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Based on a consistent bulk of experimental and epidemiologic works, we proposed that abnormal
metabolism and/or dietary deprivation of essential polyunsaturated fatty acids by inducing
a chronic and subclinical essential fatty acid deficiency (EFAD) in urothelial cell membranes may
enhance the risk for urinary tract tumor (UTT) development. This threat may be enhanced by the
unusual fact that the fatty-acid profile of the normal urothelium is similar to that reported in EFAD.
The risk for UTT may be worsened when coexisting with a low-grade chronic inflammation (LGCI)
state induced by urolithiasis or disbalance management of peroxides, free radical molecules, and
their quenchers. There is cumulative evidence linking the LGCI of the urinary tract mucosa, calculi,
and UTT, due to the long-standing release of promitotic, promutagen, and pro-inflammatory
antiapoptotic cytokines in these conditions. The dual role played by pro- and anti-inflammatory
eicosanoids and bioactive lipids, cytokines, and the disbalance of lipid peroxidation is discussed,
concluding that the moderate, long-standing consumption or dietary supplementation of u-3
PUFAs may improve the chances of avoiding UTT development.

� 2013 Elsevier Inc. All rights reserved.
Introduction

Urinary tract tumor (UTT) in humans continues to be
a major concern as death rates due to bladder neoplasms
have not diminished appreciably over recent decades (revised
in Andreatta [1,2]). It is possible that the tumorigenic effect of
urothelial mutagens, whether ingested in the diet and/or flushed
by urine, may be avoided by the normal integrity of the “passive
barrier” to water-soluble molecules located at the luminal
surface of themammalian urothelium in normal conditions [3,4].
UTT are the 10th cause of cancer worldwide, with annual age
standardized incidence rates being 100 per 100,000 for men and
36 per 100,000 for women, respectively, according to worldwide
data from 2002 [1,5,6]. Even if this mortality is not remarkably
high, the morbidity and recurrence of these tumors provides
a serious challenge for oncologic treatment and follow-up. Our
earlier studies on geo-location showed that UTT are the fourth
in incidence among men in Argentina (South America), with
intriguingly different patterns occurring in several countries
of this region [6].
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The causes of UTT are still scarcely understood. Because
genetic background seems to play aminor role in their proneness,
environmental factors become the main factors of suspicion [1,2].
The major environmental causes of UTT appear to be tobacco
smoking [7], occupational risks occurring in the dye industries
[8], chronic inflammation of the bladder by certain microorgan-
isms [9–11], alcoholism [1,2,5,12,13], chronic arsenicism from
drinking water in South America (mainly Argentina, Chile)
[14–16] and China [17], accidental intoxicationwithmelamine (as
happened recently in China, as this compound has procarcino-
genic capabilities in rodent urinarymucosa [18–20]), and possibly
several artificial sweetners [5]. These risk conditions are probably
worsened by the urinary tract infections and urolithiasis that
often coexist with some of these conditions [9,21–23].

Although research into the possible associations between UTT
and dietary factors has been limited, several food-protein
derivatives exhibiting mutagenicity capabilities have been
identified in the urine of humans and animals. These include
nitrosamines as well as tryptophan metabolites, but evidence of
their tumorigenic effects on the urinary tract (UT) mucosa is still
vague [24]. Moreover, the role played by nutritional fats, mainly
polyunsaturated fatty acids (PUFAs) in UTT etiology, is compar-
atively even less understood [25–27].
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The main experimental, epidemiologic, and clinical aspects
of the relationship between UTT and PUFAs were covered in
our previous articles [1,2,4,5,18,19,28,29], in which we discussed
considerable data indicating that dietary PUFAs play a crucial
role in UTT. Hence, we proposed that the UT in mammals,
including humans, might have a proneness to develop tumors if
a deficiency or perturbations of the PUFA metabolism is present.
In rodents, chronic essential fatty acid deficiency (EFAD) induces
both urolithiasis, transitional hyperplasias and displasias, fol-
lowed by the development of UTT [30,31], with Zhang et al.
reporting similar results [31]. A high intake of saturated fats
or non-essential fatty acids (EFAs), conditions that may induce
a subtle chronic EFAD, increased the risk for bladder cancer in
case–control studies. In other cell populations, EFAs, mainly
those of the u-3 family, are beneficial as preventive and thera-
peutic nutrients for avoidance and treatment of cancer. There-
fore, we suggested that an abnormal metabolism and/or
nutritional deprivation of EFA, by inducing a chronic deficiency
or a subclinical EFAD together with chronic inflammation
(urolithiasis), might enhance the risk for UTT [4,28,29]. Further
studies provide support to this proposal [32–36]. The aim of this
article was to give a fresh, updated review based on our basic and
epidemiologic investigations and from other authors about the
relationship among dietary fatty acids (mainly PUFAs), urolith-
iasis, chronic inflammation, and risk for UTT (Fig. 1).

Brief reminder of the metabolism and physiology
of essential PUFAs

Dietary fatty acids (FAs) are oxidized to provide energy, stored
in adipose tissue, and selectively incorporated into the phos-
pholipids (PLs) of all cellular membranes. Once ingested in food,
FAs are desaturated and elongated to yield several PUFAs, which
are long carbon-chain molecules having two or more double
bonds of the cis configuration. u-3 and u-6 PUFAs cannot
be synthesized by metazoan, but must be ingested through the
diet and hence are EFAs. The PUFA u-6 family derive from lino-
lenic acid (LA; 18:2 u-6) and those belonging to u-3 arise from
a-linolenic acid (ALA; 18:3 u-3). In contrast, monounsaturated
palmitoleic acid (POA; 16:1 u-7) and oleic acid (OA, 18:1 u-9) are
synthesized by the body. Although all EFAs are PUFAs, not all
PUFAs are EFAs (revised by Das [37,38]). However, in this work
PUFAs and EFAs are used synonymously. Non-EFAs refer to
monounsaturated POAs and OAs and their non-EFA long-chain
PUFA derivatives. Nevertheless, often saturated fat, trans-FA, and
cholesterol are included under this name.

ALA and LA, and eventually non-EFA from the u-7 and u-9
families, compete for a common delta-5 and delta-6 desaturase.
In this “race,” 18:3u-3 ALA is desaturated preferentially, followed
by 18:2 u-6 LA, thus avoiding the conversion of OA to the more
highly unsaturated u-9 metabolites, of which one of them is
considered a reliable “marker” of EFAD, namely 20:3 u-9 (Mead’s
acid) [39]. Thus, under the normal dietary habits prevailing in
Western countries [24,40,41], tissue lipids will contain consider-
able amounts of OA, a modest quantity of POA but not their
long-chain non-EFA/PUFA derivatives. Although a dietary lack of
EFA is rarely seen in developed countries, this abnormality may
be subtly induced by the long-standing ingestion of foods
enriched in non-EFAs (OA, trans-FA, hydrogenated and/or satu-
rated fats, and cholesterol-rich foods). Indeed, one useful exper-
imental approach to induce a fast EFAD is the supplementation of
dietary formula with OA, cholesterol, or saturated fats [18,19,42].
When the dietary amounts of OA and/or other non-EFAs
are abnormally high, the activity of delta-6 desaturase is
progressively stimulated. Thus, OA u-9 becomes preferred for
further elongation and desaturation. This process is considered an
ineffective attempt to replace with the long-chain highly unsat-
urated metabolites (mainly 20:3 u-9), the missing EFAs both
in the “structural” membrane PLs and as substrates for eicosa-
noids and other bioactive lipid metabolites (BALs). Despite 20:3
u-9 not being an adequate precursor for eicosanoids and other
BALs, this PUFA still may be converted to abnormal, prostanoids,
several eicosanoids, hydroperoxy FAs, and active leukotrienes
(LTs), with this being perhaps one of the causes for a disbalanced
functioning of the eicosanoids in EFAD [25,28,43,44].

PUFAs are essential molecules for PLs, which are major
components of all cell membranes including urothelium. Hence,
PUFAs per se will give to membranes particular properties such
as fluidity/viscosity, and in turn modulate the dynamics and
biophysical properties of biomembranes [45,46], ligand-receptor
interactions, and also many activities of membrane-bound
enzymes, ions channels, glycoproteins, and proteoglycan re-
ceptors of immune cells [46–48]. Long-chain highly unsaturated
PUFAs (as arachidonic acid [AA], docosahexaenoic acid [DHA],
eicosapentaenoic acid [EPA]) are highly flexible molecules com-
pared with those more rigid areas of the bilayer caused by large
amounts of monoenes and saturated FAs. The relative enrich-
ment of cholesterol promotes lateral segregation of protein and
the gathering of certain lipids in the bilayer, thereby forming
more permanent clustered microdomains known as “rafts.”Th-
ese can prevent the movement of big protein complexes in
the membrane, as happens with a peculiar variety of rafts, the
uroplaquins of the mammal urothelium, whose structure is
heavily modified by dietary PUFAs [49–53].

When PUFAs are released from PLs by the activities of several
phospholipases [54,55], they are further processed through the
activities of two main enzymatic pathways: the cycloxygenases
(COX) and lipooxygenases, which lead to wide varieties of
prostaglandins, eicosanoids, endocannabinoids, lipoxins, nitro-
lipids, neuroprotectins, maresins, resolvins, hydroxyeicosate-
traenoic acids (HETEs), nitrolipids, and hepoxilins, among other
BALs [37,38,56,57]. However, most of these BALs are very
short-lived molecules, a fact that warrants accurate tissue
homeostatic balance. BALs are produced locally when needed
and are then almost instantaneously destroyed. Due to their
intense activity at very low concentrations (even at values of nM
or mM), it is easy to understand why there are no a pools of
eicosanoids or BALs already formed in the body. Moreover, most
eicosanoids arising from the same substrate (i.e., AA) exhibit an
agonistic/antagonistic behavior, with their equilibrated balance
being a key function as homeostatic cell controllers [37,38,58,59].

As mentioned previously, the relative availability of the u-6
PUFA substrates in foods [24,40,41] tilts the synthesis tou-6 BALs
derivatives. However, if the u-3 are progressively eaten, the BALs
belonging to this family will be increased. The well-known
beneficial activities of u-3 PUFAs and its derivatives with
regard to u-6, but mainly in contrast to non-EFAs u-9-BALs, have
been consistently shown [58,60,61]. Simplistically speaking,
taken as a whole, the PUFA derivatives from u-3 exhibit
anti-inflammatory and antineoplastic properties [62], with these
comparatively beneficial properties having been demonstrated
in several chronic diseases that have in common a long-standing
“bed” of low-grade chronic inflammatory processes (LGIC), such
as metabolic syndrome, obesity, type 2 diabetes, dislipidemias,
stroke, coronary heart disease, lithiasis, endothelial dysfunction,
atherosclerosis, and hypertension [38,61,63]. These complex and
interlinked diseases have led UNDas to propose that endogenous
anti-inflammatory PUFA derivatives (mainly from the u-3



Fig. 1. The relationship among dietary PUFA, urolithiasis, and low-grade chronic inflammation (LGCI) and urinary tract tumor (UTT) risk. CRP, C-reactive protein; EFAD,
essential fatty acid deficiency; HETEs, hydroxyeicosatetraenoic acids; ILs, interleukins; LTs, leukotrienes; LXs, lipoxins; PCIs, prostacyclins; ROS, reactive oxygen substances;
TNF-a, tumor necrosis factor-alpha; TXs, thromboxanes.
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family) have the capability to regulate inflammatory processes
and to prevent on even suppress the LGIC conditions that are
strongly linked to the illness conditions listed previously [37,38].

In many cancer cells, the metabolism of the PUFAs is clearly
abnormal, insofar as there is a partial or complete loss of the
enzyme delta-6 desaturase, which catalyzes one of the initial
desaturation steps in the pathways involved in the synthesis
of longer-chain PUFAs, whose sufficiency becomes progressively
diminished. Additionally, cancer cells exhibit low levels of per-
oxidation and increased antiperoxidation strategies [25, 37,38,60,
64,65]. Therefore, considering that most experimental and ep-
idemiologic studies show antineoplastic and anti-inflammatory
capabilities for long-chain highly unsaturated u-3 fatty acids
[66,67], their beneficial role in preventing UTT and their function
in the biology of UT deserve particular interest.
Biology of normal and neoplastic urothelium

The cell surface of the urothelium covering mammals’ urinary
passages consists of a particular thick (11 nm), angular asym-
metric unit membrane (AUM), arranged in concave plaque zones
alternating with hinged segments of thinner symmetric mem-
branes [49,68,69]. The plaque zones of AUM are made up of
a variety of grouped rafts of a two-dimensional crystalline
conformation of polygonal areas of 16-nm glycoproteic particles,
which are responsible for the asymmetric appearance of AUM [70,
71]. There are four major glycoproteic uroplakins (UP): Ia, Ib, II,
and III [71], with the UPs being ordered in pairs of UPIa/II and
UPIb/III [72]. It is generally believed that the urothelial AUM
enlarges the luminal surface, thus preventing urothelial damage
during fast bladder distention [73,74]. However, this does not
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explain why the luminal surfaces of pelvices and ureters, which
have identical AUM, do not appreciably distend by the constant
slow dropping of urine through the lumen. Hence, a modified
hypothesis about the role of AUM is necessary. Alongwith zonulae
occludens and other cell–cell union complexes, the AUM builds
themainmorphologic component of the “permeability barrier” of
the urothelium [49,50,70]. It is thought that the mammal transi-
tional epithelium has a low, passive permeability to water and to
small charged ions, compared with the high permeability of other
mucous membranes. In this way, the leakage of putative muta-
gens and other toxic molecules from the urine to the body is
halted [68,73]. However, the molecular basis responsible for the
impermeability of the urothelium remains poorly understood.

Lipids are important for any barrier to permeability in outer
luminal or surfaces, as has been demonstrated for essential
PUFAs in the epidermis, capillary endothelium, enterocytes, and
also on the surface of lung alveolar cells [29,75,76]. Pioneering
ultrastructural research has shown that urothelium imperme-
ability cannot be ascribed only to the highly ordered array of
UPs [77–79], and the role played by lipids in healthy and diseased
conditions of the UT should be carefully investigated. Pertur-
bations, induced in the AUM by detergents that disrupts the
lipid–lipid and lipid–protein hydrophobic interactions, induce
a sudden flux of water and ions across the bladder wall, whereas
the ultrastructure of the concave rafts remains almost unaltered
[70,77]. We propose that there may be an increased risk for
permeation of noxious substances, pollutants, and mutagens at
several levels of altered surface membranes during subtle EFAD,
such as in malphighian epithelia, small bowel epithelia, blood
capillaries, and the UT itself [4,28,29], perhaps linked to pertur-
bations of catenins, desmogleins, and e-cadherins at cell–cell
junctions [80–83]. The “umbrella” cells located at the luminal
surface of the urothelium have a fast turnover of AUM, with the
new membrane being continuously synthesized in the Golgi
complex and in some way being commuted up and down into
the luminal surface from the discoidal vesicles present in the
cytoplasm [68,73]. Thus, it can be assumed that umbrella cells
have a constant high requirement for AUM, with the essential
PUFAs being the rate limiting ‘building stones” for the assem-
bling of new, highly differentiated luminal plasma membranes.

AUM is unusually rich in diacylglicerol PLs. Ketterer et al. [78],
found that PUFAs comprised more than 50% of the PL FA content
of normal rat AUM, with LA, ALA, and AA contribuing more than
46% of this total. Intriguingly, this AUM also contains almost 6% of
the unusual 20:3 u-9 eicosatrienoic acid, which has been related
to hyperproliferation of the skin, the altered synthesis of eicos-
anoids, and blocking of cell–cell adhesion molecules, such as e-
cadherins [43,44,80,84,85]. We previously confirmed these
results by revealing a significant percentage of 20:3 u-9 in
normal rat urothelium [86] bearing in mind that an abnormal
level of 20:30 u-9 is a reliable marker of EFA deficiency [39].
Coincidently, an in vitro study comparing the FA profile of
normal and cancerous human urothelial cells in urinary sedi-
ments showed in the latter the typical changes of EFAD, which
were an increase of non-EFA u-7 and u-9 monoenenes and
a decrease inu-6 andu-3 EFA [87]. In further studies, we showed
that isolated AUM exhibited more rigidity when olein-enriched
diets (inducer of essential PUFA deficiency) were offered to
rats, whereas the increased fluidity obtained with u-3-rich diets
was mainly due to increased values of u-3 22:6 in the AUM PLs
[45]. We concluded that dietary PUFAs strongly modulate not
only the anisotropic properties of AUM, but also modify the
associated UP glycoprotein moieties in the concave rafts, as
previously described in ultrastructure studies [46]. Later, we
reported that an EFAD-inducer diet, enriched in non-EFA u-9
increased the rigidity of urothelial rafts and disorganized the UP
structure, whereas more fluidity in the bilayer was gained when
u-3 and u-6 were given to rats, thus confirming that essential
PUFAs play key roles in the structure and functions of the
urothelial plasma membrane [50].

In later studies, Grasso and Calderon observed that isolated
discoidal vesicles, built with two opposed concave rafts of AUM,
had abnormal leakage of fluorescent dye and its quencher when
isolated from oleic-rich (EFAD) diets. As enriched linoleic vesicles
behaved no differently to controls, it was concluded that non-
EFAs strongly alter the pathway of endocytozed urinary fluids,
where putative mutagens may be present [88]. These authors
also reported that the same non-EFA–enriched formula induced
an abnormal uncompling of the vacuolar-ATPase, which regu-
lates acidification and the membrane traffic of endocyted
material from bladder lumen [89]. Taken together, these exper-
imental results make it clear that PUFAs play a pivotal role in the
maintenance of the normal molecular structure and physiology
of mammal urothelium. Indeed, the data showed that the uro-
thelium plasma membrane, the barrier against putative noxious
mutagens coming from urine, is highly sensible to EFAD
inducers, such as non-EFA dietary fats, a risk worsened if
a chronic inflammation by irritant agents is also present, thus
favoring a proneness to UT tumorigenesis [4,28,29].

Chronic inflammation of UT and urolithiasis may be
a favorable bed for UTT cancer development

Rodents are suitable models for the study of the relationship
between diet and UTT because urolithiasis and carcinoma of the
urinary bladder are generally uncommon in normal animals [90].
As in humans, UTT development in rodents is a continuous
multifocal process that may progress from atypical hyperplasia to
carcinoma in situ and even to invasive carcinoma. Progressive
subcellular neoplastic changes induced by many urothelial
carcinogens consist of a loss of the asymmetry of the AUM (which
becomes thinner) and damage to the ordered array of UPs in the
plaques (which become replaced by irregular microvilli covered
by an altered glycocalix) [79,91,92]. Interestingly, we observed
similar changes in the luminal surface of the urothelium of EFAD
rats, comprising the loss of the normal asymmetry of the AUM of
rafts and discoidal vesicles, the appearance of villous projections,
and perturbations of the mannoside-binding sites to concanav-
alin A and the anionic dyes of the glycoprotein moieties of the
membrane’s concave rafts [31,46,93,94]. Briefly, histopathology of
the UT of rats maintained steadily on an EFAD diet for 50 wk to
110 wk, showed that both EFAD and EFA-sufficient (corn oil)
animals showed mild degrees of multifocal nephrocalcinosis,
perhaps linked to a monotonous salt mixture composition. Small
calculi in the fornices, ureters, and bladder frequently were seen
in both groups, along with well-differentiated urothelial hyper-
plasias, but these were significantly more severe in the EFAD
group. Only 35% of EFAD rats developed multifocal dysplasias, in
situ carcinomas, and/or well-differentiated invasive transitional
carcinomas (in more than 20% of the animals), located mainly in
the pelvis and upper ureters. Severe congestion, intertubular
hemorrhage, and other parameters of LGCI were significantly
more severe in the EFAD group [30,31,94].

Burr and Burr, in their pioneering articles of 1929 and 1930
describing EFAD, showed that apart from the severe signs of
inflammation in the skin and Reynauds-like tail necrosis, the
most constant histopathology lesions were seen in the UT and
kidney. They proposed that EFAD may be a useful experimental
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approach to study chronic degenerative diseases of the UT such
as urolithiasis [95,96]. Later, Borland and Jackson examined
many aged rats from the experimental colony of Burr’s, and
found severe nephro-calcinosis, necrotizing papillitis with
hematuria, and infiltration of all the cell components of chronic
inflammation in the kidneys and UT of the EFAD rats. In the
urothelium of 50% of the pelvis and upper ureters, several
multifocal dysplasias and flat papillomas were recorded, usually
associated with necrosis and calculi [97]. In agreement with
these previous results, it was later reported that dietary PUFAs
differentially modulate acrylamide-induced preneoplatic uro-
thelial proliferation and apoptosis in mice. An EFAD status
(induced by a rich u-9 oil formula) exhibited promoting activity
in this model, whereas a fish oil diet, rich in u-3 fatty acids,
attenuated this effect [32]. The anti-promoting effect of fish oil
feeding was expanded by the observations of the chemo-
preventive effect of u-3 in several induced tumors in rats [98].

According to the degree of development in rich and poor
countries, between 10% to nearly 25% of cancers are related to
infectious agents such as human papillomaviruses, hepatitis B
and C viruses, andHelicobacter pylori in cervix, liver, and stomach
malignancies, respectively [38]. Normally, UT inflammation is
helpful in its acute phase as a response to infections, foreign
bodies (as urinary stones), trauma, chemical agents for treatment
bladder tumors, or other irritants. However, chronic inflamma-
tion may result deleterious by inducing genetic damage and
cancer promotion [99,100]. Pro-inflammatory cytokines such as
tumor necrosis factor (TNF)a, interleukin (IL)-1 and IL-6 are
strongly increased in tissues of most cancer patients, and they
induce per se cachexia, burning of adipose depots and sarcope-
nia, loss of appetite, anemia, and the whole histopathology and
serum picture of LGCI not only in tumor tissues but in many
other systems and biological fluids [101–103]. Increments of
these cytokines have been reported in the UT in both UTT and
LGCI, due to urotithiasis and cystitis [104,105]. High TNFa levels
are reduced by both COX inhibitors and u-3 and u-6 PUFA
supplementation (mainly AA, g-linolenic acid [GLA], EPA, DHA),
which in turn increases the levels of certain anti-inflammatory
eicosanoids and BALs, such as lipoxins, protectins, and resol-
vins (which also ameliorate LGCI) [106].

In cancer tissues, coexisting with LGCI, the levels of free
radical and reactive oxygen substances (ROS) are altered [107,
108]. These short-lived molecules are necessary for the normal
control of cell proliferation, differentiation, and apoptosis.
However, when their synthesis or catabolism is unbalanced, they
became harmful for cell control homeoestasis, as happens very
often in several varieties of cancer. One of the main sources of
ROS, peroxides, and other free radicals are the cell membranes
PUFAs [109]. Lipid peroxidation in many cancer cells is blocked or
heavily inhibited. However, the addition of u-3 and u-6 PUFAs to
cancer cells decreases proliferation, triggers apoptosis, increases
expression of cell adhesion molecules, and inhibits metastasis
parameters.These desirable effects are accompanied and can be
even preceded by a sudden release of ROS products, thus indi-
cating that cancer cells are incapable of synthesizing the required
levels of lipid peroxidation and other ROS to control the normal
behavior of the cell neighbor society [110]. Impaired peroxidation
in tumor cells may be caused by a complex combination of low
levels of essential PUFAs in membrane PLs, glutathione, catalases,
superoxide dismutases, along with higher levels of some natural
antioxidants and free radical scavengers [37,38]. In this context,
differences in the lipid metabolism of the cell and tissues of
patients with benign or malignant diseases have been compared
[110,111]. Plasma levels of PL FAs very similar to those typical of
EFAD, such as the low levels of PUFA from u-6 and u-3 metab-
olites and abnormal increments of the non-EFA oleic u-9, were
reported by Horrobin and co-workers in almost 100 patients
suffering from transitional bladder cancer [111]. These findings
prompted the authors to propose that a deficit in EFAs may pre-
dispose humans to the development of urothelial cancer [111,
112]. Several case–control studies showed a significant risk for
developing bladder cancer linked to the high consumption of
saturated fats and non-EFA monoenes (mainly oleic acid) [113,
114]. In contrast, the high consumption of essential PUFA was
associatedwith a lower risk. In a case–control study carried out in
New Hampshire, the higher intake of u-3 ALA exhibited
a protective role against developing bladder cancer [27].

The association among the LGCI of the UT, urolithiasis, and
cancer proneness is a recurrent and controversial issue. Some
studies have reported a positive link between bladder cancer,
history of urinary infection, and renal lithiasis [114,115]. Indeed,
both epidemiologic and rodentmodels data pointing out that the
chronic UT inflammation induced by lithiasis is a significant risk
factor for the development of transitional cell tumors [18,19,116,
117]. Additionally, participants having a high intake of fats
exhibited an increased risk for bladder tumors [21,27,118,119].
A long-term increase of well-known markers of inflammation in
biological fluids such as blood, plasma, urine, and kidneys and
bladder tissues indicates that an LGCI state is present in the UT.
Besides the usual increase in the counts of polymorphonuclear
leukocytes [PMN]/lymphocytes/monocytes in blood and UT
tissues, an LGCI condition is heralded by high levels of C-reactive
protein (CRP), lipid peroxide products, ROS, TNFa, leukocyte
myeloperoxidase (MPO), IL-1 and IL-6, among other molecules.
Other relevant dosable mediators of LGCI are histamine, many
lysosomal hidrolases, the coagulation/fibrinolysis system, and
nitric oxide (NO) [37,38].

PUFAs are the source of many BALs and have a dual role
in LGCI. As already mentioned, under physiological conditions
the synthesis and release of pro- or anti-inflammatory eicosa-
noids and other lipid derivatives are homeostatically maintained.
However, if the nutritional sources of u-3 and u-6 are low
and the dietary non-EFAs are increased together with chronic
irritation in the UT, a shift to the production of pro-inflammatory
PUFA-derived LTs, several HETEs and prostaglandin E2 (PGE2)
occurs [37,38]. These BALs are promitogens, which induce
abnormal cell proliferation and differentiation, activate the
anti-apoptotic Fkb nuclear factor and block the expression of
cell adhesion molecules such as e-cadherin and cytoskeletal
desmogleins, hence favoring cell motility and eventually basal
membrane permeation and metastases [80,81,83]. Thus, further
integral strategies involving the chemoprevention of UTT
by anti-inflammatory and pro-apoptotic measures through die-
tary modifications have been proposed [2,120]. In this regard,
a life-span administration of a PPARa/g agonist (Muraglitazar),
in a dose-dependent way, increased urinary bladder tumors
in male Harlan Sprague-Dawley rats, with urolithiasis develop-
ment being a predisposing event [22]. The cell cycle regulatory
mechanisms in UTT bladder calculi induced by terephthalic acid
(TPA) was assessed in Wistar rats. This revealed that deregula-
tion of the p16-cyclin D1/Cdk4-Rb pathway, but not of
the oncogenic activation of ras, played a crucial role in bladder
tumorigenesis induced by bladder stones [23]. In a further study,
these authors showed that an increasing PGE2 level
(a pro-inflammatory eicosanoid highly augmented in the
TPA-UTT model) involved the axis cytosolic phospholipases A2,
COX-2, and thus concluded that PGE2-synthase plays an impor-
tant role in rat bladder carcinogenesis [104]. It was reported that
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increased levels of thromboxane B2, the major metabolite of
COX2 having proinflammatory activity, along with increased
levels of the TPb receptor occur in cells of patients with bladder
cancer [121]. Furthermore, human bladder tumors were found to
secrete substantial amounts of pro-inflammatory PGE2, thereby
promoting immunosuppressive phenotype of tumor-infiltrating
myeloid cells, which in turn favored UT tumorigenesis [122].
Nephro- and urolithiasis, frequently linked to EFAD-induced [34,
35,75,94,97,123] chronic irritation of the UT mucosa with the
development of several degrees of hyperplasias, hyperemia, and
other signs of chronic inflammation [9,10,75,94,124,125]. Thus,
the UTT risk seems to be related to enhanced inflammation and is
probably linked to a disbalanced eicosanoid metabolism.

Abnormal PUFA metabolisms are related not only to the
illnesses included in the complex metabolic syndrome, such as
diabetes and obesity among others, but also to the urolithiasis
and infections of UT, which are closely linked to diabetes and
PUFA perturbations. A significant increased risk for UT calculi
among 12.000 new diabetes cases with diabetes mellitus in
a follow-up population-based cohort study in Tawian was re-
ported, providing consistent epidemiologic support that there is
a causal association between diabetes and UT lithiasis. Interest-
ingly, in diabetic women with UT infections, a greater rate of UT
stones was found [11]. In patients with urolithiasis, an anoma-
lous phospholipid metabolism of u-6 PUFA was recorded: in
plasma and the erythrocyte membrane PLs of stone subjects the
observed AA/LA acid ratio was increased. Fish oil supplementa-
tion (rich in EPA) lowered calcium and oxalate urinary excretion,
and normalized the erythrocyte oxalate exchange. Phospholi-
pase A2 increased the erythrocyte anion-carrier protein phos-
phorylation and the oxalate exchange, revealing that idiopathic
nephrolithiasis is related to a perturbation in phospholipid- AA
metabolism [33]. Additionally, an excess of AA in membrane PLs
tilted the synthesis of eicosanoids and BALs and certain cyto-
kines toward pro-inflammatory effects such as TXs, PGE2, IL-1,
IL-6, TNFa, macrophage migration inhibitory factor, and others
[61,126]. The administration of palmitate, a non-EFA, induced
IL-6 and monocyte chemoattractant protein-1 expression in
human bladder smooth muscle cells, demonstrating additional
links between diabetes and UT infections [127]. When the effect
of dietary PUFA was studied in an urotithiasis model, calculi
formationwas significantly less severe in EPA-fed rats than in the
groups administered olive oil or cholesterol, with both formula
being EFAD inducers [34]. In conclusion, dietary supplementa-
tionwith EPA in 88 patients with stones reduced urinary calcium
excretion and decreased the pace of bladder stone formation
[35]. Additionally, there is increasing experimental and epide-
miologic evidence showing that calculi favors tumorigenesis in
the UT [128,129].

As a consequence of repeated and chronic hematuria, such as
that observed during urolithiasis, some infectious diseases, the
chemopreventive drugs used in bladder neoplasms treatment, or
EFAD, chronic hemorrhagic cystitis may appear. Curiously, when
hematuria occurs, the urothelium develops active eritrophago-
cytosis with progressive infiltration of macrophages and PMNs
[130]. Due to the slow lysis and digestion of cellular elements of
blood (such as red blood cells), aggregated platelets and dying
PMNs, there is a prolonged release of pro-inflammatory mole-
cules, cancer cell chemoattractants, pro-mitotic cytokines, and
eicosanoids, involving COX activation and being attenuated by
nonsteroidal anti-inflammatory drugs [131–135]. The effects of
these molecules on the control of urothelial cell cycles in the
LGCI bladder as a concomitant factor for tumorigenesis risk
deserves further research.
From our results and those of other workers it seems that
PUFA deficiency, mainly due to an excess of non-EFAs, or BAL
metabolites principally from the u-9 family, appears to have
a harmful effect on urothelial homeostasis, inducing progressive
perturbations in the structure and biophysical properties of the
AUM lipid bilayer, an alteration in the array of UP rafts, a severe
rise in cellular proliferation, urolithiasis, vasodilation, and
multifocal hemorrhages, with these alterations being a typical
scenario of LGCI in the UT. There is increasing evidence that in
many systems and organs, the conjunction of nutritional defi-
ciencies in micro- and macronutrients, such as lipids, along with
stone formation and chronic infections, constitute a LGCI envi-
ronment that favors tumorigenesis [99,102,136]. In summary, we
have shown a bulk of evidence, which points out that an
abnormal PUFA metabolism, along with LCGI and urolithiasis,
favor the development of UTT in rodents and perhaps in humans.

As discussed previously, several compounds having uroli-
thogenic activity in humans, including drugs, and pollutants and
environmental compounds, have been identified [137]. Further-
more, new risk agents for humans UTT still arise, as recently
happened with melamine contamination. Since 2008, several
articles led to the prevention about melamine, a synthetic
nitrogenous compound widely used in domestic goods, being
illegally added to powered infant milk formula to maliciously
increase the nitrogen levels, a parameter related to the price
of these milk preparations [138,139]. Once ingested, 90% of
melamine (2,4,6-triamino-s-triazine), which is a resin, is excreted
in the urine [140]. A high percentage of rodents chronically
treated with low doses of melamine developed all the signs of
LGCI, uroliths and transitional cell carcinomas [117]. In mice,
the premalignant lesions developed mainly in the bladder,
whereas hyperplasias, dysplasias, and carcinoma in situ of UT in
melamine-exposed rats were localized predominantly at the
proximal end of the UT (papilla and renal pelves). These findings
are in agreement with those ofMelnik and co-workers [141], who
showed that in rats, melamine at low doses induced atypical
proliferative lesions, mainly located at the proximal end of the UT.
Hence, we used low doses of melamine plus different supple-
mentations with u-3, u-6, and u-6 oils, and observed that
oleic-enriched EFAD diet increased, whereas essential PUFA
(mainly u-3) supplementation decreased the severity, progres-
sion, and frequency of the neoplastic lesions [18,19]. These results,
together with consistent experimental, clinical, and epidemio-
logic findings showed a link between LGCI and urolithiasis by
a low dose of melamine, led us to propose that an increased risk
for UTT in thousands of surviving children exposed to melamine
in their early childhood may occur when reaching adult age.
Considering the observed preventive effects ofu-3 PUFAs and the
deletereous effect of non-EFAs, as for u-9, periodical screenings
for the early urinary signs of UTT may be necessary in these
children, together with acurate continuous u-3 essential PUFA
supplementations [20].
Conclusions

UTT is still a poorly understood multistage and multifocal
process that includes initiation, promotion, progression, and
eventually invasion and metastases, which can be influenced by
promoting and antipromoting factors. Taking into account that
cancer is conceived as involving both genetic alteration and its
phenotypical expression, studies centered on the role of envi-
ronmental factors, such as those present in the diet, may be
potentially fruitful.
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There is evidence of risk linking high fat consumption and the
development of certain human cancers, such as of the breast,
gliomas, and colon. However, the amount and type of nutritional
lipids in humans remains to be fully elucidated [37,142]. The
discussed results showing a crosstalk among PUFAs, urolithiasis,
LGCI, and UUT risk have crucial research interest. Many data have
been presented in this article showing that disbalances or
deprivation of essential PUFAs, mainly u-3, may play a role in
UTT when associated with LGCI and lithiasis. An abnormal or
deficient availability of essential PUFA in foods and/or
membranes might indeed take place due to unhealthy dietary
practices such as the consumption of foods very rich in fats and
simple sugars, since chronic subclinical or borderline EFAD
conditions may occur, as suggested half a century ago by Sinclair
[143] and Holman [144]. On the other hand, the habit of eating
foods extremely low in fats, in order to lose weight, primarily
among young people, could lead to extreme states of bulimia,
anorexia nervosa, and other mental illnesses. Another concom-
itant risk condition may be caused by food contaminants, due to
the fact that even trace components in the diet might be harmful
for the urinary tract [145], as discussed previously regarding
melamine contamination. Most of the mechanisms by which
dietary PUFAs could influence urothelial tumorigenesis involve,
to some extent, modulations of gene expression. Inasmuch as
increased cell proliferation, as observed in EFAD, is important in
this process both for the fixation of altered gene information and
for the promotion of tumor development, the determination of
the genes controlling cell proliferation, differentiation, cell
homing, and apoptosis, which are turned on or off by dietary FAs,
will likely provide additional answers to explain the role of
dietary essential PUFAs in UTT risk [146]. (see resum�ee in Fig. 1)
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