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1 Introduction

Electrokinetically driven flows have been used to move liq-
uids in microfluidic devices for more than two decades with 
many applications, due to the simplicity of construction and 
operation (Li 2004; Kirby 2010; Squires and Quake 2005; 
Ghosal 2004). Typically, the velocity profile that develops 
in electroosmotic flow (EOF) in the absence of pressure 
gradients is flat, known as plug velocity profile. This kind of 
velocity profile is particularly useful for pumping (without 
moving parts) and for electrophoretic separations in labora-
tory on a chip devices. In electrophoretic separation appli-
cations, EOF does not add any significant shear induced 
axial dispersion (Taylor-Aris dispersion) to the analyte. 
Band broadening in this case is purely due to axial molecu-
lar diffusion (Ghosal 2004). Concerning pumping applica-
tions, EOF velocities do not depend on the microchannel 
dimensions, in striking contrast with pressure-driven flows, 
whose velocity decreases with the second power of chan-
nel size (Squires and Quake 2005). That is, pressure-driven 
flows are inefficient and difficult to build at small scales 
for transporting ionic species. However, any source of dis-
tortion of the EOF profile may produce undesired effects, 
namely, to reduce the flowrate (unwanted effect in pumping 
applications) and to result in strong band broadening due 
to Taylor-Aris dispersion (unwanted effect in electropho-
retic separation applications). In practice, pressure-driven 
backflows develop, distorting the EOF velocity profile. In 
order to avoid or limit the unwanted effects mentioned pre-
viously, it is important to characterise the dynamics of the 
adverse pressure gradient driving the backflow. The micro-
fluidic chips should be designed in order to work on a near 
plug-like profile during the time needed for the separation 
or pumping. Yan et al. (2007) presented a model relating 
these pressure-driven backflows to the height change in the 
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reservoirs, due to the net pumping from one reservoir to the 
other. This model could qualitatively explain the behav-
iour observed in the experiments, given that the flow from 
one reservoir to the other would produce an increase in the 
height of the reservoir receiving the fluid and a decrease 
in the other one. This height difference would in turn give 
rise to a pressure difference producing a counterflow, which 
increases as the height difference increases. At some point, 
this counterflow would completely compensate the elec-
troosmotic flow. In this final equilibrium condition, the net 
flowrate is zero. The whole process may be characterised 
by a time constant. As we will show later in the results sec-
tion, this model fails to describe our experimental results 
because the time constant value it produces is much larger 
than the one observed experimentally. Based on MacInnes 
et al. (2003), Yan et al. (2007) argue that, since they use 
identical reservoirs, the pressure jump across the liquid–
gas interface is equal at both reservoirs and should balance 
each other. However, MacInnes et al. (2003) state that in 
order to avoid surface tension effects in the reservoirs they 
used large 50 mm diameter reservoirs to reduce the magni-
tude of the possible pressure errors. Moreover, Kirby and 
Hasselbrink (2004) also mentioned that pressure induced 
by modest interface curvatures (e.g. 2 mm diameter) can 
lead to appreciable errors. Sinton et al. (2003a, b) state that 
Laplace pressure originating from differential meniscus 
curvatures in the reservoirs was found to be the most sig-
nificant source of such pressure disturbances in a microflu-
idic-cross chip, in agreement with the results of Crabtree 
et al. (2001).

In line with these authors, we present in this work a dif-
ferent time-dependent model which relates the instantane-
ous pressure-driven backflow, to the Laplace pressure jump 
across the liquid–gas interface, in each reservoir, at the 
extremities of a rectangular cross-section microchannel. We 
compare the results of this model with µPIV velocity meas-
urements finding a much better agreement than with the use 
of the model by Yan et al. (2007). Moreover, the time con-
stants found both experimentally and theoretically are much 
shorter than those found by Yan et al. (2007), showing that 
the undesired pressure-driven backflow arises much faster.

2  Laplace pressures’ based model

The model is derived from the Navier–Stokes (NS) equa-
tions, describing the flow in the microchannel (Fig. 1). 
Using a characteristic length lc, a characteristic velocity Uc , 
a characteristic time tc and the fluid’s dynamic viscosity µ, 
the dimensionless NS equation becomes:

(1)Re
∂u ∗

∂t∗
+ Reu ∗ · ∇∗

u
∗ = −∇∗p∗ + ∇∗2

u
∗ + f

∗
v .

In this equation, x, u, p, t and fv are the position vector, 
velocity vector, pressure, time and volume force vector, 
respectively, so that we get the following nondimensional 
quantities:

where ρ is the fluid’s density and µ is the fluid’s dynamic 
viscosity. The last nondimensional quantity is the Reyn-
olds number Re). In our problem, the timescale related to 
the boundary condition (the externally applied electric 
field) is longer than the convective timescale lc/Uc; there-
fore, we chose the latter for the nondimensionalisation of 
time. Moreover, we consider here the unidirectional flow 
in a long constant cross-section channel so that the second 
term of Eq. 1 vanishes (Spurk and Aksel 2007). Neverthe-
less, the first term and second term are usually dropped to 
describe microflows (even in the case of nonunidirectional 
flows) because Re ≪ 1. For example, if we take water, a 
characteristic length of lc = 100µm and a characteristic 
velocity Uc = 1 mm/s, we get Re = 10−1.

This leads to the Stokes equation, which is a linear par-
tial differential equation. Considering that the volume force 
acting upon the fluid is a Coulomb force (fv = ρE E), the 
resulting equation is:

(2)

x
∗ =

x

lc
; u

∗ =
u

Uc
; ∇∗ = lc ∇; ∇∗2 = l2c ∇2;

t∗ =
tUc

lc
; p∗ =

p

µUc/lc
; f

∗
v =

fv

µUc/l2c
;

Re =
ρ Uc lc

µ
.

(3)0 = −∇∗p∗ + ∇∗2
u

∗ +
ρE E

µUc/l2c
.

Fig. 1  Sketch of the microchannel and reservoirs, showing the Carte-
sian coordinates system used. !P is the pressure difference between 
the two reservoirs. h and b are the height and width of the microchannel
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Its solution may be presented as the superposition of two oth-
ers similarly to Dutta and Beskok (2001), or Santiago (2001):

The electroosmotic part of that solution, u ∗
EOF, requires 

solving the Poisson–Boltzmann equation for the electric 
potential due to the presence of the electrical double layer 
(EDL). Based on Burgreen and Nakache’s (1964) work, 
Dutta and Beskok (2001) present a solution for the elec-
troosmotic flow in a plane slit. Santiago (2001) also pre-
sents a solution in a plane slit, including the transient estab-
lishment of the velocity profile, and using Södermann and 
Jönsson’s (1996) transient solution. Marcos et al. (2004) 
present an analytical solution in the case of a rectangular 
(2D) microchannel, by assuming low zeta potential (the 
Debye–Hückel approximation, i.e. using the linearised 
Poisson–Boltzmann equation). In general, the solution to 
the 2D nonlinear Poisson–Boltzmann equation requires a 
numerical approach (Li 2004). Nevertheless, in the absence 
of a pressure gradient, this solution leads to a plug-like 
velocity profile in which the velocity goes from zero at the 
walls to the characteristic Helmholtz–Smoluchowski elec-
troosmotic velocity (uHS). In the case of thin EDL (here 
we consider deionised—DI—water with a conductivity 
σ ∼ 5µS/cm, which has a Debye length δD ∼ 51 nm) com-
pared to the channel height and width, the electric potential 
drops in a very thin region close to the walls, and it is pos-
sible to consider a slip model with the Helmholtz–Smolu-
chowski slip velocity (uHS). Therefore, the plug-like veloc-
ity profile is simplified as a constant velocity profile, and 
the velocity profile inside the EDL is neglected:

Here ζ is the zeta potential (the electric potential difference 
between the bulk and the Stern or compact layer Hunter 
2001; Lyklema et al. 1995), ϵ is the fluid’s permittivity and 
Ez is the magnitude of the externally applied electric field 
parallel to the wall. k̂ is the unitary vector along the z axis 
(see Fig. 1).

The pressure gradient related part of the solution is, for 
a rectangular channel and in the quasi-static case presented 
here (Spurk and Aksel 2007):

where m = (2 n − 1)π/h.
The pressure gradient can be calculated as the pres-

sure difference between the entrance and the exit of the 

(4)u
∗ = u

∗
EOF + u

∗
∇p.

(5)uEOF = −
ζ ϵ Ez

µ
k̂ = uHS k̂,

(6)

u∇p(x, y, t) = −
∂p(z, t)

∂z

1

2µ

×
[

h2

4
− y2+

8

h

∞
∑

n=1

(−1)n

m3

cos h(m x)

cos h(mb/2)
cos (m y)

]

k̂,

microchannel, divided by the channel’s length L because in 
a unidirectional, constant cross-section flow, the pressure 
varies linearly with the axial coordinate;

The pressure at the reservoirs is a function of the flowrate. 
As mentioned previously in this work, we present a model 
that relates the pressure at the base of the reservoirs to the 
Laplace pressure jump across the liquid–gas interface, in 
each reservoir. This hypothesis will be discussed further in 
Sect. 4.

The surface of the interface can be described at any 
point by two radii of curvature, Ri and Rj. In the case of 
small circular reservoirs, the interface will be approxi-
mately spherical in shape (Arthur and Adamson 1997). If 
we consider a spherical surface, these two radii are equal 
(Ri = Rj = Rcurv). The Young–Laplace equation relates the 
pressure jump across the interface to these radii of curva-
ture and the surface tension Γ :

where a positive curvature radius is associated with a posi-
tive volume and a negative curvature radius, to a negative 
volume. As indicated in Fig. 2, the volumes below a plane 
horizontal interface are considered positive and the ones 
above negative.

At any of the reservoirs, one can relate these volumes to 
the transported volume in a time interval dt:

(7)
∂p(z, t)

∂z
=

p2(t) − p1(t)

L
=

"p(t)

L
.

(8)

p0 − p1 = Γ

(

1

Ri1
+

1

Rj1

)

=
2Γ

Rcurv1

,

p0 − p2 = Γ

(

1

Ri2
+

1

Rj2

)

=
2Γ

Rcurv2

,

p2 − p1 = 2Γ

(

1

Rcurv1

−
1

Rcurv2

)

.

(9)
dvol1 = q dt,

dvol2 = −q dt,

Fig. 2  Sketch of the interface at the reservoirs, at t = 0 s and at a 
later generic time t > 0 given a flowrate q. The volumes referred to as 
vol1 and vol2 are shaded in the figure
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so that,

where q is the flowrate and is defined positive when going 
from reservoir 1 to reservoir 2.

Moreover, these volumes can be related to the radius of 
curvature of the interface, considered here to be a spherical 
shell contained in a reservoir of radius Rres (Fig. 3).

The shaded volume shown in Fig. 3 can be calculated 
through the following integral:

where,

After some rearranging, the result of Eq. 11 is,

whose solution can be found in “Appendix”.
Now, coming back to the flowrate,

where,

Finally, according to this model the pressure drop is related 
to the radii of curvature at the reservoirs giving:

(10)

vol1(t) = vol1(0)+
∫ t

0
q(t) dt,

vol2(t) = vol2(0) −
∫ t

0
q(t) dt,

(11)volj(t) = 2π

∫ φmaxj (t)

0

{

∫ Rcurvj ((t)

R0j
(t)

cos (φ)

r2dr

}

sin (φ) dφ,

(12)

j = 1, 2;

cos
[

θcj (t)
]

=
Rres

Rcurvj (t)
= sin

[

φmaxj (t)
]

;

R0j (t) = Rcurvj (t) cos
[

φmaxj (t)
]

.

(13)R3
curvj

−
πR4

res

4volj
R2
curvj

−

(

3volj

4π
+

πR6
res

12volj

)

= 0,

(14)q(t) =
∫ h

2

− h
2

∫ b
2

− b
2

u(x, y, t) · k̂ dxdy = qEOF + q∇p(t),

(15)

qEOF = uEOFbh;
q∇p(t) = − K1!p(t);

K1 =
D2
hbh

32µL F
(

h
b

) ; Dh =
2bh

b+ h
;

F

(

h

b

)

=

{

2

(

h

b
+ 1

)2
⎡

⎣

1

3
−

h

b

64

π5

∞
∑

n=1

tan h
(

mb
2

)

(2n − 1)5

⎤

⎦

⎫

⎬

⎭

−1

.

(16)
q(t) = qEOF − K2

(

1

Rcurv1(t)
−

1

Rcurv2(t)

)

,

K2 = 2K1Γ .

Equation 16 can be numerically solved as shown in 
“Appendix”.

Moreover, in order to compare our model to the one 
based on the height difference presented by Yan et al. 
(2007), Eq. 16 may be simplified to obtain the following 
analytical solution (see “Appendix”):

(17)q(t) = qEOF exp

(

−
t

τ

)

.

Fig. 3  Sketch of the interface at one of the reservoirs of the micro-
fluidic channel, showing the shaded volume volj (with j = 1, 2), the 
radius of curvature Rcurvj, the contact angle θcj, the quantity R0j and 
the angle φ. These quantities are used in Eqs. 11 and 12

Fig. 4  Sketch of the experimental set-up consisting of an inverted 
epifluorescence microscope (IX71, Olympus, Japan), a LED light 
source (Multi TK-LED, Tolket S.R.L, Argentina), a PIV camera 
(C8484-05C, Hamamatsu Photonics, Japan), a digital oscilloscope, a 
function generator, a custom-made pulsed power source and a PC
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3  Experimental set-up

We have performed µPIV measurements at the mid-height 
a microchannel. The experimental set-up (Fig. 4) consists 
of an inverted epifluorescence microscope (IX71, Olympus, 
Japan), a LED light source (Multi TK-LED, Tolket S.R.L, 
Argentina), a PIV camera (C8484-05C, Hamamatsu Pho-
tonics, Japan), a digital oscilloscope, a function generator, 
a custom-made pulsed power source and a PC. This set-up 
allowed for the measurement of the velocity fields in the 
microchannel, as in classical µPIV Santiago et al. (1998), 
Wereley and Meinhart (2010), but with a LED light instead 
of a double pulsed laser light source.

Straight 40-mm-long microchannels were made by cast-
ing PDMS on a mould fabricated by classical photolithog-
raphy (SU8 on silicon wafer) in a clean room. The micro-
channels’ cross section was 55 µm tall by 79 µm wide. 
Engraved PDMS was then sealed with a PDMS coated 
microscope slide. We used native PDMS (no plasma clean-
ing treatment was performed, and the bonding was there-
fore reversible). Different diameter (0.3–2 mm), 5 mm 
tall reservoirs, were bonded to the microchannel at its 
extremities.

The power source allows for a square modulation of 
the electric potential (the maximum potential difference is 
1 kV, up to 1 kHz). In this work, we used a square signal of 
known period (on–off, 50 % duty cycle) in the range of 2 s 
to 1200 s. The liquid was seeded with 500-nm polystyrene 
fluorescent microspheres (G500 Fluoro-Max Dyed Green 
Aqueous Fluorescent Particles, Thermo Fisher Scientific 
Inc., USA). The applied potential was 100V in all experi-
ments. The wall zeta potential and the particles zeta poten-
tial were measured according to the procedure proposed 
in Yan et al. (2006). We obtained ζwall = −105 mV and 
ζparticle = −36 mV. Both values are in agreement with the 
ones found in the literature for these materials (Kirby and 
Hasselbrink 2004; Sze et al. 2003; Xiong et al. 2012; Duffy 
et al. 2002). The velocity fields were registered focusing 
the microscope at the mid-height of the channel through a 
40× objective (LUCPLFLN40XPH, Olympus, Japan), at a 
frequency between 2 and 5 velocity fields per second (that 
is, 2–5 double frame captures per second). The aperture of 
the 40× objective is 0.6 giving a depth of correlation of 
2ycorr = 6.3µm (Bourdon et al. 2004).

During these experiments, the measured current through 
the microchannel was 50 nA. Considering an adiabatic 
process, the generated heat during the longest experi-
ment correspond to a 0.3 ◦C increase, which represents 
a negligible zeta potential variation (Venditti et al. 2006). 

(18)with τ =
2πRres

4µLF
(

h
b

)

H(a0)ΓDh
2bh

.

The calculated total gas generation due to electrolysis (1 
mol H2 and 1/2 mol O2) for the longest experiment repre-
sent approximately 5 and 6% of the smallest reservoir and 
microchannel respectively. However, we did not observe 
bubbles in the microchannels during the experiments.

4  Results and discussion

Figure 5 shows typical velocity fields obtained with our 
experimental set-up. The top image (Fig. 5a) shows the 
velocity field during the initial times after the external elec-
tric field is applied, where pure electroosmotic plug flow 
can be observed. The middle image (Fig. 5b) corresponds 
to a time just before the end of the first semi-period. In this 
image, a combined electroosmotic and adverse pressure-
driven flow is observed. The bottom image (Fig. 5c) cor-
responds to a time just after the beginning of the second 
semi-period (i.e. right after the external electric field has 
been turned off), where the flow is only pressure driven. 
The velocity profiles obtained along the channel (z direc-
tion) were space averaged to produce one velocity profile 
at each time. This z-averaged velocity profiles were then 
plotted against time as shown in Fig. 6. The phenomenon 
is periodic, as can be observed in this figure, allowing for 
phase averaging of the velocity profiles. This phase aver-
aging produces better quality velocity profiles vs. time 
plots. Typical phase-averaged velocity profiles obtained 
are presented in Fig. 7 (phase averaging was done over 
10 periods). As mentioned previously, during the first half 
period the external electric field is on, and during the sec-
ond half period, it is off. This is the reason for the jump 
in the velocities at the half period. It is worth noting that 
during the first half period, the measured velocity is biased 
by the electrophoretic velocity of the particles. This work is 
focused on the dynamics of this problem and, therefore, on 
the time constant mainly which is not biased by the electro-
phoretic velocity.

Plotting the measured velocity at a given x coordinate 
and interpolating it with an exponential function allows for 
determining the system’s time constant. The experimen-
tal data for x = 0, and Rres = 250µm, and the interpola-
tion are presented in Fig. 8. As expected, the time constant 
obtained is approximately the same for the first half period 
(electric field on) and for the second half period (electric 
field off).

The time constants determined with this method, for 
three different reservoirs used in this work, together 
with the time constants determined with the previously 
described “Laplace pressures” model, and the time con-
stants determined with the model presented by Yan et al. 
(2007), are presented in Table 1. The remaining unknown 
parameters in the “Laplace pressures” model are the 



 Microfluid Nanofluid  (2016) 20:11 

1 3

 11  Page 6 of 12

surface tension and the contact angle θc. We have meas-
ured the interface surface tension of the solution used in 
the experiments (the seeding microparticles are provided 

in a solution with “trace” amount of surfactant, which is 
then diluted in deionised water) obtaining Γ = 66mN /m , 
which is slightly lower than the typical value for water at 

Fig. 5  Typical velocity fields obtained in the case of a pure electroosmotic flow, b combined electroosmotic and pressure-driven flow, and c 
pure pressure-driven flow

Fig. 6  Typical surface plot 
of the velocity profiles u(x, t) 
obtained by averaging the 
velocity profiles along the 
channel (i.e. in z direction). 
Period = 30 s (15 s on, 15 s 
off), applied potential = 100 V. 
Rres = 250µm
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25◦, Γ = 72 mN/m. At the same time, we measured the 
static contact angle θc of that solution with PDMS, obtain-
ing θc = 89◦.

Figure 9 shows the time constants in a semi-logarithmic 
scale for all the reservoir diameters studied. As mentioned 
previously, for each reservoir diameter, the experiment con-
sisted of a series of periods during which the potential was 
applied at a duty cycle of 50 %. The error bars in Figs.  9 
and 10 were obtained from fitting the velocity plots for 
each period, during the half period with an applied poten-
tial, and during the half period without an applied potential. 
The average time constants and the error bars were obtained 
from that set of time constants. The difference between 
the Laplace pressures model and the experimental results 
ranges between 90 and 10 %. The height change model 
over predicts the time constants with much bigger error, 
between 7000 and 34,000 %. Therefore, even though neither 
model predicts the right values for the time constants, the 
one introduced in this work is clearly closer to the experi-
mental results. The Bond number, Bo = !ρgR2

res/Γ , is a 
dimensionless number that allows to compare the surface 
tension forces to the body forces (!ρ = ρliquid − ρgas). A 
high value of the Bond number indicates that the system is 
relatively unaffected by surface tension effects; a low value 
(typically less than one) indicates that surface tension domi-
nates. Intermediate numbers indicate a nontrivial balance 
between the two effects. In our set of experiments, with 
0.150 mm < Rres < 1 mm, we get 0.0033 < Bo < 0.148 
confirming that the surface tension forces dominate. A res-
ervoir radius of Rres = 2.6 mm would be necessary for the 
Bond number to reach unity, where both effects would com-
pete. For bigger reservoir diameters, the syphoning model 
will be more and more accurate.

Finally, Fig. 10 presents the experimental time con-
stants, together with the ones obtained with the Laplace 
pressures model. For our experimental set-up, we obtain 
τ = 189.9Rres

4 from the model (with Rres in mm, and τ in 

s). Fitting our experimental data with a power law gives: 
τ = 268.3Rres

4, showing that the time constant varies in 
fact with Rres

4 and not with Rres
2 as predicted by the !H 

model. It would seem, however, that the phenomenon lies 
in between both models.

The model presented herein relies on the hypothesis that 
the interface contact line (the triple line) does not move. 
For a moving interface, the contact angle facing fresh sur-
face (larger contact angle) is known as the advancing con-
tact angle, while the contact angle moving over surface 
which had already been wet by the liquid (smaller con-
tact angle) is denoted as the receding contact angle (Spori 
2010). In order for the “fixed contact line” hypothesis to be 
valid, the contact angles between the interface and the solid 
surface must remain between the advancing and reced-
ing angles. A complete review on contact angle measure-
ment and theory can be found in Spori (2010), where it is 
shown that the advancing contact angle is generally similar 
to the static contact angle, but the receding contact angle 
is several tens of degrees lower, particularly in the case of 
untreated PDMS with water. It is also shown that advancing 
(receding) contact angles increase (decrease) with increas-
ing contact line speed (which can be correlated with flow-
rate). As mentioned previously, we measured the static con-
tact angle and obtained θc = 89± 1.5◦. We also performed 
measurements of the advancing and receding contact angle 
between our solution and native PDMS and obtained 
θca = 91± 1.5◦ and θcr = 48.3± 1.2◦, respectively.

For a given electroosmotic velocity and microchannel 
dimensions, the equilibrium pressure difference is such that 
the net flowrate is zero. That is, it is independent of the res-
ervoirs dimensions. In our model, such a pressure difference 
is dictated only by the interface curvature radius. The con-
tact angle for that curvature radius is related to the reservoir 
radius Rres through Eq. 12, so that for a fixed curvature radius, 
smaller reservoir diameters will have smaller equilibrium con-
tact angles. Concerning our experimental set-up, starting at a 

Fig. 7  Experimental phase-
averaged velocity profiles 
uz(x, t). Rres = 250µm. 
Obtained from data plotted in 
Fig. 6
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contact angle of 89◦, the equilibrium contact angles modelled 
(for a fixed contact line) range from 90.14◦ for the smallest 
diameter (300 µm) to 96.6◦ for the biggest diameter (2000 µ
m). Therefore, for the smaller diameters the contact angle does 
not overcome the measured advancing contact angle. The big-
ger ones, however, do overcome that limiting value. We have 
introduced this limitation into the numerical model through a 
condition that forces the interface (e.g. the contact line) to start 
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Table 1  Experimental and theoretical time constants (in seconds) for 
three different reservoir radii (Rres) among the ones used in this work

Experimental/model 150µm 400µm 745µm

Experimental 1.1 8.2 76.8

!PLaplace Model 0.1 4.6 53

Yan et al. (2007) 225.9 1672.4 5687
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rising/descending when the advancing/receding contact angles 
are reached. This does indeed increase the time constant. In 
our experiments, however, several periods were recorded con-
secutively. If the model is run for several periods, the effect of 
limiting the advancing/receding contact angles is visible only 
during one or two periods, after which the contact angle at rest 
(without an applied electric field, and no flow) will no longer 
be 89◦, but a smaller angle. This can be explained as follows: 
hysteresis between advancing and receding contact angles 
allows for the contact line of the reservoir receiving the flow 
to start rising at a certain point (once the advancing contact 
angle is reached) until equilibrium occurs. At that point, if the 
electric field is turned off, the flow starts going in the oppo-
site direction reducing the volume of fluid of that reservoir, 
but the contact line stays fixed unless the contact angle reaches 
the receding contact angle. With the dimensions of our experi-
ments, this last condition was never attained. After the first 
period, the contact lines practically do not move any more. 
From then on, the time constant is slightly higher than the 
one for the simpler model (with a fixed contact line) because 
the contact angle at rest is lower than the initial contact angle 
(89◦ ). As it is discussed in “Appendix”, lower contact angles at 
rest exhibit longer time constants.

According to this discussion, smaller diameter reser-
voirs should present better agreement with the experiments 
than the bigger ones. The opposite is observed in terms of 
relative error. Therefore, we have also modelled a mixed 
Laplace + syphoning model, allowing an “arbitrary” per-
centage of the flowrate to produce a height change (without 
any of the previous considerations concerning the advanc-
ing and receding contact angles) and the rest to produce a 
change in the curvature radius. The percentage that allows 
to match the experimental results with the model ranges 
from 91 % (for Rres = 150µm) to 18 % (for Rres = 745µ

m). That is, some of the flowrate goes to modify the inter-
face, and the rest produces a height change. This height 
change will not be important in terms of pressure change 
(compared to the pressures produced by the interface curva-
ture), but will allow for slower dynamics. Further research is 
needed to explain the differences between the experiments 
and the Laplace model. Nevertheless, this model is orders of 
magnitude closer to experimental results than the syphoning 
model for the reservoir diameters studied in this work.

5  Conclusions

Adverse pressure-driven backflows appear when an elec-
troosmotic flow is imposed between two reservoirs. These 
backflows degrade the expected plug velocity profile and 
can eventually lead to zero net flowrate. Up to this date, 
the only model attempting to reproduce the dynamics of 
this phenomenon was based on the hydrostatic pressure 

gradient due to the height difference established by the 
flow, between the interfaces at the reservoirs. Some authors 
mention the importance of the radii of curvature of the 
interface on the adverse pressure gradients; however, no 
model based on Laplace pressure jump across the interface 
was developed. In this work, we introduced such a model. 
A simple numerical scheme has been presented to solve the 
system. Also, an analytical solution has been found to the 
linearised differential equation. According to this model, 
the time constant associated with this problem is propor-
tional to R4

res , as opposed to the height difference model, 
in which it is proportional to R2

res. Our experimental results 
show that the time constant is indeed proportional to R4

res. 
For the reservoir radii used in our set-up, the Laplace pres-
sures model produces highly more accurate time constants, 
compared to the height change model. It seems, however, 
that a mixed model would reproduce the experimental 
dynamics better than each of the models individually.
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Appendix

Curvature radii at the reservoir (solution to Eq. 13)

From Eq. 13,

Replacing ξ = Rcurvj/Rres and a = 2πR3
res/(3volj) gives:

The previous equation has one real solution which is:

with

Numerical solution to Eq. 16

From Eq. 16,

R3
curvj

−
πR4

res

4volj
R2
curvj

−

(

3volj

4π
+

πR6
res

12volj

)

= 0.

ξ3 −
3a

8
ξ2 −

(

1

2a
+

a

8

)

= 0.

ξ =
1

8

[

3
√
f (a)

a
+

a3

3
√
f (a)

+ a

]

,

f (a) = 128a2 + 32a4 + a6 + 8a2
√

256+ 128a2 + 20a4 + a6.

q(t) = qEOF − K2

(

1

Rcurv1(t)
−

1

Rcurv2(t)

)

,

K2 = 2K1Γ .
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This equation can be solved numerically following the next 
sequence of operations,

Analytical solution to Eq. 16

To compare our model to the one based on the height dif-
ference presented by Yan et al. (2007), Eq. 16 may be sim-
plified. First, we rewrite it using some of the definitions 
from “Appendix”, and considering that both reservoirs are 
identical in shape and material:

using C = 2πR3res
3 , we can write: 

a1(t) = C
vol0+Q(t) ; a2(t) = C

vol0−Q(t), then,

with Q(0) = 0.
Then we write the Taylor series of G(Q) about Q(0) = 0:

where:

q∇p
0 = 0 → q0 = qEOF,

vol1
n = vol

(n−1)
1 + q(n−1)dt → a1

n =
2πR3

res

3vol1
n ,

vol2
n = vol

(n−1)
2 − q(n−1)dt → a2

n =
2πR3

res

3vol2
n ,

ξ1
n =

1

8

[

3
√
f (a1n)

a1n
+

(a1
n)3

3
√
f (a1n)

+ a1
n

]

,

ξ2
n =

1

8

[

3
√
f (a2n)

a2n
+

(a2
n)3

3
√
f (a2n)

+ a2
n
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,

q∇p
n = −

K2

Rres

(

1

ξ1
n −

1

ξ2
n

)

,

qn = qEOF + q∇p
n,

tn = n dt.

vol1(t) = vol1(0)+
∫ t

0
q(t) dt = vol0 + Q(t),

vol2(t) = vol2(0) −
∫ t

0
q(t) dt = vol0 − Q(t),

ξ1(t) = ξ

(

C

vol0 + Q(t)
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; ξ2(t) = ξ
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C
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,
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ξ
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C
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ξ
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The solution to the previous equation is:

Analysis of the exact and linearised solutions

Figure 11 shows the approximate solution of G(Q) together 
with the exact solution for different initial volumes vol0 
(i.e. for different equilibrium contact angles θc0). It should 
be noted that the maximum value of Q/C is equal to 
1 − vol0/C, because the radius of curvature of the interface 
cannot be lower than the reservoir radius. In this figure, it 
is clear that the linear solution is valid only for a small por-
tion of the curve around Q/C = 0, or, in other words, for 
small deformations of the interface.

Figure 12 shows that the relative error between the 
exact and approximated solution of the function G(Q) is 
below 2 % for transported volumes lower than 9 % of the 
maximum volume (i.e. C: half the volume of a sphere with 
radius Rres), for equilibrium contact angles θc0 > 30◦.

The function H(a0) can be represented versus the rela-
tive volume 1/a0 = vol0/C. The result is presented in 
Fig. 13. The function varies between ~0 for initial volumes 
equal to the maximum volume C (θc = 0◦, a = 1) and 1 for 
null initial volumes (θc = 90◦, a → ∞). When looking at 
the characteristic time constant τ, one can see that it is pro-
portional to 1/H(a0). That means that, according to the lin-
earised solution, a liquid wetting the reservoir’s walls will 
have a longer time constant than a liquid not wetting them.

G(Q) =
16

3C
H(a0)Q(t),

q(t) = qEOF −
1

τ

∫ t

0
q(t) dt,

with τ =
2πRres

4µLF
(

h
b

)

H(a0)ΓDh
2bh

.

q(t) = qEOF exp

(

−
t

τ

)

.

Finally, in Fig. 14 we compare the exact (numerical) 
result of q(t) to the linearised solution, for different initial 
volumes vol0. It can be observed that the linearised solution 
predicts longer time constants than the exact solution and 
that the difference between both time constants increases as 
the initial volume vol0 increases. For small initial volumes 
(i.e. for contact angles close to 90◦), however, the time con-
stant obtained with the linearised solution remains a very 
good estimate of the exact time constant of this model.
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