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1 Introduction

The three dimensional version of the AdS/CFT correspondence [1, 2] which states the

equivalence between a N = 6 superconformal, U(N)K × U(N)−K quiver Chern-Simons-

matter theory and a type IIA string theory on AdS4 × CP 3 or M-theory on AdS4 ×
S7/ZK , provides an alternative, non-trivial arena where studying the deep nature of the

correspondence. In fact, the theories appearing on the two sides of the correspondence

exhibit quite different features compared to their four dimensional counterparts, so they

might disclose novel aspects.

On both sides of the correspondence, integrable structures seem to emerge in the planar

limit. In fact, at strong coupling the classical integrability of the string non-linear sigma

model has been argued [3–5] and tree level string scattering amplitudes have been proven to

factorize [6]. At weak coupling, the dilatation operator for gauge invariant, local, composite

operators has been related to the Hamiltonian of an integrable spin chain [7, 8] and an all-

loop Bethe ansatz for determining the spectrum of the anomalous dimensions has been

proposed [9] which is consistent with the Osp(6, 4) algebraic curve at strong coupling [10],

agrees with the exact S-matrix conjectured in [11] and matches the spectrum of type IIA

string theory on AdS4 × CP 3 in the Penrose limit [12]. Moreover, the dispersion relation

for magnons has been computed in terms of a non-trivial function of the ’t Hooft parameter

that interpolates between strong and weak coupling results [13]–[26].
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However, a complete comprehension of integrability at quantum level has not been

reached yet and further investigation is required.

On the field theory side, integrable structures are expected to have important conse-

quences on its on-shell sector. In particular, the existence of an infinite algebra of non-local

conserved currents, the Yangian [27], would constrain the form of the scattering amplitudes

and their dualities with other important quantities like Wilson loops [28]–[30] and correla-

tion functions [31, 32]. Therefore, a direct study of the properties of scattering amplitudes

can be used for grasping further indications of the integrable structure underlying the

planar sector of the theory.

At tree level, quite a number of well-established results are now available. General con-

straints coming from requiring superconformal invariance, once solved, allow to determine

tree level superamplitudes in terms of a restricted number of independent functions [33].

Explicit results have been found for the four and six-point amplitudes and their invari-

ance under level one Yangian generators has been proven [33–35]. Dual superconformal

invariance [36] of all tree-level amplitudes has been subsequently proven [37] by exploiting

a three dimensional version of the the BCFW recursion relations [38]. Finally, a gen-

erating function for scattering amplitudes has been proposed in [39] that is manifestly

Yangian invariant.

Quantum investigation of these properties passes necessarily through the difficult task

of computing perturbative corrections to the scattering superamplitudes. At loop level, very

little has been done so far. Explicit results are available only for four-point amplitudes. The

complete superamplitude is one-loop vanishing [40]–[42], while an interesting non-trivial

contribution has been found at two loops in the planar limit [41–43] that has a number of

remarkable properties. When divided by its tree-level counterpart, it is dual superconformal

invariant and coincides with the second order expansion of a light-like four-polygon Wilson

loop [44]. This gives indication that a Wilson loop/scattering amplitude duality might be at

work even if this duality does not have a clear proof at strong coupling yet.1 The two-loop

result can be thought of as the lowest order expansion of an exponentiation formula for the

all-loop amplitude which can be justified via AdS/CFT correspondence [43] by adapting

to the case of type IIA string in AdS4 × CP 3 the Alday-Maldacena prescription [53, 54]

for computing scattering amplitudes at strong coupling. Finally, up to scheme dependent

and subleading terms in the IR regulator, it has been proven to be equal to the four-

point amplitude of N = 4 SYM theory at one-loop [55], so giving further support to the

correctness of the exponentiation proposal.

Beyond four-point amplitude, nothing is known at quantum level. The scope of this

paper is to provide a first non-trivial result for higher points planar amplitudes at one loop.

As is well known, scattering amplitudes involve only matter particles and their num-

ber is constrained by gauge invariance to be even. Introducing an on-shell superspace

formalism, it is possible to construct superamplitudes and classify them in terms of their

grassmannian degree. It follows that for n external particles the degree is that of an

N(n/2−2)MHV superamplitude. At four points they correspond to the MHV case while,

1Attempts to mimic what happens in four dimensions [45] have experimented the appearance of singu-

larities in the fermionic T-transformations [46]–[52].
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starting from n = 6, we are not dealing with MHV amplitudes anymore, so the kind of

expected properties will be different from the ones of the four-point amplitudes emphasized

above. In particular, no duality is expected with bosonic light-like polygon Wilson loops

that are one-loop vanishing in three dimensional Chern-Simons (matter) theories [44, 56].

Working in N = 2 superspace, in the large N limit, we concentrate on particular

subsectors of n-point amplitudes for which an ordinary perturbative approach based on

Feynman super-diagrams is feasible at one loop, given the small number of contributions

allowed at this order. We derive iterative formulae for both the tree-level and one-loop

contributions which are valid for any number of external superfields. The various compo-

nent amplitudes may be straightforwardly extracted from them. We provide some all–n

formulae for the simplest components, that is the ones involving the greatest number of

scalars or fermions.

While for generic n our results do not cover all kinds of amplitudes one can construct,

for the special n = 6 case our findings allow for reconstructing the complete superamplitude

at one loop.

The results we find exhibit regions of discontinuity in momentum space. For instance,

for n = 6 it is proportional to the sum of two kinematic factors which take only ±1

values. Therefore, there are physically accessible regions of momentum space where the

six-point amplitude vanishes and regions where it does not vanish. Different regions are

separated by discontinuities that correspond to configurations where two adjacent momenta

become collinear.

The result for the six-point amplitude is proportional to sign functions. When act-

ing with a tree-level generator of superconformal transformations it gives rise to a delta-

function, signaling the appearance of an anomaly at one loop which resembles the tree-level

holomorphic anomaly in four dimensions.

Our calculation can be easily generalized to the ABJ theory [2] corresponding to a

more general U(M)K × U(N)−K gauge group. We provide the explicit result for the

six-point amplitude and discuss its discontinuities. In this case, the amplitude is always

non-vanishing, although in some regions of momentum space it is proportional to the

color factor (M + N), whereas in other regions it is proportional to the parity violating

factor (M − N). Still, going from one region to another requires adjacent momenta to

become collinear.

The paper is organized as follows. In section 2 we summarize generalities on the

scattering superamplitudes and corresponding component amplitudes in ABJ(M) theory,

discussing the peculiar subsectors we restrict to. In section 3 we present the detailed

calculation for the N = 2, six-point superamplitude, whereas in section 4 we give the

general result for n-point superamplitudes. Finally, in section 5 we discuss the relevance of

the result and its properties. Three appendices follow that list our set of conventions and

give technical details of the calculation.

Note added. During completion of this work we were informed about another paper,

appearing in the arXiv the same day, which has partial overlapping with our results [57]. In

that paper, using a different approach, the authors obtain the same result for the one-loop

six-point amplitude.
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2 Generalities on scattering amplitudes in ABJ(M)

The ABJ(M) theories [1, 2] possess N = 6 supersymmetry, as the corresponding actions

exhibit SO(6)R symmetry when written in components with the auxiliary fields set on-

shell [58]. For U(M)K ×U(N)−K group, they involve two gauge vector multiplets each of

them in the adjoint representation of one of the two gauge groups, four complex scalars and

their fermionic partners (φI , ψI), I = 1, · · · , 4 in the bifundamental (M, N̄) representation

and their conjugates (φ̄I , ψ̄
I) in the (M̄,N) representation. The gauge sector is described

by a two-level Chern-Simons action, so the gauge fields are not propagating and cannot

enter scattering processes.

The only non-trivial amplitudes of the theory are those involving matter external

particles. We classify as particles the ones carrying (M, N̄) indices and antiparticles the

ones carrying (M̄,N) indices.

Each external particle carries an on-shell momentum pαβ (p2 = 0), polarization spinor

λα for fermions, an SU(4) index and color indices corresponding to the two gauge groups.

The on-shell condition for the momentum can be explicitly solved by expressing pαβ =

λαλβ, in terms of SL(2,R) commuting spinors.

Scattering superamplitudes can be written in an on-shell N = 3 superspace formal-

ism [33]. Breaking the SU(4) R-symmetry group down to U(3) and introducing a set of

three Grassmann coordinates, ηA, A = 1, 2, 3, in the fundamental representation of SU(3),

the matter fields can be embedded into two multiplets, a scalar Φ and a fermion Φ̄, ac-

cording to

Φ(Λ) = φ4(λ) + ηA ψA(λ) +
1

2
ǫABC η

A ηB φC(λ) +
1

3!
ηA ηB ηC ǫCBA ψ4(λ)

Φ̄(Λ) = ψ̄4(λ) + ηA φ̄A(λ) +
1

2
ǫABC η

A ηB ψ̄C(λ) +
1

3!
ηA ηB ηC ǫCBA φ̄4(λ) , (2.1)

where we have defined Λ ≡ (λ, η). The former superfield contains the particles, whilst the

second one the antiparticles.

In terms of these superfields a generic superamplitude has the form

An (Φ
a1
1 ā1

, Φ̄b̄2
2 b2

, Φa3
3 ā3

, . . . , Φ̄ān
n an) . (2.2)

From An, the component amplitudes can be read as the coefficients of its η-expansion.

This formulation does not allow for a direct evaluation of the superamplitudes, since

no Lagrangian is known for the Φ, Φ̄ superfields. However, in [33] it has been shown that

requiring Osp(6|4) superconformal invariance of the superamplitudes restricts them to be

of the form

An(Λ1, · · · ,Λn) = δ(3)(P ) δ(6)(Q)
K
∑

k=1

fn,k Fn,k , (2.3)

where we recognize the delta functions for the supermomentum conservation. The non-

trivial part is given in terms of R-symmetry invariants Fn,k whose number equals the

number of singlets in the representation (4⊕ 4̄)⊗(n−4) (see ref. [33] for details).
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The calculation of the superamplitudes is then reduced to the determination of the

coefficients fn,k order by order in perturbation theory. As discussed, at least in the simple

cases of four and six-point superamplitudes, these coefficients can be inferred from the

knowledge of a restricted number of component amplitudes. It is then sufficient to develop

an efficient way for computing few independent component amplitudes.

To accomplish that, we find convenient to work inN = 2 superspace where the physical

spectrum is organized in terms of two gauge multiplets and four matter chiral superfields

Ai and Bi, i = 1, 2 [58]. Using the same capital letter to indicate their bosonic components

and Greek letters αi and βi for the fermionic components, the dictionary for mapping

N = 3 superfields (2.1) to N = 2 superfields is

φA →
(

A1, A2, B̄1, B̄2
)

φ̄A →
(

Ā1, Ā2, B1, B2

)

(2.4)

and similarly for fermions,

ψA →
(

−αB ǫBA e
−iπ/4 ; β̄B ǫBA e

iπ/4
)

ψ̄A →
(

−ǫAB ᾱB e
iπ/4 ; ǫAB βB e

−iπ/4
)

. (2.5)

The action for the ABJ(M) theory written in N = 2 formalism can be found in appendix B.

In terms of these new superfields the general expression for a color ordered N = 2

superamplitude is

An

(

Xa1
1 ā1

X̄ b̄2
2 b2

Xa3
3 ā3

· · · X̄ b̄n
n bn

)

=

(

4π

K

)
n

2
−1
∑

σ

An(σ(1), · · · , σ(n)) δ
aσ(1)

bσ(2)
δ
b̄σ(2)

āσ(3)
· · · δb̄σ(n)

āσ(1)
,

(2.6)

where X stays for any of the (Ai, B̄i) superfields and X̄ for any of their hermitian conju-

gates. Here the sum is over exchanges of even and odd sites among themselves, up to cyclic

permutations by two sites. In this way we can forget about the color factor and concentrate

on a particular color ordered coefficient An that will be determined perturbatively as power

series in the effective couplings λ =M/K and λ̂ = N/K. We will always work in the large

M , N limit.

Loop contributions to the An superamplitude can be read from loop corrections to

terms of the effective action proportional to
∫

d4θTr(X1X̄2X3 · · · X̄n) with possible spino-

rial derivatives acting on the fields. Applying the d4θ integration will give rise to non-trivial

component amplitudes.

We obtain the effective action performing D-algebra manipulations and momentum

integrals in Euclidean metric. Successively, we Wick rotate and analytically continue the

final result to the mostly plus Minkowskian signature (see appendix A for details).

Given the particular structure of the interaction vertices that can be read from the

action (B.2), the number of diagrams entering the evaluation of an amplitude depends

drastically on the particular configuration of the external superfields.

We have managed to select a particular subsector of color ordered superamplitudes

that at tree level are given by a single diagram featuring superpotential interactions only,

and at one loop, in the planar limit, get corrections only from a single topology of diagrams,

that is a box diagram. The key ingredient for selecting such superamplitudes is to avoid

– 5 –
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adjacent fields to share the same SU(2)A × SU(2)B flavor index. One particularly simple

choice is the following

A4m+2((A
2Ā1)

mB̄1(Ā2A
1)mB1) (2.7)

A4m(A1(Ā2A
1)(m−1)B1A

2(Ā1A
2)(m−1)B2) (2.8)

or their cyclic permutations. For m = 1 (2.8) reduces to the four-point chiral superampli-

tude computed in [42, 43].

Since classically the theory is invariant under a SU(2)A × SU(2)B global symmetry

and a Z2 symmetry that exchanges U(M) ↔ U(N), K ↔ −K, V ↔ V̂ and Ai ↔ Bi,

the particular choice of flavors we have made in the previous expressions is not restricting.

Applying a SU(2)A × SU(2)B transformation we will obtain amplitudes with A1 and A2

and/or B1 and B2 interchanged. Similarly, applying a Z2 transformation we will obtain

amplitudes with A and B interchanged.

3 The complete six-point superamplitude at one loop

We concentrate on the particular color ordered NMHV superamplitude that we obtain

from (2.7) setting m = 1, that is A6(A
1B1A

2Ā1B̄
1Ā2). We then look for perturbative

contributions to terms in the effective action of the form
∫

d4θ Tr(A1B1A
2Ā1B̄

1Ā2) . (3.1)

We perform the calculation in the general U(M)K ×U(N)−K case, in the planar limit. As

already mentioned, we work in Euclidean superspace and only at the end we will rotate

back to Minkowski to obtain the physical amplitudes. Conventions for N = 2 Euclidean

superspace are given in appendix B, whereas the prescription for analytically continue the

result to Minkowski can be found in appendix A.

At tree level, the only contribution to this amplitude is drawn in figure 1(a). Assigning

outgoing momenta p1, · · · , p6 starting from the upper left leg and going counterclockwise,

it corresponds to the superspace integral

Γtree
6 = −

∫

d4θ
Tr
(

A1(p1)B1(p2)A
2(p3)Ā1(p4)B̄

1(p5)Ā2(p6)
)

(p1 + p2 + p3)2
, (3.2)

where we omit the integration over all the external momenta and the conservation delta

function.

Taking into account the free equations of motion (B.4) and the chirality conditions, and

using the projections (B.8), from this expression we can read the component amplitudes by

integrating on the spinorial variables. In particular, we find a non-vanishing purely scalar

amplitude, while the purely fermionic one is trivially zero

A(0)
6,s(A

1B1A
2Ā1B̄

1Ā2) = 1 ; A(0)
6,f (α

1 β1 α
2 ᾱ1 β̄

1 ᾱ2) = 0 . (3.3)

Written in terms of the components of SU(4) multiplets these amplitudes are

A(0)
6,s(φ

1φ̄3φ
2φ̄1φ

3φ̄2) = 1 ; A(0)
6,f (ψ2ψ̄

4ψ1ψ̄
2ψ4ψ̄

1) = 0 . (3.4)
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k

A2(p3) Ā1(p4)

A1(p1) Ā2(p6)

B2(p2) B̄1(p5)

(b)

k
A2(p3) Ā1(p4)

A1(p1) Ā2(p6)

B2(p2) B̄1(p5)

(c)

A2(p3) Ā1(p4)

A1(p1) Ā2(p6)

B2(p2) B̄1(p5)

(a)

Figure 1. Diagrams contributing to the tree level and one-loop effective action with six external

superfields. In diagram (b) the wavy line corresponds to a 〈V V 〉 propagator, whereas in diagram

(c) it corresponds to a 〈V̂ V̂ 〉 one.

At one loop, planar contributions correspond to the two box diagrams in figure 1(b)

and 1(c). We perform D-algebra on these diagrams in order to reduce the spinorial deriva-

tives inside the loop to a single D2D̄2 factor. This guarantees the entire expression to be

local in the θ-variables and proportional to a sum of ordinary momentum integrals. In both

cases, we are left with one triangle and one box integral which eventually can be expressed

in terms of triangles (see appendix A).

Diagram 1(b) where a V -vector propagates, gives

Γ1−loop
6(b) = −4π λ

∫

d4θ
d3k

(2π)3

k2Tr
(

DαA1B1A
2 Ā1 B̄

1 D̄αĀ2)+2 ǫµνρ k
µ pν1 p

ρ
6 Tr (A

1B1A
2 Ā1 B̄

1 Ā2

)

k2 (k − p1)2 (k − p1 − p2 − p3)2 (k + p6)2
. (3.5)

In Euclidean space both integrals are finite and given in (A.12), (A.13).

Summing the two contributions and using integration by parts and on-shell condi-

tions (B.4) we can simplify the result to

Γ1−loop
6(b) =

π

2
λ

∫

d4θ
Tr
(

DαA1DβB1DβA
2 D̄γĀ1 D̄γB̄

1 D̄αĀ2

)

p2123
√

p223
√

p245
√

p216
, (3.6)
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where p2123 ≡ (p1 + p2 + p3)
2.

Performing a similar calculation, from diagram 1(c) where a V̂ -vector propagates we

obtain

Γ1−loop
6(c) = −π

2
λ̂

∫

d4θ
Tr
(

DαA1DαB1D
βA2 D̄βĀ1 D̄

γB̄1 D̄γĀ2

)

p2123
√

p212
√

p234
√

p256
. (3.7)

At this point we analytically continue the result to Minkowski space where we interpret
√

p2 ≡
√

p2 + iǫ.

Projecting to components the total effective action given by the sum of contributions

1(b) and 1(c), we obtain scattering amplitudes for scalars and fermions. Once again, the

simplest ones are those made out of only scalars and only fermions. For the scalar one,

going back to N = 3 superspace notation, it is easy to realize that

A(1)
6,s(A

1B1A
2Ā1B̄

1Ā2) ≡ A(1)
6,s(φ

1φ̄3φ
2φ̄1φ

3φ̄2) = 0 , (3.8)

whereas for the purely fermionic one, we obtain

A(1)
6,f (α

1 β1 α
2 ᾱ1 β̄

1 ᾱ2) ≡ −A(1)
6,f (ψ2ψ̄

4ψ1ψ̄
2ψ4ψ̄

1)

=
π

2

[

λ
〈1 2〉
√

〈1 2〉2
〈3 4〉
√

〈3 4〉2
〈5 6〉
√

〈5 6〉2
+ λ̂

〈2 3〉
√

〈2 3〉2
〈4 5〉
√

〈4 5〉2
〈6 1〉
√

〈6 1〉2

]

≡ C(P ) . (3.9)

We see the appearance of 〈i i+1〉√
〈i i+1〉2

ratios that give rise to sign functions. Therefore, as

it will be discussed in detail in section 5, the expression inside the brackets is constant

and proportional to (λ+ λ̂) or (λ− λ̂), according to the particular choice of the kinematic

configuration. In particular, for ABJM theory (λ = λ̂) the amplitude is either propor-

tional to 2λ or exactly 0. The discontinuities correspond to regions of collinearity for two

adjacent momenta.

The one-loop results (3.8), (3.9) we have obtained are sufficient for reconstructing the

complete N = 6 superamplitude, as we are going to discuss.

For n = 6, eq. (2.3) reduces to [33]

A6 = δ3(P ) δ6(Q)
[

f+(λ) δ3(α) + f−(λ) δ3(β)
]

(3.10)

where f±(λ) are functions to be determined through an explicit computation and the two

independent R-invariant functions are given in terms of spinorial variables αA ≡ x+ · ηA,
βA ≡ x− · ηA with [33]

x±i =
1

2
√
2
ǫijk

〈j, k〉
√

p2123
, i, j, k = 1, 2, 3

x±i =
±i
2
√
2
ǫijk

〈j, k〉
√

p2123
, i, j, k = 4, 5, 6 (3.11)

In order to determine the unknown functions f±(λ), we extract from the general expres-

sion (3.10) the purely scalar and the purely fermionic components and equal these expres-

sions to our explicit results (3.3), (3.8), (3.9).2

2In [33] the f±(λ) functions were determined at tree level using a different set of amplitudes, that is

(φ4φ̄4)
3 and (ψ4ψ̄4)

3.
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At tree level the purely fermionic six-point amplitude is vanishing, whereas the scalar

one is a constant. Conversely, at one loop the latter is null, whilst the former is almost

constant, up to discontinuities in the factor (3.9), which we have denoted by C(P ).
Therefore, we obtain the following systems of equations for f+ and f− at tree and

one-loop level

Tree :

{

Af+(0) +B f−(0) = 1

Af+(0) −B f−(0) = 0
One− loop :

{

Af+(1) +B f−(1) = 0

Af+(1) −B f−(1) = −i C(P ) ,

(3.12)

where

A = −(〈1 | p56 | 4〉+ i 〈2 3〉 〈5 6〉) (〈3 | p45 | 6〉+ i 〈1 2〉 〈4 5〉)
2
√
2
√

p2123

B = −(〈1 | p56 | 4〉 − i 〈2 3〉 〈5 6〉) (〈3 | p45 | 6〉 − i 〈1 2〉 〈4 5〉)
2
√
2
√

p2123
. (3.13)

The solutions to the systems (3.12) are given in appendix C.

At tree level, plugging the result (C.1) into the general form of the superamplitude as

given in (2.3) and re-expressing everything in terms of the ηA variables, after some algebra

we obtain

A(0)
6 = −δ

3(P ) δ6(Q)

p2123

[

(

ǫijk 〈j k〉 ηIi + i ǭij̄k̄ 〈j̄ k̄〉 ηIī
)3

(〈1 | p23 | 4〉 − i 〈2 3〉 〈5 6〉) (〈3 | p12 | 6〉 − i 〈1 2〉 〈4 5〉)

+

(

ǫijk 〈j k〉 ηIi − i ǭij̄k̄ 〈j̄ k̄〉 ηIī
)3

(〈1 | p23 | 4〉+ i 〈2 3〉 〈5 6〉) (〈3 |p12 | 6〉+ i 〈1 2〉 〈4 5〉)

]

.

(3.14)

As a check of this expression, one can easily see that our six-scalar and six-fermion ampli-

tudes (3.3) are correctly reproduced, as well as the mixed amplitude A(φ̄φφ̄φψ̄ψ) computed

in [37].

At one loop level, the functions f± are given in eq. (C.2). Plugging them in the general

expression of the superamplitude and performing algebraic manipulations similar to the

tree level case, the result reads

A(1)
6 = i C(P ) δ

3(P ) δ6(Q)

p2123

[

(

ǫijk 〈j k〉 ηIi + i ǭij̄k̄ 〈j̄ k̄〉 ηIī
)3

(〈1 | p23 | 4〉 − i 〈2 3〉 〈5 6〉) (〈3 |p12 | 6〉 − i 〈1 2〉 〈4 5〉)

−
(

ǫijk 〈j k〉 ηIi − i ǭij̄k̄ 〈j̄ k̄〉 ηIī
)3

(〈1 | p23 | 4〉+ i 〈2 3〉 〈5 6〉) (〈3 | p12 | 6〉+ i 〈1 2〉 〈4 5〉)

]

.

(3.15)

The analysis of this result and the discussion of its properties are postponed to section 5.
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(a)

(b)

B1(p0)

A1(p4m+1)

A2(p1)

Ā2(p4n)

Ā1(p2)

B̄1(p2m+1)

Ā2(p2m+2)

Ā1(p2m)A2(p2m−1)

A1(p2m+3)

A1(p4m−1) Ā2(p4m−2)

B1(p0)

A2(p1) Ā1(p2)

B2(p2m)

A1(p2m+1)

A2(p2m−1)Ā1(p2m−2)

Ā2(p2m+2)

Figure 2. Diagrams contributing to the tree level amplitudes with (4m + 2) and 4m external

particles, respectively.

4 Generalization to n points

We now consider general N(n/2−2)MHV amplitudes of the form (2.7), (2.8) with n = 4m+2

or n = 4m, respectively. Implementing a procedure similar to the one adopted for the six-

point amplitude, we evaluate them up to one loop.

4.1 Tree level

At tree level, we depict the amplitudes as in figure 2 where we have chosen the superfield

on the middle line of the leftmost vertex to be conventionally B1. We find convenient to

assign momentum p0 to that field and label the rest of momenta counterclockwise.

The first diagram corresponds to the (4m + 2)-point amplitude, whereas the second

one to the 4m-point amplitude.

In order to obtain effective action contributions from which we may read different com-

ponent amplitudes, we temporarily work in Euclidean superspace and perform D-algebra

on the two supergraphs.

For the time being we forget about color indices and order the superfields in the most

convenient way for making general formulae readable. At the end of the calculation, after

going to components, the fields will be reshuffled in order to take the planar order. This

will give rise to possible signs from permutation of fermions.
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As a result of performing D-algebra, the tree level effective action for (4m+ 2) super-

fields looks like

Γtree
4m+2 → i2m

∫

d4 θ A1(p4m+1)B1(p0)A
2(p1)×

[

m−1
∏

i=1

Ā1(p2i) Ā2(p4m+2−2i)D
2A2(p2i+1)A

1(p4m+1−2i) D̄
2

]

×

Ā1(p2m) B̄1(p2m+1) Ā2(p2m+2) , (4.1)

whereas for 4m superfields

Γtree
4m → i2m−1

∫

d4 θ A1(p4m−1)B1(p0)A
2(p1)×

[

m−2
∏

i=1

Ā1(p2i) Ā2(p4m−2i)D
2A2(p2i+1)A

1(p4m−1−2i) D̄
2

]

D2×

Ā1(p2m−2) Ā2(p2m+2)A
2(p2m−1)B2(p2m)A1(p2m+1) , (4.2)

where in both cases we have omitted the internal propagators which will be recovered

when deriving the amplitudes. In these formulae the D2 and D̄2 operators have to be

understood as acting on every field appearing on the right, and the factors inside the

products are ordered from left to right according to increasing i labels. Eq. (4.1) is strictly

valid for m > 1; for m = 1 the product inside square brackets has to be meant to be equal

to 1. Similarly, eq. (4.2) makes sense for m > 2, whereas for m = 2 the product has to be

understood as equal to 1. The i factors come from the internal vertices.

From these expressions, component amplitudes can be obtained by performing the

d4θ integration. By a simple counting of derivatives, and taking into account the defini-

tion (B.8) of the field components and the on-shell conditions (B.4), we can infer prelimi-

nary information about their nature.

We begin by discussing (4m + 2)-point amplitudes. In eq. (4.1) there are (2m +

1) chiral and (2m + 1) antichiral superfields, while only 2m D and 2m D̄ derivatives

appear. The first obvious consequence is that purely fermionic amplitudes can never be

generated. Instead, the maximally fermionic amplitude contains 4m fermions and 2 scalars.

By suitably performing D-algebra, it is easy to see that the scalars always appear at the

corners of the diagram, leading to nine possible such amplitudes. On the other hand, the

fact that there is an equal number of chiral and antichiral derivatives, guarantees that it

is always possible to perform D-algebra so as to obtain a purely scalar amplitude.

For 4m-point amplitudes, the expression (4.2) contains (2m+2) chiral superfields and

(2m− 2) antichiral ones. In this case the number of D and D̄ derivatives, including those

from the integration measure, are 2m and (2m − 2), respectively. Being them unequal,

means that it is never possible to distribute spinorial derivatives in such a way to get a

purely scalar amplitude that, therefore, vanishes. On the other hand, applying the spinorial

derivatives to the greatest number of superfields compatibly with their (anti)chiral nature,

will lead to amplitudes for (4m − 2) fermions and two scalars. The two scalars, coming

from two chiral superfields, can only appear one on the left and one on the right extremal

vertices, so leading to nine different configurations.
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After these preliminary observations, we now extract from the effective actions (4.1),

(4.2) the explicit expressions for the simplest component amplitudes, that is the ones with

the maximal number of scalars or fermions.

We first focus on the (4m+ 2)-point case. As already discussed, non-vanishing purely

scalar amplitudes can be obtained in this case by applying the same number of D and D̄

derivatives to (anti)chiral superfields and using the (anti)chirality conditions D̄αDβΦ(p)| =
pαβφ(p) andDαD̄βΦ̄(p)| = pαβφ̄(p). This produces square momentum factors at numerator

which will cancel some of the propagators. Given the particular distribution of spinorial

derivatives in (4.1), it is not difficult to prove by induction that the internal propagators

which will be canceled are the ones corresponding to odd positions in figure 2(a).

Therefore, going back to N = 3 notation for the scalar fields, we obtain

A(0)
4m+2(A

1(p4m+1), B1(p0), A
2(p1), Ā1(p2), . . . , B̄

1(p2m+1), · · · , Ā2(p4m))

≡ A(0)
4m+2(φ

1(p4m+1), φ̄3(p0), φ
2(p1), φ̄1(p2), · · ·φ3(p2m+1), · · · φ̄2(p4m))

=
m−1
∏

i=1

1

p24m+2−2i;1+4i

, (4.3)

where every index is understood to be cyclic with period (4m + 2) and we have used the

definition (A.9) for the square of the sum of on-shell momenta.

Similarly, the almost completely fermionic amplitude may be easily obtained by apply-

ing the spinorial derivatives on the maximal number of superfields. Trading the spinorial

fields with their polarization spinors, e.g. DαA
i| → λiα, the contractions arising from the

fermions associated to the internal vertices lead to the following factor

2m−1
∏

i=2

〈i, 4m+ 2− i〉 . (4.4)

Extra contractions will arise from fermions lying at the corner vertices, but these will be

different according to the position we choose for the two scalars.

If we focus on one particular amplitude, the one where the scalars are associated to

the B superfields, and go back to N = 3 notation, we obtain

A(0)
4m+2(α

1(p4m+1), B1(p0), α
2(p1) . . . ᾱ1(p2m) B̄1(p2m+1) ᾱ2(p2m+2) . . . ᾱ2(p4m))

≡ A(0)
4m+2(ψ2(p4m+1), φ̄3(p0), ψ1(p1) . . . ψ̄

2(p2m)φ3(p2m+1) ψ̄
1(p2m+2) . . . ψ̄

1(p4m))

= − i2m
2m−1
∏

i=1

1

p24m+2−i;1+2i

2m
∏

i=1

〈i, 4m+ 2− i〉 . (4.5)

As mentioned before, for 4m external particles the purely scalar amplitude of the type

we are studying is always vanishing. For maximally fermionic amplitudes, the analysis

goes through similarly to the (4m+2) case. Therefore, for instance, the almost completely

fermionic amplitude with scalars associated to the B superfields is

A(0)
4m(α1(p4m−1), B1(p0), α

2(p1) . . . α
2(p2m−1)B2(p2m)α1(p2m+1) . . . ᾱ2(p4m−2))

≡ −iA(0)
4m(ψ2(p4m−1), φ̄3(p0), ψ1(p1) . . . ψ1(p2m−1) φ̄4(p2m)ψ2(p2m+1) . . . ψ̄1(p4m−2))

= −i2m−1
2m−2
∏

i=1

1

p24m−i;1+2i

2m−1
∏

i=1

〈i, 4m− i〉 . (4.6)
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(c) (d)

(b)

Ā1(i) Ā1(i)

A2(i)
(a)

A2(i)

Figure 3. Blocks contributing at one-loop. In blocks (a) and (d) wavy lines correspond to V -

vectors, whereas in blocks (b) and (c) they correspond to V̂ -vectors.

4.2 One-loop

Given the particular configurations of external fields that we are considering, it is easy to

realize that in the planar limit one-loop corrections to the superamplitudes (2.7), (2.8) are

simply given by diagrams similar to the ones in figure 1 for the six-point case, with the

vector propagator connecting two adjacent matter lines in all possible ways.

It is then sufficient to evaluate the contribution of generic blocks as the ones drawn in

figure 3, representing the insertion of the vector propagator at position i.

We concentrate on a particular block, see figure 4, where we have generically indicated

(anti)chiral superfields with Φ (Φ̄) and introduced a label n which can take values (4m+2) or

4m, according to the amplitude we are considering. D-algebra leads to an expression similar

to (3.5) for the six-point case, given by the sum of a triangle and a box momentum integrals.

Forgetting for the moment the color indices and reordering the superfields according to

convenience, we find

B(a)
i = i

n

2
−1 4πλ (pL + pn−i + pi)

2∆(P )

∫

d4θ (. . . )L
d3k

(2π)3
[

k2 DαΦn−iDα Φ̄n−i−1Φi Φ̄i+1 + 2 εµνρ k
µ pνn−i p

ρ
n−i−1Φn−i Φ̄n−i−1Φi Φ̄i+1

]

k2(k − pn−i)2(k − pL − pi − pn−i)2(k + pn−i−1)2
(. . . )R ,

(4.7)

where ∆(P ) is the product of tree-level propagators entering the amplitude

∆(P ) =

n/2−2
∏

i=1

1

p2n−i;1+2i

(4.8)
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k

Dα D̄α

Φi Φ̄i+1

D2

D̄2

D̄2

D2

D2D̄2

Φn−i Φ̄n−i−1

pL pR

Figure 4. D-algebra for block B(a).

and (. . . )L and (. . . )R stand for the strings of fields and spinorial derivatives at the left and

at the right of the block diagram. Their explicit expressions will depend on the position i

where the block is inserted, as well as on the kind of amplitude we are considering.

Evaluating the momentum integral in (4.7) and performing some non-trivial manipu-

lation, the contribution from this block may be simplified to

B(a)
i = − i

n
2−1 π

2
λ∆(P )

∫

d4θ
D

2
D2 [(. . . )LΦiD

αΦn−i] Dα Φ̄n−i−1 Φ̄i+1 (. . . )R
√

p2L,i

√

p2n−i,n−i−1

√

p2i+1,R

. (4.9)

Computing in a similar way the contributions from the other blocks in figure 3 we

eventually find

B(b)
i = i

n
2−1 π

2
λ̂∆(P )

∫

d4θ
D

2
D2 [(. . . )LΦn−iD

αΦi] Dα Φ̄i+1 Φ̄n−i−1 (. . . )R
√

p2R,n−i−1

√

p2n−i,L

√

p2i,i+1

B(c)
i = i

n
2−1 π

2
λ̂∆(P )

∫

d4θ
D2D

2 [
(. . . )L Φ̄i D̄

α Φ̄n−i

]

DαΦn−i−1Φi+1 (. . . )R
√

p2R,n−i−1

√

p2n−i−1,n−i

√

p2i+1,R

B(d)
i = −i

n
2−1 π

2
λ∆(P )

∫

d4θ
D2D

2 [
(. . . )L Φ̄n−i D̄

α Φ̄i

]

DαΦi+1Φn−i−1 (. . . )R
√

p2L,n−i

√

p2i,i+1

√

p2n−i−1,R

. (4.10)

The full one-loop contribution is then given by a sum over these blocks, properly

inserted in the corresponding tree level diagrams.

In the (4m+2) case there are m insertions of blocks (a) and (b), corresponding to odd

indices and (m − 1) insertions of blocks (c) and (d), corresponding to even indices in the

sum. Therefore, we can write

Γ1−loop
4m+2

(

A1(p4m+1)B1(p0) . . . Ā2(p4m)
)

=
m
∑

i=1

(

Ba
2i−1+Bb

2i−1

)

+
m−1
∑

i=1

(

Bc
2i+Bd

2i

)

. (4.11)
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The strings of fields on the left and on the right of the diagram are explicitly given by

(. . . )L=



























[

∏(i−1)/2
j=1 D̄2 Ā1(pi+1−2j) Ā2(p4m+1−i+2j)D

2A2(pi−2j)A1(p4m+2−i+2j)
]

B1(p0)

i odd
[

∏(i−2)/2
j=1 D2A2(pi+1−2j)A1(p4m+1−i+2j) D̄

2 Ā1(pi−2j) Ā2(p4m+2−i+2j)
]

D2 (A1(p4m+1)B1(p0)A2(p1)) i even

(. . . )R=



























[

∏m−(i+1)/2
j=1 D2A2(pi+2j)A1(p4m+2−i−2j) D̄

2 Ā1(pi+1+2j) Ā2(p4m+1−i−2j)
]

B̄1(p2m+1) i odd
[

∏m−(i+2)/2
j=1 D̄2 Ā1(pi+2j) Ā2(p4m+2−i−2j)D

2A2(pi+1+2j)A1(p4m+1−i−2j)
]

D̄2
(

Ā1(p2m) B̄1(p2m+1) Ā2(p2m+2)
)

i even

(4.12)

In the 4m case there are (m − 1) insertions of blocks (a) and (b), corresponding to odd

indices and (m − 1) insertions of blocks (c) and (d), corresponding to even indices in the

sum. We can write

Γ1−loop
4m

(

A1(p4m+1)B2(p0) . . . Ā2(p4m)
)

=
m−1
∑

i=1

(

Ba
2i−1+Bb

2i−1

)

+
m−1
∑

i=1

(

Bc
2i+Bd

2i

)

. (4.13)

The strings of fields on the left and on the right of the diagram are

(. . . )L=































[

∏(i−1)/2
j=1 D̄2 Ā1(pi+1−2j) Ā2(p4m−1−i+2j)D

2A2(pi−2j)A1(p4m−i+2j)
]

B1(p0)

i odd
[

∏(i−2)/2
j=1 D2A2(pi+1−2j)A1(p4m−1−i+2j) D̄

2 Ā1(pi−2j) Ā2(p4m−i+2j)
]

D2 (A1(p4m−1)B1(p0)A2(p1)) i even

(. . . )R=



























[

∏m−(i+3)/2
j=1 D2A2(pi+2j)A1(p4m−i−2j) D̄

2 Ā1(pi+1+2j) Ā2(p4m−1−i−2j)
]

D2 (A2(p2m−1)B2(p2m)A1(p2m+1)) i odd
[

∏m−(i+2)/2
j=1 D̄2Ā1(pi+2j)Ā2(p4m−i−2j)D

2A2(pi+1+2j)A1(p4m−1−i−2j)
]

B2(p2m)

i even

(4.14)

In principle, the formulae above allow to extract all the component amplitudes within the

particular class we are considering. Clearly, the procedure becomes more and more cumber-

some as the number of particles grows, but this problem can be overcome by implementing

the extraction of the components by a computer program.

Nevertheless, there exist some component amplitudes which are particularly simple,

as they receive very few corrections. In fact, at tree level we concentrated on purely scalar

and maximally fermionic amplitudes as the two cases where the number of possibilities to

distribute spinorial derivatives on the superfields gets minimized.
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At one loop, it can be easily inferred from D-algebra that in the class of amplitudes

under investigation purely scalar amplitudes can never be generated. Furthermore it is

easy to realize that there are no purely fermionic amplitudes for n > 6. This is due to

the fact that whenever a block is inserted, factors like D2
(

A1B2A
2
)

or D̄2
(

Ā1B̄
2Ā2

)

get

produced, which can never lead to three fermions. On the other hand, whenever the block

is inserted at the corners of the diagram this is partially avoided. In fact, in these cases it

is possible to place three fermions on the left corner or, similarly, at the right one. This is

the technical reason why at six points a purely fermionic amplitude arises.

Exploiting this pattern, we can restrict to a subclass of amplitudes with 4m (4m− 2)

fermions, out of the external 4m + 2 (4m) superfields, where for instance we require all

fields at the left corner to be fermions. These are particularly simple cases because the

amplitudes receive quantum corrections by two diagrams only, the ones with upper and

lower blocks at the left corner, independently of the number of external legs.

Explicitly, the two contributions from (a) and (b) blocks divided by their tree level

counterpart read

− π

2
λ

∫

d4θ
D

2
D2 [DαA1(pn−1)B1(p0)A2(p1)] Ā1(p2) (. . . )RDα Ā2(pn−2)

√

p201

√

p2n−1,n−2

√

p2n−2;4

+
π

2
λ̂

∫

d4θ
D

2
D2 [A1(pn−1)B1(p0)D

αA2(p1)] Dα Ā1(p2) (. . . )R Ā2(pn−2)
√

p2n−1;4

√

p20,n−1

√

p212

. (4.15)

Performing the θ-integration while requiring the fields at the left corner to be fermions,

leads necessarily to apply the D2 operator from the measure on the first term in square

brackets. In fact, this gives rise to D2D̄2D2[· · · ] = −p2n−1;3D
2[· · · ], and distributing the

remaining D2 on the three superfields in the brackets in the only possible way compatible

with the equations of motion (B.4), we obtain three fermions.

The remaining D̄2 from the measure must act on the rest of the string of superfields.

There, the ellipses (· · · )R depend on the number of total particles, but they are always

given by a string beginning with a D2 operator acting on the fields and derivatives on the

right of the block (see eqs. (4.12), (4.14)). Depending on how we distribute the derivatives

on the superfields, different component amplitudes will be generated.

As an example, we select the amplitude where all the superfields give rise to fermions,

except for A2(p3) and the B̄1 (or B2) superfield at the right corner, which give rise to

the two scalars. This fixes D-algebra uniquely and we obtain the general expression valid

for n ≥ 8

A(1)
(

α1(pn−1)β1(p0)α
2(p1) ᾱ1(p2)A

2(p3) ᾱ1(p4) . . . B(p(n−2)/2) . . . ᾱ2(pn−2)
)

= − π

2
p2n−1;3

(n−2)/2
∏

i=3

〈i, n− i〉×


λ
〈0 1〉
√

〈0 1〉2
〈n− 2, n− 1〉
√

〈n− 2, n− 1〉2
〈2 3〉

√

p2n−2;4

− λ̂
〈1 2〉
√

〈1 2〉2
〈n− 1, 0〉
√

〈n− 1, 0〉2
〈3, n− 2〉
√

p2n−1;4



 , (4.16)
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where the B scalar stands either for B̄1 or B2.

This result shares the peculiar features of the six-point amplitudes, namely the presence

of discontinuities due to the ratios of invariants producing sign functions.

5 Discussion and conclusions

We now discuss important properties of the one-loop amplitudes we have found.

First of all, we have determined one-loop non-vanishing amplitudes for any number n

of external particles with n ≥ 6. The result is given in terms of scalar triangle integrals,

the only one-loop topology that exhibits dual conformal covariance.

These amplitudes, in contrast with the four-point ones, are never MHV and, in analogy

with the four dimensional case, are not expected to be dual to bosonic light-like polygon

Wilson loops. For this reason, there is no contradiction between our findings and the one-

loop vanishing of n-polygon Wilson loops in any three dimensional Chern-Simons theory,

with or without matter.

In four dimensional N = 4 SYM theory, NkMHV amplitudes have been shown to be

dual to the θ4k-component of a superWilson loop constructed in terms of N = 4 supercon-

nections integrated over light-like closed paths in N = 4 superspace [59–61]. It would be

interesting to find an analogous construction for a superWilson loop in ABJ(M) theories

whose components should be dual to the amplitudes we have computed. The construction

might be complicated by the fact that in three dimensions we do not have an on-shell

N = 6 superspace description.

We now discuss Yangian invariance of our amplitudes at one loop. For simplicity, we

concentrate on the full six-point superamplitude of section 3.

For N = 4 SYM in four dimensions, the generators of the superconformal algebra

under which superamplitudes are invariant, are identified as the level zero generators of a

Yangian algebra. Level one generators are constructed as bilocal composites of level zero

generators and give rise to dual superconformal symmetry of the scattering amplitudes.

The closure of the level zero and one generators forms the Yangian algebra [62, 63].

For three dimensional theories the analogous construction has been worked out in [33]

where the explicit expression for level zero and one generators has been given. Successively,

in analogy with the four dimensional case, it has been shown that level one generators of

Yangian algebra are equivalent to dual superconformal generators when acting on on-shell

amplitudes [35].

As already mentioned, at any loop order superconformal invariance restricts the form

of the six-point superamplitude to be [33]

A(l)
6 = δ3(P ) δ6(Q)

[

f+(l)(λ) δ3(α) + f−(l)(λ) δ3(β)
]

. (5.1)

This has been used in section 3 for determining the exact expression of the superamplitude

at tree and one-loop order, starting from the knowledge of two components.

At tree level, requiring the six-point superamplitude in question to be annihilated by

the superconformal and dual superconformal generators translates into two constraints on
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the f+(0)(λi) and f−(0)(λi) functions, which come in the form of differential equations in

the spinor variables λαi . In [33] it was shown that these are satisfied separately by both

functions for generic choices of the external momenta, implying Yangian invariance of the

superamplitude at this order.

We then study what happens at one loop. A first important observation is that from

our explicit evaluation it is easy to realize that the one-loop functions f±(1) are proportional

to the tree-level ones f±(0), according to

f+(1) = −i C(P ) f+(0) and f−(1) = i C(P ) f−(0) , (5.2)

where the proportionality factor C(P ) has been given in eq. (3.9).

The interesting feature of C(P ) is that it is given as a sum of products of 〈kl〉/
√

〈kl〉2
factors. Using the prescription (A.11) for the determination of square roots of momentum

invariants, these factors give rise to sign functions that evaluate to ±1, depending on the

particular kinematic configurations of the external particles. It follows that the C(P ) factor
is always constant and can take four different values ±π

2 (λ+ λ̂) or ±π
2 (λ− λ̂), which reduce

to ±πλ or strictly 0 in the ABJM case.

The C(P ) factor inherits discontinuities from the sign functions. Since these are discon-

tinuous in points where their argument goes to zero, it follows that the regions of discontinu-

ities of C(P ) are represented by sets of points where two particle momenta become collinear.

Away from collinear configurations the f±(1) functions are separately proportional to

the tree-level ones, up to a constant factor. Therefore, the one-loop superamplitude inherits

Yangian invariance from its tree level counterpart. This happens locally, in all regions of

constancy for the C(P ) factor.
Careful analysis has to be devoted to collinear kinematic regions where C(P ) becomes

discontinuous. In fact, close to these regions the differential equations required by Yangian

invariance get spoiled by the appearance of an anomaly.

To understand how the anomaly arises, we first observe that given the definition (A.11)

for a generic 〈kl〉/
√

〈kl〉2 ratio, the direct application of the derivative with respect to one

of the two spinors involved in the contraction gives

∂

∂λαk

(

〈kl〉
√

〈kl〉2

)

= 2a λlα δ (a 〈kl〉) , (5.3)

where a = 1 for ElEk < 0, whereas a = −i for ElEk > 0.

The appearance of the δ-function has drastic consequences when applying the super-

conformal generators SA
α = ηA ∂

∂λα to the six-point superamplitude. In fact, the variation

of the six-point superamplitude under these generators reads [33]

SA
α A6 = δ3(P ) δ6(Q)

((

6
∑

k=1

x+k
∂ f+

∂ λαk

)

βAδ3(α) + {(α,+) ↔ (β,−)}
)

, (5.4)

where x± have been defined in (3.11).
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Focusing on the one-loop superamplitude, the variation of the C(P ) factor inside

f±(1) gives

SA
α A(1)

6 = δ3(P ) δ6(Q)

((

−i f+(0)
6
∑

k=1

x+k
∂ C(P )
∂ λαk

)

βAδ3(α)− {(α,+) ↔ (β,−)}
)

,

(5.5)

To evaluate this expression we restrict for instance to a configuration where scattered par-

ticles have alternating energy signs, so to keep all spinor contractions of adjacent momenta

real. All other energy configurations can be adjusted adding i factors as mentioned above.

Recalling the explicit expression (3.9) for the C(P ) factor and using the identity (5.3),

the term
∑6

k=1 x
+
k

∂ C(P )
∂ λa

k

turns out to be non-trivial and given by (all indices are understood

to be cyclic mod 6)

6
∑

k=1

x+k
∂ C(P )
∂ λαk

= π λ
∑

i=1,3,5

x+[i λi+1]α δ(〈i, i+ 1〉) 〈i+ 2, i+ 3〉
√

〈i+ 2, i+ 3〉2
〈i+ 4, i+ 5〉
√

〈i+ 4, i+ 5〉2

+ π λ̂
∑

i=2,4,6

x+[i λi+1]α δ(〈i, i+ 1〉) 〈i+ 2, i+ 3〉
√

〈i+ 2, i+ 3〉2
〈i+ 4, i+ 5〉
√

〈i+ 4, i+ 5〉2
. (5.6)

Therefore the superconformal generators SA
α act non-trivially on the superamplitude when-

ever we are close to configurations that correspond to δ-function supports, that is, at

collinear limits. This signals the presence of an anomaly in the variation of the one-loop

superamplitude that strictly resembles the holomorphic anomaly occurring at tree level in

four dimensions [64]–[68].

Similarly, the level one generator of the Yangian algebra P(1) constructed in [33] can

be shown not to annihilate the C(P ) function either. Therefore, dual superconformal

symmetry is also anomalous at one loop.

For scattering processes involving more than six particles we have found only few

component amplitudes, while an expression for the complete superamplitude is still lacking.

However, already at component level, the particular n-point amplitudes we have computed

(see eq. (4.16)) exhibit the same kind of discontinuities as the ones of the six-point case.

Therefore, a pattern similar to the one described above is expected to emerge and will lead

to the appearance of anomalies.

In four dimensions, the tree-level holomorphic anomaly arising in n-point amplitudes

can be written as an operator acting on a (n−1)-point amplitude. At the level of generating

functional of all the amplitudes the exact invariance can then be recovered by deforming

the classical superconformal generators via the addition of this extra operator [65]–[68].

It would be interesting to investigate whether a similar pattern might be implemented in

three dimensions in order to cancel the one-loop anomaly that we have found.

In four dimensions, delta-function anomalies at tree level can be efficiently used for

computing amplitudes at one loop. In fact, for MHV and NMHV amplitudes they have

been exploited at the unitarity cuts in order to determine the coefficients of one-loop box

integrals [69–71]. Along the same line of reasoning, the one-loop anomaly we have found

could be exploited for computing two-loop amplitudes via generalized unitarity cuts.
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A Conventions and results in three dimensions

The results for the amplitudes are given in Minkowski metric gµν = diag{−1, 1, 1}.
Fourier transform to momentum space is defined as

f(x) =

∫

d3p

(2π)3
e−ipx f̃(p) , (A.1)

from which i∂αβ → pαβ .

On-shell solutions of the fermionic equations of motion are expressed in terms of

SL(2,R) commuting spinors λα. The same quantities allow to write on-shell momenta

as

pαβ ≡ pµ(γ
µ)αβ = λαλβ (A.2)

where the set of 2× 2 gamma matrices are chosen to satisfy

(γµ)αγ (γν)γβ = gµν δαβ − i ǫµνρ (γρ)
α
β . (A.3)

An explicit set of matrices is (γµ)αβ = {σ0, σ3, σ1}.
Spinorial indices are raised and lowered as

λα = Cαβλβ λα = λβCβα , (A.4)

where the C matrix is

Cαβ =

(

0 i

−i 0

)

Cαβ =

(

0 −i
i 0

)

. (A.5)

We define contractions as

〈i j〉 = −〈j i〉 ≡ λαi λαj = Cαβλβiλαj . (A.6)

For any couple of on-shell momenta we write

p2ij ≡ (pi + pj)
2 = 2 pi · pj = pαβi (pj)αβ = 〈i j〉2 . (A.7)

Analogously, for three of them we use

p2ijk ≡ (pi + pj + pk)
2 = 2 pi · pj + 2 pi · pk + 2 pj · pk = 〈i j〉2 + 〈i k〉2 + 〈j k〉2 . (A.8)
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More generally, we define

p2i;j =

(

j−1
∑

k=0

pi+k

)2

. (A.9)

Inverting eq. (A.2), the energy of the particle is given by

E ≡ p0 =
1

2
(γ0)αβpαβ =

1

2

(

λ 2
1 + λ 2

2

)

. (A.10)

It follows that real spinors describe positive energy solutions of the Dirac equation, that

is particles traveling forward in time, whereas purely imaginary spinors represent negative

energy solutions, that is particles traveling backwards in time.

As a consequence, given particles k and l, the nature of their polarization spinors, or

equivalently the signs of their energies, determines the sign of the two-particle invariant

(pk+ pl)
2 as follows: If EkEl < 0 then one of the spinors is real and the other one is purely

imaginary. Therefore, 〈k l〉 is real and its square 〈k l〉2 = (pk + pl)
2 positive. On the other

hand, if EkEl > 0, then the two spinors have the same nature, their contraction is purely

imaginary and its square is negative.

We define square roots of two-particle invariants via the iǫ prescription. Depending

on the sign of the energies we have

〈kl〉
√

〈kl〉2 + iǫ
= Sign [〈kl〉] for EkEl < 0

〈kl〉
√

〈kl〉2 + iǫ
= Sign [−i 〈kl〉] for EkEl > 0 , (A.11)

where Sign is the sign function. Note that the ’i’ factor inside the argument of the second

sign function compensates the fact that in this case the 〈kl〉 contraction is purely imaginary.

The whole argument of the Sign function is thus real and well defined in both cases.

For one-loop calculations we have used the following massive triangle

T (pim, pjl) =

∫

d3k

(2π)3
1

(k − pi)2 (k − pi − pj − pl)2 (k + pm)2
=

1

8
√

p2im

√

p2jl
√

p2r

(A.12)

and a tensorial box integral which can be re-expressed in terms of the scalar triangle

Q(pi, pjl, pm) =

∫

d3k

(2π)3
ǫµνρ k

µ pνi p
ρ
m

k2 (k − pi)2 (k − pi − pj − pl)2 (k + pm)2
(A.13)

=
ǫµνρ (pj + pl)

µ pνi p
ρ
m

8 (pi + pj + pl)2
√

p2im

√

p2jl
√

p2r

=
ǫµνρ p

µ
jl p

ν
i p

ρ
m

p2ijl
T (pim, pjl) ,

where pr = −pim − pjl. The last equality can be also proved at the level of Feynman-

parametrized integrals.
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B The ABJ(M) theory in N = 2 notation

A realization of N = 6 supersymmetric ABJ(M) models can be given in terms of N = 2

three dimensional superspace [58]. For U(M) × U(N) gauge group, the physical field

content is organized into two vector multiplets (V, V̂ ) in the adjoint representation of the

first and the second group respectively, coupled to chiral multiplets Ai and Bi carrying a

fundamental index i = 1, 2 of a global SU(2)A × SU(2)B and in the bifundamental and

antibifundamental representations of the gauge group, respectively.

To derive effective action contributions from which we extract amplitudes, we work in

euclidean superspace (xαβ , θα, θ̄β), α, β = 1, 2, with the effective action defined as eΓ =
∫

eS . The N = 6 supersymmetric action reads

S = SCS + Smat , (B.1)

with

SCS =
K

4π

∫

d3x d4θ

∫ 1

0
dt
{

Tr
[

V D
α (
e−tV Dα e

tV
)

]

− Tr
[

V̂ D
α
(

e−tV̂Dαe
t V̂
) ]}

Smat =

∫

d3x d4θ Tr
(

Āi e
V Ai e−V̂ + B̄i eV̂ Bi e

−V
)

+
2πi

K

∫

d3x d2θ ǫik ǫ
jl Tr

(

AiBj A
k Bl

)

+
2πi

K

∫

d3x d2θ̄ ǫik ǫjl Tr
(

Āi B̄
j Āk B̄

l
)

. (B.2)

Here K is an integer, as required by gauge invariance of the effective action. In the

perturbative regime we take λ ≡ M
K ≪ 1 and λ̂ ≡ N

K ≪ 1.

Superspace covariant derivatives are defined as

Dα = ∂α +
i

2
θ
β
∂αβ , Dα = ∂̄α +

i

2
θβ ∂αβ (B.3)

and satisfy {Dα, Dβ} = i ∂αβ .

We require the external particles to be on-shell, that is to satisfy the free equations of

motion

D2Ai = D2Bi = 0 , D̄2Āi = D̄2B̄i = 0 (B.4)

The quantization of the theory can be easily carried on in superspace after performing

gauge fixing (for details, see for instance [72, 73]). In momentum space and using Landau

gauge, this leads to gauge propagators

〈V a
b (1)V

c
d(2)〉 =

4π

K

1

p2
δad δ

c
b ×D

α
Dα δ

4(θ1 − θ2)

〈V̂ ā
b̄ (1) V̂

c̄
d̄ (2)〉 = −4π

K

1

p2
δād̄ δ

c̄
b̄ ×D

α
Dα δ

4(θ1 − θ2) , (B.5)

whereas the matter propagators are

〈Āā
a(1)A

b
b̄(2)〉 =

1

p2
δāb̄ δ

b
a ×D2D̄2 δ4(θ1 − θ2)

〈B̄a
ā(1)B

b̄
b(2)〉 =

1

p2
δab δ

b̄
ā ×D2D̄2 δ4(θ1 − θ2) , (B.6)
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where a, b and ā, b̄ are indices of the fundamental representation of the first and the second

gauge groups, respectively. The vertices employed in our one-loop calculation can be easily

read from the action (B.2) and they are given by

∫

d3x d4θ
[

Tr(ĀiV A
i)− Tr(BiV B̄

i) + Tr(B̄iV̂ Bi)− Tr(AiV̂ Āi)
]

+
4πi

K

∫

d3x d2θ
[

Tr(A1B1A
2B2)− Tr(A1B2A

2B1)
]

+ h.c. . (B.7)

The field components are defined as

Ai| = Ai , Bi| = Bi , Āi| = Āi , B̄i| = B̄i

DAi| = αi , DBi| = βi , D̄Āi| = ᾱi , D̄B̄i| = β̄i . (B.8)

C Six-point amplitude: The f± functions

In this appendix we list explicitly the f± functions entering the computation of the six-point

superamplitude in section 3

f+(0) = −
√
2
√

p2123
(〈1 | p23 | 4〉 − i 〈2 3〉 〈5 6〉) (〈3 | p12 | 6〉 − i 〈1 2〉 〈4 5〉)

f−(0) = −
√
2
√

p2123
(〈1 | p23 | 4〉+ i 〈2 3〉 〈5 6〉) (〈3 | p12 | 6〉+ i 〈1 2〉 〈4 5〉) . (C.1)

Similarly, the f± functions at one loop read

f+(1) = −i C(P ) f+(0) , f−(1) = i C(P ) f−(0) , (C.2)

where C(P ) has been defined in eq. (3.9).
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