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Abstract: We generalize the effective field theory of single clock inflation to include dis-

sipative effects. Working in unitary gauge we couple a set of composite operators, Oµν...,

in the effective action which is constrained solely by invariance under time-dependent spa-

tial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom

responsible for dissipation do not contribute to the density perturbations at late time.

The dynamics of the perturbations is then modified by the appearance of ‘friction’ and

noise terms, and assuming certain locality properties for the Green’s functions of these

composite operators, we show that there is a regime characterized by a large friction term

γ ≫ H in which the ζ-correlators are dominated by the noise and the power spectrum

can be significantly enhanced. We also compute the three point function 〈ζζζ〉 for a wide

class of models and discuss under which circumstances large friction leads to an increased

level of non-Gaussianities. In particular, under our assumptions, we show that strong

dissipation together with the required non-linear realization of the symmetries implies

|fNL| ∼ γ
c2sH

≫ 1. As a paradigmatic example we work out a variation of the ‘trapped

inflation’ scenario with local response functions and perform the matching with our effec-

tive theory. A detection of the generic type of signatures that result from incorporating

dissipative effects during inflation, as we describe here, would teach us about the dynamics

of the early universe and also extend the parameter space of inflationary models.
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1 Introduction & main results

The Effective Field Theory (EFT) paradigm is one of the cornerstones of theoretical physics,

from the standard model to condensed matter systems [1, 2]. EFT ideas have recently

gathered thrust also in the realm of gravitational physics. For example, EFT techniques

have been introduced in [3–5] to solve for the dynamics of coalescing binary systems to

great accuracy [6–15]; and an EFT setup has been proposed for the study of cosmological

perturbations in [16].

The EFT of inflation for the case of single field (one clock) models was developed

in [17–27]. The starting point is an action in unitary gauge (where all the fluctuating degrees

of freedom are encoded in the metric) which is required solely to be invariant under time

dependent spatial diffeomorphisms. The advantage of this approach is that it enables us to

parameterize all possible signatures of inflation in terms of a set of coefficients for (‘higher-

dimensional’) operators in a Lagrangian built with the low energy (large distance) degrees

of freedom, and constrained only by the symmetries of the theory. Within the EFT it is

possible to describe the fluctuations around an approximate de Sitter background without

any assumption about the fundamental degree of freedom that is driving inflation1 (which

may as well be strongly coupled). To that end it is useful to restore time diffeomorphisms

1One may wonder about the underlying theory that produces the background. However, once the

inflationary paradigm is accepted, it is ultimately the theory of fluctuations that is directly tested by

observations.
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(broken by the existence of a preferred time slicing) by means of the Stückelberg field π,

which is the Goldstone boson that realizes time reparameterizations non-linearly.

There are two important consequences of introducing the π field which turn out to

be extremely helpful. First of all, one notices that at sufficiently large energies (E ≫√
ǫH) the Goldstone boson captures all the information about the physical scalar mode

(ζ ≃ −Hπ), namely the ‘longitudinal mode’ in unitary gauge.2 And secondly, there is

a limit (decoupling limit, i.e. ǫ → 0) in which we may ignore all the effects induced by

gravitational interactions.3 These two observations allow us to concentrate on a theory of

Goldstone bosons, whose interactions are dictated by symmetry, which greatly simplifies

the computations.

An EFT for multi-field inflation was recently introduced in [30], where new (light)

degrees of freedom were included. Multi-field inflation can reproduce the signals from single

field models, but can also give rise to new ones which (provided certain shapes are detected)

may allow us not only to separate between the two, but also distinguish amongst different

realization in multi-field scenarios. In [30] the authors concentrated on the case in which

additional degrees of freedom (ADOF) affect directly the overall curvature perturbation (or

isocurvature perturbations). This can happen for example if these extra fields modify the

reheating time and consequently the duration of inflation, or if they affect the composition

of the plasma in the reheating phase. Because of this, the fields considered in [30] were

light scalars so that they acquired scale invariant perturbations.

In this paper we also consider situations in which ADOF other than the Goldstone

boson are excited. However, contrary to the models in [30], we concentrate on cases where

this extra sector does not directly affect the duration of inflation, or the composition of

the plasma, but it alters the dynamics of inflation by directly coupling to the clock around

or before the time the modes we observe cross the horizon. This includes, for instance, the

‘trapped inflation’ scenario [31] where the production of particles modifies the evolution

of the inflaton φ, while producing negligible direct contributions to (late time) density

fluctuations due to dilution.

Since in general these new particles will contribute to the stress energy tensor of the

background, the true Goldstone boson includes not only the physical clock, which we

assume uniquely controls the physics of inflation, but also a component that depends on the

fluctuations of these ADOF. To isolate the relevant component whose perturbations control

the observed density fluctuations, here we will not work with this Goldstone boson (namely

the field whose quadratic Lagrangian is uniquely fixed by the background), and thus reserve

π for the fluctuations of the clock that determines the end of inflation (for example, the

inflaton φ in the model of [31]). This choice will slightly modify the construction of the

EFT, and in particular the choice of ‘unitary gauge’ and overall normalization of our π.

However, it maintains the relationship between π and ζ, i.e. ζ ≃ −Hπ (at linear order),

which we find more convenient.

2This is similar to what occurs in gauge theories, for example in longitudinal WW (or Z) scattering,

whose amplitude can be obtained in terms of processes involving the associated Goldstone bosons (‘eaten’

by the W ’s and Z’s) at high enough energies, E ≫ mW (‘equivalence theorem’) [28, 29].
3This is also equivalent to sending the gauge coupling g to zero while keeping the symmetry breaking

scale v fixed, or in our case taking Mp → ∞ and keeping M2
p |Ḣ| finite.
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Given that the ADOF do not explicitly contribute to observable quantities, this sug-

gests we may integrate them out and obtain an effective action in terms only of π. However,

this procedure is not straightforward, mainly for two reasons. First of all, even though we

do not observe the fluctuations of the ADOF as ‘external states’, they are produced during

inflation and in general are not in the vacuum; and secondly, these fluctuations may not

be gapped, or in other words, we are allowing for very soft (essentially gapless) collective

excitations. This means that the effective action cannot be described with only one de-

gree of freedom, and in turn this will be linked to dissipation whose effective description

is one of the goals of the present paper. Notice that this does not mean that the ADOF

are necessarily ‘light’. For example, as shown in [31], heavy particles (compared to the

Hubble scale) can be ultimately produced by the time dependence in the Hamiltonian

induced by the physical clock φ.4 However, their influence in the dynamics of the pertur-

bations of the clock, which includes dissipation and noise, remains active even at low(er)

frequencies, i.e. ω ≃ H.

One can study dissipative effects using the ‘in-in’ closed-path-time formalism [33],

however, here we will resort to a different setup. Similarly to the EFT for dissipation

introduced in [34, 35] (to deal with gravitational wave absorption in binary black hole

systems), we will incorporate dissipative effects in the EFT of inflation by coupling the

metric in unitary gauge to a set of (scalar, vector and tensor) composite operators, Oµν...,

constrained solely by the symmetries of the EFT. All the information about the dissipative

sector is thus encoded in a set of correlation functions which can be matched against

observation, e.g. the power spectrum, non-Gaussianities, etc. (A similar formalism [36] can

be used to describe dissipative effects in the EFT for hydrodynamics developed in [37, 38].)

This approach is clearly very ample, and for that reason it is also difficult to treat in

complete generality. However, it is possible to identify a physical regime in parameter space

where many simplifications occur. We will consider physical situations where the time scale

for dissipation and fluctuation induced by the ADOF is much smaller than a Hubble time,

with negligible memory effects. Under this condition fluctuation and dissipative effects

become local, which allows us to study many possible realizations in complete generality.

We spell out our assumptions in detail throughout the paper.

Two separate type of contributions enter in the dynamics of π. There is the noise

induced by the ADOF, and there is also the back reaction due to the mutual interaction,

i.e. ‘friction’, namely a γπ̇ term. (This is due to the physical fact that during inflation

energy is being damped into the ADOF.) Here we concentrate in the strong dissipative

regime, where γ is taken to be much larger than H. In such circumstances, we show the

memory on the initial conditions washes out and the power spectrum and non-Gaussianities

are dominated by the noise induced by the ADOF. Moreover, the former can be significantly

enhanced with respect to the quantum fluctuations in the Bunch-Davies state. The reason

is twofold: first of all the size of the fluctuations for the normalized π field (πc ≡
√
Ncπ) is

larger than Hubble, this is because these are not produced by the vacuum (also they freeze

out at a larger value of k/a, i.e. csk/a⋆ = csk⋆ ≃ √
γH ≫ H, for γ ≫ H); and secondly,

4In the case of trapped inflation particles are produced when the adiabaticity condition is violated [31, 32].
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the normalization scale Nc can be smaller than what is required by Einstein equations in

the absence of any other contribution to the stress energy tensor, i.e. Nc ≤ 2M2
p |Ḣ|/c2s.

In the EFT of inflation [17] the non-linear realization of time diffeomorphisms allows

us to relate different observables (such as the two and three point ζ-correlation functions).

For instance, considering the case of scalar couplings and taking the noise to be Gaussian,

we show that terms of the form SOg00 ≡
∫ √−gOg00 (in unitary gauge) can increase the

level of non-Gaussianities by a factor of γ/H with respect to the result for single field

inflation without ADOF [17], yielding |fNL| ≃ γ/(Hc2s). In the spirit of the EFT for

multifield inflation of [30] we discuss a class of models which fit into this category. On

the other hand, operators of the form SfO ≡
∫ √−gf(t)O produce two types of non-

linearities. Either sourced by direct non-linear couplings to O, or induced by contributions

beyond linear response theory. We show there is a class of models where the computation

of dissipation and non-Gaussianities are linked. Assuming as we do the existence of a

preferred clock that drives inflation, we show that the linear and non-linear response are

indeed related in such a way to produce non-Gaussianities of order |fNL| ≃ γ/(c2sH).

The basic idea is perhaps better illustrated in the standard inflationary scenario of a

slowly rolling scalar field φ. As we know from our classical mechanics intuition, to induce

dissipation we need factors of φ̇ in the equation of motion (EOM). On the other hand,

(non-linearly realized) general covariance requires ∂tφ → nµ∂µφ where nµ is the normal

vector orthogonal to the equal time surfaces given by nµ = gµν∂νφ/
√

−(∂φ)2. At the level

of the perturbations of the clock, namely φ→ φ̄+ δφ, this induces a dissipative term γ ˙δφ

but also non-linear interactions, and in particular a term γ(∂iδφ)
2/ ˙̄φ (properly normalized).

The latter gives non-Gaussianities of order

γ
˙̄φ

(∂iδφ)
2

c2s∂
2
i δφ

∼ fNLζ → |fNL| ∼
γ

c2sH
, (1.1)

where we used ζ ≃ −Hδφ/ ˙̄φ, and allowed for cs ≤ 1. We will make this argument more

precise and at the same time generic for all models of single clock inflation. We conclude

that in either case, SOg00 or Sf(t)O, the non-linear interactions are significantly enhanced

in the strong dissipative regime with γ ≫ H, as one would have naively expected.

Finally, vector couplings such as
∫ √−gOµg

µ0, may induce a large friction term but

without the addition of non-linear couplings between π and Oµ. However, once again

depending on the model, the non-linear response will produce large non-linearities as above.

This paper is organized as follows: In the remaining of section 1 we discuss the ba-

sic ideas and results, putting emphasis on the overall picture rather than the technicali-

ties of the calculations. Then in sections 2–7 we explicitly construct the EFT to include

dissipation in inflation and provide detailed support for our claims. In section 8 we per-

form the matching for a key example: (a local version of) trapped inflation. The idea of

including dissipative effects during inflation is also a key element of the warm inflation

paradigm [39–44], which we will briefly comment upon towards the end. We relegate other

examples and more technical points to appendices. Everywhere we set c = ~ = kB = 1 and

adopt the mostly plus sign convention.
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1.1 Preliminaries

Let us imagine adding a friction term to the (one-dimensional) harmonic oscillator. For

convenience of notation let us denote the displacement from equilibrium as π(t). The

EOM reads

π̈ + γπ̇ + ω2
0π = J, (1.2)

where for future purposes we added a stochastic force with 〈J〉 = 0. As it is well known,

this seemingly innocuous equation does not derive from a Lagrangian of the form L(π, π̇).5
The reason is simple, energy is not conserved. In fact,

dE

dt
= −γπ̇2. (1.3)

The expression in eq. (1.2) is local in time, however, in general the effective EOM for

π takes the so called ‘Langevin’ form, which is non-local, i.e.

π̈ + ω2
0π +

∫

dt′γ̃(t− t′)π(t′) = J(t). (1.4)

Clearly, our treatment would greatly simplify if we were allowed to perform a local

approximation. This in turn amounts to making an assumption about the ADOF leading

to γ̃(t) in the above equation. In particular, to get the EOM in the form of eq. (1.2)

we need

Imγ̃(ω) ≃ γω, (1.5)

with γ a constant. The relationship in eq. (1.5) is sometimes referred in the literature as

Ohmic behavior [45]. We illustrate some examples in appendix A.

In practice we do not expect eq. (1.5) to hold up to arbitrarily high frequencies, and

a more realistic (though phenomenological) approach is provided by Drude’s model, with

eq. (1.5) replaced by [45]

Imγ̃D(ω) = γω
(

1 + ω2/ω2
D

)−1
, (1.6)

where ωD serves as a cutoff. In this case there is a memory time on the scale τD ∼ ω−1
D ,

and an exponential damping

γD(t) ∼ Θ(t)γD
e−t/τD

τD
. (1.7)

Instead of relying on assumptions about the physics of the ADOF, sometimes it is

possible to connect the properties of the noise and Green’s functions by means of some well

known theorems; for example if we assume the noise satisfies the following conditions:

〈J(t)〉 = 0 (1.8)

〈J(t)J(t′)〉 ≃ νJδ(t− t′), (1.9)

5One can, nonetheless, construct models where a dissipative equation results from an effective description

where the ADOF responsible for dissipation are ‘integrated out’ in a ‘in-in’ formalism with twice as many

degrees of freedom [33, 45, 46]. This is not the route we follow in this paper (see next sub-section).
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with νJ a constant. This is the case, for instance, if the “environment” (i.e. the dissipative

ADOF) is placed at a (sufficiently large) temperature T . Then, using the Fluctuation-

Dissipation (FD) theorem [33, 45] one can show

Imγ̃(ω) ≃ νJ
T
ω (1.10)

(assuming equilibration occurs sufficiently fast after the perturbations are turned on), or

in other words νJ ≃ γT. In this scenario the EOM becomes local and memory effects are

washed away.

To keep the treatment as simple as possible, we will study situations where the local

approximation applies. Later on we will discuss some specific examples. However, at the

level of the EFT we refrain from adopting any model for the underlying dynamics of the

ADOF. We introduce the basic idea of our approach next.

1.2 The story of O

We consider now the generic situation where we have a theory for π that describe small (long

wavelength) perturbations of a dynamical system with Lagrangian Lπ. Following [34, 35]

to include dissipation we couple π to a composite operator O such that

Sint = −
∫

d4xO(x)π(x). (1.11)

For the cases where there is a shift symmetry, π → π + c, the interaction takes the form

S̃int =

∫

d4xÕ(x)π̇(x), (1.12)

which can be described as in eq. (1.11) by replacing O → ˙̃O.

The addition of Sint allows us to study the response of our system to the interaction

with a dissipative sector (represented by O) in complete generality. The virtue of this

approach lies in that we do not need to assume any specific representation for the dynamics

of O (which could in principle represent a strongly coupled sector), and we just need to

make sure interactions such as eq. (1.11) respect the symmetries of the long distance physics

described by π [34, 35].

We define now an operator δO ≡ O− Ō, with Ō the background expectation value of

O. We then split δO into two pieces, schematically,

δO = δOS(x) + δOR(x), (1.13)

with δOS(x) representing the stochastic part of O(x) in the absence of π, whereas δOR(x)

corresponds to the change of the expectation value of O that results as a response through

the interaction to a π fluctuation. We start by computing δOR(x) within linear response

theory, with π playing the role of the external ‘force’ that disturbs the dynamics of the de-

grees of freedom associated with the operator O. (For an introductory account of response

theory see for instance [47].) Namely,

δOR(x) = −
∫

d4yGO
ret(x, y)π(y), (1.14)

– 6 –



J
H
E
P
0
1
(
2
0
1
2
)
0
7
5

where

GO
ret(x, y) = i〈[δO(x), δO(y)]〉θ(tx − ty). (1.15)

If we denote as Dππ = 0 the linearized EOM that derives from Lπ in the absence of

ADOF, then the addition of eq. (1.11) leads to

Dππ = −O +O(π2). (1.16)

After we solve for O we get

Dππ −
∫

d4yGO
ret(x− y)π(y) = −δOS +O(π2), (1.17)

or in Fourier space

(

Dπ(q, ω)−GO
ret(q, ω)

)

πq(ω) = −δOS(q, ω) + . . . . (1.18)

In the above expression Dπ(q, ω) is an analytic function, but presumably this may not

always be the case for GO
ret(q, ω). However, we will assume we can use a local approximation

for the dynamics induced by the Green’s function for a vast range of frequencies up to

corrections of order (q/MO, ω/ΓO), where MO,ΓO are the typical scales at which the non-

locality starts to be non-negligible. We will make this more precise when we study the

inflationary case. At any rate, it is clear that in order to recover an equation as in (1.2)

we need6

ImGO
ret(ω,q) ≃ ImGO

ret(ω,0) ≃ γω, (1.19)

for ω > 0, with J ≡ −δOS . While an expansion in derivatives is justified by the fact that

we can work at ω . ΓO, the order at which the Taylor expansion starts is an assumption

about the UV physics. (Notice that this is the lowest analytic order since the imaginary

part of the Green’s function has to be odd in ω.)

Contrary to the imaginary part, the real part of the Green’s function is even in ω, and

therefore need not vanish as ω → 0.7 This would lead to a mass for π (and consequently for

ζ), hence to an evolution for ζ outside the horizon. This is not forbidden by any principle,

but if this was the case it would lead to an effect on curvature perturbations at late times

from the ADOF, which ought to be negligible by our main assumption. Therefore, in this

paper we consider situations where the ADOF are sensitive only to derivatives of π rather

than the value of π itself. This requires an effective shift symmetry at the level of the

response. (This is the case for example in the model of [31] where the production of ADOF

is connected with a breaking of adiabaticity [32], due to the time dependent background,

and fluctuations in the ADOF are related to derivatives of π.) If for instance inflation

is driven by a scalar field φ, in principle the response of the O operators might be very

non-linearly related to φ, and the Green’s function for π may as well depend non-linearly

on the coupling constants in the Lagrangian that includes both φ and O. In fact, the

6As one would expect dissipation is associated with the imaginary part of the Green’s functions in Fourier

space, a.k.a. the optical theorem, see appendix B.
7Moreover, the real part of the Green’s function GO

ret(ω,q) may also contribute to the speed of sound

via a term quadratic in q.
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shift symmetry may not be even present at this stage. For this reason we will employ the

term ‘emergent shift symmetry’ to refer to cases when the real part of the Green’s function

vanishes as ω → 0. We give an example of this phenomenon in section 8.1 where we discuss

a simplified version of the trapped inflation model [31].

In principle if we had a specific UV model of the ADOF in mind, we could compute the

exact Green’s function and compare with the one derived from the EFT. This is typical

in EFTs and it is often referred as matching [1]. We will provide a realization of this

matching procedure when we study some specific models later on in section 8. (See also

appendices C and H.) Nevertheless, even though we do not have an explicit description for

O (which might be rather involved), the key point of the EFT approach is that we can still

study the dynamics of π in terms of the Green’s function of the type of eq. (1.15) under

the approximation of eq. (1.19), where γ is kept as a free parameter.

Notice that the condition for a γπ̇ local dissipative dynamics implies

ImG̃O
ret(ω) ∼ 1/ω, (1.20)

for the operator Õ in eq. (1.12). This behavior is not allowed near ω ≃ 0 by some basic

analytic properties of the Green’s functions. One can nonetheless imagine situations where

eq. (1.20) holds at intermediate frequencies, i.e. µO ≪ ω ≪ ΓO (with µO,ΓO related to

the response functions of the O’s), while at very low frequencies the Green’s function is

analytic. Since we are assuming the relevant energy scales are smaller than the typical ones

in the ADOF sector, that we take to be of order ΓO, in order for such behavior to occur it

requires the Green’s function to have a mass scale anomalously low compared to ΓO. This
is (most probably) a sign of tuning in the effective theory.8 In any case, it is reasonable to

assume this tuning would affect only one parameter (see appendix H for more details).

An example the reader may be familiar with is the so called Abraham-Lorentz-Dirac

(ADL) force, which arises from the (velocity dependent) interaction Aπ̇ after we integrate

out the electromagnetic field (here A plays the role of O). The EOM turns out to be local

in time [48, 49] provided we choose boundary conditions where all radiation is outgoing

(that is we do not include ‘mirrors’).9 However, in this case the dissipative term depends

on the third time derivative of the position, i.e.
...
π/Λe with Λe ≃ me/e

2 a cutoff scale

related to the unitarity bound of the theory. (This follows from an expression similar to

eq. (1.19) applied to the vector potential.) Even though in this paper we mostly concentrate

on dissipative effects represented by eq. (1.2) we will also comment on higher derivative

couplings in section 7.5.

8We show in appendix H how, upon tuning, one may obtain the scaling of eq. (1.20), in particular

ω2ImG̃O
ret(ω) ≃ γ

ω3

ω2 + µ2
O

+O(ω/ΓO) ≃ γω +O(µO/ω, ω/ΓO) (1.21)

for µO ≪ ω ≪ ΓO, such as it is required for a γπ̇ term stemming from the coupling Õπ̇.
9Non-local dynamics appears in the so called ‘memory effect’ in gravitational wave radiation off coalescent

binary inspirals [50]. The latter is entirely due to the non-linear interactions of the gravitational field which

are not present in electromagnetism.
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As we mentioned earlier another setup where a local approximation appears naturally

is to consider a white noise for the δOS ’s, as it would be the case in thermal equilibrium

at large temperatures. In such scenario

〈δOS(k, t)δOS(q, t
′)〉 = (2π)3νOδ(t− t′)δ(3)(k+ q), (1.22)

and using the FD theorem we get (see eq. (1.10))

ImGO
ret(ω)

ω
≡ γ =

νO
T
, (1.23)

as required.

1.3 The two-point function

One of the most important observables we are interested in this paper is the two-point

function of the π field at horizon crossing, which is related to the two-point function for

the curvature perturbation ζ (ζ ≃ −Hπ [17]), that is conserved outside the horizon. In the

standard scenario of an expanding universe the linearized EOM for the π field is equivalent

to eq. (1.2) with γ → 3H and ω0 = cskph ≡ csk
a(t) , that is (notice that now we have a time

dependent ω0)

π̈k + 3Hπ̇k + c2s
k2

a2
πk = 0. (1.24)

The reason the mode freezes out is due to the fact that the term proportional to ω0 goes

to zero as t→ +∞, for a fixed (co-moving) k, and a constant value for π solves the equation.

The time at which this happens is determined by the condition k⋆ ≡ k/a(t⋆) ∼ H(t⋆)/cs,

or ω⋆ ∼ H⋆. (The ⋆ denotes a quantity at freeze out.) If we impose the Bunch-Davis state

as initial condition, the well known result is [17]:

〈ζkζq〉BD = (2π)3
H2
⋆

4c⋆sǫ⋆M
2
pk

3
δ(3)(q+ k), (1.25)

with ǫ ≡ −Ḣ/H2. Since these are the quantum zero-point energy fluctuations, this expres-

sion follows straightforwardly from

S2 = ǫM2
p

H2

c2s

∫

d4xπ̇2 ∼ ǫ⋆M
2
p c
⋆
s

ζ2

ω2
⋆

∼ 1 → ζ ∼ ω⋆√
2c⋆sǫ⋆Mp

. (1.26)

Naively one would expect that the addition of a friction term to eq. (1.24), of the form

γπ̇k, will modify the crossing condition to k/a(t∗) ∼ γ(t∗)/cs, leading to ω⋆ ∼ γ. Hence,

from eq. (1.26), it appears as if it would produce a larger two-point function. However, this

is incorrect, and the contribution from the homogenous equation turns out to be negligible.

We will show this in detail later on (see section 5.2), but the basic idea is rather simple as

we argue next.10

10Notice that the term in γπ̇ does not have the same role as the standard 3Hπ̇ one in an expanding

universe, since for the latter the frequency of all modes redshift at the same rate H, while that is not case

with γ.
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1.3.1 Homogeneous solution

Let us take eq. (1.24) but assume there is an extra dissipative term γπ̇k, with γ ≫ H. To

gain some intuition we will solve the equation adiabatically starting with constant values

of ω0 = cskph. (For reasons that will be clear in section 5.2, we also parameterize time

running from [−|t0|, 0].) This is a good approximation as long as ω̇0/ω
2
0 ≪ 1, which holds

provided cskph ≥ H. (In fact, as we will see, csk⋆ ≃ √
γH ≫ H.) It is easy to see there

are two independent solution, namely

f∓(t) = A∓ exp





−γt
2



1∓
√

1− 4
ω2
0

γ2







 . (1.27)

We will consider two regimes. First, at some early time (|t0| ≫ 1/γ) we assume we

are in the solution with ω0 = cskph ≫ γ, so that we match it with the usual oscillatory

behavior normalized to the Bunch-Davies vacuum

f±BD =
1√
2ω0

e±iω0t0 . (1.28)

This is justified by realizing that by going sufficiently back in time, the mode begins to

oscillate fast enough to decouple from the ADOF. We expect this to happen for ω & ΓO.
This fixes the overall coefficient to

A± ≃ e
−γ|t0|

2√
2ω0

+O(γ/ω0). (1.29)

As time progresses, we enter our second regime, where ω2
0 decreased to the point the mode

freezes out, ω0 → ω⋆0 = csk⋆. One can then show that after matching both regimes the

solution that dominates scales like11

f− ∼ e−
γ|t0|

2

√

ω⋆0
e

−(ω⋆
0)2t

γ . (1.30)

As a consequence the homogenous solution acquires a damping factor e−
γ|t0|

2 ≪ 1. A

detailed analysis shows that indeed it acquires this type of exponential suppression (see

section 5.2).

From here we conclude that the contribution to the two-point function from the ho-

mogenous part becomes exponentially small as t→ 0, which opens the door for the source

noise to dominate.

1.3.2 Noise

In what follows we present a basic physical argument for the computation of 〈ππ〉 due to

the noise δOS . (For ease of notation here we return to the more traditional range for time,

t ∈ [0,∞].) The detailed analysis will be presented in section 6.

11The other solution decays faster with time.
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In the EOM of (1.2) we now have to deal with an extra term, namely

π̈k + γπ̇k + ω2
0πk = −N−1

c δOS , (1.31)

where Nc is a normalization factor. Since we take γ ≫ H, we work in the limit where

ω0 ≪ γ. (1.32)

Under this condition we can in principle find the exact Green’s function, however it is easier

to look at the simplified version that holds in the overdamped limit

(

d

dt
+
ω2
0

γ

)

Gkγ(t− t′) =
1

γ
δ(t− t′), (1.33)

where we drop the factor
d2Gk

γ

dt2
≪ γ

dGk
γ

dt . The solution reads

Gkγ(t− t′) =
1

γ
e
−ω2

0
γ
(t−t′)

θ(t− t′). (1.34)

(The k dependence is implicit in ω0.) We see that the response induced by the Green’s

function is approximately constant for sources concentrated on late times, while it becomes

exponentially damped for very early sources. This allows us to define an ‘equilibration time’

as the scale controlling the exponential suppression:

τ−1
eq ∼ ω2

0

γ
. (1.35)

The solution for π now reads

πk(t) = −N−1
c

∫ ∞

0
dt′Gkγ(t− t′)δOS(k, t

′). (1.36)

(This is all what is left at late times t ≫ τeq since the homogeneous solution dies away.)

Assuming a white noise spectrum,

〈δOS(k, t
′)δOS(q, t)〉 ≃ (2π)3νOδ(t− t′)δ(3)(q+ k), (1.37)

the two-point function turns into

〈πk(t)πq(t)〉 = N−2
c

∫ ∞

0

∫ ∞

0
dt′′dt′Gkγ(t− t′)Gqγ(t− t′′)〈δOS(k, t

′)δOS(q, t
′′)〉 (1.38)

≃ (2π)3δ(3)(k+ q)νON
−2
c

∫ ∞

0
dt′
(

Gkγ(t− t′)
)2
.

Performing the integral we obtain

〈πk(t)πq(t)〉 ≃
νO(2π)3

N2
c ω

2
0γ

(

1− e
− 2ω2

0
γ
t
)

δ(3)(k+ q) → νO(2π)3

N2
c γω

2
0

δ(3)(k+ q), (1.39)

which tends to a constant as t→ +∞ as we expected.
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In thermal equilibrium, when the FD theorem applies, we can relate the amplitude of

the noise νO to the damping scale of the Green’s function and the temperature T . If that

was the case we would then have

νO = NcγT ⇒ 〈π2〉 ∼ T

Ncω2
0

, (1.40)

or equivalently

Ncω
2
0〈π2〉 ∼ T. (1.41)

This expression is suggestive because it reminds us of the equipartition of energy in thermal

equilibrium. If we interpret Ncω
2
0 as a spring constant ks and π as an harmonic oscillator,

then ks〈π2〉 ∼ T . Indeed the factor of Nc is the canonical normalization for the field π,

and in a sense it represents the ‘mass’ of the harmonic field π (which does not have a mass

in the strict sense).

The above expressions allow us to understand the properties of the Green’s functions in

the expanding universe, which is the case of interest here. The equilibration time represents

the time it takes for the interactions to cancel out the effect of an initial fluctuation.

This effect is due to dissipation. Indeed, in the absence of dissipation the effect of the

initial conditions never disappear. The expression in eq. (1.39), which was obtained in a

Minkowski background, is also valid in the limit in which we can neglect the time scale of

variation of ω0, given by H−1, with respect to the time scale of the Green’s function, i.e.

τ−1
eq . When this condition is violated we cannot trust the solution any longer. However,

we can still look at the EOM for π and realize that since it contains only derivatives, if

the noise is sufficiently concentrated at short distances, the correlation function becomes a

constant. Using ω0 = csk/a this happens when

ω2
0

γ
∼ H ⇒ ω0 ∼

√

γH ⇒ k⋆ ∼
√

γH

c2s
. (1.42)

Notice that at freezing the physical momentum is much larger than H for γ ≫ H.

Then from eq. (1.39) and matching the solution deep inside the horizon and at horizon

crossing we obtain (after re-inserting the factors of a, the scale factor)

〈πkπq〉(t⋆) ∼
νO(2π)3

c2sN
2
c γ(k/a⋆)

2

1

a3⋆
δ(3)(k+ q) ∼

√

H⋆/γνO
N2
c (c

⋆
sk)

3
(2π)3δ(3)(k+ q), (1.43)

where we used (ω⋆0)
2 = (csk/a⋆)

2 and 1/a⋆ =
√
γH⋆/(c

⋆
sk). For instance if we use the

relation in eq. (1.40) we get

〈πkπq〉(t⋆) ≃ (2π)3
√
γH⋆T

Nc(c⋆sk)
3
δ(3)(k+ q). (1.44)

These are indeed the results we find in the full computation (see eqs. (6.3), (6.5)).

Notice that depending on the value of νO, γ and Nc (and/or T ), the two point function

can be significantly enhanced with respect to the standard result.
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1.4 Non-linear effects

To finish our summary let us briefly study possible non-linear interactions along the same

line of reasoning. We will analyze these effects in great detail in the forthcoming sections.

However, it is instructive to study a few simple cases which turn out to be paradigmatic

examples.

1.4.1 Shift symmetry

Let us start by considering interactions that respect a shift symmetry for π. Then the

first operator we may introduce is of the form Õπ̇ (so that O = ˙̃O). The structure of the

Lagrangian induced by the non-linear realization of time-diffeomorphisms implies that this

term comes attached with:12

− 1

2
Õ(∂iπ)

2. (1.45)

For simplicity we remove the tildes from now on. Under the assumption that the linear

piece induces dissipation (see eq. (1.20)), it is straightforward to show the EOM becomes13

π̈k + γ

(

π̇k −
1

2
[∂iπ∂iπ]k

)

+ ω2
0(k)πk = −N−1

c

(

δȮS
k − [∂i(Õ∂iπ)]k

)

, (1.46)

where [ ]k stands for the convolution. We will not attempt a detailed account at this

stage, but instead we provide some heuristic arguments to isolate the basic bits of the full

computation (see section 7.1 otherwise). There are at least two effects due to the non-

linearities to take into account (ignoring the homogenous solution, which as we discussed

decays away), namely

πk(t) = N−1
c

∫ ∞

0
dt′Gkγ(t− t′)

{

−δȮS
k (t

′)− γk2

Nc

[∫ ∞

0
dt′′Gkγ(t

′ − t′′)δȮS
k (t

′′)

]2

− k2

Nc

∫ ∞

0
dt̃Gkγ(t

′ − t̃)δOS
k (t̃)δOS

k (t
′)

}

. (1.47)

The second term in the first line comes from the quadratic term (∂iπ)
2 in eq. (1.46) after

substituting the forced solution for π, i.e. π ∼ −
∫

GδOS . The piece in the second line

comes instead from the last term on the right hand side (r.h.s.) of eq. (1.46). Let us

compute the contribution from the first non-linear term. Assuming the noise is Gaussian,

e.g.

〈δȮS
1 δȮS

2 δȮS
3 δȮS

4 〉 ∼ 〈δȮS
1 δȮS

2 〉〈δȮS
3 δȮS

4 〉+ . . . , (1.48)

and using the local properties of the two-point functions together with eq. (1.37), we obtain

(for k1 ∼ k2 ∼ k3 ∼ k)14

〈πkπkπk〉(γ) = −γν
2
Ok

2

N4
c

∫

dt′dt′′dt′′′
(

Gkγ(t− t′′′)
)2
Gkγ(t− t′)

(

Gkγ(t
′ − t′′)

)2
+ . . . . (1.49)

12We will show this term arises from a −Og00 coupling, and we particularize to (∂iπ)
2 since it dominates

over other terms, such as π̇2, for k⋆ ∼ √
γH/cs ≫ H.

13As we discuss momentarily, the non-linear coupling proportional to γ can also arise from an emergent

shift symmetry in the non-linear response for δO.
14To simplify the notation, here and elsewhere in this section we omit the momentum conserving delta

functions.
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If we now multiply by −H3 to transform to ζ (ζ ≃ −Hπ) and divide by 〈ζζ〉2, using
∫

dtGkγ ∼ 1/ω2
0 ∼ 1/(csk)

2, (1.50)

this simplified analysis indicates a value for the non-Gaussianities of order

|fNL| ∼
γ

c2sH
. (1.51)

Unfortunately we cannot use the local approximation for the last term in eq. (1.46)

since we assumed it applies for its time derivative, however, let us try to estimate its value

by comparing with the one we just computed. If we take the ratio between the two at the

level of the EOM we get (schematically)

γk2
∫

dtĠkγδOkπk

k2πkδOk
∼ 1, (1.52)

which supports the value of fNL in eq. (1.51) also for this operator.15

Notice that we can also estimate the size of the non-Gaussianities by taking the ratio

O(∂iπ)
2

Oπ̇

∣

∣

∣

∣

k⋆∼
√
γH/c2s, ω⋆∼H

∼ k2⋆ζ
2

H2ζ
∼ γ

c2sH
ζ → |fNL| ∼

γ

c2sH
, (1.53)

which is consistent with the more detailed result of eq. (7.11).

From here we conclude that a large value for γ is linked to large non-Gaussianities,

provided the operator responsible for dissipation also induces terms such as in eq. (1.45),

or more generally a γ(∂iπ)
2 piece in the EOM as in eq. (1.46). As we shall see throughout

the paper, this is indeed the case for a vast class of models.

1.4.2 Approximate shift symmetry

Let us assume the shift symmetry π → π + c is softly broken by a parameter ǫ ≪ 1, as

it happens due to the slow-roll approximation. Without this invariance we can have a

coupling of the form

− ḟ(t)δOπ, (1.54)

responsible for a (local) dissipative term, plus a source noise of the form −ḟ δOS . (As we

shall see these terms arise from a −f(t + π)O coupling in the effective action.) Notice at

linear level this operator is of the same type we studied previously, except for the overall

factor of ḟ , which we assume is (approximately) constant to preserve the shift symmetry.

In this scenario, and assuming the noise is Gaussian, contributions to the three point

function will be induced by δOf̈(t)π2 at linear order in the response. Then the level of

non-Gaussianity can be estimated to be (see section 7.2 for more details)

f̈(t)Oπ2
ḟ(t)Oπ

∼ − f̈(t)

ḟ(t)H
ζ → fNL ∼ − f̈(t)

ḟ(t)H
∼ O(ǫ), (1.55)

that is in practice very small, provided ǫ≪ 1.

15For the estimate in (1.52) we used the linear part of eq. (1.47), integrated by parts the time derivative,

and used
∫

dtĠk
γ ∼ 1/γ.
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1.4.3 Non-linear response

Let us continue with the coupling f(t + π)O but include now the response beyond linear

theory, in which case we do not necessarily have the constraint of eq. (1.55). Hence we

have to include contributions to δ(2)OR at second order in π which arise from the intrinsic

three-point function of the δO’s, i.e. 〈[δO(z), [δO(y), δO(x)]]〉. In general, making use of

the local approximation, we have (schematically)

ḟ δ(2)OR
k (ω) ∼ NcgO(k, ω)π

2
k, (1.56)

with gO(k, ω) depending on the specific dynamics of the model. From here we get non-

Gaussianities of order

gO(k, ω)π2k
c2sk

2πk
∼ fNLζ → fNL ∼ gO(k⋆, ω⋆)

(csk⋆)2H
, (1.57)

which is not suppressed by factors of f̈/(Hḟ). Unfortunately, it is not possible in general

to relate the level of non-Gaussianities and the dissipative coefficient γ, unless the differ-

ent terms in δ(n)OR are somehow related. However, there are specific situations where

this happens, in which case we expect a connection between dissipation and non-linear

interactions.

For instance let us consider the case in which inflation is driven by a scalar field φ and

the dynamics of the interaction is such that in the background

Ō = F ( ˙̄φ). (1.58)

Intuitively eq. (1.58) follows from some basic requirement of a velocity dependence to

induce dissipation.

Now we perturb φ→ φ̄+ δφ. Given that O is a scalar, then (provided δφ is a smooth

perturbation)

〈O〉 ≃ F

[
√

(−∂φ)2
]

→ ḟ δOR ≃ Ncγ

(

π̇ +
α

2
π̇2 − 1

2
(∂iπ)

2 + . . .

)

, (1.59)

where π = δφ/ ˙̄φ, and the factor of ḟ appears in order to properly normalize the coupling to

π. In this expression we also assumed the linear piece is responsible for dissipation. (The

coefficient α is an order one number which vanishes for the special case F (x) = |x|.)16 One

might wonder whether there is any way to get ˙̄φ’s other than through
√

− (∂φ)2. Certainly

the background breaks time diffeomorphisms, and therefore we have a natural timelike

vector nµ ∼ ∂µt at our disposition. However, if the response of the O’s is predominately

determined by the field φ, we have nµ ∼ ∂µφ, then

∂tφ→ nµ∂µφ =
√

−(∂φ)2. (1.60)

The extra terms in eq. (1.59) thus appear from the fact that the equal time surfaces set by

the inflaton also fluctuate. This case is now similar to the one we discussed in section 1.4.1,

16The argument applies to a generic function F ( ˙̄φ), in which case γ ≡ γ( ˙̄φ). See section 7.3 for more

details.
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and we end up with a γ(∂iπ)
2 term in the EOM. Hence we get gO ≃ γk2, and plugging it

back into eq. (1.57) we obtain

|fNL| ∼
γ

c2sH
, (1.61)

as in eq. (1.51). Therefore, in this example large dissipation is also connected with an

enhancement of non-linear effects.

There is a subtle point in the above argument. As we mentioned, in general large non-

Gaussianities do not necessarily follow from a dissipative term. We obtain large effects in

cases where the O operators are sensitive only to fluctuations of the clock that controls

the end of inflation, namely the field φ in the above example. We refer to this as having a

preferred clock. We discuss this in more detail in section 7.3.

Note also that these estimations apply under the assumption of locality (in which case

we have a well defined derivative expansion). Non-local effects can potentially increase

even more the level of non-Gaussianities, such as it happens in the model analyzed in [31].

However in this regime the EFT treatment becomes more difficult. We do not explore this

scenario in this paper.

1.4.4 Non-Gaussian noise

Going over the possible sources of non-linearties, we are finally led to consider the case in

which correlation functions of the noise are themselves not Gaussian. If, for simplicity, we

assume that the three-point function is local, i.e.

〈δOS(t̃)δOS(t
′)δOS(t

′′)〉 ∼ νO3δ(t̃− t′)δ(t′ − t′′), (1.62)

we get from the −ḟ(t)δOπ interaction

〈πkπkπk〉(γ) ∼ − ḟ
3νO3

N3
c

∫

dt′(Gkγ(t− t′))3. (1.63)

Then using eq. (1.50) we can estimate

fNL ∼ γνO3Nc

ḟ(t)ν2O
, (1.64)

which depends on various parameters, although clearly it can also be large. See section 7.4

for more details.

Adding the expansion of the universe changes things a little bit, in particular we will

have to deal with exponential dilution. However, once we assume the dissipative effects are

taking place at a faster pace than the Hubble expansion our results in flat space are a good

guidance to understand the basic features of the full computation. As we shall see, most of

our previous analysis remains essentially unchanged (provided the dissipative mechanism

acts periodically over the inflationary epoch).

The new ingredient is the construction of an EFT formalism from which we will obtain

the type of terms we discussed, and more importantly the non trivial connections between

the linear and non-linear effects. We start with the EFT setup next.
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2 Effective field theory setup

As shown in [17], for single clock inflation the action in the unitary gauge is given by

S =
M2
p

2

∫

d4x
√−gR+

1

2

∫

d4x
√−g(p− ρ− (p+ ρ)g00)

+
1

2

∫

d4x
√−gM4

2 (t)(1 + g00)2 − 1

2

∫

d4x
√−gM3

1(t)δK
µ
µ (1 + g00)

−1

2

∫

d4x
√−gM2

2(t)(δK
µ
µ )

2 − 1

2

∫

d4x
√−gM2

3(t)δK
µ
ν δK

ν
µ

+
1

6

∫

d4x
√−gM4

3 (t)(1 + g00)3 − 1

2

∫

d4x
√−gM2

4ĝ
µ
ν ∂µδg

00ĝνρ∂ρδg
00

−1

2

∫

d4x
√−gM2

4(t)(δK
µ
µ )

2(1 + g00) . . . (2.1)

where the spatially flat FRW background metric is given by

ds2 = gµνdx
µdxν = −dt2 + a2(t)δijdx

idxj , (2.2)

and the unit vector perpendicular to surfaces of constant time t,

nµ =
−∂µt

√

−gνρ∂νt∂ρt
, (2.3)

takes the form nµ = −δ0µ(−g00)−1/2. The extrinsic curvature of the surfaces is

Kµ
ν = ĝµρ∇ρnν (2.4)

where ĝµρ = gµρ+nµnρ is the induced spatial metric. Thus δKµ
ν = Kµ

ν−Hĝµν is the variation

of the extrinsic curvature of constant time surfaces with respect to the unperturbed FRW.

The ellipses in (2.1) account for any additional term that respect (time dependent) spatial

diffeomorphisms. Defining

Tµν = − 2√−g
δS

δgµν
, (2.5)

Einstein equations imply (a bar over any quantity denotes its unperturbed value)

ρ = 3M2
pH

2, (2.6a)

p = −M2
p (2Ḣ + 3H2). (2.6b)

where H = ȧ/a, M2
p = (8πGN )

−1.

To introduce the π field in the EFT we follow Stückelberg’s trick,

t→ t̃ = t− π, xi → x̃i = xi, (2.7)

so that g00 can be written as

g00(x) = g̃00(x̃)(1 + π̇)2 + 2∂iπg̃
0i(x̃)(1 + π̇) + g̃ij(x̃)∂iπ∂jπ, (2.8)
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and δKi
j is

δKi
j(x) = −∂i∂jπ

a2
− 1

2
[∂jδg̃

0i + ∂iδg̃
0j ]− ∂t(a

4δg̃ij)

2a2

+a2Hδg̃ij −
(

H

2
δg̃00 − Ḣπ

)

δij , (2.9)

to linear order in the perturbations. From now on tildes will be omitted. In addition, we

can choose coordinates so that the metric in the perturbations is given by

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (2.10)

In this paper we will ignore tensor perturbations.

In general the metric perturbations δN and Ni are determined by the momentum and

Hamiltonian constraints. The action for π is obtained after introducing their solution back

into the action. For single field inflation, it was shown in [17] that in certain regimes the

metric fluctuations can be ignored, and indeed these are suppressed either by slow roll

parameters, or by ratios of H2/M2
p . The same occurs when we include ADOF. We discuss

the details of this decoupling limit in appendix D.

The quadratic contribution to the action for π can thus be written as

Sπ =
1

2

∫

d4xa3
{

(p+ ρ+ 4M4
2 )π̇

2 − (p+ ρ+HM
3
1)
(∂iπ)

2

a2
− (M

2
2 +M

2
3)
(∇2π)2

a4

}

.

(2.11)

(To arrive at this result we have performed integrations by parts.17) The above expression

can be re-arranged as follows (ignoring M2 and M3)

Sπ =

∫

d4xa3
Nc

2

{

π̇2 − c2s
(∂iπ)

2

a2

}

, (2.12)

where

c2s =
(p+ ρ+HM

3
1)

(p+ ρ+ 4M4
2 )
, Nc = (p+ ρ+HM

3
1)/c

2
s. (2.13)

For more details on the EFT formalism see [17, 22, 30]. As we show next, the introduc-

tion of ADOF changes the relations in (2.13), since in general they can have a non-vanishing

background stress energy tensor.18

3 Adding new degrees of freedom

In order to include dissipative effects in our system we will follow the procedure of sec-

tion 1.2 and introduce a set of (composite) operators that behave as an effective environ-

ment. Since we are dealing with gravity, we should take into account that the stress tensor

17The differences with [17] are due to the fact that here we are using a term δg00δKµ
µ instead of δNδEµ

µ ,

where Kµ
µ =

√

−g00Eµ
ν . The relations between the coefficients are M

3
1 = d1M

3/2, M4
2 = M4−3/4d1HM3,

M2 +M3 = M2(d2 + d3).
18As we will explain later, this in not in contradiction with the results of [17], where it was shown that

the tadopole coefficients are uniquely fixed by H and Ḣ. This is due to a different choice for the field π.
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corresponding to these new degrees of freedom, TµνO , may contribute significantly to the

background. This is the case, for example, in the trapped inflation model of [31] where

particles are created while the inflaton slow rolls (see section 8).

The fact that there is more than one field whose stress energy density takes an expec-

tation value slightly complicates the construction of the EFT. The basic idea of the EFT

of inflation is rooted in the necessity of having an end point for the accelerated expansion,

and that there is a physical clock that defines a special time-slicing where the clock is taken

to be uniform. This is the so-called unitary gauge. Time translations are spontaneously

broken during inflation by the presence of this preferred clock, which means that there is

a Goldstone boson that non-linearly realizes the symmetry. In the case where we add the

ADOF, there is an ambiguity in the definition of the clock field, as the additional fields may

have non-vanishing background expectation value that also break time-translation invari-

ance. Nevertheless, there are two natural definitions of the field that interpolates for the

Goldstone boson, both equally good. The first one follows the approach of [30], in which

one introduces the Goldstone boson of time-translations, π̃, such that the action takes the

form [17, 30]

∫

√

−g̃
(

−M2
p (3H

2(t+ π̃) + Ḣ(t+ π̃)) +M2
p Ḣ(t+ π̃)g̃00(π̃)

)

+ . . . (3.1)

(The ellipses include other (non-Goldstone) combinations that depend on the ADOF.)

In this approach the only tadoples (namely terms that are linear in δgµν) are the ones

associated with the operators
√−gg00 and

√−g, whose coefficients are uniquely fixed by

the geometry as shown in [17, 30].

A second alternative, which is the one we take in this paper, is to define a unitary

gauge in which the physical clock that controls the end of inflation is taken to be uniform.

Then by performing a time diffeomorphism we introduce a different Stückelberg field, that

we will denote as π. The main difference between the two gauges relies on the fact that now

the coefficients for the tadpole operators,
√−gg00 and

√−g, are not determined by the

geometry and will in general depend on contributions from the ADOF in the background

(see eqs. (3.2)–(3.5) below). This is the case because we also need to include tadpole

operators induced by the ADOF. The two different π’s are related by a mixing that involves

the ADOF fluctuations, schematically: π̃ ∼ π+ δO. The field π̃ has a simpler Lagrangian,

because the coefficients of the two tadpole terms are fixed, as shown in [17]. However, it

is not convenient for us because π̃ is not sufficient to determine the end of inflation. If we

were working with π̃, then the curvature perturbation would be related to the latter by a

relationship of the form ζ ∼ Hπ̃ + δO. Instead, by taking the second choice, we have a

slightly more complicated Lagrangian, yet the link between ζ and π is simply ζ ≃ −Hπ
(at linear order), with no dependence on the O operators. This is the case because, as

we emphasized in the introduction, we work under the assumption that the ADOF do not

contribute to density fluctuations at late times.

This is the main difference between the cases we are studying here and the analysis

of [30], where additional light fields were included to the EFT of inflation of [17]. It is easy

to convince oneself that the two gauge choices are equivalent. We take the second.
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Let us continue with the construction of the effective Lagrangian. Following [17] our

starting point is an effective action in a unitary gauge in which we write

∫ √−g(Λ(t)− c(t)g00) + SO, (3.2)

where c(t),Λ(t) are certain tadpole coefficients soon to be fixed by enforcing Einstein equa-

tions. Note we added SO =
∫

d4x
√−gLO to account for the dynamics of O independent

of π. (We will incorporate the couplings between π and O in the next section.) Also, by

construction, SO is a scalar under diffeomorphisms. Then with

T
O
µν = diag(ρO, a

2pO, a
2pO, a

2pO), (3.3)

it is straightforward to show

Λ(t) +
1

2
(p̄O − ρ̄O) = −M2

p (3H
2 + Ḣ) (3.4)

c(t) +
1

2
(p̄O + ρ̄O) = −M2

p Ḣ. (3.5)

As explained in [17] we introduce π following the Stückelberg trick (see eqs. (2.7)

and (2.8)), which for the action in eq. (3.2) means that only c(t) contributes to the nor-

malization of the quadratic Lagrangian in π, so that19

c2sNc ≡ 2c(t) = −2M2
p Ḣ − (ρ̄O + p̄O). (3.6)

(Note this coefficient would be given by −2M2
p Ḣ in the absence of ADOF, in which case

both definitions of π would agree.)

As an example, let us consider once again inflation described by a scalar field with the

following action

Stot =

∫ √
g

(

−1

2
(∂φ)2 − V (φ) + LO

)

. (3.7)

Since we assume the ADOF do not contribute significantly to density fluctuations at late

time, our unitary gauge is the one where δφ = 0. Then we obtain

Stot =

∫ √
g

(

−1

2
˙̄φ2g00 − V (φ̄) + LO

)

, (3.8)

where φ̄(t) is the background value. On the other hand, Friedmann equations (including

the ADOF) tell us − ˙̄φ2/2 = −Nc/2 and V (φ̄) = Λ(t), with (Λ, Nc) defined in eqs. (3.4)

and (3.6) (for cs = 1). Hence the action takes the form of the expression in eq. (3.2) with the

aforementioned coefficients. Moreover, we also get the usual Lagrangian for π normalized

by Nc, after identifying π = δφ/ ˙̄φ. We notice in passing that assuming the stress energy

tensor that follows from LO obeys the null energy condition, i.e. ρ̄O + p̄O ≥ 0, then

c2sNc ≤ −2M2
p Ḣ. (3.9)

19Terms linear in π cancel out once the background EOM are satisfied.
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Adding higher dimensional operators will shift the normalization of π, like in eq. (2.13).

In particular we will generate a non-zero correction to the speed of sound, so that cs ≤ 1.

Therefore, before including interactions with the ADOF, at quadratic order the action is

given by eq. (2.12), with (Nc, cs) some matching coefficients, defined as in eq. (2.13).

We will not adopt any particular model for the ADOF, rather we will attempt to

produce correlations between different observables, such as the power spectrum and

non-Gaussianities, under some mild assumptions about the n-point functions of the

type 〈O . . .O〉. But first let us start by constraining the type of operators that we may

add to the effective action in the unitary gauge.

4 The interaction terms in unitary gauge

We move now to the description of the type of operators that we can add to our Lagrangian

in the unitary gauge that will induce couplings between the ADOF and the fluctuations

of the clock. In general, the operators will have some tensorial transformation properties

under space-time diffeomorphisms, and so they will be classified according to their rank.

As it was shown in the analysis of [17, 30], one can write down operators containing only

free upper 0 indices. In our case, however, there is a subtlety we need to address since

the O’s are composite operators that may also contain the metric. Since the metric can

be used to contract tensors made out of several different fields, we define tensor operators

Oαβ... always with indices down, and so that δOαβ.../δg
µν = 0.

Let us give an example. Let us consider two operators, O1 = ψ2 and O2 = gµν∂µψ∂νψ,

with ψ a scalar field. These are both scalar operators, however, according to our prescrip-

tion we should write: O2 = gµνÕ2µν , with Õ2µν = ∂µψ∂νψ. In this way the ambiguity with

respect to metric factors is removed. Operators are then classified as a Taylor expansion

in fluctuations and derivatives as usual. We now proceed to illustrate the leading ones.

4.1 Scalars

In an expansion in metric fluctuations and derivatives, the most relevant operator is

given by

SO
1 = −

∫

d4x
√−g f1(t)O1, (4.1)

where O1 is a scalar under full space-time diffeomorphisms. The next type of operators

can be organized as follows

SO
2 = −

∫

d4x
√−g

{

f2(t)δg
00O2 + f3(t)(δg

00)2O3 + f4(t)(δg
00)3O4 + . . .

}

, (4.2)

where Oa, a = 1, 2 . . ., are also scalars and the ellipses include pieces involving higher power

of the fluctuations as well as higher derivative terms such as ∂0δg00 or δK. In appendix E

we discuss briefly operators of the form

∫

d4x
√−g s(t) 1

MK
ÔδKν

ν . (4.3)
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As we discussed, the operators O1,2 may have (time dependent) background values, e.g.

O1,2 = Ō1,2(t) + δO1,2, which could also contribute to the background Einstein equations.

These lead to corrections to T̄µν from the interaction between the ADOF and the one

responsible for inflation. For example, let us take once again the example of a slowly

rolling scalar inflaton and add the coupling

1

2

∫

d4x
√−g χ2

Λ2
χ

gαβ∂αφ∂βφ→ −1

2

∫

d4x
√−g

(

χ2

Λ2
χ

˙̄φ2
)

g00, (4.4)

to a scalar field χ (say we have a shift symmetry φ → φ + c to prevent other couplings).

Then the new contribution to T̄µν is given by

T̄χφµν =
(

(ρ̄χφ + p̄χφ)δ
0
µδ

0
ν + p̄χφḡµν

)

(4.5)

with ρ̄χφ = p̄χφ = 1
2
˙̄φ2χ̄2/Λ2

χ. Einstein equations require

− c(t) =

[

M2
p Ḣ +

1

2
(ρ̄O + p̄O) +

1

2
(ρ̄χφ + p̄χφ)

]

, (4.6)

and similarly for Λ(t). Notice that the term in eq. (4.4) now contributes to the quadratic

action for π, and we get
[

−c(t)− 1

2
(ρ̄χφ + p̄χφ)

]

g00 (4.7)

thus the canonical normalization coefficient becomes

Nc = −2M2
p Ḣ − (ρ̄O + p̄O). (4.8)

This is a general feature: the normalization of the π Lagrangian will be given by the

difference between the total ‘kinetic term’, (ρ̄+ p̄)tot = −2MpḢ and (only) the contribution

from LO (the Lagrangian for O independent of π). In this example Nc is not equal to
˙̄φ2

but rather

Nc =
˙̄φ2 + 2f2(t)Ōχ, (4.9)

where f2(t) =
˙̄φ2/2 and Ōχ = χ̄2/Λ2

χ. But this is what we expect upon noticing that adding

the term in (4.4) to the usual Lagrangian, −1
2(∂φ)

2 − V (φ), renormalizes the kinetic part

of the action by a factor

− 1

2
(∂φ)2 → −1

2

[

1 +
χ̄2

Λ2
χ

]

(∂φ)2, (4.10)

and therefore we obtain (using π ∼ δφ/ ˙̄φ)

1

2

(

˙̄φ2 + 2f2(t)Ōχ

)

(

δφ̇2

˙̄φ2
+ . . .

)

≡ c2sNc

(

π̇2

2
+ . . .

)

, (4.11)

as in eq. (4.10). Note that from an effective field theory point of view, the consistency of

this particular example with a slow rolling scalar field requires to have, even in a situation

where χ̄2 & | ˙̄φ|, Λ2
χ ≫ χ̄2, and therefore c2sNc remains essentially given by ˙̄φ2. This is so
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as otherwise we should consider an infinite amount of terms. However this situation is not

necessarily the case for all possible UV models, since we could instead of the term in (4.4)

write a generic expansion (see for example [51])

(χ2/Λ2
χ)(∂φ)

2 →M4F (χ̂2)P (X), (4.12)

with χ̂ = χ/Λχ and X = −(∂φ)2/M4 with M some mass scale, such that f2(t)Ōχ >
˙̄φ2.

One of the most useful aspects of the EFT of inflation is that we do not need to worry

about a specific realization of the background while studying its perturbations. As a result

the scale Nc may be dominated by f2(t)Ōχ, rather than
˙̄φ2.

Let us now return to the operator in eq. (4.1). In principle it can also have a background

value, i.e.
√−gf1(t)Ō1(t). Since it only contributes a piece proportional to

√−g it can

be absorbed into Λ(t) in eq. (3.2), to ensure the background satisfies Einstein equations.

Notice that the full O1 is a scalar so that the coupling f1(t)O1 only develops π’s from

f1(t) → f1(t + π). However, if we absorb f1(t)Ō1 into Λ(t) then its value gets fixed as

in eq. (3.4), which we now have to expand in t + π. Hence somehow the pieces from

Ō1(t+ π) must cancel out, and they do once we realize δO1(t) is not invariant under time

reparameterizations and their background values are re-introduced from

δO1 → δO1 − ˙̄O1(t)π + . . . . (4.13)

In other words, the fact that the O operators have background expectation values means

that if we split them into background plus fluctuations, the latter shift under a time

diffeomorphism.20 Of course if we do not split the operator in this manner, then since O
is a scalar, no π field will be associated with it once we perform a time diffeomorphism.

Let us consider for instance a coupling φ2χ2 between the inflaton and a second scalar

field (this will reappear later on), and allow for a non-zero expectation value χ̄2(t) 6= 0.

In our unitary gauge we have a term in the action φ̄(t)2〈χ2〉(t) (plus perturbations in the

χ’s), which we can think of as being included in V (φ̄) (with time dependent coefficients).

This corresponds to a f(t)O type of coupling. As we mentioned above, we do not want to

stream π off the time dependence in χ̄2(t) (because the full operator is a scalar), but this

will happen once we solve for V (φ̄), i.e. Λ(t) as in eq. (3.4). However, it is easy to see these

extra terms cancel out against the ones induced from eq. (4.13).

Let us finally briefly comment on the slow roll approximation, since in principle the

coupling
(

f1(t)Ō1(t)
)

may break it. In general the slow roll condition can be satisfied

provided
d2
(

f1(t)Ō1(t)
)

dt2
.

Ḣ

H2
. (4.14)

This requires, in addition to ǫ = −Ḣ/H2 ≪ 1 and η ≡ ǫ̇
ǫH ≪ 1, that any explicit function

of time f(t) in the action, plus all background quantities associated to the ADOF, change

very little in a Hubble time. Schematically we write: ǫf ≡ f̈

ḟH
≪ 1 and ǫO ≡ ˙̄O

HŌ ≪ 1.

20If instead we had chosen to work with π̃, such that by construction all the information about Ō is

already incorporated in eq. (3.1), we would still have these background values appearing in the Lagrangian

from the shift of δO after re-inserting π̃, similarly to eq. (4.13).

– 23 –



J
H
E
P
0
1
(
2
0
1
2
)
0
7
5

In practice we assume all the terms proportional to Ō1,2(t), or in general stemming from

LO, are included in the background geometry (H, Ḣ) or into the coefficients (cs, Nc), and

furthermore with their time dependence suppressed by slow roll parameters unless otherwise

noted.

4.2 Vectors

Moving into vector couplings, the one with the least number of metric fluctuations has

the form ∫

d4x
√−g f̃1(t)Oµδg

µ0, (4.15)

where we have been careful in defining the vector with the index lowered as we stressed

at the beginning of the section. As we will see when we reinsert the π field, something

unusual about this operator is that it only entails terms linear in π, provided f̃1(t) is a

constant. At higher order the generalization is straightforward:

∫

d4x
√−g

(

f̃2(t)Oαδg
00δgα0 + . . .

)

. (4.16)

4.3 Tensors

We can move on by considering generic tensors, with their indices contracted with gµ0’s,

as for instance
∫

d4x
√−g f̂(t)Oµ...νδg

µ0 . . . δgν0 =

∫

d4x
√−g f̂(t)O0...0. (4.17)

Another type of terms, perhaps more interesting, are those coupled to the extrinsic curva-

ture. For example,
∫

d4x
√−g s(t) 1

MK
ÕµνδK

νµ, (4.18)

where the factor of MK , which we take to be much bigger than Hubble, accounts for the

mass dimensions of Kµ
ν . We can clearly continue adding factors of δg0µ and δKµ

ν .

5 The interaction terms for π

As we already pointed out, in this paper we ignore the mixing with gravity and work in

the decoupling limit (see appendix D). Therefore, following our previous sketching of the

procedure, to construct the interacting part of the action between the ADOF and the π’s

we simply replace (see section 2)

g00 → −1− 2π̇ − π̇2 +
1

a2
(∂iπ)

2 (5.1)

g0µ → −δµ0 (1 + π̇) + δµi
1

a2
∂iπ. (5.2)

Also terms from the extrinsic curvature, that at linear order induces

δKij → a2Hδij π̇ − ∂i∂jπ + . . . . (5.3)
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As we anticipated, at quadratic order the Lagrangian for the π field takes the form

in eq. (2.12).

Next we include the interaction terms between the O’s and π in the effective action. Let

us start at quadratic level in the fluctuations. There are many operators that contribution

at linear order in π. However, from eqs. (5.1), (5.2), (5.3) we note that all the terms at

leading order in derivatives can be re-grouped basically as

ḟ1(t)Oπ, f2(t)Õπ̇, f̃1(t)Oi∂iπ, . . . , (5.4)

where the dots include higher derivative terms. Since the non-trivial features of the non-

linear realization of time-diffeomorphisms comes from the connection between terms with

different powers of π, at linear level we obtain basically all the terms allowed by rotational

invariance. The first term appears after expanding f1(t+π)O in powers of π to first order,

whereas the second term comes from f2(t)Õδg00. Note that there is a contribution from

eq. (4.3) to the second term, however, it is suppressed by a factor of H/MK ≪ 1. Terms

like ∂iπOi, which follow from Oµδg
µ0, may also generate contributions to cs as well as

k-dependent friction.

For the purpose of understanding the generation of friction, we can concentrate on the

linear order. We can therefore simply use integratation by parts and study an effective

operator of the form

−
∫

d4x
√−g ḟ(t)O(x)π(x), (5.5)

where ḟ(t) provides an overall normalization scale which we assume remains constant

protected by an approximate shift symmetry, but see sections 1.4.2 and 7.2. In most

of the expressions below we assume ḟ is absorbed into O unless otherwise noted. Here

O accounts for a series of contributions, including ∂iOi etc, so that we expect its Green’s

function to be quite generic.

We wish to understand now under which circumstances we recover an equation equiv-

alent to (1.2). The main difference, as we just mentioned, lies in the expansion of the

universe. A crucial simplification will come from our assumption of a faster than a H−1

time scale for dissipation, and therefore our analysis from section 1 remains essentially

unaltered.21

5.1 Modified dynamics & local approximations

In section 1.2 we started our discussion of the effect of terms such asOπ in the dynamics of π

in a flat background. The main difference now is the explicit time dependence introduced by

the scale factor. For that reason, instead of working in frequency space, we find convenient

to work in mixed Fourier space (t,k), keeping time as usual. Again we split the operator

into pieces,

O(t,x) = Ō(t) + δOS(t,x) + δOR(t,x), (5.6)

21This means that in practice we will work in the regime where terms like HδÕ, that appear after we

integrate by parts and hit the a’s in the volume factors, are such HδÕ ≪ δ ˙̃O.
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with Ō(t) the background expectation value, δOS(t,x) the stochastic fluctuations, and

δOR(t,x) the those induced by π. In what follows we omit the background piece Ō(t), which

as explained in section 4.1, we assume is absorbed in H, Ḣ,Nc, and its time-dependence is

suppressed in the slow roll approximation (ǫ, η, ǫf , ǫO) ≪ 1.

Recall the first variation in eq. (5.6) represents the noise, whereas the second one is

the response to the perturbation induced by the π field, and is given as the integral of a

Green’s function as in eqs. (1.14), (1.15). Varying the action we obtain the EOM

π̈k(t) + 3Hπ̇k(t) +
c2sk

2

a2
πk −

1

Nc

∫

dt′a3(t′)GO
ret(t, t

′,k)πk(t
′) = − 1

Nc
δOS(t,k), (5.7)

with

GO
ret(t, t

′,k) = i

∫

d3y

(2π)3
e−ik·y[δO(t,y), δO(t′,0)]θ(t− t′). (5.8)

(The overall normalization is given by Nc as in eq. (2.12).)

Our first approximation entails locality in space, and so we take the Green’s function

to be of the form

GO
ret(t, t

′,k) =
GO

ret(t, t
′)

a3/2(t)a3/2(t′)
+O(|k|/MO), (5.9)

with MO ≫ k⋆. (The factors of a−3/2 account for the fact that we work in co-moving

coordinates.) In other words, there is a ‘gap’ in momentum space determined by the ‘mean

free path’ lO ∼ 1/MO ≪ 1/k⋆. We perform the same approximation for the correlation

functions of the noise. For example for the two-point function we have

〈δOS(t,k)δOS(t
′,q)〉 ≃ ν̃O(t, t′)

a3/2(t)a3/2(t′)
(2π)3δ(3)(q+ k). (5.10)

To obtain a local approximation in time we assume that the characteristic time scale

for the variation of the kernels, Γ−1
O ≪ 1/H, is much smaller than the one of the sources,

i.e. the π field. (Notice that, at least in principle, ΓO is not necessarily related to lO.) Then

by changing the integration variable t′ = t− τ in the above EOM we can approximate

πk(t− τ) ≃ πk(t)− π̇k(t)τ + . . . , (5.11)

The first term would introduce a mass for π, as can be seen after using this approxi-

mation in eq. (5.7). However, as we mentioned in section 1, in this paper we concentrate

in models where ζk is not affected by the ADOF after horizon exit. This requires that the

equations for the ζ modes do not have a mass term.22 This imposes the condition that for a

constant ζ the response from the O’s should vanish. More specifically we impose δOR
k → 0

as k/a → 0, such that we do not generate a mass term for π. We enforce this at the level

of the Green’s function, imposing an emergent shift symmetry such that the effect of the

first term vanishes, i.e.
∫

a3/2(t− τ)

a3/2(t)
GO

ret(t, t− τ)dτ = 0. (5.12)

22This is guaranteed if we have a (softly broken) shift symmetry.
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On the other hand, the second term of eq. (5.11) produces our desired result, where

the friction part is given by (see eqs. (5.7) and (5.9))

Ncγ ≃ −
∫

a3/2(t− τ)

a3/2(t)
· τ ·GO

ret(t, t− τ)dτ. (5.13)

In the flat space limit this corresponds to the condition

GO
ret(t, t

′) ≃ −γNc∂tδ(t− t′) + . . . , (5.14)

or eq. (1.19) in Fourier space, after re-introducing the factors of Nc.

The noise part will affect π only through integrals of the Green’s function whose vari-

ation time scale is assumed to be much longer than the characteristic scale corresponding

to the noise. This means that π will be sensitive only to the integral in cosmic time of

νO(t, t′), and therefore we can approximate

ν̃O(t, t
′) ≃ νOδ(t− t′). (5.15)

If for example we would assume O is in thermal equilibrium, at high temperature T

we could use the FD theorem which relates

γ ≃ νO
NcT

. (5.16)

Notice that the expansion of the universe, i.e. the factors of e−
3H
2
τ , helps to improve

the locality of the expression in eq. (5.13). That is to say, there is no significant influence

between different Hubble times. In this paper we thus take γ, νO to be essentially constant

up to slow roll effects, i.e.
(

γ̇
γH ,

ν̇O
νOH

)

∼ O(ǫ).

At the end of the day the EOM becomes

π̈k(t) + (3H + γ)π̇k(t) +
c2sk

2

a2
πk = − 1

Nc
δOS(t,k), (5.17)

plus the behavior of the noise dictated by eqs. (5.10), (5.15).

5.2 The homogenous solution

Here we show that the homogenous part of eq. (5.17) becomes negligible at horizon crossing

for γ ≫ H, which is the domain we are interested in this paper. To solve the equation we

first make the change of variables π = zλ/2ϕ, with λ = 2+ γ/H ≫ 1. The equation for the

perturbation reads
(

d2

dz2
+ 1− λ

2z2
(1 + λ/2)

)

ϕk = 0, (5.18)

with z = −kcsη, and η the conformal time. Naively, as in the case with λ = 2, it appears

as if the mode freezes out when λ2/z2 ∼ 1, namely z2 ∼ γ2/H2, or csk⋆ ∼ γ. However, as

we mentioned already, this expectation is incorrect. In fact, we can solve eq. (5.18) exactly

and the solution for π looks like

πk(z) = Ak1y1(z) +Ak2y2(z), (5.19)

where

y1(z, ν) = zνJν(z); y2(z, ν) = zνYν(z), (5.20)
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ν = 3
2 + γ

2H , and Jν , Yν are Bessel functions. By studying the asymptotic behavior we

notice only y2 tends to a finite value as z → 0,

y2(z → 0, ν) → −2ν

π
Γ[ν] ≃ −2ν

√

2ν

π
eν(log ν−1) for ν ≫ 1, (5.21)

using Stirling’s approximation. In order to estimate π(z → 0), and consequently its con-

tribution to the two-point function, we need to specify the initial conditions to extract

the value of Ak2. The most conservative approach is to assume that at some given z0 the

mode is in the Bunch-Davies vacuum. (More precisely: 〈π(z0)π(z0)〉 ∼ 〈π(z0)π(z0)〉BD.)

This requires23

Ak2 ∼ z−ν0 for ν ≫ 1. (5.22)

The origin of the early time scale z0 can be understood by taking our dissipative system

to be characterized by a typically high energy scale, so that it decouples from fluctuations

above this threshold. This implies that we can put π in the Bunch-Davies vacuum above

some this scale. Then as it approaches freeze out we have

y2(z → 0, ν) ≃ 2νz−ν0

√
2νeν(log ν−1) →

(

2ν

z0

)ν √
2νe−ν , (5.23)

which is exponentially small for z0 > 2ν ≫ 1. Notice that even performing the matching at

z0 = 2ν ∼ λ ≫ 1, as η → 0 the suppression is still exponential. In other words, the mode

does not immediately freeze out, as naively suggested by eq. (5.18), in fact it continues

decreasing as it approaches z → √
ν.24

Hence we conclude that the homogenous part effectively becomes unimportant for

γ ≫ H which means that the two-point function can be easily dominated by the noise, as

we will assume from now on.

6 The power spectrum

The computation of the power spectrum follows the same step as in section 1.3.2, except

that we have to deal with a somewhat more elaborate Green’s function. The particular

solution of eq. (5.17) is given by

πk(η) =
kcs
NcH2

∫ η

η0

dη′Gγ(kcs|η|, kcs|η′|)
δOS

(kcsη′)2
, (6.1)

23Note that the solutions in eq. (5.20) tend to cos z0 and sin z0, and therefore both are required to match

into the Bunch-Davies vaccum, i.e. eiz0 . This is slightly different than the analysis in section 1.3.1, however,

notice that the factor of z−ν
0 resembles the exponential suppression e−

γ|t0|
2 in eq. (1.29).

24To show this more explicitly we can take the ratio dπ/dz
π/z

which, using

d(zνYν)

dz
= zνYν−1, Yν ∼ −2νΓ[ν]

πzν
(for z ∼ 0, ν ≫ 1), (5.24)

we see goes like
dπ/dz

π/z
≃ z2

ν
. (5.25)

This suggests the solution starts to deviate from the asymptotic value near z ∼ √
ν, or csk⋆ ∼ √

γH, as we

anticipated in section 1.3.1.
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where

Gγ(z, z
′) =

π

2
z
( z

z′

)ν−1
[

Yν(z)Jν(z
′)− Jν(z)Yν(z

′)
]

, (6.2)

with z = −kcsη and z′ = −kcsη′. Then with the use of eq. (5.10), (5.15) we obtain

Pπ(k) ≡ 〈πkπk〉O =
νO

N2
c (kcs)

3

∫ z0

z
dz′(Gγ(z, z

′))2.

For kcsη → 0 and kcsη0 → −∞ we find

Pπ(k) =
νO

N2
c (kcs)

3

16
γ
H ( γH + 1)3Γ

(

γ+H
2H

)4

πΓ(2γH + 4)
→

√

π/4
ν⋆O
√

H⋆/γ⋆
N2
c (k⋆c

⋆
s)

3
for γ ≫ H, (6.3)

or (Pζ = H2Pπ)

∆ζ ≡ k3Pζ(k) ≃ ν⋆O
√

πH⋆/γ⋆
H2
⋆

2c⋆s (c
⋆
sNc)

2 . (6.4)

(Recall the ⋆ means that the quantity is evaluated at freeze out csk/a(t⋆) ∼
√
γ⋆H⋆.)

In figure 1 the power spectrum is shown as a function of γ and also |kcsη0|. Notice

that the dependence on η0 drops out once we take |kcsη0| ≫ 1.25

If we were to assume the ADOF are in thermal equilibrium at a (high) temperature

T , using the FD theorem we would obtain

k3〈ζkζk〉T ≃
√

πγ⋆H⋆
TH2

⋆

2c⋆s
(

c⋆s
2Nc

) . (6.5)

These are exactly (up to numerical factors) the results in eq. (1.43), (1.44). We note

that an expression similar to eq. (6.5) was first introduced in [39–41], and plays a key role

in warm inflation models [42–44].

A few comments are in order. First of all, since we lump a series of operators into a

single one, i.e. Oπ, the local approximations look significantly different depending on the

type of terms we are dealing with. However, once our assumptions are enforced the analysis

is quite robust, and does not depend on the very details of the models. The only constraint

we need to ensure is the scale invariance of the two-point function, which is guaranteed as

long as γ, νO remain relatively constant during inflation (more below).

The distinction between models starts to play a role when we move to the non-linear

level. For example, the friction term could derive exclusively from the operator Oµδg
µ0,

which does not lead to non-linear couplings between O and π; or it may be produced by

the scalar couplings f(t)O or Oδg00, in which case we do generate quite distinct non-linear

interactions. As we discussed before, Oδg00 appears to be the cleanest, for which the value

of fNL is tied up with the friction coefficient. This is not always the case for f(t)O, where

the level of non-Gaussianities depends on the details of the model. However, as we argued

before, in cases where there is only one preferred clock and the (non-linear) response δOR

has an emergent shift symmetry and fNL is equally enhanced. We make this analysis more

precise in what follows.

25Note that even in the case where γ ≪ H, this contribution is still larger than the result for the Bunch-

Davies vacuum, provided νO > 3
π
NcH

2. Hence, as long as Nc < ǫH2M2
p , it is enough to have νO & ǫH4M2

p .
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Figure 1. Top: Dependence on γ of power spectrum given in eq. (6.3) normalized as pπ(γ) =

6N2
c (kcs)

3Pπ(k)/(πνO), for z0 → +∞; Bottom: The power spectrum Pπ(k) for |kcsη| → 0 as a

function of z0, for γ/H = 0 (solid), γ/H = 3 (Dashed), and γ/H = 9 (Dotted).

7 Non-Gaussianities

The non-Gaussian features of the models we discussed in this paper are perhaps the most

interesting results from the point of view of observational signatures. Indeed, while the two

point function is essentially fixed by the symmetries of the quasi de Sitter space, and charac-

terized just by two parameters, namely the overall amplitude and the tilt, higher order cor-

relation functions enjoy a functional freedom that, if observed, it would allow us to decode

a much larger amount of information about the physical mechanisms that produces them.

Studying the full spectrum of non-Gaussian signatures for the vast class of possible

operators we introduced is difficult, mainly because of its generality, and thus lies beyond

the scope of the present paper. Therefore we will concentrate on the leading (scalar)

operators Oδg00 and f(t)O. Very interestingly, we will show that enforcement of the

symmetries allows us to relate the linear and (some of) the non-linear contributions in the

EOM, such that large dissipation will be linked to large non-Gaussianities. In the next

sections we assume dissipation takes on the form γπ̇. We will study the case of higher

derivative dissipation in section 7.5.
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7.1 Oδg00

Here we analyze a situation in which the dominant interaction term has one time derivative

of π, and it is produced by scalar operators of the form −Oδg00. This term has a piece

which is linear in π̇, more precisely 2Oπ̇. (In what follows we absorb the factor of 2 induced

from eq. (5.1) into the operator O, i.e. O → O/2.)
Notice that now we have a choice about the local approximation described in sec-

tion 5.1, namely it may apply to 〈δOSδOS〉 and GO
ret, or 〈δȮSδȮS〉 and GȮ

ret. For the first

case we will not obtain the usual dissipative term γπ̇, but higher derivative terms (as in the

ADL force). Here we analyze the second possibility and discuss the former in section 7.5.

Since we take the scale of time variation for δOS to be much shorter than 1/H, the

main contribution to the noise comes from δȮS ≫ HδOS . We can then basically follow

the same steps as in section 5.1 to show that to linear order the equation for π reduces to

eq. (5.17) with δOS replaced by δȮS . Then the power spectrum is given in eq. (6.3), with

the replacement νO → νȮ. More explicitly, to second order the equation for π is given by

π̈ + 3Hπ̇ − c2s∇2

a2
π = −N−1

c

(

δȮ(1 + π̇) + δOπ̈ − 1

a2
∂i(δO∂iπ)

)

, (7.1)

where δO = δOS + δOR. From eq. (5.1) we see that the force disturbing δO is given by

F = π̇ + π̇2/2 − (∂iπ)
2/2. Using however the local approximation for the time derivative

of the response part, δȮR as in section 5.1, we obtain

δȮR ≃ Ncγ

(

π̇ +
π̇2

2
− ∂iπ∂iπ

2a2

)

. (7.2)

As we already noted in section 1.4, working within this local approximation (and

without making additional assumptions) we are not able to compute all the contributions

to non-Gaussianities, since in eq. (7.1) there appear not only δȮ but also δO. In general,

in the perspective of EFT we do not foresee any fine cancellations and, as we estimated

in eq. (1.52), we expect the contributions to the level of non-Gaussianities of the non-local

terms to be about the same as the local ones. Therefore, in what follows we concentrate

on the terms involving only Ȯ and reduce eq. (7.1) to

π̈ + (3H + γ)π̇ − c2s∇2

a2
π =

γ

2

∂iπ∂iπ

a2
− 3γ

2
π̇2 −N−1

c δȮS(1 + π̇). (7.3)

Let us start by focusing on the contribution of the first term on the r.h.s.: γ(∂iπ)
2. To

analyze the non-Gaussianities we decompose π = π1 + π2, where the subscripts represent

as usual the order of the solution for the fluctuations. Then

π1(k, η) =
kcs
NcH2

∫ η

η0

dη′gγ(kcs|η|, kcs|η′|)δȮS , (7.4)
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where gγ(kcs|η|, kcs|η′|) = Gγ(kcs|η|, kcs|η′|)/(kcsη′)2 with Gγ defined in eq. (6.2), and

(using eq. (7.4))

π2(k3, 0) =
γk3c

3
s

2N2
cH

4

∫ 0

η0

dη′η′2gγ(0, k3cs|η′|)
∫

d3q

(2π)3
|q||k3 − q|(q · (k3 − q))

×
∫ η′

η0

dη′′gγ(qcs|η′|, qcs|η′′|)
∫ η′

η0

dη′′′gγ(|k3 − q|cs|η′|, |k3 − q|cs|η′′′|)

×δȮS(q, η
′′)δȮS(k3 − q, η′′′). (7.5)

(Notice π2 is sourced by terms quadratic in the perturbations: δȮS , π1.)

We want to compute the 3-point function for ζ ≃ −Hπ in the limit η → 0:

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉 = 〈ζ1(k1, 0)ζ1(k2, 0)ζ2(k3, 0)〉+ cyclic sum in ki’s

≡ (2π)3δ(3)(k1 + k2 + k3)F (k1, k2, k3). (7.6)

Then, after eqs. (5.10) and (5.15) plus the condition that the noise is Gaussian (we will

consider non-Gaussian noise later), i.e.

〈δȮS(k2, η̃′)δȮS(k1, η̃)δȮS(q, η
′′)δȮS(k3 − q, η′′′)〉 = (2π)6ν2Ȯ

δ(3)(k1 + k2 + k3)

a4(η′′)a4(η′′′)
(7.7)

×
{

δ(η̃′ − η′′)δ(η̃ − η′′′)δ(3)(k2 + q) + δ(η̃ − η′′)δ(η̃′ − η′′′)δ(3)(k1 + q)
}

(for k3 6= 0),

defining xi = ki/k, with k an arbitrary scale with units of momentum, we obtain (for

η0 → −∞):

F (x1, x2, x3) = k6F (k1, k2, k3)=−
γH3ν2Ȯ
2N4

c c
8
s

x21x
2
2x3(x

2
3−x22−x21)

∫ +∞

0
dyy2gγ(0, x3y) (7.8)

×
∫ +∞

y
dzz4gγ(x2y, x2z)gγ(0, x2z)

∫ +∞

y
dww4gγ(x1y, x1w)gγ(0, x1w)+cyclic sum in xi’s

(we performed a change of variables: y′ = −kcsη′, z = −kcsη′′, w = −kcsη′′).
The associated parameter f eqNL (defined for equilateral configurations) is given by

F (1, 1, 1) =
18

5
f eqNL∆

2
ζ , (7.9)

(with ∆ζ = k3Pζ), and in terms of the Green’s functions:

f eqNL =
5

12







γ

Hc2s

2−8γ/Hπ2Γ
(

2γ
H + 4

)2

( γ
H + 1

)6
Γ
(

γ+H
2H

)8







∫ +∞

0
dyy2gγ(0, y)

∫ +∞

y
dzz4gγ(y, z)gγ(0, z)

×
∫ +∞

y
dww4gγ(y, w)gγ(0, w), (7.10)

where we have used the power spectrum given in eq. (6.3) (with νO → νȮ). Performing a

numerical integration we extract

f eqNL ≃ − γ

4Hc2s
, (7.11)
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in the strong dissipative regime γ ≫ H. Notice this can be large even when cs ≃ 1. Using

the analysis from ref. [19] we can also quote a bound at order of magnitude level:

γ

Hc2s
. 500. (7.12)

In figure 2 we plot the shape for two values of γ (γ = 4H and 40H). Notice there is a

peak on equilateral configurations, and a smaller peak around x2 ≃ x3 ≃ 1/2, whose relative

amplitude decreases with γ. The latter is one of the main features in the bispectrum, and

it is due to the fact that the fluctuations are dominated by the noise.

For moderate values of γ ≫ H, the shape resembles the orthogonal one described

in [19], which is currently at 2σ level in the WMAP 7-yr data [52].

Similarly, for the second source term on the r.h.s. of eq. (7.3) we obtain

f eqNL = −5

2

γ

H







2−8γ/Hπ2Γ
(

2γ
H + 4

)2

( γ
H + 1

)6
Γ
(

γ+H
2H

)8







∫ +∞

0
dygγ(0, y)

∫ +∞

y
dzz4y

dgγ
dy

(y, z)gγ(0, z)

×
∫ +∞

y
dww4y

dgγ
dy

(y, w)gγ(0, w). (7.13)

Despite appearances, the contribution from this term to f eqNL does not increase with γ and

becomes an order one sub-dominant effect. This follows from the properties of the Green’s

functions, and in particular because time derivatives scale as powers of H (rather than√
γH), since this is the time dependence of the Green function at freeze out. This is indeed

what we expected judging from our results in flat space of section 1.3.2 (“τeq” ∼ 1/H). See

appendix F for some collective details on these Green’s functions.

For the last term in eq. (7.3) we find

f eqNL =
5

3







2−8γ/Hπ2Γ
(

2γ
H + 4

)2

( γ
H + 1

)6
Γ
(

γ+H
2H

)8







∫ +∞

0
dyy4 (gγ(0, y))

2

∫ +∞

y
dzz4y

dgγ
dy

(y, z)gγ(0, z),

(7.14)

which is also a contribution of order one that does not increase with γ. The shape corre-

sponding to this term is shown in figure 3 for γ = 10H.

As expected (because the contributions involve time derivatives of π, and also because

δO is local) all of these shapes are suppressed as we approach the squeezed limit. That

is when one of the momenta, say k1 ≡ kL (long mode), is much smaller than the other

two (short modes), i.e. kL ≪ kS (with kS = |k2 − k3|/2). However an interesting question

remains, and that is whether the suppression entails one (or more) power(s) of kL compared

with the local shape, since this particular scaling could potentially distinguish signatures

from single field models in measurements of the scale-dependent bias [54]. We return to

this point in the following section. (Let us point out that from figure 3 the shape itself

approaches zero in the squeezed limit kL/kS → 0, thus F (x1, x2, x3) cannot scale like

1/x2L ≡ (kS/kL)
2, but rather as a softer power.)
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Figure 2. The shape F (x2, x3) = x22x
2
3
F (1,x2,x3)
F (1,1,1) given by eq. (7.8) for γ = 4H (top) and γ = 40H

(bottom). To avoid showing equivalent configurations twice, the function is set to zero outside the

region 1− x2 ≤ x3 ≤ x2.

7.2 f(t)O I: linear response

Let us now consider the contribution from an interaction of the form f(t)O as in eq. (4.1).

We divide the possibilities in two: linear and non-linear response. We treat the latter in

the next section.

To compute non-linear effects in linear response theory we use the force affecting the

ADOF to second order in π. This is given by F = ḟπ + f̈π2/2 + . . ., where the dots stand

for terms with higher powers of π proportional to higher temporal derivatives of f(t). As

we mentioned in sec 1.4.2, in general we neglect these terms in the slow roll approximation.

Therefore in what follows we will treat ḟ as essentially constant.
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Figure 3. The shape F (x2, x3) = x22x
2
3
F (1,x2,x3)
F (1,1,1) for γ = 10H corresponding to the last term in

eq. (7.3).

Working within the local approximation for GO
ret, the response part δOR can be

written as

δOR ≃ γNc

ḟ

(

π̇ +
f̈

ḟ
π̇π

)

, (7.15)

up to terms suppressed by higher powers of the slow roll parameter(s). (Recall we as-

sume the presence of an emergent shift symmetry to neglect terms which do not involve

derivatives.) Thus the equation for π to second order reads

π̈ + (3H + γ)π̇ +
k2c2s
a2

π + 2γ
f̈

ḟ
[ππ̇]k = −N−1

c

(

ḟ δOS + f̈ [πδOS ]k

)

, (7.16)

where the noise part δOS satisfies eqs. (5.10), (5.15). By comparing this equation with

eq. (5.17), it follows that the power spectrum is the same as the one given in eq. (6.3), up

to an overall factor of ḟ2, namely νO → νfO = ḟ2νO. Therefore, to guarantee the scale

invariance of the power spectrum we require ν̇fO/(νfOH) ≃ O(ǫ) (more on this below).

As we stressed in section 1.4.2, the contribution to fNL from the non-linear terms above

will be suppressed by f̈/(ḟH) ≃ O(ǫ). Notice that at this order we can no longer ignore

other effects, such as the mixing with gravity. Moreover, we show in the next section that

non-Gaussianities will be dominated by the non-linear response. Nevertheless, we include

here the computation for the terms in eq. (7.16) for two reasons. First of all we explicitly

show that even though the non-linear terms are proportional to γ, it factors out in the final

answer; but more importantly because it appears to give us a contribution in the squeezed

limit which could be non-negligible in cases where ḟ is not a constant.

Let us start analyzing the last source term in eq. (7.16): f̈πδOS . Since this term does

not involve enough derivatives of π, it is easy to see that the shape, given by F (x2, x3) =
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x22x
2
3
F (1,x2,x3)
F (1,1,1) , will have its maximum contribution in the squeezed limit. In such limit the

parameter fNL is given by

f sqNL = lim
x3→0, x2→1

5

6

F (1, x2, x3)

(Pζ(1)Pζ(x2) + Pζ(1)Pζ(x3) + Pζ(x2)Pζ(x3))
. (7.17)

Then following a procedure similar to that of the previous sections we find

f sqNL ≃ −5

6

f̈

Hḟ
, (7.18)

whatever the value for γ. This agrees with our previous estimation in eq. (1.55). Similarly,

one can compute the contribution of the last term on the l.h.s. of eq. (7.16). Even though

this term is proportional to γ, the parameter fNL does not result in a significant increase

compared to the one above. This follows from our heuristic arguments in section 1.4.2, but

can also be seen directly from the properties of the Green’s function, see appendix F. Since

the approximate shift symmetry requires f̈/(Hḟ) ≃ O(ǫ), this leads to very small f sqNL in

eq. (7.18), as we mentioned before.

One may nonetheless worry about the result in eq. (7.18) had we assumed ḟ , νO were

not approximately constant, while keeping constant the product νfO = ḟ2νO, which is

the combination that appears in the power spectrum. However, notice that the above

computation is incomplete since at non-linear level there are contributions that arise from

the fact that π also affects the probability density functional for the noise. (These are

suppressed in the limit ν̇O ≪ HνO.) If all the contributions are taken into account, at the

end of the day we should have f sqNL proportional to (ns − 1) to be consistent with the fact

that we did not include any type of perturbation outside of the horizon other than the

clock [18, 53].

To better understand the properties in the squeezed limit, let us compare the contribu-

tions from δOπ̇ and δOπ type of non-linearities, which appear commonly in our study. It is

not difficult to see that if we fix the O operators to be the same in both cases, the relevant

difference between the two is that while the shape for the latter contains gγ(xLy, z), the

former involves y∂ygγ(xLy, z) (where z and y are integration variables). Using

y∂ygγ(xLy, z)

gγ(xLy, z)
∼ x2Ly

2

(1 + γ/H)
, (7.19)

for yxL ≪ 1, and taking into account that the integrals are dominated by values of y and

z near
√

γ/H (see appendix F), we conclude that the squeezed limit for δOπ̇ is suppressed

by a factor of x2L = (kL/kS)
2 with respect to the contribution from δOπ, in the region

x2L ≪ H/γ. This agrees with the findings in [54]. We will discuss the squeezed limit and

consistency conditions in more detail elsewhere.

We study next the non-linear response for a f(t)O coupling, which turn out to provide

the largest contributions to non-Gaussianities.

7.3 f(t)O II: non-linear response

So far we considered the response δOR to linear order in π. This entails the knowledge of

only the two point function GO
ret (see eq. (5.8)). However, we can also induce non-linearities
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by going to higher n-point functions of the δO’s, for instance including their three point

function

CO
ret(x, y, z) ≡ 〈[δO(z), [δO(y), δO(x)]]〉θ(ty − tz)θ(tx − ty), (7.20)

while keeping the leading order force F (π) = ḟπ (in what follows we treat ḟ as constant).

Then we have

ḟ δOR(x) = −ḟ2
∫

GO
retπ(y)dy + ḟ3

∫

dydz CO
ret(x, y, z)π(y)π(z) + . . . (7.21)

where the ellipses represent higher order corrections.

A priori, even assuming both are local in space and time, we would not expect any

relationship between GO
ret and C

O
ret. However, as we argue below, we will have a connection

in cases where the response of the ADOF is governed by a single (preferred) clock.

As we emphasized throughout the paper to obtain a dissipative term from an operator

f(t)O we require (assuming a local Green’s function)

ḟ δ(1)OR = Ncγπ̇. (7.22)

Notice that this expression can be suggestively re-written as

ḟ δ(1)OR = Ncγ δ
(1) {nµ∂µ(t+ π)} , (7.23)

where (note n0 = 1 up to O(π2))

nµ =
−gµν∂ν t̃

√

−gνρ∂ν t̃∂ρt̃
, t̃ = t+ π, (7.24)

such that eq. (7.23) makes the symmetries manifest: O is a scalar operator. This allows

us now to extrapolate the response to all orders in π, that is26

ḟ δ(n)OR = Ncγ δ
(n) {nµ∂µ(t+ π)} = Ncγ δ

(n)

(

√

−gνρ∂ν t̃∂ρt̃
)

. (7.25)

It is then straightforward to show the above equation implies a relationship between

linear and non-linear terms in the EOM. For example in the unitary gauge, i.e. t̃ = t,

ḟ δ(n)OR = Ncγ δ
(n)
√

−g00, (7.26)

which allows us to read off the π interactions using g00(π) = −1− 2π̇− π̇2 +(∂iπ)
2. Hence

− ḟ δ(1)OR = −Ncγπ̇, (7.27)

−ḟ δ(2)OR =
1

2
Ncγ(∂iπ)

2. (7.28)

We thus get a non-linear term that resembles the one we obtained for the case of an exact

shift symmetry. (See the first term on the r.h.s. of eq. (7.3), compare also with eq. (7.2).27)

26In principle this can be generalized to FO

(

√

−gνρ∂ν t̃∂ρ t̃
)

. For simplicity we restrict to FO(x) = x.
27Notice that for the type of non-linear response in eq. (7.26) we did not obtain a π̇2 term. However,

these can be generated if we allow for a generic function FO(
√

−g00).
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Then the analysis of the non-Gaussianities follows as in section 7.1 (see also section 1.4.1),

so that

fNL ≃ − γ

c2sH
, (7.29)

as anticipated in section 1.4.3. The shape will also resemble figure 2.

The previous argument is perhaps better illustrated if we particularize to the tradi-

tional model of scalar field inflation. The crucial point is that the response to the per-

turbation must be compatible with diffeomorphism invariance. Then in order to induce

dissipation we need factors of φ̇ which in turn lead to large non-Gaussianities (for γ ≫ H)

as sketched in 1.4.3.

The reasoning goes as follows. Let us consider an interaction Hamiltonian that takes

the form (with O a scalar operator)

Hint = φ O. (7.30)

The EOM for the inflaton thus becomes

Dφφ = O, (7.31)

where Dφφ = 0 represents the EOM in the absence of O. There is certainly a dynamical

system behind O, with its own LO. Nevertheless, in the spirit of EFT we do not make

any assumption other than the coupling in eq. (7.30). We start now by solving for the

background, i.e. φ̄(t). Assuming a local response we have

〈φ̄|O|φ̄〉 = FO(φ̄,
˙̄φ), (7.32)

where the brackets emphasize we are computing the response in the background given by

φ̄. Plugging into eq. (7.31) we get

Dφφ̄ = FO(φ̄,
˙̄φ). (7.33)

In order to have the type of (velocity dependent) dissipation we study in this paper we will

impose

FO(φ̄,
˙̄φ) ≃ | ˙̄φ|. (7.34)

We discuss a specific example of this behavior in section 8 (albeit with a more elaborate

response function). The next step is to perturb φ̄ → φ̄ + δφ. The crucial piece of the

argument is what replaces eq. (7.32). There are several ways to attack this question.

Perhaps the simplest is the following. Since O is a scalar operator (by construction) the

expression in eq. (7.32) must be covariantized. (Notice Lorentz invariance is only broken

by the presence of a preferred frame, i.e. nµ in eq. (7.24) with t̃ replaced by φ.) Therefore,

as we argued, we should rewrite eq. (7.32) as

〈φ|O|φ〉 = FO
(

φ, nµ∂µφ = −gµν∂νφ∂µφ/
√

−gµν∂νφ∂µφ
)

, (7.35)
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where we assumed the function FO is not essentially modified, which is a valid (local)

approximation provided δφ is a smooth long wavelength perturbation.28

Once again we go to the unitary gauge, and choose coordinates such that φ = φ̄, i.e.

δφ = 0. This means

〈φ|O|φ〉 = FO
(

φ̄, ˙̄φ
√

−g00
)

. (7.36)

We then introduce the perturbation δφ (our π) using eq. (7.33) and the Stückelberg trick.

On the l.h.s. of we get the usual term, whereas on the r.h.s. we use the requirement of

eq. (7.34), then

Dφδφ ≃ δ
(

| ˙̄φ|
√

−g00(π)
)

, (7.37)

similarly to what we obtained from eq. (7.26), with π = δφ/ ˙̄φ. Then, as advertised, we get a

dissipative term γπ̇ and also γ(∂iπ)
2 with its subsequent enhancement of non-Gaussianities

as shown in section 7.1.

There are some subtleties in the previous discussion that must be stressed out. Strictly

speaking, the presence of dissipation requires only a linear coupling to π. In our discussion

the non-linear term obtained from nµ∂µπ in eq. (7.25) was intrinsically related to nµ being

the time-like vector orthogonal to the uniform slices of the physical clock that controls

the end of inflation. However, in general the presence of ADOF may also include time-

like vector operators, let us collectively denote them as uµO, that might have non-zero

expectation values in the background. Hence, rather than nµ∂µπ we may have uνO∂νπ in

eq. (7.25).29 In this case there will not be a guaranteed relationship between the linear

term γπ̇ (now derived from 〈uµO〉 = (1, 0, 0, 0)) and the non-linear counterparts. In this

situation large dissipation may not necessarily lead to strong non-Gaussianity.

It is worth pointing out that had we chosen to work directly with the Goldstone boson

π̃ that we introduced in section 3, we would have had no vector-like operator taking a

non-zero expectation value. This means that (up to normalization) the only vector taking

a background expectation value is nµ ∼ gµν∂ν(t+ π̃), which appears to induce the type of

term in eq. (7.28). However the two descriptions are equivalent, and in fact, upon noticing

(schematically) π̃ ∼ π + δO, even in this case we cannot in general prevent an interplay

between π̃ and fluctuations of vector operators δuOµ such that the term in eq. (7.28) does not

get generated at the non-linear level. Therefore, in order to ensure a connection between

dissipation and non-Gaussianities, we will demand that there are no such cancellations.

There is no simple way to implement this condition, although in practice this amounts

to requiring that the δO’s are sensitive mostly to the field π whose fluctuations control the

end of inflation. In this paper we referred to this condition as having a preferred clock.

28In other words, we need the scale of variation of the extrinsic curvature of constant time surfaces (recall

Kij ≃ ∇i
(3)n

j) to be much larger than the typical length scale M−1
O , which controls the local approximation

for the interaction between φ and O, such that we have a well defined derivative expansion. For instance

if we take the perturbations at horizon crossing, namely δφk⋆ , and say M2
O ≃ g| ˙̄φ| with g some coupling

constant, then we require k2
⋆ ≪ M2

O, or γ < g| ˙̄φ|/H. (In all generality, even if suppressed, we should in

principle include also corrections induced by δKµν .) See section 8.1 for more details.
29This may happen if the response of O is controlled by uµ

O.
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Figure 4. The shape F (x2, x3) = x22x
2
3
F (1,x2,x3)
F (1,1,1) obtained from eq. (7.40) for γ ≃ 10H. To

avoid showing equivalent configurations twice, the function is set to zero outside the region

1− x2 ≤ x3 ≤ x2.

Hence we conclude that the existence of such clock inevitably entails large non-

Gaussianities in the strong dissipative regime, either from Og00, as explicitly shown in

section 7.1, or via non-linear response for f(t)O as we just described. We will study

relaxing this assumption in future work.

7.4 Non-Gaussian noise

As a final source of non-Gaussianities, we have to consider the effect of the intrinsic

non-Gaussianity of the noise fluctuations. Let us consider, as in eq. (1.62), a non-Gaussian

noise δOS that is local, that is

〈δOS(t1,k1)δOS(t2,k2)δOS(t3,k3)〉 ≃ (2π)3δ(3)(k1 + k2 + k3)νO3
δ(t1 − t2)

a3(t1)

δ(t2 − t3)

a3(t2)
.

(7.38)

Then using

π(t,k) =
ḟkcs
NcH2

∫ η

η0

dη′gγ(kcs|η|, kcs|η′|)δOS(η
′,k) (7.39)

we find (for η → 0 and η0 → −∞)

F (x1, x2, x3) = − ḟ
3H5νO3

N3
c c

6
s

x1x2x3

∫ +∞

0
dzz8gγ(0, x1z)gγ(0, x2z)gγ(0, x3z). (7.40)

The shape is plotted in figure 4. As expected there is a peak on equilateral configura-

tions, and

f eqNL ≃ γNcνO3

ḟν2O
, (7.41)

as we anticipated in eq. (1.64).
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7.5 Higher-derivative dissipation

Let us consider now the same situation as in section 7.1, where the dominant interac-

tion has one derivative of π: δg00O. However, unlike before, we will now assume a local

approximation for the two-point functions of O (or ImGO
ret ∼ ω), such that we get

δOR ≃ − Nc

a3ΓO
∂t(a

3π̇), (7.42)

where ΓO (with units of mass) depends on the specific details of the model. Given that

the interaction term goes like πδȮ, the EOM becomes30

π̈ +
c2sk

2

a2
π + 3Hπ̇ − 1

ΓOa3
∂2t (a

3π̇) = −∂t(a
3δOS)

a3Nc
, (7.43)

Note this equation is now reminiscent of the ADL force. The presence of higher derivative

terms forces us to restrict ω ≃ H ≪ ΓO, and treat the higher derivate term as a small

perturbation. In this case freeze out occurs at ω ∼ H and the leading effect is not on the

two-point function, that here is dominated by the vacuum solution, but on the three-point

function. This can be estimated by comparing the non-linear term in the EOM to the

linear term. The second order equation can be written as

π̈2 +
c2sk

2

a2
π2 +H

(

3 +
k2c2sδ

a2H2

)

π̇2 = Jk, (7.44)

where the term Jk contains the quadratic sources. From the coupling between π and δO
we have

Jk = − 1

Nc

{

∂t(a
3δ2O)

a3
+
∂t(a

3π̇1δ1O)

a3
− ∂i(δ1O∂iπ)

a2

}

, (7.45)

where δO = δOS + δOR, and the subscripts represent to what order in π the contributions

are to be computed. For estimating purposes we consider the last one, which dominates

for small speed of sound models. After using (7.42) the resulting level of non-Gaussianity

is given by

fNLζ ∼
1
Nc
∂i(δ1O∂iπ)

π̈

∣

∣

∣

∣

∣

ω∼H
∼ H4π2

c2sΓO
· 1

H2π
∼ H

ΓO
· 1

c2s
ζ ≪ 1

c2s
ζ, (7.46)

which tells us that this can be at most a subleading signal.

8 Matching dissipative effects during inflation

Even though from the EFT standpoint the conditions on GO
ret and noise kernels may be

taken as a given, it is still desirable to be able to identify those situations where we can

be assured these conditions hold within certain degree of approximation. For instance we

expect such description to be valid in cases where the memory effects decays sufficiently

fast, as in Drude’s model of eq. (1.7). This would be the case provided the dynamics of

30We also generate corrections to the speed of sound of order H/ΓO that we neglect here.
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the O’s is such that the back reaction on the π field becomes negligible after a (short)

interaction time. In this section we study a specific realization in the spirit of the trapped

inflation model of [31], and also briefly discuss the warm inflation paradigm [39–44]. See

appendix H for a class of models with γπ̇ dissipation with a Oπ̇ coupling.

8.1 Local trapped inflation: f(t)O →
∑

i(φ − φi)
2χ2

i + L(χi)

We are after an example in which we can apply the local approximation in time. In trapped

inflation the energy of the inflaton is being transferred into the ADOF both because the

particles are created and also due to the increase of their mass with time. In the original

model this is important until the particles have diluted enough due to the expansion of

the universe. The characteristic time scale for this to happen is given by H−1, which

does not allow us to use the local response functions that we used so far. However, this

characteristic time scale can be significantly reduced if the produced particles decay into

yet other degrees of freedom, with decay rate much faster than Hubble. With this in mind

let us consider the trapped inflation action

Strap =

∫

d4x
√−g

{

∑

i

[

−1

2
∂µχi∂

µχi −
g2(φ− φi)

2

2
χ2
i

]

− 1

2
∂µφ∂

µφ− V (φ)

}

, (8.1)

where φ is the inflaton and V (φ) is its potential, and we add an interaction term, Sint(χi, ϕ),

that characterizes the coupling between χi’s and some additional degrees of freedom ϕ

that leads to a decay rate for the χi’s satisfying Γχi ≫ H. The only condition we need to

impose is the requirement that Sint does not modify the leading order picture from Strap.

In particular we need to ensure it does not generate a large mass for χi when φ ≃ φi. For

example we can have

Sint =
∑

i

1

Λϕ
∂2χiϕ

2, (8.2)

with ϕ some scalar field which we assume has some small mass, mϕ .

√

g|φ̇|, and does not

couple directly to φ. In what follows we show that this model admits a local approximation.

(To simplify notation in this section we drop the bar for the unperturbed values of φ.)

As in the original trapped inflation scenario, particles associated to the field χi are

created when φ approaches φi. The computation of the production of particles follows the

same line as in [31, 32]. The time interval δtc = t − ti during which modes of a given χi
field do not behave adiabatically (so that the corresponding particles are produced) can be

estimated as

δtc ∼ 1/

√

g|φ̇|, (8.3)

which we want to be shorter than a Hubble time, δtc ≪ H−1, hence [31]

H2 ≪ g|φ̇|. (8.4)

Note this condition implies that after particles are produced the mass satisfies

Mχi(ti + δtc) = g|φ− φi| ≃ g|φ̇|δtc ≫ H. (8.5)
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Moving to the decay rate, using eq. (8.2) we can estimate

Γχi ≃
M3
χi

Λ2
ϕ

. (8.6)

To ensure the decay time scale is longer than the time it takes to create the particles we

need
1

δtc
≃
√

g|φ̇| & Γχi ≃
(g|φ̇|)3/4

Λ
1/2
ϕ

→ Λϕ &

√

g|φ̇|, (8.7)

where we have approximated Mχi ≃ g|φ̇|τχi ≡ Mχi(τχi), with τχi the lifetime of the χi-

particles, while at the same time Γχi ≫ H, which is necessary for our local approximation.31

After the particles are produced, the occupation number for each species is given by

|βk|2 = e
− πk2

a2(ti)κ
2(ti) , (8.8)

where κ(ti) =
√

g|φ̇(ti)|, and the number density

nχi(ti + δtc) =Mχiχ̄
2
i ≃

κ3(ti)

(2π)3
. (8.9)

Then, taking into account the decay rate of the particles for later times, we have

nχi(t, ti) ≃
κ3(ti)

(2π)3

(

a(ti)

a(t)

)3

e−Γχ(t−ti) Θ(t− ti), (8.10)

where in order to obtain an estimation we have approximated Γχi by a constant Γχ. The

EOM for the unperturbed inflaton becomes

φ̈+ 3Hφ̇+ V ′(φ) + g
∑

i

nχi(t, ti) = 0. (8.11)

As the sum over the particle production events is difficult to deal with, we will replace

it by an integral. Defining ∆ = φi+1 − φi, the last term on the l.h.s. of eq. (8.11) can be

thus approximated by

∑

i

nχi(t, ti) ≃
∫ t

dt′
|φ̇(t′)|
∆

κ3(t′)
(2π)3

e−(3H+Γχ)(t−t′). (8.12)

This is a good approximation only if the variation of the integrand is small between

production events. This is quantified by the conditions

(3H + Γχ)|∆|
|φ̇|

≪ 1,
|φ̈∆|
φ̇2

≪ 1. (8.13)

Hence, for Γχ ≫ H and |φ̈| ≪ Γχ|φ̇| we can approximate the integral as

g
∑

i

nχi(t, ti) ≃
g|φ̇(t)|
Γχ∆

κ3(t)

(2π)3
≃ (g|φ̇|)5/2

Γχ|∆|(2π)3 . (8.14)

31Notice that τχi
> δtc requires Γχi

< Mχi
(τχi

), which also consistent with the particle interpretation.
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We discuss the consistency of our approximations in more detail in appendix I.

We now define the (composite) operator f(t)O ≡∑i fi(t)Oi, where
32

fi(t) =
g2

2
(φ(t)− φi)

2, Oi = χ2
i , (8.15)

whose background expectation values are given by (see eq. (8.9))

∑

i

fi(t)Ōi =
g2

2

∑

i

(φ(t)− φi)
2χ̄2

i =
1

2

∑

i

Mχinχi . (8.16)

Then, using eq. (8.14), the expression in eq. (8.11) becomes (where we add the gradient

piece, that vanishes in the background, for later convenience)

φ̈+ 3Hφ̇− c2s
a2
∂2i φ+ V ′(φ) +

(g|φ̇|)5/2
Γχ|∆|(2π)3 = 0, (8.17)

which is local in time as we advertised. (The same applies for the EOM of the perturbations

we study in the next section.)

To wrap up this section let us comment on the emergence of the shift symmetry,

which plays an essential role in our analysis. Even though the EOM has a term
∑

i g
2(φ−

φi)χ̄
2
i which is apparently not invariant under φ → φ + c, secretly it is, since we end

up with eq. (8.17) which is manifestly invariant (ignoring the shift in V (φ) which we

assume is small).

Notice, first of all, the non-perturbative result

χ̄2
i ≃

nχi(φ̇(ti))

g|φ− φi|
, (8.18)

which cancels the explicit factors of φ− φi. However this is not enough, since nχi depends

on ti (the time defined as φ(ti) = φi), which in turn depends explicitly on φ. Nevertheless,

this dependence is ultimately removed by the presence of the sum, which is the key feature.

At this point the EOM becomes invariant under φ → φ + c. (This is the case because we

can absorb the shift in φ into a redefinition of φi, which is summed over a large number of

periods.) We call this an emergent shift symmetry.

8.1.1 Perturbations

In order to obtain the equation for the perturbations at linear order we expand φ→ φ+δφ

in eq. (8.17). Taking into account the contribution of the noise we obtain

δ̈φ+
c2sk

2

a2
δφ+ 3H ˙δφ+ V ′′(φ)δφ+

5

2

g5/2|φ̇|3/2
Γχ|∆|(2π)3

˙δφ = −g∆nχ, (8.19)

with

∆nχ = g
∑

i

Mχi∆χ̄
2
i , (8.20)

32We chose to work with f(t)O, rather than each individual fiOi, in order make direct contact with our

analysis of the EFT in previous sections.
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the variance of the number of particles produced.33 Hence we arrive at an equation as

in (1.2), with an effective damping rate γ given by

γ =
5

2

g5/2|φ̇|3/2
Γχ|∆|(2π)3 . (8.21)

In this expression we ignored the spatial variation of the field in ∆nχ at linear order,

provided the physical wave vector kph = k/a satisfies k⋆ ≪ κ, and also kph∆ ≪ |φ̇|, in
order to be able to replace sum into integrals.

Notice that while each individual ḟi is not a constant the power spectrum still obeys

scale invariance. This can be seen by redefining Ôi → nχi , in which case the new f̂i(t) ≃
gMχi(φ) does obey

¨̂
fi/(

˙̂
fiH) ≪ 1 in the slow roll approximation. Indeed, the response at

linear order in δφ becomes

g
∑

i

δnχi ≃
5

2

g5/2|φ̇|3/2
Γχ|∆|(2π)3

˙δφ+ . . . →
∑

i

ḟiδOR
i =

˙̂
f
∑

i

δnχi ≃ Ncγπ̇ + . . . , (8.22)

where we used δφ/
√
Nc ≃ π and defined

˙̂
f = gφ̇, with the normalization Nc ≃ φ̇2 as

explained in section 3. Likewise, for the noise (see eq. (8.20))

1

Nc

∑

i

ḟiδOS
i → 1

Nc

˙̂
f∆nχ. (8.23)

So far so good. What we need now is a local approximation for the two point function

of ∆nχi , the noise, which should also include the effects of the decay rate of the particles.

The expression is given by [31]

〈∆nχi(t,k)∆nχj (t
′,k′)〉 ≃ (2π)3δ(3)(k+k′)

δijκ
3e−2Γχ|t−t′|

a3/2(t)a3/2(t′)
θ(t−ti)

a3(ti)

a3(t)
θ(t′−tj)

a3(tj)

a3(t′)
.

(8.24)

This kernel sources δφ only through the integral in cosmic time of the Green’s function.

We can then approximate this equation by (see eq. 3.20 in [31])

〈∆nχ(t,k)∆nχ(t′,k′)〉 ≃ (2π)3δ(3)(k+k′)
δ(t−t′)
a3(t)

κ3Nhits

2Γχ
≡ νχ(2π)

3δ(3)(k+k′)
δ(t−t′)
a3(t)

,

(8.25)

with

νχ ≡ κ3Nhits

2Γχ
, (8.26)

and Nhits ∼ φ̇/(H∆). The computation of the power spectrum then follows as in section 6.

Finally let us add a few words on our assumption that ϕ is a light field. If they were too

light one might wonder whether they could contribute to the density fluctuations. Notice

that since we require H ≪ Γχi < Mχi(τχi), we do not necessarily need mϕ to be as light

as Hubble, in fact mϕ . Mχi(τχi)/2 would be just fine. In this case they quickly redshift

away. (Let us stress that even if they were effectively massless they could still be irrelevant

for the late time curvature perturbations.)

33Notice that in generalizing the result derived for the background into the one for the perturbations,

we are assuming that effects due to the extrinsic curvature of the surfaces of constant φ are suppressed by

powers of k⋆/κ ≪ 1 i.e. γ ≪ g| ˙̄φ|/H, at the time of freeze-out with κ ∼ (g|φ̇|)1/2.

– 45 –



J
H
E
P
0
1
(
2
0
1
2
)
0
7
5

8.1.2 Non-Gaussianities

To compute non-Gaussianities we follow [31] and replace φ by φ+ δφ1 + δφ2 in eq. (8.17),

and expand to linear and quadratic order in δφ2 and δφ1 respectively. To this purpose we

need to compute particle creation in a time dependent background to second order in the

perturbation, namely δ(2)nχ. In eq. (8.19) we neglected the space variation of the field in

the computation of δnχ, but at the non-linear level those gradient terms will provide us

with the largest non-Gaussianities. (Recall the term proportional to γ(∂iπ)
2 in eq. (7.2) is

the one that induces the largest effects since k⋆ ∼
√
γH.)

Given that the Oi ≡ χ2
i are scalars, as we argued in section 7.3, we are then able

to extend the result in eq. (8.14) to a spatially varying field, namely φ̇ → nµ∂µφ with

nµ ∼ ∂µφ, hence

(g|φ̇|)5/2
Γχ|∆|(2π)3 →

g5/2
(

√

−(∂φ)2
)5/2

Γχ|∆|(2π)3 . (8.27)

(This is analogous to the covariant version of Schwinger pair production in an electromag-

netic field with a purely electric background E ∼ φ̇, which turns out to be a scalar function

of F = FµνF
µν and B = FµνF

⋆
µν .)

One might worry about the validity of this procedure once we add inhomogeneities. In

our example the particles are created in the state given by eq. (8.8), where (momentum)

gradients of the unperturbed distribution are suppressed by factors of 1/(g|φ̇|)1/2 = 1/κ. In

fact, κ is the scale that controls the validity of the local approximation. If we ignore these

higher derivative (extrinsic curvature) terms, which are suppressed by k⋆/κ, we can then

choose coordinates such that t̃ = t+ π. Hence for equal t̃ surfaces we get nχ
(

∂t̃φ(t̃)
)

given

by eq. (8.9). Then we just replace ∂t̃ → nµ∂µ for any coordinate system, with nµ ∼ gµν∂ν t̃.

To incorporate all type of corrections we also need to include terms involving the extrinsic

curvature, δKµν , and so on.

From the expression in (8.27) we already obtain the terms (with π = δφ/φ̇)

π̈2 − c2s∂
2
i π2 + (3H + γ)π̇2 + γ

(

απ̇21 −
1

2
(∂iπ1)

2

)

+ . . . = Noise, (8.28)

with α some numerical coefficients (which may vanish). In particular we get γ(∂iπ1)
2 at

the non-linear level as advertised,34 leading to |fNL| ≃ γ
c2sH

≫ 1 for γ ≫ H, similarly to

the calculation in section 7.1.

There are yet other sources of non-linearities which can be induced and we have not

incorporated (represented by the ellipses). Since f̈i ≃ φ̇2, one may worry about terms

like f̈iπδŌi, which do not respect the shift symmetry. (Moreover, they could induce non-

negligible non-Gaussianities in the squeezed limit). However it turns out these terms ac-

tually cancel out, and the theory has an approximate shift symmetry, as we found al-

ready at linear order. To show this let us return to the interacting part of the effective

action in eq. (8.1)

Sint
trap =

∫

d4x
√−g

∑

i

g2(φ− φi)
2

2
χ2
i − V (φ), (8.29)

34Notice that for the model at hand we also need to include the perturbations in Γχ(φ̇). This will slightly

modify the form of the function of
√

−∂φ2 in eq. (8.27), and ultimately the coefficient α in eq. (8.28).
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and perform the shift φ→ φ+ c. Assuming V (φ) obeys the slow roll conditions, the action

will remain invariant provided we shift at the same time φj → φ̃j ≡ φj− c. The new action

then has the same form as the original one, with φj → φ̃j . Since, as we saw previously,

the strength of the trapping mechanism depends on the velocity as it passes through the

sweet spot, the physics stays essentially unchanged as long as we sum over a large number

of periods. Hence the EOM will be (approximately) shift invariant. The crucial point is

that the change φ→ φ+ c is compensated by a concurrent shift in ti, i.e. ti → ti+ δti with

δti ≃ c/φ̇, which is ultimately summed over a large number of periods [31]. Although this

is not entirely obvious, the would-be breaking terms already canceled out at linear order.

Something similar occurs in the model of [31] before making the local approximation.

In that case the contribution to the EOM from particle production reads [31]

m̂2δφ+

∫ t

dt′m̂2

(

5

2
˙δφ(t′)− 3Hδφ(t′)

)

a3(t′)
a3(t)

, (8.30)

which appears to have a ‘mass’ term and violate the shift symmetry. However, that is not

the case since the change in that term cancels against the shift in the second term in the

integral, using a(t) ∼ eHt. In the local approximations these pieces do not even show up,

since they explicitly cancel each other out. To include these effects to all orders we need

to be careful with the sum over fiOi. At the end of the day the same cancellation occurs

at second order and so on, such that we restore the shift symmetry as we argued before.

Finally let us stress that our results here apply for the case of a local response. In

principle, as in the trapped inflation scenario of [31], large non-Gaussianities may also be

produced via the non-locality in time of the response.

8.2 Warm inflation

Another example where we have dissipation/fluctuation is warm inflation [39–44]. In this

case O represents ADOF in thermal equilibrium at a given temperature T mutually inter-

acting with the inflaton φ. Even though T̄µνO may be large enough to modify the dynamics

of φ, it remains sub-dominant with respect to the potential energy, V ∼ M2
pH

2, and one

could hope inflation might not be drastically perturbed as long as T ≪ V 1/4. The interest-

ing aspect of this approach is the possibility of having T ≫ H, which implies that thermal

fluctuations dominate over vacuum effects. In warm inflation the evolution of the inflaton

is governed by an equation of the type [42–44]

φ̈+ (3H + γ)φ̇+ V ′(φ) = Kξ, (8.31)

where ξ represents the (Gaussian) noise with 〈ξ〉 = 0 and K ≃ √
γT . Provided γ does not

depend significantly on the temperature, the computation of the power spectrum follows

the same steps as in section 6. The case ∂Tγ 6= 0 is more elaborate since one has to include

perturbations in T already at first order (see [55, 56] for more details).

The dependence of γ on the temperature varies with the different realizations of

warm inflation. The most promising example is given by the so called two-stage decay

model [42–44]. Similarly to the trapped inflationary case (although due to different mech-

anisms) the rolling inflaton produces some (ultimately heavy) particles (mχ ≫ T ) through

– 47 –



J
H
E
P
0
1
(
2
0
1
2
)
0
7
5

a g2φ2χ2 coupling, which subsequently decay into lighter degrees of freedom, ϕ’s. As we

discussed before, this ‘catalyzing’ mechanism may allow us to approximate the evolution

equations by local dynamics. However, contrary to the model in [31], in warm inflation

the decaying product is assumed to have thermalized. The friction coefficient can be then

computed and scales like [42–44]

γ(T ) ≃ g2h4
(

m

mχ

)4 T 3

m2
χ

, (8.32)

where h and m = gφ̄ enter in the coupling between χ and ϕ, e.g. Lχϕ = hmχϕ2.35 Clearly

this effect is rather inefficient, since mχ ≫ T . One possibility is to increase the number of

χ particles such that more than one field is excited, or equivalently the number of decaying

channels. Unfortunately, if we denote by N this ‘enhancement factor’, the assumption

that warm inflation occurs for sufficient e-foldings (Ne & 50− 60) with γ(T ) ≫ H requires

N & 106 [58, 59].36

Non-Gaussianities in the warm inflationary scenario have been also computed in the

literature. In most cases the contributions are small, i.e. slow roll suppressed [62] (since

they stem off the non-linearities induced by the potential). Following the reasoning of

our previous section, to include other type of non-linearities in warm inflation one needs

to generalize the γφ̇ coupling to the case where φ → φ + δφ, which we would now write

as γuµ∂µφ with uµ some four vector. In principle there are different possibilities for uµ

depending on the model. For the two-stage case we can have either nµ (as before) or uµχ, the

four velocity of the χ particles. The latter indeed would enter through the computation of

the γ factor in eq. (8.32). However, in the limit T ≪ mχ, the χ particles are non-relativistic

(namely they are created essentially at rest) hence uµχ ≃ nµ.37 This suggests a coupling of

the form γ(T )nµ∂µφ with γ(T ) given by eq. (8.32), which following our previous arguments,

would lead to non-linear effects of order |fNL| ≃ γ(T )/H.

9 Conclusions

In this paper we generalized the EFT for single field inflation [17–27] to include dissipative

effects. Following [34, 35] we introduced ADOF described by composite operators in the

35In [57] it was argued that assuming warm inflation occurs and the potential obeys a series of slow roll

conditions [42–44], the thermal hypothesis becomes plausible and ρrad ≃ (γ/H)φ̇2 has a stable equilibrium

provided γ(T ) ≃ T 3, as in eq. (8.32).
36Even though one may be able to relax the condition on the curvature of the potential (the so called

η-problem), some sort of tuning reappears in the form of very peculiar conditions on the matter content

of the theory. Moreover, another important challenge for warm inflation model building is to keep under

control the radiative and thermal corrections to the effective potential which could potentially ruin the

slow roll conditions. (More so if one is going to assume γ becomes sufficiently large [60], in view of the

previous requirement.) Supersymmetry may be invoked to tame the radiative corrections [61]. However,

Supersymmetry is broken at finite temperature (and for non-zero vacuum energy), therefore some extra

tuning may be required. A detailed account of the tuning of thermal inflation models lies beyond the scope

our present paper.
37This is a consequence of the validity of a derivative expansion for heavy mχ’s, which also supports the

local approximations. The replacement uµ → nµ agrees with the expressions in [56].
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effective action compatible with the symmetries of the long distance physics. Our general

assumptions were: i) the existence of a preferred clock, ii) negligible (or vanishing) con-

tribution from the ADOF to the curvature perturbations at late time, iii) the time scale

for dissipation and fluctuation induced by the ADOF is much smaller than a Hubble time

with negligible memory effects, and iv) the validity of an expansion in spatial derivatives.

The last two allow us to use a local approximation for the dynamics of the perturbations.

Under these conditions then we showed that in the strong dissipative regime the two point

function is dominated by the noise, and that it can be significantly larger than the standard

result for slow roll single field inflation. In particular

k3〈ζζ〉O ≃ νO⋆
√

πH⋆/γ⋆
H2
⋆

2c⋆s (c
⋆
sNc)

2 , (9.1)

which departs considerably from the Bunch-Davies result. The reason is twofold. First

of all the size of the perturbations for the canonically normalized π field (πc =
√
Ncπ) is

larger than in the Bunch-Davies vacuum, but moreover because the normalization scale

Nc can be smaller than the value it takes in single field inflation without ADOF for fixed

Ḣ and cs, namely c2sNc ≤ 2M2
p |Ḣ|.38 This is even more transparent if we assume the FD

theorem applies, or formally define TO as νO
Ncγ

, in which case

k3〈ζζ〉T ≃
√

πγ⋆H⋆
TOH2

⋆

2c⋆s
(

c⋆s
2Nc

) ≃ csk⋆TOH2
⋆

Λ4
c

, (9.2)

with Λ4
c ≡ c3sNc, similarly to what happens in warm inflation [39–44]. Then, introducing

Λ4
b ≡ 2M2

p |Ḣ|cs ≥ Λ4
c , we get39

〈ζζ〉T
〈ζζ〉BD

≃
(

csk⋆TO
H2
⋆

)(

Λb
Λc

)4

≫ 1, (9.3)

already for TO ≥ H when γ ≫ H. The factor of csk⋆TO in the numerator can be understood

as follows. The energy density for π is given by (∂̃πc)
2 ≃ k̃2⋆π

2
c (where ∂̃ represents the

derivative with respect to x̃i = xi/cs), which goes like k̃3⋆TO (a.k.a. Rayleigh-Jeans law).

Hence π2c ≃ k̃⋆TO = csk⋆TO, which we compare with the quantum noise in the Bunch-

Davies vaccum given by H2
⋆ .

As a result it is no longer the case that the power spectrum provides us the values of

H⋆ and ǫ⋆ as in the standard scenario, but rather with a set of new parameters: γ, νO, Nc

(or TO = νO/(Ncγ)). Therefore, the tensor/scalar ratio would no longer give us a clean

38Notice this implies that the cutoff scale for higher dimensional operators in the EFT, ΛU , (such as

those obtained from (1+ g00)n type of terms) may be lower than in the case of single field inflation without

ADOF (for a given value of Ḣ, cs), where ΛU ∼ Mp|Ḣ|c5s for cs ≪ 1 [17, 25]. However, keep in mind the

our EFT description breaks down when E & ΓO, hence the ‘lowering’ of ΛU is only meaningful in cases

where ΛU . ΓO.
39One might be tempted to identify c3sNc with the symmetry breaking scale Λ4

b [25], but this would not

be correct. The reason is that in order to define the scale at which time translations are broken one has

to properly account for the contributions to T̄µν stemming from all degrees of freedom, including the O’s.

Following the procedure outlined in [25], one can easily show that Λ4
b remains at 2M2

p |Ḣ|cs. (This is actually
not that surprising, since the normalization of the Goldstone boson π̃ did not change, as show in eq. (3.1).)
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measurement of the energy scale of inflation. (Also because the ADOF might significantly

contribute to gravitational wave production [63].)

We were also able to identify some specific signatures for non-Gaussianities. In partic-

ular, we showed that the level of non-Gaussianities can potentially be much larger than in

the case of single field inflation without ADOF by a factor of γ/H ≫ 1. Our main observa-

tion was the following: in order to dissipate we require φ̇’s in the EOM, however, we need

not only perturbe φ but also ‘the dot’, since the equal time surfaces are fluctuating. Hence,

the non-linear realization of time diffeomorphisms requires the following combination

F (∂tφ) → F (nµ∂µφ) → F (φ̇
√

−g00), (9.4)

which not only induces γπ̇ dissipation, but also (among others) a non-linear term: −γ(∂iπ)2.
(Notice the relative sign is dictated by the non-linear realization of the symmetry.) Since

horizon crossing happens at csk⋆ ≃
√
γH, this type of non-linear coupling leads to

γ(∂iπ)
2

c2s∂
2
i π

∼ fNLζ → |fNL| ≃
γ

c2sH
. (9.5)

The shape is plotted in figure 2, and peaks at the equilateral configuration. (This is not

surprising given the fact that the non-linearities involve derivatives of ζ.) However, there

is also a significant contribution at folded triangles x1 = 1, x2 ≃ x3 ≃ 1/2. Other non-

linear terms may depend explicitly on the noise, such as δȮS π̇, and are plotted in figure 3.

Despite the fact that it scales with a single power of π̇ one can show that its contribution in

the limit kL ≪ kS is suppressed by (kL/kS)
2 with respect to the local shape, in agreement

with the results in [54]. We will analyze the squeezed limit and consistency conditions in

the presence of dissipation in future work.

In this paper we also studied specific realizations of the type of operators introduced in

the EFT and the matching procedure. In particular we analyzed a local version of trapped

inflation where the produced particles decay after they are created, which leads to (approx-

imately) localized response functions. We showed how the term γ(∂iπ)
2 gets generated,

with the subsequent γ/(c2sH) imprint on |fNL|. Crucial aspects of the model include: i)

The ADOF responsible for dissipation do not contribute to the density perturbations at

late time, ii) The emergence of a shift symmetry at the level of the perturbations, and

iii) The response functions were predominately sensitive to the preferred clock φ, whose

fluctuations uniquely control the end of inflation, via nµ ≃ ∂µ(t+ π).

Intuitively, the necessary gradients of π appear as a result of the fluctuations of the

clock, the field φ itself, which sets the equal time surfaces where the unperturbed computa-

tion is assumed to hold to a good approximation. The derivative expansion remains valid as

long as the typical length scale for the variation of the extrinsic curvature (of equal time sur-

faces) is larger than the typical wavelength of the produced particles, namely 1/κ≪ 1/k⋆.

(Our conclusions also apply to the two-stage model of warm inflation, provided one succeeds

in producing sufficient e-foldings while having γ ≫ H in a consistent fashion.)

One might wonder about the possibility of having a ‘second clock’ controlling the

response functions for the ADOF. As long as we are only concerned about effects on the
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dynamics of the one clock driving inflation (assuming this second clock produces negligible

direct contributions to ζ), one can incorporate its presence in the O-system by replacing

nµ∂µ → uαO∂α. We will study this in more detail in future work.

In a nutshell, departing from the vanilla single field scenario opens new possibilities

which may well be realized in nature. Once again, the EFT machinery is a wonderful

tool to reduce the plethora of conceivable realizations to a theory of low energy degrees

of freedom coupled to a set of composite operators whose correlation function encode all

the information about the dissipation/fluctuation properties of each specific model. In

our case we reduced the number of additional parameters to three: γ, νO, Nc. (Also ΓO
and MO, controlling the validity of local approximations.) By taking the ratio between

ζ-correlation functions, such as the two and three point functions, we manage to cancel out

most of our ignorance on the underlying dissipative mechanism, thanks to the link between

different n-point functions induced by the symmetries. In this fashion we were able to show

(assuming the noise is Gaussian) that the bispectrum peaks at equilateral configurations

and moreover |f eqNL| ∼ γ
c2sH

for a vast class of models.

A detection of the generic type of signatures we discussed in this paper, as a result of

incorporating dissipative effects during inflation, would increase our understanding of the

dynamics of the early universe and also lead us towards a more precise description of the

inflationary epoch.
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A Examples with Ohmic behavior

Let us consider the well-known case in which the system (described by π) is linearly coupled

to a “bath” of harmonic oscillators, such that [33, 45]

Ltot = Lπ(π, π̇) + Lint(q, π) + Lq(q, q̇), (A.1)

with

Lπ =
1

2
π̇2 − 1

2
ω2
0π

2, Lq =
∑

α

1

2
q̇2α − 1

2
ω2
αq

2
α, Lint = −cα

∑

α

πqα. (A.2)
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Then the EOM become

π̈ + ω2
0π +

∑

α

cαqα = 0 (A.3)

q̈α + ω2
αqα + cαπ = 0. (A.4)

Plugging the solution to eq. (A.4) back into eq. (A.3) we obtain an equation of the so called

Langevin form:

π̈ + ω2
0π +

∫

dt′γ̃(t− t′)π(t′) = J(t), (A.5)

where

J(t) = −
∑

α

cαq
π=0
α (t), (A.6)

with qπ=0
α (t) representing the classical trajectories of the oscillators in the absence of π and

γ̃(t− t′) ≡
∑

α

c2αG
α
ret(t− t′). (A.7)

In the above expression we introduced

Gαret(t− t′) = θ(t− t′)
sin(ωα(t− t′))

ωα
, (A.8)

the retarded Green’s function for an harmonic oscillator of frequency ωα. If we now assume

random initial conditions, taken independently for each oscillator in the environment, we

can consider J(t) as a stochastic variable. Then, as π is being affected by the ‘noise’

induced by J(t), its dynamics acquires a stochastic character. In the jargon of particle

physics, we have integrated out the bath of oscillators and obtained an effective EOM for

the π field, with a generalized friction term plus noise. (However, as we emphasized in this

paper, this EOM does not derive from a Lagrangian of the form L(π, π̇).)
As it stands the EOM for π is non-local (unless very particular properties for the cα

coefficients are assumed [33, 45]). Nevertheless, as we argue below, there are situations

where we get

Imγ̃(ω) ≃ γω, (A.9)

with γ a constant, such that the EOM takes the desired form

π̈ + γπ̇ + ω2
0π = J (A.10)

with 〈J〉 = 0 (and after we redefine ω0 to include a renormalization piece).

A Lagrangian description of the sort of eq. (A.1) arises in the so called Rubin’s model,

where a heavy mass M is coupled to a half-infinite chain of harmonic oscillators of mass

m and spring constant mω2
R/4, after diagonalization (ωR is the highest attainable fre-

quency) [45]. In such case one has [45]

Imγ̃R ≃ ω
mωR
M

√

1− ω2/ω2
R θ(ωR − ω), (A.11)
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which is of the type in eq. (1.5) for ω ≪ ωR with γ ∼ (m/M)ωR.
40

The reason non-local effects make appearance in the EOM relies on the ability of the

environment to back react in our system. Hence in order to have a local approximation, we

should consider a situation where the energy of the system is damped into the environment

and the latter has a negligible back reaction effect (or it becomes important on a time scale

much longer than the length of the experiment).

As an example, and in the spirit of Rubin’s model, let us take the case of a ring of

mass M attached to a half-infinite rope. If we denote by y(x, t) the height of the rope as

a function of x > 0 and time, and place the ring at π(t) ≡ y(0, t), the EOM read

∂2y

∂x2
=
∂2y

∂t2
(A.12)

Mπ̈ = F

(

∂y

∂x

)

x=0

(A.13)

where F is the tension per unit of length on the rope (and we work in units where the

speed of propagation is taken to be one). From the wave equation we know

(

∂y

∂x

)

x=0

= ±
(

∂y

∂t

)

x=0

, (A.14)

and choosing boundary conditions such that only outgoing waves are allowed (i.e. y(x, t) =

f(x− t)) we obtain

π̈ + γπ̇ = 0, (A.15)

with γ = F/M . We can now simply add a spring of frequency ω0 attached to the ring

to return to eq. (A.10), in this case with J = 0. (Notice that the rope represents the

continuum limit of Rubin’s model, where we take m→ 0 and ωR → ∞ while keeping mωR
finite, so that eq. (A.11) leads to a constant γR for all times.)

In a more realistic setting we may imaging fixing the rope (now of length L) at an end,

such that waves will bounce back on a time scale of order tB ∼ L, introducing non-local

effects. In such scenario, and as long as we are interested in time scales t ≪ tB, our local

approximation remains valid.

B The optical theorem

Even though in this paper we deal with dissipation, our results are still consistent with

unitarity. To make the connection more transparent let us consider the forward scattering

amplitude for the π particles, which we depict in figure 5 as a ‘self-energy’ diagram, with

π propagators represented by the wavy lines.

As it turns out, this amplitude is proportional to the time order product

〈T (δO(x)δO(y))〉, (B.1)

40Notice the asymptotic behavior is given by γR(t) ∼ m
M

√

ωR

t3
sinωRt for t ≫ ω−1

R , which is milder than

in eq. (1.7).
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Figure 5. The wavy lines correspond to π and the dark interactions are insertions of Oπ couplings.

The line connecting the dots represents Feynman’s time order product of eq. (B.1).

also known as Feynman propagator, iGF(x− y), which appears after we integrate out δO
in the usual path integral formalism with Lint = δOπ. Unitarity, in the form of the optical

theorem, tells us that the imaginary part of this amplitude must be related to the total

power loss [34, 35]. Hence, using

ImAπ→π ≃ ImGF(ω) (B.2)

and (for ω > 0)

ImGF(ω) = ImGO
ret(ω), (B.3)

multiplying by a factor of ω (to go from rates to energies) we obtain

dE

dt
≃ ωImAπ→π ≃ ωImGO

ret(ω). (B.4)

If we require this expression to match the condition

dE

dt
= γπ̇2, (B.5)

that follows from a dissipative term of the form γπ̇, we conclude (for ω > 0)

ImGO
ret(ω) ≃ γω (B.6)

as expected. In general the expression in eq. (B.5) may be more elaborate, but the proce-

dure generalize to any function of ω [34, 35].

The reader may be puzzled about the appearance of the Feynman propagator rather

than the retarded propagator. However Feynman boundary conditions can be used to

relate the imaginary part of self-energy diagrams with the total radiated power (or energy

loss), similarly to what is done in the EFT for gravitational radiation of [5–11, 14, 15].

The crucial point is that the boundary conditions are so chosen to ensure ‘in’ and ‘out’

vacuum states for the δO’s (e.g. no external gravitational radiation), but at the same time

producing an imaginary part which precisely account for the total radiated power. Another

way to see this is to notice that the total rate induced by the coupling δOπ is proportional

to (ignoring factors of k for the sake of argument)

∑

N

〈π, 0|πδO(t)|0, N〉〈π, 0|πδO(0)|0, N〉⋆=
∑

N

〈0|δO(0)|N〉〈N |δO(t)|0〉=〈0|δO(0)δO(t)|0〉,

(B.7)
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which is nothing but the sum over the square of the emission amplitudes Aπ→N , for all N

possible (intermediate) states. Then, using the relation (valid for ω > 0)

∫

dt eiωt〈0|δO(0)δO(t)|0〉 = 2 Im i

∫

dt eiωt〈0|T (δO(0)δO(t))|0〉, (B.8)

we reproduce our previous result (after multiplying by a factor of ω). This is nothing but

the optical theorem at work. What turns out to be a bit more subtle is how to obtain

the correct retarded boundary conditions of eq. (1.14) from the path integral approach.

However, this is possible in the so called ‘in-in’ formalism [33, 45, 46]. (See [48, 49] for a

discussion in the case of gravitational radiation reaction.)

C Retarded Green’s function

In this appendix we provide some basic features of retarded Green’s functions, and in

particular we discuss an example where ImGO
ret ≃ ω as we used throughout the paper.

Let us start with some axiomatic properties for the retarded Green’s functions and

let us work at zero spatial momentum. First of all, from causality we know GO
ret(ω) is an

analytic function of ω for Imω > 0. Moreover, the imaginary part is odd in ω:

ImGO
ret(−ω) = −ImGO

ret(ω). (C.1)

Also, the real and imaginary parts are related via Kramers-Kronig relations,

ReGO
ret(ω) = P

∫ ∞

−∞

dω′

π

ImGO
ret(ω

′)
ω′ − ω

, (C.2)

ImGO
ret(ω) = −P

∫ ∞

−∞

dω′

π

ReGO
ret(ω

′)
ω′ − ω

, (C.3)

where P stands for the principal value. This implies

∫ +∞

−∞
dω′ ImGO

ret(ω
′)

ω′ <∞, (C.4)

from which we obtain

ImGO
ret(ω → 0) → 0. (C.5)

Notice that eq. (C.5) precludes the existence of a pole at ω = 0, however, it does not rule

out the behavior of eq. (1.20) away from the origin, as we show in appendix H.

Let us now study the example of electric conductivity. As it is well known the rela-

tionship between the current and electric field in a conductor is given by

je = −iωσ(ω)A(ω), (C.6)

with E(ω) = −iωA(ω). Then using linear response theory one can show (Kubo formula)

Reσ(ω) =
ImGjret(ω)

ω
, (C.7)
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where Gjret is the retarded Green’s function for the electric current je. In general this

Green’s function can be parameterized as [64]

Gjret(ω) =
αjMj(ω)

ω +Mj(ω)
, (C.8)

with Mj(ω) a ‘memory function’, and αj a constant. Depending on the system, for some

range of frequencies one can approximate Mj(ω) ∼ i/τj + O(ωτj) with τj the ‘memory

time’, such that

Gjret(ω) ≃ − σj
iω − ωD

⇒ ImGjret(ω) ≃
σjω

ω2 + ω2
D

, (C.9)

with ωD ≃ 1/τj , σj = αjωD. For ω ≪ ωD we obtain the behavior as in Drude’s model in

eq. (1.7).

Notice that we also have Re Gjret ≃ σωD (which is obviously consistent with the

dispersion relations of eq. (C.2)). This means, in principle, that we get a large correction

in the real part of the Green’s function. In cases where our O operators have a Green’s

function of this form, this could potentially lead to a large mass for π. In our cases of

interest we assumed there is a mechanism that forbids a large contribution such that mπ

remains O(ǫ), as in cases where there is an approximate shift symmetry.

D Decoupling limit

In single field inflation one can show that δN and δNi are suppressed in the slow roll

approximation, so that one may work with the theory of π up to O(ǫ) effects, for models

not too close to de Sitter [17]. Here we argue that decoupling still occurs even after we

include ADOF, and make some general comments about the structure of the mixing terms.

In this section we work in M2
p = 1 units unless otherwise noted.

As we know, the full T̄µν for the background takes the perfect fluid form

T̄µν = (ρ̄tot + p̄tot)ūµūν + ḡµν p̄tot (D.1)

(which follows from the isotropic and homogenous conditions). We will work in the New-

tonian gauge where

g00 = −1− 2Φ, g0i = 0, gij = ḡij(1− 2Ψ). (D.2)

If we concentrate on first order scalar perturbations we have

δTij = −2Ψḡij p̄tot + ḡijδp+ δτij (D.3)

δT00 = 2ρ̄totΦ+ δρ (D.4)

δTi0 = −(ρ̄tot + p̄tot)∂iδu, (D.5)
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where we included a dissipative term δτij , induced by the ADOF. (Keep in mind that the

ADOF also enter in δρ, δp.) The EOM become [65]

∂j
(

δp+ 2∂0(ǫH
2δu) + 6ǫH3δu+ 2ǫH2Φ

)

+ ∂iδτ
i
j = 0 (D.6)

δρ̇+ 3H(δρ+ δp) +Hδτ ii + 2ǫH2

(∇2δu

a2
− 3Ψ̇

)

= 0 (D.7)

∇2Ψ

a2
− 1

2
δρ+ 3ǫH3δu = 0 (D.8)

1

a2

(

∂i∂j −
1

3
δij∇2

)

(Ψ− Φ) =

(

δτ ij −
1

3
δijδτ

l
l

)

(D.9)

where we used ρ̄tot + p̄tot = −2Ḣ = 2H2ǫ, (ǫ = −Ḣ/H2). Let us assume for the moment

that δρ, δp, δu and δτij do not depend on the metric perturbations. Then, from these

equations one can immediately note that the metric perturbations decouple in the ǫ → 0

limit. Moreover, the constraint equations (last two) give us the value of Φ and Ψ in

terms of δρ, δu and δτij . At the end of the day we end up with equations where the

mixing with gravity is suppressed by ǫ, and moreover, is independent of the relationship

between δρ and δp.

To analyze the relative importance of the contributions of these mixing terms, we can

combine eqs. (D.6)–(D.8) to obtain (k 6= 0):

δρ̈k + 3H(δρ̇k + δṗk)−
k2

a2

(

δpk +
2

3
δτk

)

+
d

dt

(

H(δτ ii )k
)

− 2ǫH2δρk − 3ǫH2δpk

+2ǫH2δτk + 10ǫH2k
2

a2
δu− 3

a2ǫH2

k2
(

δρ̈k + 2Hδρ̇k + 4H2δρk
)

+O(ǫ2) = 0. (D.10)

In this expression we replaced ∂i(δτ
i
j)k → 2/3 ∂jδτk, with δτk a scalar mode which

follows from the decomposition (δτ ij)
TF
k = (k̂ik̂j − 1

3δij)δτk + . . . (k̂2 = 1), and we used

eqs. (D.8), (D.9) to solve for Φ,

Φ =
a2

k2

(

1

2
δρk + δτk

)

+O(ǫ). (D.11)

Therefore the presence of gravity has two net effects. First of all, there is a “mass” term

proportional to
√
ǫH; and secondly there are mixing factors, of order ǫH2/k2⋆ at horizon

crossing (recall k⋆ = k/a(t⋆)). Hence, as long as ω⋆ ≫ ǫ1/2H and k⋆ ≫ ǫ1/2H, we can

ignore the mixing with gravity. For us, since k⋆ ∼
√
γH/cs > H, this suppression is larger

than the usual case upon noticing

mixing ∼ ǫ⋆H⋆c
2
s⋆

γ⋆
≪ 1. (D.12)

So far we have assumed that terms involving the metric perturbations in δρ, δp, δu

and δτij are negligible. To clarify this point let us take the example of single field inflation

without ADOF [17]. To linear order in the perturbations, the stress tensor obtained from

the first contributions to the action defined in eq. (2.1), i.e.41

1

2

∫

d4x
√−g{(p− ρ− (p+ ρ)g00) + M4

2 (1 + g00)2}, (D.13)

41Note that the term M4
2 (1 + g00)2 allows for cs 6= 1 (see eq. (2.13)).
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can be written as in eq. (D.3), using

δρ = ρ̇π + (ρ+ p+ 4M4
2 )(π̇ − Φ), (D.14a)

δp = ṗπ + (ρ+ p)(π̇ − Φ), (D.14b)

δu = −π. (D.14c)

For these variables to be approximately independent of Φ we need Φ ≪ π̇. Solving for Φ

using eq. (D.11) without the ADOF we obtain (in the slowly varying approximation and

restoring Mp)

Φ ∼ a2

M2
pk

2

(

ρ̄+ p̄+ 4M4
2

)

π̇. (D.15)

Therefore the assumption Φ ≪ π̇ is self-consistent provided

a2

M2
pk

2
(ρ̄+ p̄+ 4M4

2 ) ≪ 1 ⇒ k⋆ ≫
(ρ̄+ p̄+ 4M4

2 )
1/2

Mp
. (D.16)

Using ρ̄ + p̄ ∼ 2ǫM2
pH

2 we recover an expression similar to (D.12) (but without the

factor c2s⋆),

mixing ∼ ǫ⋆H⋆

γ⋆
≪ 1. (D.17)

Note that the above estimations do not apply in the limit ǫ→ 0, since the higher derivative

contributions can no longer be ignored. To analyze this case we add the term proportional

to M̄2
2 in eq. (2.1), i.e.

− 1

2

∫

d4x
√−g M̄2

2 (δK
µ
µ )

2. (D.18)

Setting ρ+ p→ 0 and cs → 0 we get

δρ = 4M4
2 (π̇ − Φ)− 3M̄2

2H

[

k2

a2
π − 3(HΦ+ Ψ̇)

]

(D.19a)

≃ 4M4
2 π̇ − 3M̄2

2H
k2

a2
π. (D.19b)

(The second line is valid provided Φ ≪ π̇ and HΦ + Ψ̇ ≪ k2

a2
π.) Using again eq. (D.11)

(without ADOF) we have

M2
pΦ ≃ a2

k2
δρ ≃ 4M4

2

a2

k2
π̇ − 3M̄2

2Hπ. (D.20)

Therefore we see the assumption that we can neglect the dependence of δρ on the metric

perturbations requires, not only M̄2 ≪Mp, but also [17]

M4
2

a2

k2
≪M2

p → k⋆ ≫M2
2 /Mp. (D.21)

In addition, this explains the apparent puzzle in the mixing expression of eq. (D.12), that

appears to exactly vanish in the de Sitter limit. (This we know is not the case, for example

in the Ghost Condensate. See [17] for more details.) Notice that the condition in (D.21)
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does not make any reference to cs, which is zero in the de Sitter limit. In general, for small

(ǫ, cs) the mixing with gravity will depend on which one is larger between ρ̄ + p̄ and M4
2 ,

as in (D.16), and therefore in the near de Sitter limit the mixing may become enhanced

with respect to ǫ.

The inclusion of ADOF does not modify the previous analysis considerably. Similar

arguments can be made for vector and tensor modes.

E Comment on ÔδKµ
µ

Let us briefly analyze the importance of the terms with the extrinsic curvature. In par-

ticular we compare the operator s(t) Ô
MK

δKµ
µ , given in eq. (4.3), with f(t)O1 of eq. (4.1).

For the sake of argument we take O1 ∼ Ô. By this we mean that for these operators

all response and noise coefficients are of the same order. Then to linear order in π, from

f(t)O1 we get ḟπO1, whereas from the one with the extrinsic curvature we have s(t)
MK

Ô∇2

a2
π.

Taking the ratio we see that if k⋆ satisfies

k2⋆ ≪ MK ḟ(t)/s(t), (E.1)

we may be allowed to neglect operators with δK. As we have shown in this paper, the

computation of the power spectrum and non-Gaussianities (due to the behavior of the re-

tarded Green’s function Gγ) is dominated by values for which, at freeze out, k⋆ ∼
√
Hγ/cs.

Therefore, to satisfy the condition in eq. (E.1) we need

s(t)γH

ḟc2s
≪ MK . (E.2)

Otherwise, the contributions from OδKµ
µ could be important.

F Dissipative Green’s functions in an expanding universe

In this appendix we discuss some properties of the Green’s function relevant for the com-

putation of non-Gaussianities in section 7, in particular Gγ(x, y) = y2gγ(x, y) (x = −kcsη,
y = −kcsη′). In figure 6 we show some graphs of Gγ(0, y) for three different values of γ.

(For a fixed x < (4 + γ/H)1/2,42 the behavior of Gγ(x, y) is similar to the one shown for

x = 0.) We notice that Gγ peaks at y ≃ (4 + γ/H)1/2, and as γ increases its amplitude

decreases, whereas its support increases.

For a particular value of γ, in figure 7 we plot the Green’s function Gγ(x, y) and its

temporal derivative per Hubble time, ∂tGγ(x, y)/H = −x∂xGγ(x, y), for x =
√

4 + γ/H

as a function of y > x, and for y =
√

4 + γ/H as a function of x < y. To estimate the

amplitude of integrals of gγ it is useful to note that

∫ +∞

x
dy Gγ(x, y) = −1. (F.1)

42We keep the factor of 4 to recover the standard result in the case γ → 0.
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Figure 6. The Green’s function Gγ(0, y) = y2gγ(0, y) for three different values of γ: 4+ γ/H = 52

(black), 4+γ/H = 72 (dashed) and 4+γ/H = 102 (dotted), the first peak of Gγ is around y = 5, 7,

and 10, respectively, supporting the fact that the location of the peak is at
√

4 + γ/H.
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Figure 7. The Green’s function Gγ(x, y) (on the top) and its temporal derivative, per Hubble

time, ∂tGγ(x, y)/H = −x∂xGγ(x, y) (on the bottom); for x⋆ =
√

4 + γ/H as a function of y > x⋆

(on the left), and for y⋆ =
√

4 + γ/H as a function of x < y⋆ (on the right). All plots correspond

to x⋆ = y⋆ = 10.

Then, for large values of γ a rough estimation for f eqNL can be obtained by counting each

power of y2 as γ, adding a factor of γ−1/2 for each Gγ (i.e. γ−3/2 for each gγ) and a factor

of γ1/2 for each integral, with units made up by γ/H. Note that having a time derivative
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per Hubble time of Gγ cannot increase significantly f eqNL (see figure 7). On the other hand,

the contribution of an additional spatial derivative per Hubble length will increase f eqNL by

approximately a factor of γ/c2s (since k2/(a2H2) = y2/c2s).

G Mixing

To study the effects of friction at leading order in π, in this paper we concentrated on

the study of a generic type of operator, i.e. Oπ, with O including in principle a series

of contributions (after integration by parts). However, once we start adding higher order

effects, we treated each of them separately. The reasons were both the fact that not all

the terms generate the same type of non-linearities, and also obviously for simplicity. In

general however more than one operator will be present at the same time. Here we make

a few comments about the kind of effects that may appear as a result of including more

than one type of ADOF concurrently.

G.1 Scalars

Let us start with scalar operators OA, A = 1, . . . N . In general, in addition to the con-

tributions of the response and noise given by the self-correlation functions, we will also

have the ones given by the mixed-correlations (e.g. 〈δOS
AδOS

B〉). To be more precise, we

are considering interaction terms of the form

Sint = −
∫

d4xa3(t)OAF
A, (G.1)

where FB are taken as external forces that slightly disturb the dynamics of the ADOF

associated to the O’s, and where repeated index are summed over. The linear response of

OA due to the application of the external forces can therefore be written as

δOR
A = −

∫

d4x′a3(t′)GO
AB(x, x

′)FB(x′), (G.2)

and

GO
AB(x, x

′) = iθ(t− t′)〈[δOA(x), δOB(x
′)]〉. (G.3)

Additionally, we have the fluctuations of the ADOF, which are characterized by the two-

point function of stochastic sources δOS
A(x):

NO
AB(x, x

′) = 〈δOS
A(x)δOS

B(x
′)〉. (G.4)

By concentrating in the case where a local approximation applies, as described in

section 5.1, we can write

δOR
A(t,k) ≃ µAB(t)F

B(t,k) + ΓAB(t)
1

a3/2
∂t(a

3/2(t)FB(t,k)), (G.5)

〈δOS
A(t,k1)δOS

B(t,k2)〉 = (2π)3δ(3)(k1 + k2)N
O
AB(t, t

′), (G.6)

with

NO
AB(t, t

′) ≃ νAB(t)
δ(t− t′)
a3(t)

, (G.7)

where µAB(t), ΓAB(t) and νAB(t) are approximately time-independent.
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G.2 f(t)O1 and O2g
00

For the sake of completeness, let us study the effects due to the mixing between O1 and

O2, under the assumptions of the local approximation described previously. Note that

if we ignore that mixing, the interaction f1O1 yields a term γπ̇ in the EOM for π (see

section 7.2), while O2g
00 produces a higher derivative contribution if we assume that both

operators have a Green’s function satisfying ImG(ω) ∝ ω as ω → 0 (see section 7.5).

Hence it is reasonable to consider the case where the term f1O1 dominates over f2δg
00O2

at linear order. This allows us to concentrate in a situation in which, at leading order in the

corrections introduced by O2, we can neglect the contributions coming from the interaction

δg00O2 alone, and its effects enter only through the mixing with O1. For example, this

would be the case if O1 = O2 and f2H ≪ ḟ1. So in practice we can work at leading order in

f2. Moreover, for simplicity, we concentrate here only in the contributions obtained using

the linear response approximation, although as we have seen in section 7.5 the non-linear

response contributions obtained from f1O1 could produce the largest non-Gaussianities in

this kind of models.43

There are two types of mixed response terms: one is given by how f1(t) (the force

coupled to O1) affects δO2 and the other by how f2δg
00 affects δO1. Using the local

approximation, these can be written as

δORmix
1 ≃ − f2µ̃12

(

2π̇ + π̇2 − ∂iπ∂iπ

a2

)

− f2Γ12

(

2π̈ + 2π̇π̈ − 2
∂iπ∂iπ̇

a2
+ 2H

∂iπ∂iπ

a2

)

, (G.8a)

δORmix
2 ≃ µ̃21

(

ḟ1π + f̈1
π2

2

)

+ Γ21

(

ḟ1π̇ + f̈1π̇π
)

, (G.8b)

where µ̃AB = µAB+3/2HΓAB and we assumed the existence of an emergent shift symmetry,

as described in the main text.

To linear order in f2 the equation for π1 becomes

π̈1 + (3H + γ̃)π̇1 + c̃2s
∇2

a2
π1 = −Ñ−1

c

(

ḟ1δOS
1 − 2f2

∂t(a
3δOS

2 )

a3

)

, (G.9)

where Ñc = Nc + 2 f2 ḟ1 (Γ21 − Γ12)), c̃
2
s = c2s − 2 f2 Ñ

−1
c ḟ1 c

2
s (Γ21 − Γ12), and γ̃ =

Ñ−1
c

(

ḟ1
2
Γ11 + 2f2ḟ1(3HΓ12 − µ̃12)

)

. Note that c̃2sÑc = c2sNc (recall we are working to

linear order in f2). To ease notation we omit tildes in what follows. The particular solution

to the above equation is

π1(k, η) =
ḟ1kcs
NcH2

∫ η

η0

dη′gγ(kcs|η|, kcs|η′|)δOS
1 (k, η

′)

+
2f2kcs
NcH2

∫ η

η0

dη′gγ(kcs|η|, kcs|η′|)
∂t
(

a3(η′)δOS
2 (k, η

′)
)

a3(η′)
, (G.10)

43Note that from the analysis of section 7.2, if we have only the interaction f1O1 the level of non-

Gaussianities obtained within the linear response approximation are negligible.
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and the resulting power spectrum can be written as

Pζ = P f2=0
ζ

(

1 + 6
Hf2ν12

ḟ1ν11

)

(G.11)

where P f2=0
ζ is the one obtained for f2 = 0, which is given in eq. (6.3) where νO = ν11ḟ1

2
.

The source for π reads

J = N−1
c ḟ1(2f2HΓ12 − f2µ̃12)

∂iπ∂iπ

a2
− 2N−1

c f2ḟ1(Γ12 − Γ21)
∂iπ∂iπ̇

a2

+2f2N
−1
c ḟ1Γ21π̇

∇2π

a2
+ f2N

−1
c ḟ1(µ̃12 − 6HΓ21)π̇

2 + 2f2N
−1
c ḟ1(Γ12 − 2Γ21)π̇π̈

−ḟ1δOS
1 − 2f2

∂t
(

a3δOS
2

)

a3
− 2f2

∂t
(

a3π̇δOS
2

)

a3
+ 2f2N

−1
c

∂i
(

δOS
2 ∂iπ

)

a2
. (G.12)

Note that if O1 = O2 the second term vanishes.

As we have learned from our computations in section 7, the contribution of the

non-linear terms with spatial derivatives become more important for generating non-

Gaussianities than those with only time derivatives. Let us then analyze for simplicity only

the first and the last term, which we expect to be among the leading ones. Notice that

the calculations for the first source term are exactly the same as the ones we have already

performed in section 7.1, in that case for the first term on the r.h.s. of eq. (7.3). In fact, it

can be written as

J1
k = −s1γ

∂iπ∂iπ

a2
, (G.13)

with

s1 = −2f2H

ḟ1

Γ12

Γ11
+
f2µ̃12

ḟ1Γ11

, (G.14)

where we have s1 ≪ 1 consistently with our linear expansion in f2 after taking, for sim-

plicity, γAB ∼ HµAB. From eq. (7.10) we obtain

f eqNL ≃ s1γ

2Hc2s
, (G.15)

which could be still large for γ ≫ H, even when cs . 1 and within the validity of our

approximation, namely s1 ≪ 1.

Similarly, for the last part of the source term we obtain

f eqNL = −10

3

s2
c2s

2−8γ/Hπ2Γ
(

2γ
H + 4

)2

( γ
H + 1

)6
Γ
(

γ+H
2H

)8

∫ +∞

0
dy′y′6(gγ(0, y

′))2

×
∫ +∞

y′
dzz4gγ(y

′, z)gγ(0, z), (G.16)

where s2 =
f2H

ḟ1

ν12
ν11

≪ 1, and again for simplicity we take all mass scales to be of the same or-

der. After a numerical calculation, in the regime γ/H ≫ 1, we can well approximate fNL by

f eqNL ≃ −3
γ

H

s2
c2s
, (G.17)

similar to our previous case.
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G.3 Vectors & tensors

Finally, as we discussed in sections 4.2 and 4.3, there is a family of vector and tensor

interactions terms that can be added. These can be written as

SO = −
∫

d4x
√−g

(

f1(t)O0
1 + f2(t)O00

2 + f3(t)O000
3 + . . .

)

(G.18)

−δg00
(

s1(t)O0
1 + s2(t)O00

2 + s3(t)O000
3 + . . .

)

+ . . .

For the sake of simplicity (and notation), let us here ignore the factors fi(t)’s and

si(t)’s, whose time dependence is in general slow roll suppressed.

After introducing π, these terms become

O0
1 = Oµ

1∂µ(t̃+ π) = O0
1 +Oµ

1∂µπ (G.19a)

O00
2 = Oµν

2 ∂µ(t̃+ π)∂ν(t̃+ π) (G.19b)

= O00
2 + 2O0µ

2 ∂µπ +Oµν
2 ∂µπ∂νπ

O000
3 = Oµνρ

3 ∂µ(t̃+ π)∂ν(t̃+ π)∂ρ(t̃+ π) (G.19c)

= O000
3 + 3O00µ

3 ∂µπ + 3O0µν
3 ∂µπ∂νπ +Oµνρ

3 ∂µπ∂νπ∂ρπ,

etc. Adding all them up we get

O0
1 +O00

2 +O00
3 + . . . = Õ + Õµ∂µπ + Õµν∂µπ∂νπ + Õµνρ∂µπ∂νπ∂ρπ . . . , (G.20)

with Õµ...ν made up from some combination of our original tensor operators. We can

rearrange the second line of eq. (G.18) in a similar fashion.

As an example, let us consider O0 ≡ Oµg
µ0, which produces the first π-dependent

term in eq. (G.20). Notice that by simple inspection, at linear order in π, we can transform

the analysis for this operator into the one for a scalar operator we studied throughout the

paper. Indeed, after integrating by parts we obtain

∫

d4x
√−gOµ∂µπ →

∫

d4x
(

∂µ
√−gOµ

)

π ≡
∫

d4x
√−gÕπ, (G.21)

with Õ = 1√−g∂µ(
√−gOµ), an effective scalar operator. By construction, this interaction

obeys the shift symmetry. Moreover, assuming it satisfies the hypothesis of section 5.1, it

may induce a large friction term for γ ≫ H, and yet no O(π2) terms in the action. Naively

this might suggest an absence of connection between friction and non-Gaussianities in this

case, however as we emphasized throughout the paper, the non-linear response will induce

non-linear couplings that indeed we expect to be large, leading to fNL ≃ γ/c2sH.

H Oδg00 model(s) with γπ̇ dissipation

In this appendix we discuss an example of a Õg00 type of coupling with γπ̇ dissipation.

We argued in section 1.2 this requires some peculiar analytic structure, in particular (see

eq. (1.20))

ImG̃O
ret(ω) ∼ 1/ω, (H.1)
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within a range of frequencies µO < ω < ΓO to be determined momentarily. Here we

introduce one possible model where we couple the inflaton to a scalar field with strong

dissipative dynamics induced by a second (hidden) sector that does not couple directly to

π. We will explore this set up in more detail elsewhere. (We drop the tildes from now on,

and due to the plethora of γ’s we use γπ to identify the dissipative coefficient for π.)

The basic idea is to use the EFT of inflation of [17] but, in the spirit to the model

in [25], let us couple π to a scalar field σ via a term σδg00 so that we generate a ρσπ̇

coupling with ρ having units of mass [25]. For its dynamics we write

Lσ =
1

2
(∂µσ)

2 − 1

2
µ2σ2 + σJΨ, (H.2)

where JΨ stands for the interaction between σ and a dissipative sector described collectively

by Ψ, which does not couple directly to π.44 In essence this is a two-steps model where π

dissipate via a mixing term. This can also be described in the framework of [30], except

that in addition we have a sector which couples to σ and induces (strong) dissipation. (We

could for example put the Ψ-system in thermal equilibrium at a given temperature TΨ.)

If we now compute the retarded Green’s function for σ we have (see figure 8)

ρ2Gσret(ω,k) =
ρ2

ω2 − k2 − µ2 + ΓΨ(ω)
, (H.3)

where ΓΨ is the self-energy contribution from the 〈[Jψ, Jψ]〉 correlator due to the σJΨ
coupling (see below). We assume now that the imaginary part of this self-energy can be

approximated as

ImΓΨ(ω) ≃ γΨ
ω

ω + Λψ
, (H.4)

which is a more standard behavior (similar to Drude’s model in eq. (1.7)) and behaves

linearly in ω for ω < Λψ, see appendix C. Using analyticity of ΓΨ in the upper half plane

we also have (via Kramers-Kronig relations)

ReΓΨ(ω) ≃ γΨΛΨ

(

Λ2
Ψ

ω2 + Λ2
Ψ

)

≃ γΨΛΨ, (H.5)

for ω . ΛΨ. Therefore

ρ2ImGσret(ω,k) ≃
γΨρ

2ω

[ω2 − k2 − µ2 + γΨΛΨ]
2 + γ2Ψω

2
. (H.6)

Our quest is to find a regime where we get γππ̇k for the EOM, or in other words the

scaling of eq. (1.20) in eq. (H.6). That is indeed the case when

[

ω2 − k2 − µ2 + γΨΛΨ

]2 ≪ γ2Ψω
2. (H.7)

44In principle Ψ could talk to the inflaton via gravitational interactions, but these are subleading.
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Figure 8. The wavy lines correspond to π and the dark interactions are insertions of σπ̇ couplings.

The larger dark circle represents the Green’s function for the 〈[Jψ, Jψ]〉 correlator from to the σJΨ
coupling.

Naively this seems like a difficult task given the constraint ω . ΛΨ, however we can

always set µ to cancel out the large contribution, for example by tuning45

γΨΛΨ − µ2 ≃ H2. (H.8)

Moreover we also assume ω⋆, k⋆ ≪ γΨ (which we show is self-consistent), so that under our

working hypotheses we get

ρ2ImGσret(ω) ≃
γΨρ

2

γ2Ψ

1

ω
, (H.9)

for H . ω, |k| . γΨ(. ΛΨ), hence

γπ ∼ ρ2

γΨ
, (H.10)

which gives γπ ∼ γΨ for ρ ∼ γΨ. As we showed in this paper, with a γππ̇ dissipation term

we have k⋆ ≃
√
γπH, therefore the conditions which led to eq. (H.9) are satisfied, provided

γπ ≫ H.

To compute the power spectrum and non-Gaussianities we also need the noise part.

This follows also from the (indirect) coupling between π and JΨ via σ. This can be shown

by explicitly writing the EOM (ignoring the Hubble expansion for simplicity)

π̈k + k2phπk = −ρσ̇k, (H.11)

σ̈k + (k2ph + µ2)σk = JΨ + ρπ̇k. (H.12)

As we argued above, in the regime we are interested in we can write (treating JΨ as a

particular operator δO)

JΨ = JSΨ +

∫

GΨ
retσ ≃ JSΨ + γΨΛΨσ − γΨσ̇, (H.13)

where we used eqs. (H.4) and (H.5) and added as before a stochastic source term JSΨ.

Therefore, choosing µ according to eq. (H.7) we have

γΨσ̇k ≃ ρπ̇k − JSΨ, (H.14)

45It is not surprising we require some fine tuning while dealing with (unprotected) scalar fields. One

possibility is to think of σ as a pseudo-Goldstone boson, or introduce a supersymmetric version, with the

scale of breaking near Hubble. (In that sense we resemble the EFT for supersymmetric multi-field inflation

of [30], see also [27].) We leave this open for future work.
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and plugging it back into eq. (H.11) we finally obtain

π̈k + k2phπk + γππ̇k = JSπ , (H.15)

with JSπ = (ρ/γΨ) J
S
ψ . Hence we are left with an equation as in (1.2) and the com-

putations throughout the paper follow. In particular we get non-Gaussianities of order

fNL ≃ γπ/(c
2
sH) as in section 7.1.

Notice we can also construct a similar model for aOµg
µ0 type of operator replacing σ by

a gauge coupling gAµ∂µπ. Then JΨ would play as similar role as the usual electromagnetic

current (see appendix C).

I Consistency of local trapped inflation

Here we summarize some basic constraints that guaranteed the validity of our approxima-

tions. For the background equations we need

|φ̈| ≪ 3H|φ̇| ≪ V ′(φ), (I.1)

so that we have a constant velocity solution

φ̇ ≃ − (Γχ|∆|(2π)3V ′)2/5

g
. (I.2)

In addition, we assume that the energy density is dominated by the potential energy,

3M2
pH

2 =
φ̇2

2
+ V (φ) +

∑

i

Mχinχi ≃ V (φ). (I.3)

The generalized slow roll parameter ǫ = −Ḣ/H2 is given by

ǫ =
3(φ̇2 +

∑

iMχinχi)

2V (φ)
. (I.4)

Then, ǫ≪ 1 implies

φ̇2 ≪ V (φ), (I.5a)
∑

i

Mχinχi ≪ V (φ), (I.5b)

which are the conditions required to make the approximation in eq. (I.3). To estimate the

l.h.s. of eq. (I.5b) we replace the sum by an integral as above and find

∑

i

Mχinχi ≃
g5/2|φ̇|7/2
Γ2
χ|∆|(2π)3 ≪ V (φ). (I.6)

Gathering all pieces together we collect eqs. (8.4), (8.7), (8.13), (I.1), (I.5a), (I.5b), as well

as the conditions kph ≪ κ and kph∆ ≪ |φ̇|, plus Γχ ≫ H. In addition we also have the

number of e-foldings, where we get

Ne =

∫

H

φ̇
dφ =

5gmφ2

1627/10
√
3π6/5 (m2Γχ∆φ)

2/5
, (I.7)
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Figure 9. The region of the free parameters (m and g) allowed for consistency (with “≪” replaced

by “<”). The horizontal axis represents g and the vertical axis m/Mp. Top: Γχ = 100H (case I);

Bottom: Γχ = 1000H (case II).

using φ ≡ φI ≫ φE , with φI (φE), the inflaton field at the beginning (end) of inflation.

Next we analyze these constraints for the paradigmatic example

V (φ) =
m2

2
φ2. (I.8)

We have five parameters in the model: m, ∆, Γχ, g and the initial value of the inflaton

field, φI . To reduce the parameter space we impose Ne = 60 and

Pζ ≃
(

H

φ̇

)2

Pδφ ≃ 10−9

k3
, (I.9)
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from where we obtain the condition (see eq. (6.4), using Nc ≃ φ̇2)

(

H

φ̇

)2 g2νχ
4

(

πH

γ

)1/2

≃ 10−9. (I.10)

Then,

φ ≃ 1623/16315/16π3/4 4
√

Γχ|∆|
8
√

g5m
Mp, |∆| ≃ 1179648× 1034 4

√
6π11g13/2m9/2Mp

Γχ
(I.11)

For simplicity, we analyze two cases: Γχ = 100H (case I) and Γχ = 1000H (case II). In

figure 9 we plot the 2-dimensional region for the parametersm and g for which all conditions

are satisfied (with “≪” replaced by “<”). The horizontal axis represents g and the vertical

axis m/Mp: case I corresponds to the graph on the left and case II to the right. As an

example, taking Γχ = 100H, m = 10−11Mp and g = 10−2, we obtain H ≃ 1.3× 10−11Mp,

γ/H ≃ 135, φ ≃ 3.3Mp, δtc ≃ 1.98 × 10−4H−1, |∆| ≃ 1.29 × 10−8Mp and ǫ ≃ 1/32.

Also, for Γχ = 1000H, m = 5 × 10−13Mp and g = 10−1, we get H ≃ 3.34 × 10−13Mp,

γ/H ≃ 539, φ ≃ 1.63Mp, δtc ≃ 1.4× 10−5H−1, |∆| ≃ 2.27× 10−7Mp and ǫ ≃ 1/32. In all

cases γ/H ≪ g|φ̇|/H2, which guarantees the validity of the local approximation k⋆ . κ.

As a final check let us estimate the size of the curvature perturbations one obtains

from the fluctuations in the additional scalar degrees of freedom we added into the theory.

Following [31] we can estimate this contribution by computing

M2
p

∂2i
a2
δgχ ∼Mχ∆nχ, (I.12)

where we takeMχ(δtc) ≃ g|φ̇|δtc ≃
√

g|φ̇|. In the above expression δgχ is not the curvature

perturbation ζχ, but nonetheless it gives us an idea of the size of the curvature it induces.

For the sake of comparison, let us evaluate this expression at k/a ≃ H, where we get

〈δgχδgχ〉 ≃
(g|φ̇|)5/2Nhits

HM4
p

. (I.13)

On the other hand, from the analysis in section 6 we have (see eq. (8.26))

〈ζφζφ〉 ≃
√

H/γ
H2

φ̇2
g2(g|φ̇|)3/2Nhits

Γχ
. (I.14)

Hence, using φ̇2 ∼ ǫφV (ǫφ < ǫ), then

〈δgχδgχ〉
〈ζφζφ〉

≃ Γχk⋆
M2
χ

ǫ2φ ≪ 1, (I.15)

as Γχ .Mχ , k⋆ .M⋆ and ǫφ . 1. Therefore curvature perturbations become subleading.
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