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THREE SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL

GROWTH.

NATALÍ AILÍN CANTIZANO AND ANALÍA SILVA

Abstract. The main goal of this work is to prove the existence of three different solutions (one
positive, one negative and one with nonconstant sign) for the equation (−∆p)

su = |u|p
∗

s
−2u+

λf(x, u) in a bounded domain with Dirichlet condition, where (−∆p)
s is the well known p-

fractional Laplacian and p∗s = np

n−sp
is the critical Sobolev exponent for the non local case. The

proof follows the ideas of [28] and is based in the extension of the Concentration Compactness
Principle for the p-fractional Laplacian [20] and Ekeland’s variational Principle [7].

1. Introduction

Let us consider the following non local equation with Dirchlet boundary conditions

(1.1)

{

(−∆p)
su = |u|p

∗

s−2u+ λf(x, u) in Ω,

u = 0 in R
n \ Ω.

where s ∈ (0, 1), Ω is a smooth and bounded domain in R
n and (−∆p)

su, called the p-fractional
Laplacian, is defined up to a normalization constant by

(−∆p)
su := 2 lim

ε→0+

∫

Rn\Bε(x)

|u(x)− u(y)|p−2(u(x) − u(y))

|x− y|n+ps
dy.

When p = 2 this is the well known fractional Laplacian. Problems involving non local operators
have many applications, just to cite a few, we refer to [6, 8, 13] for some physical models,
[1, 16, 23] for some applications in finances, [3] for applications in fluid dynamics, [15, 19, 22] for
application in ecology and [14] for some applications in image processing.

The functional framework for this operator are the fractional order Sobolev spaces, see [30]
and [5]. The fractional order Sobolev space is defined by

W s,p(Rn) := {u ∈ Lp(Rn) : [u]s,p < ∞} ,

where [u]s,p is the famous seminorm of Gagliardo is defined by

[u]s,p :=

(
∫

R2n

(u(x)− u(y))p

|x− y|n+ps
dx dy

)
1
p

,

and W
s,p
0 (Ω) is defined by W

s,p
0 (Ω) := {u ∈ Lp(Rn) : [u]s,p < ∞, u = 0 in R

n \ Ω}. It is well-
known that when sp < n the following Sobolev inequality holds

(
∫

Rn

|u|
np

n−sp dx

)
n−sp

n

≤ C

∫

R2n

|u(x)− u(y)|p

|x− y|n+sp
dxdy
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for u ∈ C∞
c (Rn), where p∗s = np

n−sp
is called the critical Sobolev exponent. So, the embedding

W s,p(Ω) →֒ Lq(Ω) for 1 ≤ q ≤ p∗s is continuous. Moreover, is compact for 1 ≤ q < p∗s.
Critical equations with the fractional Laplacian in bounded domains have been considered in
[2, 24, 25, 26, 27]. Multiplicity of solutions for nonlocal equation with critical growth was studied
in [11, 21]. The main goal of this paper is to show the existence of three different solutions of
the problem (1.1). Moreover these solutions are one positive, one negative and one with non
constant sign. We impose adequate conditions on the source f and on the parameter λ but we
do not impose any parity conditions on the source f . This result extends an old paper of Struwe
[29]. Similar results for some local operators can be found in [4, 28, 9, 17]. The method in
the proof used in [29] consists on restricting the functional associated to (1.1) to three different
manifolds constructed by imposing a sign restriction and normalizing condition. Then using
Ekeland variational principle (see [7]) and a generalization to the fractional setting obtained by
Mosconi et al. for any 1 < p < n

s
(see [20]) of the well known Concentration Compactness

Principle of P.L.Lions (see [18]), we can prove the existence of a critical point of each restricted
functional, that are critical points of the unrestricted one.

Throughout this work, by weak solution of (1.1) we understand critical points of the associated
energy functional acting on the Sobolev space W

s,p
0 (Ω):

(1.2) Φ(u) =
1

p

∫

R2n

(u(x)− u(y))p

|x− y|n+ps
dy dx−

∫

Ω

1

p∗s
|u(x)|p

∗

s + λF (x, u(x)) dx,

where F (x, u) =
∫ u

0 f(x, z)dz.

2. Assumptions and statement of the results

The precise assumptions on the source terms f are as follows:

(H1) f : Ω × R → R, is a measurable function with respect to the first argument and con-
tinuously differentiable with respect to the second argument for almost every x ∈ Ω.
Moreover, f(x, 0) = 0 for every x ∈ Ω.

(H2) There exist constants c1 ∈ (0, 1
p∗s−1), c2 ∈ (p, p∗s), 0 < c3 < c4 such that for any u ∈ Lq(Ω)

and p < q < p∗s,

c3‖u‖
q

Lq(Ω) ≤ c2

∫

Ω
F (x, u) dx ≤

∫

Ω
f(x, u)u dx ≤ c1

∫

Ω
fu(x, u)u

2 dx ≤ c4‖u‖
q

Lq(Ω).

Remark 2.1. The following example fulfill all of our hypotheses, f(x, u) = |u|q−2u + |u+|
r−2u+

if r ≤ q.

So the main result of the paper reads:

Theorem 2.2. Under the assumptions (H1)−(H2), there exist λ∗ > 0 depending only on n, p, q

and the constant c3 in (H2), such that for every λ > λ∗, there exist three different, nontrivial,
(weak) solutions of problem (1.1). Moreover these solutions are, one positive, one negative and
the other one has non-constant sing.

3. Proof of Theorem 2.2

We will construct three disjoint sets Ki not containing 0 such that Φ has a critical point in Ki.
These sets will be subsets of C1−manifolds Mi ⊂ W

s,p
0 (Ω) that will be constructed by imposing

a sing restriction and a normalizing condition.
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In fact,

Definition 3.1. For each i = 1, 2, 3, let Mi ⊂ W
s,p
0 (Ω) be defined as

M1 =

{

u ∈ W
s,p
0 (Ω) :

∫

Ω
u+ > 0 and [u+]

p
s,p −

∫

Ω
|u+|

p∗s dx =

∫

Ω
λf(x, u)u+ dx

}

,

M2 =

{

u ∈ W
s,p
0 (Ω) :

∫

Ω
u− > 0 and [u−]

p
s,p −

∫

Ω
|u−|

p∗s dx =

∫

Ω
λf(x, u)u− dx

}

,

M3 = M1 ∩M2,

where u+ = max{u, 0} and u− = max{−u, 0}.

Definition 3.2. For each i = 1, 2, 3, let Ki ⊂ W
s,p
0 (Ω) be defined as

K1 = {u ∈ M1 : u ≥ 0}, K2 = {u ∈ M2 : u ≤ 0}, K3 = M3.

First, we need the following lemma to show that these sets are nonempty and, moreover, give
some properties that will be useful in the proof of our main result.

Lemma 3.3. For every w0 ∈ W
s,p
0 (Ω), w0 > 0 (w0 < 0), there exists tλ>0 such that tλw0 ∈ M1

(∈ M2). Moreover, limλ→∞ tλ = 0.

As a consequence, given w0, w1 ∈ W
s,p
0 (Ω), w0 > 0, w1 < 0 with disjoint supports, there exist

tλ, tλ such that tλw0 + tλw1 ∈ M3. Moreover tλ, tλ → 0 as λ → ∞.

Proof. We prove Lemma 3.3 for M1, the other cases are analogous.

For w ∈ W
s,p
0 (Ω), w ≥ 0, we consider the functional

ϕ1(w) = [w]ps,p −

∫

Ω
|w|p

∗

s + λf(x,w)w dx.

Given w0, in order to prove the lemma, we must show that ϕ1(tλw0) = 0 for some tλ. Using
the hypothesis (H2), we have that:

ϕ1(tw0) ≥ Atp −Btp
∗

s − λc4Etq

and
ϕ1(tw0) ≤ Atp −Btp

∗

s − λc3Etq,

where the coefficients A,B and E are given by:

A = [w0]
p
s,p , B =

∫

Ω
|w0|

p∗s dx, E =

∫

Ω
|w0|

q dx.

Since p < q < p∗s it follows that ϕ1(tw0) is positive for a t small enough, and negative for t

big enough. Hence, by Bolzano’s Theorem, there exists some t = tλ such that ϕ1(tλw0) = 0.

In order to give an upper bound for tλ, it is enough to find some t1, such that ϕ1(t1w0) < 0.
We observe that:

ϕ1(tw0) < Atp − λc3Etq,

so it is enough to choose t1 such that At
p
1 − λc3Et

q
1 = 0, i.e.,

t1 =

(

A

c3λE

)
1

(q−p)

,

therefore, again by Bolzano’s Theorem, we can choose tλ ∈ [0, t1], which implies that tλ → 0
when λ → +∞, as we wanted to prove. �
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For the proof of Theorem 2.2, we need also the following lemmas.

Lemma 3.4. There exist constants αj > 0 such that, for every u ∈ Ki, i = 1, 2, 3,

α1[u]
p
s,p ≤ α2

(
∫

Ω
|u|p

∗

s + λf(x, u)u dx

)

≤ α3Φ(u) ≤ α4[u]
p
s,p.

Proof. As u ∈ Ki, we have that

[u]ps,p =

∫

Ω
|u|p

∗

s + λf(x, u)u dx,

choosing α1 = α2 we have the first inequality.

For the last inequality by (H2)

∫

Ω
F (x, u) dx ≤

1

c2

∫

Ω
f(x, u)u dx.

Furthermore,

∣

∣

∣

∣

λ

∫

Ω
F (x, u) dx

∣

∣

∣

∣

= λ

∫

Ω
F (x, u) dx ≤

1

c2

∫

Ω
λf(x, u)u dx =

1

c2

(

[u]ps,p −

∫

Ω
|u|p

∗

s dx

)

,

so

(3.1) − λ

∫

Ω
F (x, u) dx ≤

1

c2

(

[u]ps,p −

∫

Ω
|u|p

∗

s dx

)

.

By 3.1, we have:

Φ(u) =
1

p
[u]ps,p −

∫

Ω

1

p∗s
|u(x)|p

∗

s + λF (x, u) dx

≤
1

p
[u]ps,p −

∫

Ω

1

p∗s
|u(x)|p

∗

s dx+
1

c2

(

[u]ps,p −

∫

Ω
|u(x)|p

∗

s dx

)

≤
1

p
[u]ps,p +

1

c2
[u]ps,p

≤

(

1

p
+

1

c2

)

[u]ps,p.

This proves the third inequality, with α4 =
(

1
p
+ 1

c2

)

α3.

To prove the middle inequality we proceed as follows:

Φ(u) =
1

p
[u]ps,p −

∫

Ω

1

p∗s
|u(x)|p

∗

s + λF (x, u) dx

≥
1

p
[u]ps,p −

∫

Ω

1

p∗s
|u(x)|p

∗

s dx−
1

c2

∫

Ω
λf(x, u)u dx.



THREE SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL GROWTH 5

So

c2Φ(u) ≥c2
1

p
[u]ps,p − c2

∫

Ω

1

p∗s
|u(x)|p

∗

s dx−

∫

Ω
λf(x, u)u dx

=c2
1

p

(
∫

Ω
|u(x)|p

∗

s dx+

∫

Ω
λf(x, u)u dx

)

− c2

∫

Ω

1

p∗s
|u(x)|p

∗

s dx−

∫

Ω
λf(x, u)u dx

=c2
1

p

∫

Ω
|u(x)|p

∗

sdx+ c2
1

p

∫

Ω
λf(x, u)u dx− c2

∫

Ω

1

p∗s
|u(x)|p

∗

s dx−

∫

Ω
λf(x, u)u dx

=c2

(

1

p
−

1

p∗s

)
∫

Ω
|u(x)|p

∗

s dx+

(

c2
1

p
− 1

)
∫

Ω
λf(x, u)u dx.

Since γ1 = c2

(

1
p
− 1

p∗s

)

and γ2 =
(

c2
1
p
− 1

)

are positive, we take α2 = min{γ1, γ2}, α3 = c2 and

we have

α3Φ(u) ≥ α2

(
∫

Ω
|u|p

∗

s + λf(x, u)u dx

)

.

This finishes the proof. �

Lemma 3.5. There exists a constant D such that [u+]
p
s ≥ D, for all u ∈ K1, [u−]

p
s,p ≥ D for all

u ∈ K2, and [u−]
p
s,p , [u+]

p
s ≥ D for all u ∈ K3.

Proof. By definition of Ki we have

[u±]
p
s,p = ‖u±‖

p∗s
p∗s

+

∫

Ω
λf(x, u)u± dx.

Using (H2) we have
∫

Ω
λf(x, u)u± dx ≤ c4‖u±‖

q
q, for p∗s ≥ q > p.

Then

[u±]
p
s,p ≤ ‖u±‖

p∗s
p∗s

+ c4‖u±‖
q
q ≤ C̃

(

[u±]
p∗s
s + [u±]

q
s

)

.

In the second inequality we use Poincaré inequality. In summary [u+]
p
s,p ≤ Ĉ[u±]

r
s,p. Where r = q

if [u±]s,p < 1 or r = p∗s if [u±]s,p ≥ 1. Since r > p we have what we need. �

The following lemma describes the properties of the manifolds Mi.

Lemma 3.6. Mi is a sub-manifold of W
s,p
0 (Ω) of codimension 1, if i = 1, 2 and 2 if i = 3

respectively, the sets Ki are complete, and for every u ∈ Mi we have TuW
s,p
0 (Ω) = TuMi ⊕

span{u+, u−} where TuM is the tangent space at u of the Banach manifold M. Finally, the
projection to the first coordinate is uniformly continuous on Mi.

Proof. We consider

M1 =

{

u ∈ W
s,p
0 (Ω) :

∫

Ω
u+ > 0

}

,

M2 =

{

u ∈ W
s,p
0 (Ω) :

∫

Ω
u− > 0

}

,

M3 = M1 ∩M2.

Observe that Mi ⊂ Mi and since the sets Mi are open so it’s sufficient to prove that Mi is a
regular sub-manifold of W s,p

0 (Ω).
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We are going to build a function C1, ϕ : Mi → R
d with d = 1 if i = 1, 2 or d = 2 if i = 3, such

that Mi is the inverse of a regular value of ϕi.

We define

ϕ1(u) = [u+]
p
s,p −

∫

Ω
|u+|

p∗s + λf(x, u)u+ dx for u ∈ M1,

ϕ2(u) = [u−]
p
s,p −

∫

Ω
|u−|

p∗s + λf(x, u)u− dx for u ∈ M2,

and

ϕ3(u) = (ϕ1(u), ϕ2(u)) for u ∈ M3.

We have that Mi = ϕ−1
i (0) so we have to prove that 0 is a regular value of ϕi.

Let us calculate 〈∇ϕ1(u), u+〉 for u ∈ M1,

d

dε
ϕ1(u+ εu+) =

d

dε

(

[(u+ εu+)+]
p
s,p −

∫

Ω
|(u+ εu+)+|

p∗s + λf(x, u+ εu+)(u+ εu+)+ dx

)

.

Since (u+ εu+)+ = u+ + εu+ we have that d
dε
ϕ1(u+ εu+) is equal to

(1 + ε)p−1p[u+]
p
s,p −

∫

Ω
p∗s(1 + ε)p

∗

s−1|u+|
p∗s + λf(x, u+ εu+)u+ + λfu(x, u+ εu+)(1 + ε)u2+ dx,

then since u ∈ M1,

d

dε
ϕ1(u+ εu+)

∣

∣

∣

ε=0
=

(

p [u+]
p
s,p −

∫

Ω
p∗s|u+|

p∗s + λf(x, u)u+ + λfu(x, u)u
2
+ dx

)

≤ p∗s

(

[u+]
p
s,p −

∫

Ω
|u+|

p∗s dx

)

−

∫

Ω
λf(x, u)u+ + λfu(x, u)u

2
+ dx

= p∗s

(
∫

Ω
λf(x, u)u+dx

)

−

∫

Ω
λf(x, u)u+ + λfu(x, u)u

2
+ dx

=(p∗s − 1)

(
∫

Ω
λf(x, u)u+ dx

)

−

∫

Ω
λfu(x, u)u

2
+ dx.

By (H2) we know that there exists c1 ∈
(

0, 1
p∗s−1

)

such that

(3.2)

∫

Ω
λf(x, u)u+ dx ≤ c1

∫

Ω
λfu(x, u)u

2
+ dx.

Then

(p∗s − 1)

∫

Ω
λf(x, u)u+ dx−

∫

Ω
λfu(x, u)u

2
+ dx < 0.

In summary, we have that 〈∇ϕ1(u), u+〉 < 0, then ∇ϕ1(u) 6= 0. This means that M1 is a
regular submanifold of W s,p

0 (Ω).

The proof for M2, is analogous.

Let’s observe that if we prove that 〈∇ϕ2(u), u+〉 = 〈∇ϕ1(u), u−〉 = 0 for u ∈ M3 then for
what we had made before, we know that 〈∇ϕ1(u), u〉 < 0 and 〈∇ϕ2(u), u〉 < 0. For this we can
affirm that ∇ϕ3(u) 6= 0 for u ∈ M3.



THREE SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL GROWTH 7

Then we will prove that 〈∇ϕ1(u), u−〉 = 0. In fact,

d

dε
ϕ1(u+ εu−) =

d

dε

(

[(u+ εu−)+]
p
s,p −

∫

Ω
|(u+ εu−)+|

p∗s + λf(x, u+ εu−)(u+ εu−)+ dx

)

=
d

dε

(

[u+]
p
s,p −

∫

Ω
|u+|

p∗s + λf(x, u+ εu−)u+ dx

)

=−

∫

Ω
λfu(x, u+ εu−)u+u− dx = 0.

Then
d

dε
ϕ1(u+ εu−)

∣

∣

∣

∣

ε=0

= 0.

In an analogous way we have 〈∇ϕ2(u), u+〉 = 0. Therefore, M3 is a regular submanifold.

The completeness of Ki is easy and is left to the reader.

Finally, it remains to see that

TuW
s,p
0 (Ω) = TuM1 ⊕ span{u+},

where M1 = {u : ϕ1(u) = 0} and TuM1 = {v : 〈∇ϕ1(u), v〉 = 0}. Now let v ∈ TuW
s,p
0 (Ω) be a

unit tangential vector, then v = v1 + v2 where v2 = αu+ and v1 = v − v2. Let us take α as

α =
〈∇ϕ1(u), v〉

〈∇ϕ1(u), u+〉
.

With this choice, we have that v1 ∈ TuM1. Now

〈∇ϕ1(u), v1〉 = 0.

The very same argument is used to show that TuW
s,p
0 (Ω) = TuM2⊕ span{u−} and TuW

s,p
0 (Ω) =

TuMi ⊕ span{u+, u−}.

From these formulas and the estimates given in the first part of the proof, the uniform conti-
nuity of the projections onto TuMi follows. �

Now, we say that {uj} ⊂ W
s,p
0 (Ω) is a Palais-Smale sequence of c level if

(i) Φ(uj) → c,
(ii) ∇Φ(uj) → 0 in W−s,p(Ω).

We say that Φ satisfies Palais-Smale condition of level c if for every {uj} Palais-Smale sequence
of level c there exists a subsequence that converges strongly in W

s,p
0 (Ω).

Now, in order to use Ekeland’s variational principle, we need to check the Palais-Smale con-
dition for the functional Φ restricted to the manifold Mi. To this end, we need the following
lemma which proves the Palais-Smale condition for the unrestricted functional below certain
energy level.

Lemma 3.7. The unrestricted functional Φ verifies the Palais-Smale condition for energy level

c for every c < s
n
S

n
sp , where S is the best Sobolev constant for the fractional Laplacian S :=

infφ∈C∞

c (Ω)
[φ]ps,p
‖φ‖p

p∗s

.

The proof of Lemma 3.7 is omitted as it uses standard ideas and is based in the Concentration
Compactness Principle for nonlocal operators (see[20]). For the local case it can be found in
[12, 28]. For the non local case it follows similarly, see [10] for the details.
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Now, we can prove the Palais-Smale condition for the restricted functional.

Lemma 3.8. The functional Φ|Ki
satisfies the Palais-Smale condition for energy level c for every

c < s
n
S

n
sp .

Proof. Let {uk} ⊂ Ki be a Palais-Smale sequence, that is Φ(uk) is uniformly bounded and
∇Φ|Ki

→ 0 strongly. We need to show that there exists a subsequence ukj that converges
strongly in Ki.

Let vj ∈ Tuj
W

s,p
0 (Ω) be a unit tangential vector such that

〈∇Φ(uj), vj〉 = ‖∇Φ(uj)‖W−s,p
0 (Ω).

Now, by lemma 3.6, vj = wj + zj with wj ∈ Tuj
Mi and zj ∈ span{(uj)+, (uj)−}.

Since Φ(uj) is uniformly bounded, by Lemma 3.4, uj is uniformly bounded in W
s,p
0 (Ω) and

hence wj is uniformly bounded in W
s,p
0 (Ω). Therefore

‖∇Φ(uj)‖W−s,p
0 (Ω) = 〈∇Φ(uj), vj〉 = 〈∇Φ|Ki

(uj), vj〉 → 0.

As vj is uniformly bounded and ∇Φ|Ki
(uj) → 0 strongly, the inequality converges strongly to

0. Now the result follows by Lemma 3.7.

�

We now immediately obtain the following lemma.

Lemma 3.9. There exists u ∈ Ki be a critical point of the restricted functional Φ|Ki
. Moreover

u is also a critical point of the unrestricted functional Φ and hence a weak solution to (1.1).

With all this preparatives, this is the proof of our main result.

Proof of Theorem 2.2. To prove the Theorem 2.2, we need to check that the functional Φ|Ki

verifies the hypotheses of the Ekeland’s Variational Principle.

The fact that Φ is bounded below over Ki is a direct consequence of the construction of the
manifold Ki.

Then by Ekeland’s Variational Principle, there exists vk ∈ Ki, such that

Φ(vk) → ci and (∇Φ|Ki
)(vk) → 0.

We have to check that if we choose λ large, we have that ci <
s
n
S

n
sp . This follows easily from

Lemma 3.3. For instance, for c1 we have that choosing w0 ≥ 0,

c1 ≤ Φ(tλw0) ≤
1

p
t
p
λ[w0]

p
s,p.

Moreover, it follows from the estimate of tλ in Lemma 3.3 , that c1 → 0 as λ → 0. Then

ci <
s
n
S

n
sp for λ > λ∗(p, q, n, c3). The other cases are analogous.

From Lemma 3.7, it follows that vk has a convergent subsequence, that we still call vk. There-
fore Φ has a critical point in Ki, i = 1, 2, 3 and, by construction, one of them is positive, other
is negative and the last one changes sign. �
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