returning to sensors from different directions. So
impulse responses have a complex structure, with
many impulses located at different delays, corre-
sponding to echoes arriving from different direc-
tions. This reverberation phenomenon produces
echoes and spectral distortion affecting the spatial
perception of sound [2–4], intelligibility [5,6] and
degrades recognition rates in case of automatic
speech recognition (ASR) systems [7], even if the
system is trained with reverberant signals recorded
in the same room [8].

Quality evaluation of the resulting separated
signals is a complex problem that depends on the
application field. In some cases, the main interest is
not recovering the original signal but preserving
some characteristics that are required for the task
concerned. For example, when retrieval of a voice to
be used in a hearing aid device is desired, perfect
reconstruction of the original waveform is not as
important as a good perceptual quality. In the same
way, for ASR systems, auditory perception is not as
important as preserving some acoustic cues that are
used by the system to perform the recognition. On
the contrary, in other situations the aim is to recover
the original signal as exactly as possible, such as a
waveform coder. So far, few works have been
presented with specific proposals for quality evalua-
tion in the field of BSS. Particularly, in the context
of ASR, the only available way to evaluate the
performance of some BSS algorithm is through a
speech recognition test.

The objective of the present work is to find
objective quality measures that correlates well with
ASR rate, when using BSS as a mean to introduce
robustness into the recognizer. To fulfill this
objective, first some set of potentially good mea-
sures need to be selected. In the next section a brief
review on quality evaluation in the context of BSS
and speech processing will be given. Based on this
review, in Section 3 specific quality measures will be
selected for the evaluation in our experimental
framework. Next, a detailed description of the
experimental design for determining the relation
between speech recognition rates and the obtained
measures results will be given. Results and discus-
sion will be presented in Sections 5 and 6
respectively, followed by conclusions in Section 7.

2. Brief review of quality evaluation

2.1. Quality evaluation for BSS

In the particular case of evaluating BSS algo-
rithms, many different alternatives have been used,
generally derived from other areas of signal proces-
sing. Those methods can be classified into two main
areas: subjective assessment, where some apprecia-
tion is used regarding subjective perceived quality of
resulting sound [9,10], or visual differences between
waveforms of separated signal and original ones
[10–12], or visual differences of spectrograms of
separated signals and original ones [9]; and objective

evaluation, where some numerical quantity directly
associated to separation quality is used, permit-
ting an objective comparison between different
algorithms.

Regarding objective measures that have been
applied to BSS problem, these can be divided into
three kinds:
(1)
 Measures that require knowledge about trans-
mission channels: These measures use informa-
tion about impulse responses between each
sound source and each microphone, or require
knowledge of individual signals arriving at each
microphone. These kinds of measures are hard
to apply to realistic environments as they
depend on factors that may vary from one
experiment to another. Among them, it can be
mentioned: multichannel inter symbol interfer-
ence (MISI) [1]; signal-to-interference ratio
(SIR) [13–15] and distortion—separation [16].
(2)
 Measures that use information about sound
sources: In this case some measures of discre-
pancy between the separated signal and the
original source signal is used. One drawback of
these measures is that, by comparing with
original sources, the algorithms that perform
separation but not reverberation reduction will
yield poorer results as the resulting signal will
be always distorted, even for perfect separa-
tion. Some measures of this kind commonly
used in BSS are total relative distortion (TRD),



ARTICLE IN PRESS

Table 1

Performance of quality measures for different tasks (see full
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proposed in [17,18], and segmental Signal-to-
noise ratio (segSNR) [15,19].
explanation in text)
(3)
Measure jrj DAM WER% rerr

segSNR 0.77 — 4.71

IS — 11.35 0.41

LAR 0.62 — 0.88

LLR 0.59 8.45 —

LR — 8.63 —
Indirect measures: In this case the processed
signal is used as input to another system with
which the result can be evaluated in an objective
way. The most typical example of this is an ASR
system with which evaluation is made on
recognition rate obtained after separation3

[20,21].

WLR — 9.15 —

WSS 0.74 8.45 1.72

CD — 8.88 —

LSD 0.60 — —

Second column: jrj DAM, correlation as predictor of CA-DAM.

Third column: WER%, word error rate in isolated word

recognition. Fourth column: rerr, prediction error as predictor

of recognition rate in robust continuous ASR.
All of these show an important lack of experimenta-
tion in the area of quality evaluation for algorithms
of BSS in realistic environments. Problems for
quality measure proposals came mainly from two
aspects that must be taken into account for a
correct evaluation of such algorithms: reality level

required in experiments, which is necessary for the
results to be directly extrapolated to practical
situations, and task complexity, as for example,
some BSS algorithms search only for separated
signals, while others try to eliminate reverbe-
ration effects too. These aspects also need to be
considered carefully for choosing a suitable kind of
evaluation.

2.2. Quality measures applied to other areas

In applications where the final result will be
listened by humans, the ideal way for quality
assessment is by means of subjective evaluation of
perceptual quality [22]. Many standardized tests
allow the evaluation with subjective measures.
For example, the composite acceptability (CA)
of diagnostic acceptability measure (DAM) [23]
consists of a parametric test where the listener
has to evaluate acceptability of sound based on
16 categories of quality. Other widely used
subjective measure is the mean opinion score
(MOS), a measure where each subject has to
evaluate the perceived quality in a scale of 1–5.
This kind of tests has high cost both in time and
resources.

Several objective quality measures have been
proposed to overcome this drawback [24–26]. In
[27] the correlation between a large number of
objective measures and the subjective measure CA-
DAM is studied, evaluated over several speech
alterations, contamination noises, filters and coding
his case is opposite to the objective of the present work,

re we are not evaluating the separation itself, but its impact

n ASR system.
algorithms. In that work, weighted spectral slope
measure (WSS) was the best predictor of subjective
quality.

In the last years, some objective measures that use
perceptual models have been introduced. The first
widely adopted was perceptual speech quality
measure (PSQM) [28] and more recently, the audio
distance (AD) based on measuring normalizing
blocks (MNB) was proposed [29]. This measure
present a correlation with MOS of more than 0.9 for
a wide variety of coding algorithms and languages
[30].

Regarding ASR, these measures have been used
at two different levels. In template-based isolated
word recognizers, a measure of distance between the
test signal and the stored templates is needed [31].
Several objective measures originally proposed for
speech enhancement or coding have been success-
fully used within this context [32–34]. On the other
hand, the capability of those measures to predict
recognition rate of a robust speech recognizer has
been studied [35].

As a summary of the background available for
our work, Table 1 shows a comparison of results
obtained by various researchers in different tasks.4

First column lists the objective quality measures
used: segmental segSNR, Itakura–Saito distance
(IS), log-area ratio (LAR), log-likelihood ratio or
Itakura distance (LLR), likelihood ratio (LR),
4As the application fields and contexts are different respect to

this work, these results are not directly applicable to our research,

but can give some cues on potentially interesting measures to

evaluate.
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weighted likelihood ratio (WLR), WSS, cepstral
distortion (CD), and log-spectral distortion (LSD)
[24–26,32,36].

The second column presents the absolute value
of correlation coefficient between quality mea-
sures and subjective test CA-DAM [22], evaluated
over a set of speech modified with 322 different
distortions. It should be noted that correlation for
segSNR was calculated using only a subset of 66
distortions produced by waveform coders, for
whom a measure based in waveform similarity has
sense. Excluding this case, a high correlation
between subjective quality level and WSS can be
noted.

The third column presents the percentage of
word error rate (WER%) for an isolated word
recognition system, in which the measures where
applied as selection criteria for classification,
for a set of 39 word of a telephone recording
data base [34]. A good performance for recog-
nizers based on LLR and WSS measures can be
noted.

Finally, the fourth column shows the perfor-
mance of measures as predictors of recognition rate
in a continuous speech recognition system using a
robust set of features, on speech contaminated with
additive noise [35]. The presented value (rerr) is the
mean squared prediction error, averaged over all
sentences in the data base of processed speech. In
this case the best performance is obtained by LAR
and IS measures.
5Detailed equations and parameters used are listed with unified

notation in Appendix A.
3. Selected measures

As mentioned in Section 1, only objective
measures that make use of sound source informa-
tion will be used in this work. This kind of measures
attempt to evaluate some ‘‘distance’’ or ‘‘distortion’’
of separated signal with respect to original signal
and have been selected for three reasons. First, by
using this approach experiments can be performed
with mixtures recorded in real rooms (this gives the
experiment a high level of realism) and there is no
need to know any information about transmission
channels between sources and sensors. Second, as
the sources must be available, the experiments could
be extended to other mixing conditions. Third, as in
general the ASR systems are trained with clean
speech, using a method that permits to compare
algorithm output with the ‘‘ideal’’ clean one is
reasonable.
Based on the analysis presented in Section 2 of
previous works, a set of nine objective quality
measures was selected for this study5:
(1)
 Segmental signal-to-noise ratio (segSNR):
This measure is included because it is widely
used due to its simplicity. Besides this, it has
been used in the context of BSS to evaluate
separation algorithms, as mentioned in Section 2
[22].
(2)
 Itakura–Saito distortion (IS): This measure is
derived from linear prediction (LP) analysis
[37,31]. Its good performance as predictor of
recognition rate for signals with additive noise in
continuous speech recognition systems makes
this measure a good candidate for the present
research.
(3)
 Log-area ratio distortion (LAR): It is also
derived from LP coefficients [22,37]. This
measure has been selected given its good
performance as predictor of recognition rate in
continuous speech recognition systems, as can
be seen in Table 1.
(4)
 Log-likelihood ratio distortion (LLR): This
measure is calculated similarly to IS distortion
[37,32]. Its good performance as a dissimilarity
measure in isolated word recognition systems,
makes interesting its application in the context
of this research.
(5)
 Weighted spectral slope distortion (WSS): This
measure is mainly related to differences in
formant locations [24], and was selected because
of its relative good performance in all cases
presented in Table 1.
(6)
 Total relative distortion (TRD): It is based on
an orthogonal projection of the separated signal
on the original signal [18]. As this measure is
specific for performance evaluation of BSS
algorithms, it was considered appropriate to
include it in this work.
(7)
 Cepstral distortion (CD): This measure is also
known as truncated cepstral distance [25]. As
ASR systems for continuous speech make use of
cepstral-based feature vectors, it is reasonable to
include some measures using distances calcu-
lated in the cepstral domain.
(8)
 Mel cepstral distortion (MCD): This measure is
calculated in a similar way as CD, but the
energy output of a filter bank in mel scale is used
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instead of spectrum of signals. Also, as many
ASR systems use mel cepstral coefficients, it is
reasonable to use a distance measure based on
them as a predictor of recognition rate.
(9)
 Measuring normalizing blocks (MNB): This
technique applies a simple model of auditory
processing but then evaluates the distortion at
multiple time and frequency scales with a more
sophisticated judgment model [29]. It is a
modern approach including perceptual informa-
tion and, due to his high correlation with MOS
scores, was considered as a good candidate for
this study.
With the exception of MNB, all the selected
measures are frame based, therefore each of them
yields a vector (see Appendix A). However, for the
evaluation a unique value for each sentence is
needed. To achieve this, median value has been
employed, as suggested in [37], because in general
the measures are affected by outliers corresponding
to silence segments at the beginning and the end of
each original sentence, in which only noise is
observed.

4. Experimental setup

In order to evaluate the performance of selected
measures as predictors of recognition rate, an
experimental setup was designed. This consists of
the reproduction in a room of pre-recorded clean
speech sentences and noise, to obtain the mixtures
to be used in the evaluation. Reproduction was
made through loudspeakers with frequency range
from 20 to 20 kHz. In all experiments, two sources
where used and the resulting sound field was picked-
up at some selected points by two Ono Sokki MI
1233 omnidirectional measurement microphones,
with flat frequency response from 20 to 20 kHz and
with preamplifiers Ono Sokki MI 3110. In the
following sections, brief descriptions of the speech
data base, spatial location of sources and micro-
phones, separation algorithm and speech recognizer
employed in this work will be given.

4.1. Speech data base

In this study a subset of a data base generated by
the authors is used. It consists of recordings of 20
subjects, 10 males and 10 females, each pronouncing
20 sentences selected for a specific task (remote
controlling of a TV set using voice commands).
These sentences, in Japanese language, were re-
corded in an acoustically isolated chamber using
a close contact microphone with sampling fre-
quency of 44 kHz, later downsampled to 16 kHz
with 16 bit quantization. From this data base, one
male and one female speakers were selected for this
study. In consequence, the original sources consist
of 40 utterances, 20 from a male speaker and 20
from a female speaker. The corpus contains an
average of 1.4 words/sentence, with average dura-
tion of 1.12 s.

Three kinds of interfering signals were selec-
ted. One is a signal obtained from recording the
noise in a room with a large number of compu-
ters working. Spectral and statistical characteristics
of this noise source can be seen in Fig. 1. The
second kind of noise is a speech signal, pronounc-
ing a sentence different from those used as de-
sired sources. In the case of sentences spoken by
female speakers, utterances from male spea-
kers were used as noise and vice versa. The third
noise employed is a recording of sound emitted
by a TV set. This noise includes speech simul-
taneously with music. The same TV sound was
used to interfere with spoken sentences of both
speakers.

4.2. Spatial setup

All the mixtures were performed in an acousti-
cally isolated chamber as shown in Fig. 2. This setup
includes two loudspeakers and two microphones
with or without two reflection boards (used to
modify reverberation time). As can be seen in the
figure, there are three locations for microphones, a,
b and c. In addition, the speech source and noise can
be reproduced by loudspeakers in the way shown in
Fig. 2, named ‘‘position 1’’, or they can be
exchanged to ‘‘position 2’’ (that is, playing the
source in the speakerphone labeled ‘‘noise’’ and vice
versa). Powers of reproduced signals were adjusted
in such a way to get a power ratio of speech and
noise at loudspeakers output of 0 or 6 dB. Each of
these spatial-power (SP) combinations will be
referred as an ‘‘SP-Case’’ in the following.
Table 2 shows the codes assigned to each of the
SP-Cases, with explanation of the parameters used
in each case.

In order to analyze the changes in reverberation
properties of the room, with the same positions
explained before, there was one or two reflection
boards added. Without reflection boards, measured
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reverberation time6 was t60 ¼ 130ms, whereas with
one reflection board this time increased to
t60 ¼ 150ms, and with two reflection boards the
time was t60 ¼ 330ms. The same 10 SP-Cases
6The reverberation time t60 is the time interval in which the

sound pressure level of a decaying sound field drops by 60 dB,

that is to one millionth of its initial value [38].
previously mentioned were repeated in each of the
reverberation conditions, giving three sets of experi-
ments which would be referred from now on as Low
(t60 ¼ 130ms), Medium (t60 ¼ 150ms) and High
(t60 ¼ 330ms).7
7This naming convention is just to distinguish relative duration

of reverberation times in this set of experiments, but this does not
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Table 2

Signal-Power experimental case codes and their meanings

SP-Case Microphones Source-noise Power ratio (db)

a10 a Position 1 0

a16 a Position 1 6

a20 a Position 2 0

a26 a Position 2 6

b10 b Position 1 0

b16 b Position 1 6

b20 b Position 2 0

c10 c Position 1 0

c20 c Position 2 0

c26 c Position 2 6

L. Di Persia et al. / Signal Processing 87 (2007) 1951–1965 1957
Briefly, there are three reverberation conditions.
For each of them, 10 SP-Cases were performed,
with different combinations of microphone and
source locations and different power ratios. Each of
these cases consists of 20 utterances from a male
and 20 from a female speaker, mixed with each of
the three kinds of noise employed, adding to a total
of 120 utterances for each SP-Case. In total,
separation and recognition over 3600 experimental
conditions was evaluated.

4.3. Separation algorithm

The BSS algorithm is based on independent
component analysis (ICA) in the frequency domain
[1,39]. Given a number M of active sources and a
number N of sensors (with NXM), and assuming
that the environment effect can be modeled as the
output of an LTI system, the measured signals at
each microphone can be modeled as a convolutive
mixture model [1]:

xjðtÞ ¼
XM
i¼1

hjiðtÞ � siðtÞ, (1)

where xj is the jth microphone signal, si is the ith
source, hji is the impulse response of the room from
source i to microphone j, and � stands for
convolution. This equation can be written in
compact form as xðtÞ ¼ HðtÞ � sðtÞ.

Taking a short-time Fourier transform (STFT) of
the previous equation, the convolution becomes a
multiplication, and assuming that the mixture filters
are constant over time (that is, impulse responses
(footnote continued)

imply that the case named ‘‘High’’ actually corresponds to very

long reverberation time.
does not vary in time), this can be written as

xðo; tÞ ¼ HðoÞsðo; tÞ. (2)

Thus, for a fixed frequency bin o this means that a
simpler instantaneous mixture model can be ap-
plied. Under the assumption of statistical indepen-
dence of the sources over the STFT time t, the
separation model for each frequency bin can be
solved using one of the methods for ICA [39]. In this
context, for each frequency bin o a matrix WðoÞ is
searched such as yðo; tÞ ¼WðoÞxðo; tÞ, where
resulting separated bins yðo; tÞ should be approxi-
mately equal to the original sðo; tÞ. This frequency
domain algorithm is a standard formulation for
convolutive mixtures, that is known to produce
good results for short reverberation times [8].

We have used a STFT with a Hamming window
of 256 samples. In order to have enough training
data to perform ICA on each frequency bin, a
window step of 10 samples was used. For each
frequency band, a combination of JADE [40] and
FastICA [41] algorithms are used to achieve
separation. FastICA is sensitive to initial condi-
tions, because it is a Newton-like algorithm. For
this reason, JADE was applied to find an initial
approximation to separation matrix, and then
FastICA was employed to improve the results (with
the JADE guess as initial condition). For FastICA
we have used the nonlinear function GðyÞ ¼ logðaþ
yÞ with its derivative gðyÞ ¼ 1=ðaþ yÞ. Both complex
versions of JADE and FastICA were obtained from
the websites of their authors.

One problem of this approach is that the ICA
algorithms can give arbitrary permutations and
scalings for each frequency bins. So in two
successive frequency bins, extracted source i can
correspond to different original sources, with
arbitrary scaling in amplitude. Permutation and
amplitude indeterminacies are solved by the algo-
rithm proposed in [19]. Permutation is solved using
the amplitude modulation properties for speech: at
two near frequency bins, the envelope of the signal
in that band should be similar for bins originated by
the same source. Using correlations with accumu-
lated envelopes of already separated bins, one can
classify new frequency bands. To estimate the
envelopes, we used a 20m averaging lowpass filter.
The amplitude indetermination is solved by apply-
ing the obtained mixing matrix to only one of the
separated sources. After the separation and the
solution of the indeterminacies, the overlap-and-add
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Table 3

Word recognition rates (WRR%) with only one source in the real

room

Mic. Low rev. Med. rev. High rev.

1 cm 83 80 79

a 80 75 53

b 75 66 66

c 56 49 44

In this case, there is only reverberation effect. This can be

considered an upper limit of the obtainable recognition rate in

each case.

8It must be noted that feeding the ASR system with the original

clean sentences, yielded a word recognition rate of 100%.

L. Di Persia et al. / Signal Processing 87 (2007) 1951–19651958
method of reconstruction was used to obtain the
time-domain signals [42].

For each of the reverberation conditions, mixture
signals captured by microphone in each com-
bination of sentences and noises were processed
with this algorithm. From each pair of separated
signals, the signal more likely to represent the
desired source was selected by means of a correla-
tion. In this way, a data base with separated signals
corresponding to each of the sentences in each
experimental condition was generated. Before the
application of quality measures, correlation was
used to compensate any possible delay between
separated and original signal, and to detect possible
signal inversions (if maximum correlation is nega-
tive, the signal is multiplied by �1). Also all signals
were normalized to minimize the effect of magni-
tude indeterminacies. This was done by dividing
both separated and original by their respective
energy.

4.4. Recognizer

The recognizer used was the large vocabulary
continuous speech recognition system Julius [43],
based on hidden Markov models (HMM). This
is a standard recognition system widely used for
Japanese language. The decoder performs a two-
pass search, the first with a bi-gram and the second
with a tri-gram language model. This system was
used with acoustic models for continuous density
HMM in HTK [44] format. The models were
trained with two data bases provided by the
Acoustic Society of Japan (ASJ): a set of pho-
netically balanced sentences (ASJ-PB) and news-
paper article texts (ASJ-JNAS). Around 20 000
sentences uttered by 132 speaker of each gender
were used.

The recognizer use 12 mel frequency cepstral
coefficients (MFCC) computed each 10m, with
temporal differences of coefficients (DMFCC) and
energy (DE) for a total of 25 feature coefficients.
Also cepstral mean normalization was applied to
each utterance. Phonetic-tied mixture triphones
are used as acoustic models. The full acoustic
model consists of 3000 states tying 64 gaussian
from a base of 129 phonemes with different weights
depending of the context. For the language model,
both bi-gram and tri-gram models were gene-
rated from 118 million words from 75 months
newspaper articles, which were also used to generate
the lexicon [45].
Word recognition rate was evaluated as

WRR% ¼
T �D� S

T
100%, (3)

where T is the number of words in the reference
transcription, D is the number of deletion errors
(words present in the reference transcription that
are not present in the system transcription) and S is
the number of substitution errors (words that were
substituted by others in the system transcription)
[44].

To compare with obtained results, WRR by this
system was evaluated on the source sentences
reproduced in the room but without any interfering
noise, with microphones in location a, b and c, and
also with microphones located at 1 cm from source.
This permits to evaluate the degradation effect
caused on the recognizer by reverberation, even
without interfering noise. These results are shown in
Table 3. As the algorithm generally does not
reduce—in great amount—the reverberation effect,
these values can be taken as a baseline limit for
obtainable recognition rate in each case.8

Word recognition rates for mixtures and for BSS
separated signals was also evaluated, as shown in
Fig. 3. For this figure, the SP-Cases where grouped
according to location of microphones relative to
sources, as equal distance (a10+a20 and a16+a26),
nearer to desired source (b10+c20 and b16+c26),
and nearer to noise source (b20+c10).

5. Results

For each of the reverberation conditions and for
each SP-Case, quality measures have been calcu-
lated for all sentences and all noise types. Then, an
average of each measure for all utterances has been



ARTICLE IN PRESS

0

5

10

15

20

25

30

b
2

0
+

c
1

0

b
1

0
+

c
2

0

b
1

6
+

c
2

6

a
1

0
+

a
2

0

a
1

6
+

a
2

6

b
2

0
+

c
1

0

b
1

0
+

c
2

0

b
1

6
+

c
2

6

a
1

0
+

a
2

0

a
1

6
+

a
2

6

b
2

0
+

c
1

0

b
1

0
+

c
2

0

b
1

6
+

c
2

6

a
1

0
+

a
2

0

a
1

6
+

a
2

6

without reflection boards with one reflection board with two reflection boards

(τ=130ms) (τ=150ms) (τ=330ms)

Recording condition

W
R

R
 %
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Table 4

Correlation coefficient jrj for all experiments

Reverberation Noise segSNR IS LAR LLR WSS TRD CD MCD MNB

Low Comp. 0.80 0.44 0.70 0.70 0.92 0.88 0.81 0.87 0.90

TV 0.68 0.13 0.76 0.72 0.84 0.77 0.78 0.80 0.78

Speech 0.64 0.77 0.74 0.65 0.84 0.62 0.79 0.84 0.56

All 0.61 0.39 0.73 0.71 0.86 0.75 0.77 0.80 0.62

Medium Comp. 0.78 0.43 0.58 0.62 0.88 0.82 0.74 0.85 0.85

TV 0.76 0.31 0.92 0.91 0.90 0.86 0.91 0.85 0.85

Speech 0.78 0.76 0.82 0.85 0.66 0.85 0.76 0.62 0.64

All 0.76 0.46 0.75 0.74 0.77 0.83 0.74 0.72 0.78

High Comp. 0.77 0.53 0.74 0.75 0.83 0.85 0.81 0.80 0.83

TV 0.81 0.71 0.92 0.92 0.93 0.90 0.93 0.90 0.87

Speech 0.74 0.33 0.75 0.74 0.77 0.72 0.79 0.75 0.66

All 0.75 0.50 0.78 0.79 0.81 0.84 0.84 0.79 0.75

jrj ALL 0.74 0.43 0.73 0.71 0.83 0.84 0.76 0.77 0.75

sr ALL 5.94 9.70 6.68 7.36 4.98 5.74 6.42 5.77 7.86

Best value for each case has been marked in boldface. ‘‘All’’ includes in the sample all noise kinds for a given reverberation condition, and

‘‘ALL’’ includes all noise kinds and all reverberation conditions. Last row shows the standard deviation of the regression residual.
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taken, grouping them for noise kind. In this way,
for each combination of reverberation condition/
SP-Case, three values of quality were generated
corresponding to average quality in each noise kind.
In the same way, for each combination of rever-
beration condition and SP-Case, recognition rate
was also evaluated, separated by the kind of noise,
obtaining three values of recognition rate for each
case.

With these data three analyses were made. Table 4
presents Pearson correlation coefficient (absolute
value) for the analyses, defined as [46]:

rxy ¼

P
i½ðxi � x̄Þ þ ðyi � ȳÞ�

½
P

iðxi � x̄Þ2
P

iðyi � ȳÞ2�1=2
, (4)

where xi represents the quality measure to be used
as predictor, yi the WRR%, and x̄, ȳ the
corresponding estimated mean values. First, for
each reverberation condition, correlation of quality
measures as predictors of recognition rate was
evaluated, discriminated for each kind of noise, in
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Fig. 4. Regression analysis of quality measures for all experimental cases. WRR%, word recognition rate.
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such a way that the sample consist of 10 pairs of
quality measures/recognition rates (each pair is a
SP-Case). Second, the same analysis was performed
considering all kind of noises, that is taking in the
sample the 30 pairs of quality measures/recogni-
tion rates, considering all kinds of noise for a
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reverberation condition, giving as a result one value
of general correlation for each reverberation condi-
tion. Third, the correlation was evaluated without
data segregation, that is, including in the sample all
the kinds of noise and all the reverberation
conditions.

Also, dispersion graphic for all data was made in
Fig. 4 for the case of all noise kinds and all
reverberation conditions (last rows in Table 4). A
dispersion graphic was drawn for each measure
including a total least squares regression line and
two lines that mark regression value plus/minus two
times the standard deviation of residual. This
standard deviation was estimated according to s2r ¼PN

i¼1 yi � byi

� �2
= N � 2ð Þ where yi is the true WRR%

and byi the predicted value by regression [46]. Also,
this figure shows the values of jrj and sr.

6. Discussion

Many interesting findings can be extracted from
the analysis of Table 4. In general, it can be said that
the measure showing the maximum correlation as
predictor of recognition rate is WSS. This is because
it is the best in 6 of 12 cases. In the cases where it has
not been the one with largest correlation, it can be
seen that it is close to the maximum value.
Regarding the global value of correlation (jrj
ALL), WSS is relegated to the second position,
but the difference (0:0063) is not significative.9

Furthermore, in the global case it is the measure
that has lower residual variance.

For the lowest reverberation time, WSS is clearly
superior to the other measures. In the intermediate
reverberation case, the best performance is for TRD
but sharing the success for different noises with
LAR, LLR and WSS. In the High reverberation
case, CD measure seem to behave better, but closely
followed by TRD.

One possible explanation for the lowering of
correlation of WSS measure is the following: as
reverberation time increases, performance of se-
paration algorithm decreases, and so resulting
separated signals will have increasing amount of
interfering signal. In this case, as the original signal
is present at a high level, measures that take into
account preservation of special features (like for-
mants in WSS) would give good values, although
the interfering level would be high enough for the
9This difference is not seen in Table 4 due to the two decimal

precision used.
recognizer to fail. Conversely, those measures that
have more relation to whole spectral distances
between signals would behave closer to recognition
rates.

Regarding the effect of different kinds of noise, in
the case of computer noise, the best measure is WSS
showing the highest correlation for low and medium
reverberation times, while TRD is better for long
reverberation times. The algorithm used for separa-
tion can perform very well in this case of quasi-
stationary noise. Therefore, separated signal will
have very similar spectral contents to the original
one, being mainly distorted due to reverberation
effects. For TV noise the results show that, at low
reverberation, WSS is a better measure, at medium
reverberation the best measure is LAR (although all
LLR, WSS and CD are very near), and for high
reverberation WSS and CD have a better perfor-
mance. This can be also explained by a good
performance for the separation algorithm which can
also manage this non-stationary noise. In the case of
speech noise, at low reverberations the best measure
is WSS, for medium reverberation TRD and LLR
are the best, and at high reverberation, CD is the
best one. Speech noise is the hardest condition for
the separation algorithm, and this lowering of
performance of WSS can be explained in a similar
way as before (related to degradation of WSS for
long reverberation times).

TRD is the second measure in global perfor-
mance, particularly well correlated at medium
reverberation times. It also has the second lower
global residual variance. This can be related to the
fact that this measure was designed specifically to
evaluate BSS algorithms. This could show an
important relation (that was not necessarily obvious
a priori) between the evaluation of the separation
algorithm itself and its performance for speech
recognition.

The relative good results of cepstral measures is
not a surprise. Their quite uniform performance for
all levels of reverberation can be related to the
internal representation of the recognizer based in
cepstral coefficients. So, changes in these coefficients
are reflected directly in recognition rate, giving some
uniform behavior. Although one could expect a
general better performance for MCD than for CD,
the results not always agree. It would be interesting
to perform the same experiments with a recognizer
based in different feature vectors, like Rasta-PLP
[47–49], to check whether the good performance is
recognizer-related or in fact can be generalized.
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Comparing only the cepstral measures, MCD is
very stable with reverberation, keeping high corre-
lation levels in all cases. CD presents better
correlation than MCD at higher reverberation
times.

In opposition to the expected results, MNB
performance was rather poor, compared to the
previous ones. This measure was specially designed
for speech vocoders, and may be that distortions are
very different to the ones presented in BSS.

It is also interesting to verify that segmental SNR
has been outperformed in all cases by almost all
measures. This must be considered in all works
where improvement of algorithms is reported using
this measure. According to these results, improve-
ments reported in terms of SNR will not be reflected
in recognition rates.

The results presented here were obtained for this
separation algorithm and this specific recognizer, so
strictly speaking they are only applicable for these
cases. Nevertheless, we consider that as long as the
separation algorithm uses similar processing (i.e.
frequency domain BSS) and the speech recognizer
uses the same paradigm (HMM with MFCC
features) the results should not change qualitatively.
On the other hand, all the experiments here were
made with Japanese language. However, there are
some studies, like [29] where it is shown that the
results of objective quality measures for different
languages are quite similar, and so we expect an
objective measure not to change significantly when
applied to different languages (specially in the case
of WSS, where both good recognition rate and good
perceptual quality are achieved).

7. Conclusions

From the analysis of the obtained results, the
measure presenting more correlation with word
recognition rates is WSS. When reverberation time
increases, it has been proved that the performance
of this measure degrades gradually, meanwhile
TRD and cepstral-based measures perform better
than WSS. This is an important guide at the time of
choosing a suitable separation quality measure for
speech recognition.

On the other hand, remembering that WSS is a
highly correlated measure with subjective evaluation
of quality (Table 1), one additional advantage of
using this measure becomes evident. If the algo-
rithm under evaluation is designed not only for the
front-end of ASR, but also as an enhancement part
of the system that would present their result to
human listeners, it can be expected that using WSS
as a quality measure will allow to achieve both
objectives: a good recognition rate together with
good perceptual quality of speech.

One of the possible practical applications of these
results in the field of BSS for ASR is in algorithm
selection/tuning. In early research stages, where a
particular separation algorithm and its parameters
should be selected, direct evaluation by means of
recognition rate would be prohibitive as a result of
the large amount of test over complete data bases.
The alternative is to use one of the objective quality
measures to select some candidate algorithms and
their parameters, and then perform a fine tuning
with the complete ASR system.

Appendix A. Quality measures details

The following notation will be used: let the
original signal be s and separated signal bs, both of
M samples. Frame m of length N of original signal is
defined as sm ¼ ½s½mQ�; . . . ; s½mQþN � 1��, where
Q is the step size of the window in a short-time
analysis, and with analogous definition for corre-
sponding frame of the separated signal. In the case
of measures derived from linear prediction (LP), a
system order P is assumed. Using this notation, the
evaluated measures are:
(1)
 SegSNR: Given a frame of original signal and
corresponding frame of separated signal,
segSNR is defined as [22]:

dSNRðsm;bsmÞ ¼ 10 log10
ksmk

2

kbsm � smk
2
, (A.1)

where k � k is the 2-norm defined as usual,
kxk ¼ ð

PN
n¼1 x½n�2Þ1=2.
(2)
 IS distortion: Given LP coefficients vector of
original (clean) signal, am, and LP coefficient
vector for the corresponding frame of separated
signal, cam, IS distortion is defined as [31,37]

dISðam;bamÞ ¼
s2mbs2m ba

T
mRbam

aTmRam

þ log
bs2m
s2m

 !
� 1,

(A.2)

where R is the autocorrelation matrix, and s2,bs2 are the all-pole system gains.

(3)
 LAR distortion: Given reflection coefficient

vector for an LP model of a signal,
km ¼ ½kð1;mÞ; . . . ; kðP;mÞ�T, the Area Ratio
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vector is defined as gm ¼ ½gð1;mÞ; . . . ; gðP;mÞ�
T,

where gðl;mÞ ¼ ð1þ kðl;mÞÞ=ð1� kðl;mÞÞ. These
coefficients are related to the transversal areas
of a variable section tubular model for the vocal
tract. Using these coefficients, for a frame of
original signal, and corresponding frame of
separated signal, LAR distortion is defined as
[22,37]:

dLARðgm;bgmÞ ¼
1

P
log gm � logbgm

�� ��2� �1=2

.

(A.3)
(4)
 LLR distortion: Given LP coefficient vector of a
frame of original and separated signal, am andcam, respectively, LLR distortion is given by
[32,37]:

dLLRðam;bamÞ ¼ log
baTmRbam

aTmRam

, (A.4)

where R is the autocorrelation matrix.

(5)
 WSS distortion: Given a frame of signal, the

spectral slope is defined as SL½l;m� ¼
S½l þ 1;m� � S½l;m�, where S½l;m� is a spectral
representation (in dB), obtained from a filter
bank using B critical bands in Bark scale (with
index l referring to position of filter in filter
bank). Using this, WSS between original signal
and separated one is defined as [24,37]:

dWSSðsm;bsmÞ ¼ K splðK � bKÞ
þ
XB

l¼1

w̄½l� SL½l;m� � cSL½l;m�
� �2

,

ðA:5Þ

where K spl is a constant weighting global sound
pressure level, K and bK are sound pressure level
in dB, and weights w½l� are related to the
proximity of band l to a local maximum
(formant) and global maximum of spectrum,
as w̄½l� ¼ ðw½l� þ bw½l�Þ=2, with
w½l� ¼

Cloc

Cloc þ Dloc½l�

	 

Cglob

Cglob þ Dglob½l�

	 

,

(A.6)

with a similar definition for bw½l�, where Cglob

and Cloc are constants and Dglob, Dloc are the log
spectral differences between the energy in band l

and the global or nearest local maximum,
respectively. This weighting will have larger
value at spectral peaks, especially at the global
maximum, and so it will give more importance
to distances in spectral slopes near formant
peaks (for more details, see [24,31,34]).
(6)
 TRD: The separated source can be decom-
posed as bs ¼ sD þ eI þ eN þ eA, where sD ¼

hbs; sis= sk k2 is the part of bs perceived as coming
from the desired source, and eI, eN and eA the
error parts coming from the other sources,
sensors noises and artifacts of the algorithm.
For each frame m of these components, TRD is
defined as [17,18]

dTRDðs;bs;mÞ ¼ keIm þ eNm þ eAmk
2

ksDmk
2

. (A.7)
(7)
 CD: Given the vectors of cepstral coefficients cm

and bcm, corresponding to a frame of original
signal and corresponding separation result, CD
for the first L coefficients is defined as [31]:

dCDðsm;bsmÞ ¼
XL

l¼1
cm½l� � bcm½l�ð Þ

2. (A.8)
(8)
 MCD: Given mel cepstral coefficients cmel
m andbcmel

m corresponding to original and resulting
separated signal, respectively, calculated using a
filter bank of B filters in mel scale, MCD for the
first L coefficients is defined as [22,31]

dMCDðsm;bsmÞ ¼
XL

l¼1

ðcmel
m ½l� � bcmel

m ½l�Þ
2. (A.9)
(9)
 MNB: This measure is more complex than the
previous ones, so it will be only outlined here. It
includes first a time-frequency representation,
that is transformed to Bark scale to obtain a
representation more closed to the auditory
mapping. After this transformation the auditory
time-frequency representations of the reference
Sðt; f Þ and test bSðt; f Þ are analyzed by a
hierarchical decomposition of measuring nor-
malizing blocks in time (tMNB) and frequency
(fMNB). Each MNB produces a series of
measures and a normalized output bS 0ð f ; tÞ.
For a tMNB, the normalization is done by

eðt; f 0Þ ¼
1

Df

Z f 0þDf

f 0

bSðt; f Þdf

�
1

Df

Z f 0þDf

f 0

Sðt; f Þdf ,

bS 0ð f ; tÞ ¼ bSðt; f Þ � eðt; f 0Þ, ðA:10Þ
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where f 0 and Df define a frequency band for the
integration. By integration of eðt; f 0Þ over time
intervals, a group of measures for this tMNB is
obtained. The same is used for each fMNB, with
the roles of t and f interchanged. So, the
hierarchical decomposition proceeds from lar-
ger to smaller scales, for frequency and time,
calculating distances and removing the informa-
tion of each scale. After this process, a vector of
measures l is obtained. Then a global auditory
distance (AD) is built by using appropriate
weights AD ¼

PJ
i¼1wimi. Finally, a logistic map

is applied to compress the measure and adjust it
to a finite interval, given by LðADÞ ¼

1=ð1þ eaADþbÞ. The authors have proposed
two different hierarchical decompositions,
called structures 1 and 2, that use different
tMNB and fMNB decompositions. For more
details, refer to [29].
For the analysis, the following parameters were
used:
�
 Frame length N ¼ 512 samples (32ms of signal).

�
 Step size for analysis window Q ¼ 128 samples

(8ms of signal).

�
 Order for LP models P ¼ 10.

�
 WSS: B ¼ 36, K spl ¼ 0, Cloc ¼ 1 and Cglob ¼ 20

as recommended by author in [24].

�
 CD: truncation at L ¼ 50 coefficients.

�
 MCD: number of filters B ¼ 36, number of

coefficients L ¼ 18.

�
 MNB (structure 1): a ¼ 1:0000 and b ¼ �4:6877

as suggested in [29]. The signals were subsampled
to 8000Hz before applying this measure.
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