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ABSTRACT  

Introduction: Gliomas are infiltrating brain tumors associated with high morbidity and mortality. 

Current standard of care includes radiation, chemotherapy and surgical resection. Today, survival 

rates for malignant glioma patients remain dismal and unchanged for decades. The glioma 

microenvironment is highly immunosuppressive and consequently this has motivated the 

development of immunotherapies for counteracting this condition, enabling the immune cells within 

the tumor microenvironment to react against this tumor.  

Areas covered: The authors discuss immunotherapeutic strategies for glioma in phase-I/II clinical 

trials and illuminate their mechanisms of action, limitations and key challenges. They also examine 

promising approaches under preclinical development. 

Expert opinion: In the last decade there has been an expansion in immune-mediated anti-cancer 

therapies. In the glioma field, sophisticated strategies have been successfully implemented in 

preclinical models. Unfortunately, clinical trials have not yet yielded consistent results for glioma 

patients. This could be attributed to our limited understanding of the complex immune cell infiltration 

and its interaction with the tumor cells, the selected time for treatment, the combination with other 

therapies and the route of administration of the agent. Applying these modalities to treat malignant 

glioma is challenging, but many new alternatives are emerging to by-pass these hurdles. 
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Article Highlights 

• Malignant gliomas or HGG are the most frequent tumors of the central nervous system. Even 

though there has been advances in their diagnosis and treatment strategies, HGG have dismal 

prognosis and currently remain incurable.  

• It has been demonstrated that HGG display an immunosuppressive tumor microenvironment, 

involving the recruitment of immunomodulatory cells and the secretion of immunomodulatory 

cytokines. 

• In the last years, there has been an expansion in the immunotherapeutic strategies designed to 

treat different types of cancers, and many of these are currently approved to be used in the 

clinic due to their significant improvement in patient survival. 

• Treating glioma with an immunotherapeutic approach can be challenging due to their 

anatomic location, the intrinsic immunosuppressive microenvironment, and the tumor 

heterogeneity. However, several therapies under pre-clinical and clinical study were 

developed to beat these hurdles. Also, the development of new alternatives for drug delivery, 

such as nanoparticles, have yielded encouraging results in preclinical models. 

• The development of immunotherapies against glioma is promising since pre-clinical studies in 

diverse immunotherapies demonstrated encouraging biological effects. However, favorable 

and long-lasting clinical responses remain to be seen. 
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1- INTRODUCTION  

Gliomas are histologically highly heterogeneous tumors and malignant glioma represent the most 

frequent tumor of the central nervous system (CNS) [1, 2]. Their incidence in the USA is 6 cases per 

100,000 individuals/year [1]. Taking into account both genetic alterations and epigenetic 

modifications, gliomas are classified integrating histological and molecular parameters to provide 

more accurate prognosis and treatment strategies [3]. The phenotypic-genotypic diagnostic 

combination criteria include histological features and genetic alterations analysis, which are 

considered along with clinical findings and radiological characteristics [3]. Tumor grading is used as 

a prognostic factor to predict response to therapy [3, 4]. Overall, grade I and II are considered “non-

malignant” or low grade gliomas (LGG), whereas grade III and IV are considered “malignant” or 

high grade gliomas (HGG), with worst prognosis [1, 3, 5].   

Among gliomas, diffuse infiltrating gliomas represent the most prevalent tumors. The most relevant 

molecular characteristics studied are IDH mutation, chromosome 1p/19q deletion, histone mutations 

and other genetic parameters such as ATRX loss, TP53 and TERT mutations, as well as DNA 

methylation levels [3, 4]. This group of gliomas includes diffuse astrocytomas (grade II), 

oligodendrogliomas (grade II/III), anaplastic astrocytomas (grade III), and glioblastomas (GBM) 

(grade IV) [3].  

GBMs are highly infiltrative and the most frequent HGG in adults (median onset 62 years old). The 

primary tumors are characterized by astrocytic differentiation, nuclear atypia, high mitotic rate, 

microvascular proliferation and necrosis. They predominate in males and the median survival (MS) is 

15-18 months post-diagnosis. They exhibit WT IDH and common mutations as TERT promoter 

mutation, EGFR amplification, CDKN2A deletion, TP53 loss of function mutation, PTEN mutation, 

and RTK pathways amplification [6, 7].  
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In the pediatric context, malignant gliomas seem similar histologically to adult disease. However, at 

the molecular level they are very different from the adult gliomas [8]. They are classified as pediatric 

anaplastic astrocytoma (grade III), GBM (grade IV) or diffuse midline glioma (DMG), which 

includes diffuse intrinsic pontine glioma (DIPG) [9]. Pediatric gliomas hold specific mutations 

associated with certain anatomic locations. For instance: H3F3AK27M is found in midline locations 

in DMG and H3F3AG34R/V in cerebral hemispheres [10, 11].  

The current standard of care (SOC) for the treatment of primary malignant gliomas consists in 

maximal safe surgical resection, followed by concomitant external beam radiation and chemotherapy 

with Temozolomide (TMZ) during 6 weeks and then TMZ as adjuvant chemotherapy for six cycles of 

150–200 mg/m2/day for the first 5 days of a 28-day cycle [12]. In some institutions, the adjuvant 

therapy has been extended to 12-15 months [13-17]. For LGG, the best SOC remains under revision, 

but current treatment also involves surgery, beam radiation and chemotherapy (which could include 

TMZ or a combination of procarbazine, CCNU, and vincristine) [18]. In spite of advances in 

diagnostic and therapeutic modalities, recurrence is almost universal for GBM. In addition, malignant 

transformation and recurrence for LGG is also commonly seen in the clinic [19-22]. 

Although the new phenotypic-molecular integrated diagnosis represents a remarkable advance for 

glioma’s diagnosis, several challenges and limitations remain when considering treatment efficiency. 

This is in part evidenced by the high rate of tumor recurrence [23]. These challenges include, but are 

not limited to, the highly infiltrative nature of malignant glioma, which makes it a difficult tumor to 

resect; the presence of a blood-brain barrier (BBB), which affects drug penetration into the brain; and 

the intrinsically complex biology of this tumor, meaning that a proposed SOC might not be suitable in 

all cases [24].    
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Another salient challenge in glioma therapeutics is due to the presence of a highly 

immunosuppressive tumor microenvironment (TME) [25]. Thus, the implementation of therapies 

aimed to counteract immunosuppression are promising avenues for glioma treatment [26, 27]. Several 

studies using diverse immunotherapeutic strategies are in progress. Pre-clinical studies in 

immunotherapies demonstrated encouraging biological effects, but favorable clinical responses 

remain to be realized [27-29].  

In this review we will discuss novel immunotherapies targeting the glioma TME and the efforts being 

directed to revert glioma-mediated immunosuppressive mechanisms. We will review immune 

therapeutic strategies currently being implemented from preclinical studies to Phase-II clinical trials 

(CTs). We will also discuss their mechanisms of action, their responsiveness or mechanisms leading 

to treatment resistance, their limitations and future challenges. This review includes, but is not limited 

to, cancer vaccines, immune checkpoint inhibitors, adoptive cellular therapy, viral therapy and 

combinational therapies. 

2- CNS AND GLIOMA IMMUNE MICROENVIRONMENT 

The notion that the CNS is an “immune privileged” site was adopted after the findings that foreign 

tissue grafts implanted in the brain parenchyma were not rejected [30-32]. The efferent and afferent 

arms of the immune system were thought to be abrogated by the BBB and the lack of classical 

draining lymphatics, respectively [33]. However, evidence demonstrating foreign tissue rejection in 

the brain implanted in proximity to the ventricles and the draining of CNS antigens into the cervical 

lymph nodes challenged this view [32-36]. Today, experimental findings showed that the immune 

privilege of the CNS is not absolute, but rather relative to other organs and to the presence or absence 

of neuroinflammation. The particular interactions between the immune system and the CNS are 

related to the CNS anatomy and its compartmentalization, namely: the CNS parenchyma; the 
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ventricles containing cerebrospinal fluid; and the meninges [37]. It has been observed that the innate 

and adaptive immune response mounted in the ventricles and meninges is similar to the response in 

other organs [37]. Thus, the immune privilege should be associated to the brain parenchyma 

specifically and the distinctive features of the afferent and efferent arms involved in the neuro-

immune-communication. 

2-1- Afferent arm in the CNS-immune system interaction 

The afferent arm of the immune system refers to antigen presentation to T-cells, resulting in their 

proliferation and activation. In general, this is achieved in the draining lymph nodes, by the drainage 

of antigen-presenting cells (APC) bearing the antigen from the immune-compromised site or by the 

transport of the soluble antigen to the lymph node. In the absence of inflammation, there is a paucity 

of dendritic cells (DCs) in the brain parenchyma and, although the presence of resident macrophages, 

they rarely migrate to the lymph node to act as APC [33, 37]. However, brain parenchyma has soluble 

antigen drainage along the walls of cerebral capillaries and arteries to cervical lymph nodes [33, 37]. 

This perivascular pathway is probably too narrow to allow the migration of immune cells from the 

brain parenchyma, which may be the principal factor involved in the immune privilege of the CNS. In 

contrast, the direct drainage of cerebrospinal fluid to deep cervical lymph nodes allows the trafficking 

of T-cells, monocytes and DCs, which could explain in the immunological competence of the 

compartments surrounding the brain [33]. In summary, the afferent arm of the immune system in the 

brain lacks the classical cellular pathway, but it relies on the soluble antigen trafficking pathway. 

 2-2- Efferent arm in the CNS-immune system interaction 

Although the specificities for T-cell trafficking pathway into the brain parenchyma remain to be 

elucidated, activated T-cells can cross the BBB [33, 38]. Within the brain, T-cells will face diverse 

challenges before they can mediate the immune response, such as death by apoptosis, the presence of 

immunomodulatory soluble factors or the difficulties associated to antigen recognition due to low 
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MHC expression [33, 37]. However, the secretion of IFNγ and TNFα by pre-activated T-cells can 

induce MHC expression in CNS residing cells, which would act as APCs [38]. When antigen 

recognition occurs by the T-cells, the release of pro-inflammatory molecules triggers changes in the 

BBB allowing the recruitment of additional immune cells into the brain. Once inflammation is 

established, the CNS immune privilege state switches into an inflammatory environment, resulting in 

increased BBB permeability, DC penetration and increased antigen trafficking into the lymph nodes 

[37, 38]. 

 2-3- Glioma immune tumor microenvironment 

Although these data show the active interaction of the immune system with the CNS, multiple clinical 

trials in immunotherapy have failed to show benefits in glioma patients. One of the main reasons is 

related to the immunosuppressive TME that halt effective anti-glioma immune response.  

Glioma TME is characterized by tissue hypoxia provided by an inappropriate increased vascularity, 

irregular blood flow and high oxygen consumption. Tissue hypoxia induces activation of regulatory 

T-cells (Tregs) and upregulation of vascular endothelial growth factor (VEGF), to promote an 

immunosuppressive environment [39-41]. Glioma cells also secrete immunosuppressive factors such 

as interleukin-6, interleukin-10, TGF-β, and prostaglandin-E [42-45]. These factors collectively 

inhibit both the innate and adaptive immune systems by suppressing NK activity and T-cell activation 

and proliferation, inducing T-cell apoptosis, downregulating of MHC expression, and skewing tumor-

associated macrophages towards an M2 (immunosuppressive) phenotype [46-48]. 

Myeloid cells represent the main immune cell that infiltrates glioma. We have shown that myeloid-

derived suppressor cells are major immunosuppressive cells in glioma microenvironment [28, 49, 50]. 

Also, the number of neutrophils and their activation status correlates with glioma grade and 

represents a negative prognostic parameter [51]. Moreover, glioma associated macrophages and 
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microglia can constitute a significant proportion (around 30%) of the tumor mass [52-54]. They are 

recruited by a number of chemokines, including CCL2 and CX3CL1 [55-57].  

Within the lymphoid cells, NK cells are the main effector cells mediating antitumor responses in 

glioma [58], albeit they represent a minor component in the GBM TME (about 2% of immune-

infiltrating cells). We showed that NK cells can mediate an anti-glioma immune response which is 

suppressed by gal-1 expression in glioma cells [59]. Tregs are also found in the GBM parenchyma, 

which have a potent immunosuppressive capacity against anti-glioma T-cells [60]. They can be 

recruited by GBM secreted factors including CCL22, CCL2 or indoleamine 2,3-dioxygenase 1 

(IDO1) [61-63].  

In conclusion, GBM TME is enriched with immunosuppressive factors that prevent effective 

antitumor immunotherapy. Therefore, counteracting glioma-mediated immune suppression is a 

prerequisite for the development of new and more effective immunotherapies for this devastating 

disease. 

3- CURRENT (ACTIVE) PHASE-I/II CLINICAL TRIALS WITH 

IMMUNOTHERAPEUTIC APPROACH 

This review was structured taking into account the principal immunotherapeutic approaches against 

glioma that are currently under Phase-I/II clinical trials (Table 1). We included the clinical trials that 

were found at clinicaltrials.gov using the key words: “Condition or disease: glioma”; “Study type: 

interventional studies (clinical trials)”; “Status: Recruitment: Not yet recruiting; Active, not recruiting; 

Recruiting”; “Phase: Phase 1; Phase 2”. For “Other terms” we used the following words: “immune”, 

“vaccines”, “CART”, “dendritic cell”, “antibody”, “virus”, “PD1”, “PDL1” and “CTLA4”. Table 1 

was updated in March 2020 and includes all the clinical trials found under those key words. Trials 
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were organized in 8 major categories: Immunosuppressive checkpoint inhibitors; Tumor associated 

antigens/Peptide Vaccines; Dendritic cell (DC) vaccines; Oncolytic virus; Immune Stimulatory Gene 

therapy; CAR T-cells; Antibody delivery; and Other immunotherapies. The therapies involving 

antibodies against immunosuppressive checkpoints were distinguished from “Antibody delivery” due 

to the large amount of clinical trials studying these agents. Finally, we have included a section 

dedicated to Nanotechnologies to highlight the advantages of this new method for the delivery of 

immune therapeutics. 

3.1- IMMUNOSUPPRESSIVE CHECKPOINT INHIBITORS 

The immune checkpoints are inhibitory surface proteins or receptors that trigger signals to maintain 

the homeostasis of the immune system and the tolerance to self-antigens. These signals regulate the 

durability of the immune response by limiting or inhibiting T-cell activation or by inducing T-cell 

exhaustion [64-66]. There are two main proteins or receptors extensively studied against which there 

are currently approved antibodies to be used in the clinical setting for different cancers: the 

programmed cell death (PD-1) and its ligand PD-L1, and the cytotoxic T-lymphocyte-associated 

antigen-4 (CTLA-4) [65, 67, 68]. These two pathways are non-redundant and differ spatially and 

temporally: whilst CTLA-4 signaling occurs in the lymph node during early T-cell activation, PD-

1/PD-L1 signaling occurs in effector sites on upon T-cell activation through the T-cell receptor (TCR)  

[64, 65, 69]. The continuous PD-1/PD-L1 interaction and its effect on T-cells represents an immune 

adaptation that prevents auto-immune reactions due to chronic TCR stimulation. However, this 

pathway can be hijacked by tumor cells expressing PD-L1 as a mechanism of immune evasion, 

inhibiting anti-tumor T-cell mediated immune response [69, 70].  

The goal of inhibiting the checkpoint pathways is to “release the brakes” of the immune system to 

enhance an anti-tumor immunity (Figure 1). PD-L1 expression on glioma cells and microglia has been 
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observed in 38 % of newly diagnosed GBM and its expression is upregulated when compared to LGG 

[68, 71, 72]. Currently, there are 39 Phase-I/II clinical trials testing the effectiveness of immune 

checkpoint inhibition in different types of glioma. The great majority of these are studying the effect 

of monoclonal antibodies targeting PD-1 (Nivolumab, Pembrolizumab or Cemiplimab) or PD-L1 

(Durvalumab, Avelumab or Atezolizumab) used in combination with SOC therapies (NCT02530502, 

NCT02968940, NCT03743662, amongst others) (Table 1). Also, combinational approaches targeting 

both immune checkpoints are being assessed, in which SOC plus PD-1/PD-L1 in combination with 

CTLA-4 (Tremelimumab or Ipilimumab) blockade is being tested (NCT02311920, NCT02794883, 

NCT04145115 and NCT03233152) (Table 1). Moreover, combinational approaches targeting other 

checkpoint proteins are under evaluation, such as the use of an anti-PD-1 antibody (Nivolumab) plus 

an antibody against lymphocyte activation gene-3 (LAG-3) (Relatlimab) (NCT02658981) or an 

antibody against T-cell immunoglobulin and mucin domain-3 (TIM-3) (MBG453) (NCT03961971), 

other T-cell inhibiting receptors related to T-cell exhaustion, or the use of an anti-PD-1 antibody 

(Nivolumab) plus an inhibitor of IDO1 (BMS-986205) [73] (NCT04047706). In addition, there are six 

Phase-I/II clinical trial assessing the effectiveness of combining anti-PD-1 plus VEGF inhibition 

(NCT03743662, NCT02336165, NCT03890952, NCT03452579, NCT03722342 and NCT03797326), 

which is currently used in the clinical setting for recurrent GBM (rGBM) (Bevacizumab) (Table 1) 

[74].  

Since the identification of the checkpoint proteins as possible anti-cancer targets, many preclinical 

studies provided promising results for the treatment of malignant glioma [26, 75-79]. Unfortunately, 

the use of Nivolumab has not shown an improved survival in patients suffering of rGBM compared to 

the treatment with Bevacizumab or in combination with an anti-CTLA-4 antibody (Ipilimumab) [80, 

81], so today these approaches are being tested in combination with current SOC or other immuno-
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stimulatory strategies, in different clinical settings [82]. The latest preclinical studies employing 

checkpoint inhibitors for GBM models tested the effectiveness of combined therapies such as, the use 

of anti-PD-1 plus an antibody against T-cell immunoreceptor with Ig and ITIM domains (TIGIT), 

another checkpoint inhibitory molecule [83], or the innovative triple-approach of inhibiting PD-1, 

stimulating OX40 receptor, while stimulating the immune system by whole tumor vaccination [84]. 

Furthermore, our lab demonstrated that the administration of anti-PD-L1 or anti-CTLA-4 antibodies 

with TK/Flt3L gene therapy (see Immune Stimulatory Gene Therapy section) improved MS and 

increased the number of long-term survivors in a GBM mouse model [26]. 

 

3.2- TUMOR ASSOCIATED ANTIGENS/PEPTIDE VACCINES 

Peptide vaccines are short peptides composed by an MHCI or MHCII epitope capable of triggering a 

tumor-specific immune response [85]. These peptides are based on tumor-associated antigens (TAA) 

or tumor-specific antigens (TSA). For instance, in a Phase-I trial, tumor cells obtained from surgical 

resection of malignant gliomas were treated with insulin-like growth factor receptor-1 antisense 

oligodeoxynucleotide (IGF-1R/AS ODN) to induce tumor cell apoptosis, and were then 

subcutaneously injected in the patient in combination with a slow diffusion chamber [86] to induce 

an immune response against the specific epitopes (NCT02507583) (Table 1). 

Usually, single peptide vaccines are insufficient to yield antitumor efficacy due to the heterogeneity 

of antigen expression in GBM, leading to the loss of antigenic variants  [87]. To overcome this, 

patients with rGBM are being treated with a multi-peptide vaccine composed of the epitopes of 

epidermal growth factor receptor variant III (EGFRvIII), interleukin-13 receptor alpha-2 

(IL13Ralpha2), ephrin type A receptor 2 (EphA2), human epidermal growth factor receptor-2 

(HER2/neu) and YKL-40 peptides [88-92] in combination with TLR3 agonist poly-ICLC and 
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VEGF-blocking antibody Bevacizumab in a Phase-II trial (NCT02754362) (Table 1). Moreover, 

advances in peptidomics have led to the development of more specific peptides for personalized 

therapy [93]. Neoantigens could derive from genomic alterations like fusion of genes, deletion or 

insertion, frame-shift mutations, single-nucleotide variants and structural variants [94, 95] specific 

for a particular tumor type. Currently, there are clinical trials for vaccines targeting the tumor-

specific neo-antigen mutant IDH1 (IDH1R132H) using the peptide PIPIDH1M [96] in combination 

with GM-CSF, Montanide ISA 51 (oil-based adjuvant) and TMZ (NCT02193347) or using 

AMPLIFY-NEOVAC with anti-PD-L1 antibody Avelumab (NCT03893903) (Table 1) (PIPIDH1M 

and AMPLIFY-NEOVAC are both IDH1R132H-based peptide vaccines). In a clinical trial of newly 

diagnosed DIPG and other gliomas, 29 patients were treated with H3.3K27M epitope K27M (DIPG 

common TSA) vaccine [97] combined with tetanus/diphtheria toxoid and the TLR3 agonist poly- 

ICLC (NCT02960230) (results are pending). A multiple-epitope vaccine (NeoVax) uses 

personalized neo-antigens in the context of multiple HLA alleles combined with SOC [98]. This 

strategy was tested in a Phase-I/Ib study for patients with newly diagnosed GBM, showing an 

increase in the number of circulating neo-antigen-specific CD4+ and CD8+ T-cells [98]. Although 

this treatment leads to an increase in the infiltration of T-cells in the tumor, these cells exhibit an 

exhausted phenotype [98]. To overcome this issue, in a new study 46 participants are treated with 

NeoVax combined with SOC, and the anti-PD-1 antibody Pembrolizumab (NCT02287428) (Table 

1). In addition to immunological checkpoint blockade [99, 100], peptide vaccines have been 

combined with other immune-stimulant strategies, such as agonistic antibody against co-stimulatory 

immune-checkpoint molecule CD27 Varlilumab [101], or CD4 and CD8 response inductor 

Montanide ISA 51 [102]. 
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In the ongoing trials, peptide vaccines are administered in combination with SOC treatments. For 

instance, in a Phase-II trial, newly diagnosed GBM patients are being treated with SurVaxM peptide 

vaccine (SVN53-67/M57-KLH), that contains a synthetic peptide derived from the TAA survivin 

[103], in combination with Montanide ISA 51, GM-CSF (Sargramostin) [104] and TMZ 

(NCT02455557) (Table 1).  

3.3- DENDRITIC CELL VACCINES 

Dendritic cells (DC) are APCs, which have the capacity to recognize pathogens, process them and 

present the antigens in the context of MHCI and II molecules in the lymph nodes to activate naïve 

and memory T-cells or NK T-cells [105]. DCs also regulate the immune response through the 

secretion of pro or anti-inflammatory cytokines [106]. Currently, DC vaccines (DCV) are generated 

by ex vivo differentiation of DC from autologous monocytes with a cocktail of cytokines [107]. There 

are a number of factors that affect the efficacy of the DCV: optimal maturation protocol, tumor 

antigen loading, the adjuvant used, route and frequency of vaccination, and the combination with 

other therapies [107-109]. Current trials are using different combinations to select the one that 

triggers the best immune response and overall survival (OS) with low toxicity (Figure 2). Usually, the 

tumor is lysed after surgical resection to obtain enough TAA to pulse DCs [110] (or to directly inject 

them as a vaccine to trigger a specific immune response against the tumor epitopes [111]) 

(NCT01635283) (Table 1). To overcome tumor heterogeneity and to use different antigens, total 

tumor RNA (TT-RNA) has been used to pulse DCs [112]. In this way, tumor autologous antigen 

mRNA can be generated to transfect DCs and promote the presentation of TSA [113]. Transfection of 

mRNA that expresses the human Cytomegalovirus (CMV) matrix protein pp65, which was shown to 

be highly expressed in GBM by several groups [114-116], fused with the lysosome-associated 

membrane protein (LAMP), improved presentation in the context of the MHCII molecule. In a small 
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trial, patients were treated with CMV-pp65-LAMP mRNA-loaded DCs in combination with GM-CSF 

and TMZ administration, which increased progression free survival (PFS) and OS, and upregulated 

IFNγ levels [117] (NCT00639639). In spite of these encouraging results, the presence of CMV DNA 

or proteins in glioma has been challenged recently, and its relevance as an oncomodulator is under 

reconsideration [118-120]. 

Other strategies use different sources to obtain tumor lysate and in an ongoing trial 10 DIPG patients 

were treated with autologous DCs that were pulsed with an allogeneic DIPG cell line 

(NCT02840123) [121] (Table 1). 

Topical or intramuscular administration of TLR7/8 agonists Imiquimod (R837) or Resiquimod 

(R848) as adjuvants has shown an augmented immune response based on the presence of tumor-

specific CD8+ T-cells [122-124] (NCT01808820; NCT01204684) (Table 1). In current trials, patients 

are treated with these adjuvants before and after receiving the DCV. The use of TLR3 agonist poly-

ICLC as DCV adjuvant, with promising results in pancreatic cancer [125], is being tested in CNS 

tumor patients (NCT01204684) (Table 1). However, new studies suggest that TLR adjuvants could 

exert a pro-tumoral effect depending on the tumor and its TLR receptor repertoire [126]. On the other 

hand, it was observed that pre-treatment of the patients with tetanus/diphtheria toxoid greatly increase 

DCs migration to the lymph nodes in the context of host CCL3, improving tumor antigen presentation 

[127]. 

Two active trials use personalized mRNA pulsed DCV monotherapy in patients with newly 

diagnosed (PerCellVac) or recurrent (PerCellVac2) GBM to asses PFS, OS and antitumor antigen 

specific T-cell response (NCT02709616, NCT02808364) (Table 1).  

Over the past 20 years, several clinical trials employed DCV for treatment of HGG [128]. In multiple 

cases, a significant increase in the PFS and OS was observed, whereas in other studies, no differences 
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compared to the historical controls were reported [128]. DCV therapy is currently combined with 

SOC for both newly diagnosed and rGBM. It has been observed that the time of administration of 

TMZ and DCV affects the outcome of the immune-stimulatory therapy [129]. TMZ in high doses 

induces lymphodepletion and evidence shows that while TMZ administration could enhance DC-

therapy when co-administered with DCV [130, 131], TMZ administration post DCV application may 

hamper DC-induced anti-tumor immunity [129]. Lymphodepletion was induced prior vaccine 

administration in the BRAVO study for brain stem gliomas (NCT03396575). This therapy involves 

the reinjection of T-cells that are previously co-cultured with TT-RNA pulsed-DCs to “educate”, 

expand and activate lymphocytes, plus TT-RNA DCV combined with tetanus/diphtheria toxoid and 

GM-CSF adjuvance [132]. Finally, blockade of VEGF with Bevacizumab [133] or 

immunosuppressive molecules, such as PD-1 with Nivolumab [134], are used in combination with 

SOC and DCV in ongoing clinical trials (NCT02010606, NCT02529072) (Table 1).  

3.4- ONCOLYTIC VIRUS 

Oncolytic viral therapy combines tumor-specific cell lysis with immune stimulation. These viruses 

selectively replicate in tumor cells inducing killing and exposing cancer cell antigens to immune 

effector cells for activation [135-137]. In addition, oncolytic viruses (OV) have been genetically 

engineered to express therapeutic transgenes to further boost antitumor immunity [138]. 

Among the wide range of studied viruses, only one wild-type virus, the reovirus, is under clinical 

investigation. Marketed as Reolysin, oncolytic reovirus has been tested for many cancers although 

with small benefits reported in GBM patients (NCT00528684) [139-141]. A dose escalation Phase-

I trial is currently studying the combination of intravenously (i.v.) administrated Reolysin and 

subcutaneous administrated Sargramostim (GM-CSF), in patients with recurrent HGG 

(NCT02444546) (Table 1). 
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Herpes virus simplex 1 (HSV-1) was the first genetically engineered OV to treat brain tumors [142] 

and there are currently four types in clinical trial. G207 was well tolerated without evidence of 

encephalitis in three Phase-I studies in adults with rGBM and induced antitumor activity [143-145]. 

Currently, two ongoing Phase-I trials are testing the intratumoral infusion of G207 alone or in 

combination with radiation in pediatric patients (NCT03911388, NCT02457845) (Table 1). A second 

generation oHSV G207-based that expresses human IL-12 (M032; NCT02062827) (Table 1) is being 

examined in a Phase-I trial for patients with recurrent or progressive glioma. Two more types of 

oHSV are in clinical trials for rGBM: rQNestin34.5v.2 (NCT03152318), engineered to improve 

tumor cell specific targeting [146], and C134 (NCT03657576), engineered to enhance viral 

replication without increasing neurovirulence [147] (Table 1).  

The replication-competent adenovirus DNX-240, marketed as Tasadenoturev, was generated to 

restrict the viral replication to cells with retinoblastoma pathway deficiency [148, 149]. DNX-240 

was first studied in a double-arm Phase-I trial to treat patients with rGBM, reporting 20% of patients 

surviving more than 3 years and 3 complete responders (NCT00805376) [150]. In a second study, 

addition of IFN-γ expression did not improve patient’s survival compared to the monotherapy 

(TARGET-I; NCT02197169). However, the combination of intratumoral DNX-2401 with 

Pembrolizumab, is currently under evaluation in a Phase-II trial for rGBM (CAPTIVE, 

NCT02798406) (Table 1). Further, a Phase-I is testing the stereotactic injection of a DNX-2401-

based adenovirus expressing OX40 ligand in patients with rGBM (DNX-2440, NCT03714334). 

Another strategy involves the delivery of neural stem cells transduced with OV Ad5-DNX-2041 or 

NSC-CRAd-Survivin-pk7 in patients with rGBM and newly diagnosed malignant gliomas 

respectively (NCT03896568, NCT03072134) (Table 1). A Phase-I trial has expanded the evaluation 

of DNX-2204 in pediatric patients with DIPG (NCT03178032) (Table 1). 
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Several studies have shown the therapeutic potential of PVSRIPO, a live attenuated poliovirus type-1 

[151]. PVSRIPO tropism towards CD155, highly expressed in tumor cells and APCs, enables 

infected tumor cell cytotoxicity and stimulation of an inflammatory response [152-154]. Currently a 

Phase-II, randomized trial is testing PVSRIPO alone or in combination with single-cycle lomustine 

(NCT02986178) and a Phase-Ib/II trial is studying PVSRIPO in combination with the anti-PDL1 

antibody Atezolizumab (NCT03973879), both in patients with rGBM (Table 1). Finally, a third 

PVSRIPO-based therapy is ongoing for pediatric patients with rGBM (NCT03043391) (Table 1). 

Collectively, the successful accrual of these trials will demonstrate whether improved safety, tumor 

specificity and efficacy of OVs alone or in combination with other therapies can be translated into the 

clinic arena. 

3.5-  IMMUNE STIMULATORY GENE THERAPY 

Immune stimulatory gene therapy (GT) enables the local administration of non-replicative 

recombinant viral vectors expressing immune activators to enhance the antitumor immune response.  

Many studies have evaluated the efficacy of local overexpression of pro-inflammatory cytokines such 

as IL-12, a cytokine endogenously produced by APCs that plays a critical role in the adaptive type 1 

cell-mediated immunity [155]. Despite encouraging results in murine models, Phase-I studies of 

systemic administration of recombinant human IL-12 in patients with advanced malignancies were 

discontinued due to the poor tolerability [156, 157]. Therefore, a novel approach was developed using 

adenoviral vectors expressing a regulated human IL-12. This system is controlled through the 

RheoSwitch Therapeutic System® gene switch (Ad-RTS-hIL-12) under regulation of an oral 

activator ligand, veledimexin (VDX) [158]. In an open label Phase-I trial, the intratumoral delivery of 

Ad-RTS-hIL-12 was reported to stimulate tumor-specific T-cell responses with a reduced systemic 

toxicity in patients with rGBM (NCT02026271) (Table 1). At 12 months, the survival rates of 
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patients who received the preferred dosing regimen of hIL-12 with VDX and low-dose steroids, 

compared favorably to historical controls [159]. However, the apparent deleterious impact of the 

corticosteroids, when dosed with VDX, expanded the trial to a Phase-I sub-study that is evaluating 

this controlled hIL-12 platform as a monotherapy (NCT03679754) (Table 1). In a separate Phase-I 

trial, the Ad-RTS-Hil-12/VDX system is being tested in combination with Nivolumab 

(NCT03636477) (Table 1). Further, a Phase-II trial will study the inducible hIL-12 in combination 

with PD-1 antibody Libtayo (Cemiplimab-rwlc: NCT04006119) (Table 1). A Phase-I trial has 

expanded the evaluation of the Ad-RTS-Hil-12/VDX therapy in pediatric patients with DIPG 

(NCT03330197) (Table 1).  

On another approach, the local administration within the resection cavity of recombinant adenoviral 

vectors encoding the Fms-like tyrosine kinase 3 ligand (Ad-Flt3L) was shown by our laboratory to 

recruit DCs within the brain parenchyma, thus improving the brain’s immune surveillance and 

triggering an anti-GBM immune response [160-162]. To enhance the antitumor immune response, 

this immune-stimulatory approach was combined with adenovirus expressing a conditional cytotoxic 

herpes simplex type 1 thymidine kinase (Ad-TK) in the presence of the prodrug Ganciclovir (GCV) 

[163-166]. Preclinical results proved that the Ad-Flt3L/Ad-TK (+GCV) treatment is safe and showed 

an increase in the survival of tumor-bearing animals, inducing long-term immunological memory 

through a HMGB1-mediated activation of the TLR2 signaling [163, 164, 167-172]. Results from a 

dose escalation safety study in patients with primary GBM are expected by the end of 2020 

(NCT01811992) (Table 1). Also, early in 2021, this approach is going to be tested in combination 

with anti-PD-1 immune checkpoint inhibition therapy. 

The Ad-TK mediated suicide GT has been also tested in combination with SOC [173]. However, 

encouraging results from a multi-institutional Phase-II study (NCT00589875) contrasted with 
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negative results from a Phase-III randomized open-label trial with a similar approach 

(NCT00870181) [173, 174]. A Phase-I trial is currently evaluating the intratumoral delivery of Ad-

TK and oral administration of the prodrug Valacyclovir coupled with SOC and the checkpoint 

inhibitor Nivolumab in newly diagnosed patients with HGG (NCT03576612). 

3.6- CAR T-CELLS 

The adoptive cellular therapy of chimeric antigen receptor (CAR) T-cells is based on the reprograming 

of the patient’s cytotoxic T-cells to express recombinant surface molecules that combine the antigen-

recognizing variable region of an antibody in tandem with intracellular T-cell signaling domains [175, 

176]. CARs are composed of a B-cell receptor derived extracellular antibody single-chain variable 

fragment, a T-cell receptor (TCR) derived CD3ζ domain, and intracellular co-stimulatory fractions 

[177, 178]. This structure allows CAR T-cells to target specific antigens independently of HLA 

expression, downregulation of which is a common strategy of immune evasion by tumors [178]. When 

the CAR recognizes a tumor associated antigen, it induces T-cell activation, resulting in the tumor 

lysis via direct cytotoxic T-cell-tumor cell interactions and cytokine release [176]. 

There are currently two CAR T-cell based therapies approved by the FDA for hematologic 

malignancies [179, 180]. However, treating solid tumors, and specially gliomas, with this therapy 

might be more challenging due to the presence of an immunosuppressive TME [54, 181]. 

Currently, there are 17 clinical trials on Phase-I/II testing the effectiveness of CAR T-cells in glioma. 

Predominantly, these T-cells were modified to express a CAR to recognize TAA, such as IL-13Rα2 

(NCT02208362 and NCT04003649), HER2 (NCT03389230, NCT03383978 and NCT03500991) or 

EGFRvIII (NCT02664363, NCT03726515, NCT03941626, amongst others) (Table 1) [182-184]. In 

addition to these antigens, today there are Phase-I/II clinical trials evaluating CAR T-cells which target 

other three TSA: disialoganglioside GD2 for DMG [185], B7-H3 (CD276) for recurrent and refractory 
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GBM [186, 187] and EphA2 for malignant gliomas [188, 189]. Amongst these trials, only one is 

assessing the effect of CAR T-cell with concomitant SOC (NCT04077866), whilst the others are 

assessing CAR T-cell therapy in refractory and recurrent malignant glioma (Table 1). 

While these approaches have shown promising results in preclinical studies [190-195], their translation 

to the clinical setting has yielded less conclusive outcomes. The available results published for the 

finished clinical trial evaluating IL-13Rα2-, EGFRvIII- or HER2-CAR T-cells in patients with GBM 

or recurrent/progressive GBM demonstrated the safety and low toxicity of CAR T-cell administration, 

evidence of cell trafficking into the brain when administered I.V., and transient anti-glioma responses 

[182, 184, 196-198]. However, no consistent and lasting response has been observed so far for GBM 

and for other solid tumors in general [182, 199].  

The clinical development of CAR T-cell therapy for brain tumors has just started and preclinical and 

clinical data are encouraging in terms of feasibility and safety [182, 199, 200]. Treating brain tumors 

with CAR T-cell based therapies is challenging because of their anatomic location, the intrinsic 

immunosuppressive TME, and the tumor heterogeneity [200]. Also, the fact that they are solid tumors 

is another obstacle for this therapy, since cell trafficking into the tumor is hindered and, unlike 

hematological malignancies, they usually lack one specific tumor antigen to target [199]. To address 

these issues, many approaches are being employed. The route of delivery for CAR T-cells is a key 

factor and, even though i.v. administration was successful in trafficking cells to the brain tumor mass, 

locoregional administration seems to be a more effective and safer way to deliver them [196, 201-

204]. To overcome the immunosuppressive environment, there are several strategies being evaluated 

in the preclinical and clinical setting. One of these is administrating CAR T-cells in combination with 

checkpoint inhibitors. Currently, there are two Phase-I/II clinical trials studying the combination of 

CAR T-cells with an antibody against PD-1 (NCT03726515) or with both anti-PD-1 and CTLA-4 
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antibodies (NCT04003649) (Table 1). Another strategy in preclinical development is the disruption of 

PD-1 gene (PDCD1) by CRISPR-Cas9 technology in the CAR T-cells [205]. Moreover, CAR T-cells 

have been engineered to secrete pro-inflammatory cytokines to stimulate T-cell function and 

proliferation [206]. Last but not least, tumor heterogeneity is a key aspect to tackle. In preclinical and 

clinical studies for CAR T-cells against different TAA, it has been observed the relapse of GBMs with 

no or low expression of that specific antigen, highlighting the importance of considering the 

heterogeneous antigen expression in this type of tumor to avoid antigen escape [196, 197, 206, 207]. A 

strategy to address this issue is to use CAR T-cells to target more than one antigen. This could be 

achieved by administering different mono-specific CAR T-cells, by engineering CAR T-cells 

expressing CARs specific for different antigens or by the design of CAR molecules targeting more 

than one antigen [208-210].  

 

3.7- ANTIBODY DELIVERY 

Antibody delivery is a type of “passive immunotherapy” in which the immune system of the patient is 

not involved in the initiation of the immune response but rather acts as a consequence of the 

administration of immune factors, such as cytokines or antibodies. The outcomes of the passive 

immunotherapies are temporally dependent on the administration of the treatment and usually do not 

induce immunological memory. Antineoplastic antibody delivery therapy usually relies on the 

administration of monoclonal antibodies specific for an antigen that would recruit phagocytes and 

activate the complement system to destroy the tumor cells [211, 212]. Also, they could be used to 

disrupt a signaling pathway or as a way to deliver localized radiation (radiolabeled antibodies) or a 

toxic agent [211, 212]. 
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Currently, there are 32 Phase-I/II clinical trial testing monoclonal antibodies with or without current 

SOC in both recurrent and newly diagnosed malignant gliomas. Sixteen of these trials are studying the 

efficiency of an anti-VEGF antibody (Bevacizumab), which has already been approved in 2009 by the 

FDA for its use in rGBM in the USA [213-215], but not in the primary setting since no benefit on the 

OS was observed in two separate controlled studies [216, 217]. VEGF is a key pro-angiogenic factor 

that stimulates the proliferation, invasion and migration of endothelial cells [218], is overexpressed by 

tumor cells in GBM [219] and negatively correlates with prognosis [218, 219]. In spite of the FDA 

approval of the anti-VEGF therapy, there is no consensus for the SOC for patients at first GBM 

recurrence and this is why different combinations are currently being tested in clinical trials. The 

clinical advantage of Bevacizumab is limited if not scarce and its benefit compared to the use of other 

common therapies is still controversial [213-215]. The use of Bevacizumab in the pediatric population 

for newly diagnosed HGG was also evaluated, plus SOC. Results indicated no improvement in event 

free survival and OS after the addition of Bevacizumab to the current SOC [220]. Although clinicians 

were motivated at the beginning by the superior radiographic response from Bevacizumab trials on 

rGBM, the lack of OS improvement raised the question if this drug is actually acting as an anti-

neoplastic agent or if it is just normalizing the blood vessel density in the tumor, decreasing the 

penetration of gadolinium and thus, decreasing the volume of contrast enhancement in magnetic 

resonance imaging [211, 212]. Either way, it is still necessary to analyze the results of the ongoing 

clinical trial using Bevacizumab with different SOC combinations to conclusively determine the 

usefulness of this antibody therapy. 

Another strategy to target HGG is through the use of antibodies against tumor-specific or -associated 

antigens. The amplification or mutation of EGFR gene is the most frequent genetic alteration in GBM, 

present in 40-60 % of the tumors [221]. Even though promising results in the preclinical setting [211, 
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222-224], today no agent targeting EGFR or EGFRvIII has been approved by the FDA for its use in 

GBM [221]. Currently, there are 8 Phase-I/II clinical trial testing the use of antibodies against EGFR, 

EGFRvIII or both for recurrent and newly diagnosed GBM (NCT02540161, NCT02573324, 

NCT02590263, NCT03620032, NCT02303678, NCT02800486, NCT04160494 and NCT03618667) 

(Table 1). These trials usually involve the use of anti-EGFR/EGFRvIII therapy plus SOC. The use of 

these antibodies showed acceptable safety and pharmacokinetic profile in GBM [225], however, in 

many cases clinical trials have failed to demonstrate the desired results [221]. It is possible that the use 

of a therapy targeting a single antigen is not ideal in these tumors, as they are highly heterogeneous. 

Specifically, EGFR and EGFRvIII expression is heterogeneous in GBM and currently its importance 

as an anti-tumor target is being debated [226]. Other monoclonal antibodies being tested in Phase-I/II 

clinical trials target other TAA, such as EphA3 or GD2, or are designed to stimulate the immune 

response by their binding to immune stimulatory domains (NCT03374943 and NCT00445965). 

Antibody therapy faces the same challenges that many of the immunotherapies against glioma. One of 

those is the BBB [227], for which different strategies are under study. For instance, antibodies have 

been conjugated to cell-penetrating peptides, that facilitate the BBB crossing through the negatively 

charged membrane of the endothelial cells [227, 228] or stem cells have been used for the in vivo 

antibody production and delivery [227, 229]. Another strategy under preclinical development to 

improve antibody’s efficacy is the use of bispecific antibodies (bsAbs), which recognize two different 

epitopes. For example, bsAbs targeting Agn-2 and TSPO or Ang-2 and VEGF extended the survival of 

murine GBM models, while stimulating the immune anti-tumor response [230, 231]. A special type of 

bsAbs are the BiTEs, bispecific antibodies that link a TSA with a co-stimulatory molecule on a T-cell, 

establishing immunological synapses [227], such as BiTEs targeting EGRFvIII and the T-cell 

activation ligand CD3 [232, 233]. 
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3.8- OTHER IMMUNOTHERAPIES 

3.8-1. IDO1 INHIBITION 

IDO1 induces immunosuppression by tryptophan degradation [234], which eventually leads to T-cell 

killing and Tregs recruitment [235]. In a healthy human brain, IDO1 expression is negligible [236]. 

Conversely, it is upregulated in 90% of GBM [237] and its expression correlates with aggressiveness 

[238]. Like other inhibitors, IDO1 inhibitors did not show significant antitumor efficacy when 

administered as a monotherapy. However, today there are clinical trials studying the efficacy of 

IDO1 inhibition with SOC in different clinical settings (NCT03532295, NCT02502708 and 

NCT04049669) (Table 1). Also, the efficacy of IDO1 inhibitor (INCB024360) in combination with 

Nivolumab, Anti-GITR Monoclonal Antibody (MK-4166) and Ipilimumab in patients with rGBM 

(NCT03707457) is being tested (Table 1). These trials will soon yield valuable information on the 

safest and most efficacious approaches for the application of this therapy. 

3.8-2. ANGIOGENESIS INHIBITION AND INDUCTION OF IFNγ 

Pomalidomide is an anti-angiogenic and immunomodulatory compound [239]. Pomalidomide 

promotes T-cell-mediated antitumor immunity by inhibiting the expression of PD-L1 [240] and  by 

inducing the expression of IFNy and IL-2 [241]. In 2015, a Phase-I clinical trial using Pomalidomide 

was opened to treat young patients showing recurrent, progressive, or refractory CNS tumors 

(NCT02415153) (Table 1). Also, another Phase-II trial using Pomalidomide (CC-4047) 

monotherapy for the treatment of recurrent or progressive primary brain tumors in children and 

young patients (NCT03257631) was started in 2017 (Table 1).  

 

4. NANOTECHNOLOGIES  
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The therapeutic challenges for GBM associated to the presence of the BBB, which precludes readily 

permeation of chemotherapeutics into the brain parenchyma [242]; the tumor heterogeneity, which 

makes targeting single pathways ineffective [7]; and the tumor invasiveness and relapse [19, 243] 

are being tackled by the development of more efficient delivery methods. Nanoparticles (NPs) are 

emerging as a promising therapeutic approach to enhance the efficacy of glioma immunotherapy. 

Formulations based on nanotechnology have been developed to non-invasively deliver 

immunomodulatory agents to the tumor site [244, 245] while avoiding immunogenicity and off-

target side effects [246-252]. NPs with an optimal size for lymphatic trafficking (10-100nm) 

facilitate target cellular uptake of the immunomodulatory agent, increase the drug bioavailability at 

the tumor site while reducing the drug dosing frequency [245]. Biomaterials such as albumin, 

liposomes, and lipoproteins are utilized to engineer NPs [246-251], which enable the encapsulation 

of both hydrophilic and hydrophobic therapeutic agents, and protect them from biochemical 

degradation [246-251].  

We have recently demonstrated that local treatment of glioma with sHDL-mimicking nanodiscs 

containing ApoAI mimetic peptide, phospholipids, immunogenic cell death inducing 

chemotherapeutic (ICD) agent docetaxel, and adjuvant CpG oligodeoxynucleotide effectively elicit 

anti-tumor T cell activity and induce immunological memory response against tumor relapse [253]. 

Local drug delivery at the time of surgery allows for the treatment of residual tumor cells in the 

surgical cavity, prolonging the period to recurrence due to strong anti-glioma immunological 

memory response prompted by this NP-mediated therapy. Whether sHDL-mimicking nanodiscs 

loaded with ICD agent and adjuvant CpG can achieve a survival benefit in the clinic remains to be 

seen.  
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Nanovaccines based on superparamagnetic iron oxide (SPIO) NPs provide another novel approach 

to induce immunomodulatory anti-glioma response [254]. A preclinical study demonstrated that 

vaccine formulation containing SPIONPs encapsulated with heat shock protein 70, which induces 

anti-tumor immune response, improved antigen loading into the dendritic cells [254]. Treatment of 

glioma bearing mice with these SPIONPs inhibited glioma growth and elicited robust anti-glioma 

immune response. These data indicate that NP based vaccines could have a great potential for 

clinical translation. In addition, our team recently demonstrated that sHDL-mimicking nanodiscs 

serve as an efficient delivery platform targeted to lymphoid tissues [248, 255, 256]. Using this 

system, we have shown that neoantigens, which are tumor-specific antigens identified from mutated 

tumor cells, can be identified from GBM and used in conjunction with nanodiscs to generate potent 

T-cell responses against GBM (manuscript under review). Specifically, nanodiscs delivering GBM 

neoantigens combined with anti-PDL1 immune checkpoint blockade resulted in a significant 

increase in median survival and complete tumor regression in 93% and 33% of mice bearing GBM 

at flank and orthotopic sites, respectively, thus demonstrating a general strategy for personalized 

cancer immunotherapy [257]. 

By the modification of the NPs with various coating materials, efficient delivery of molecules can be 

achieved [258, 259]. One such modification, tumor-penetrating peptide, iRGD has been shown to 

facilitate the NP transport and CNS penetration [260-262]. We recently demonstrated that albumin 

NPs loaded with siRNA against signal and transducer of activation 3 (STAT3) transcription factor 

(which inhibits immune functions upon activation), and iRGD penetrate the BBB and that, when 

administered in combination with SOC, extend MS of mice bearing glioma and elicit robust anti-

glioma immune response [262]. 
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Other peptide modifications on nanoplatforms have been explored to minimize off target 

accumulation and facilitate active targeting or mediate BBB transport. Interleukin 13 (IL-13) 

receptor, IL-13 Rα2, is overexpressed on glioma cells, and has therefore become an attractive 

receptor target for peptide-modified nanotherapies [263]. This high affinity receptor is an 

advantageous target due to its decoy-like characteristics without causing downstream signaling 

activation and its low affinity towards unaffected brain tissue [264, 265]. Madhankumar A.B. et al. 

demonstrated IL-13-conjugated liposomes showed enhanced efficacy in a subcutaneous mouse 

model for glioma [263]. Gao H. et al. conjugated IL-13 to NPs which resulted in increased cellular 

uptake via endocytosis, higher internalization, and improved localization to the tumor site in an 

orthotopic glioma mouse model [266].  

The transferrin receptor (TfR) has been extensively researched as a target for various CNS diseases 

including gliomas because TfR is overexpressed on brain capillary endothelial cells and glioma cells 

[267]. It also facilitates transport across the BBB through TfR-mediated transcytosis. Despite 

exploiting the use of TfR as a target for decades, translation of systems leveraging these findings has 

been limited [268]. Epidermal growth factor receptor (EGFR), a receptor that is highly expressed in 

various cancers, is another target that has been of interest for nanotherapies [269]. The seven-peptide 

(sequenced HAIYPRH, T7), which has greater affinity for TfR, has been used for glioma targeting 

to deliver siRNA [270], coupled with other targeting ligands to demonstrate increased transport 

across the BBB and greater tumor penetration [271].  

Although targeting strategies through peptide conjugation can improve the delivery of therapeutic 

agents in NPs, they are still not sufficient to effectively promote drug delivery to brain tumors. Other 

design approaches have focused on modulating the size, morphology, surface charge, composition, 
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pH and coupling these design parameters to maximize therapeutic efficacy, transport across the 

BBB, control circulation time, reduce toxicity, and modify the biodistribution.  

As multidrug resistance and toxicity become evident challenges in glioma treatment, designing 

combination therapy delivery systems within nanoparticles is necessary. Combination therapy (CT) 

is a therapeutic dosing strategy where two or more drugs are combined. The motivation to 

potentially slow drug resistance, make therapeutic effect stronger via synergism, and maintain a 

therapeutic effect using lower doses, thus reducing toxicity and off target effects [272]. Effects of 

CT can be categorized as synergistic, enhancing, antagonistic, or additive. However, without a 

universal definition of synergism, it has been challenging to evaluate synergism claims and thus has 

further complicated FDA approval, grants applications, and ultimately advancing CT approaches 

[273]. Benefits of CT in nanoplatforms include delivering hydrophobic and hydrophilic drugs in one 

system, controlling release of one agent to sensitize the other, slowing down multidrug resistance, 

improving therapeutic effects while reducing toxicity, among others [274]. Though combining 

multiple drugs isotropically mixed throughout a carrier particle can be done to achieve benefits of 

CT, creating multicompartmental nanoparticles may be advantageous, because it can overcome 

critical formulation challenges (i.e., incompatible solvent systems, drug interactions), while 

expanding the design capabilities and maximizing therapeutic outcomes [274]. Leveraging multi-

compartmental carries can not only incorporate this solubility advantage but facilitate implementing 

other drugs regardless of their solubility compatibility. Liposomes have been used to incorporate 

hydrophobic drugs in the lipid envelope and hydrophilic drugs in the lipid envelope to produce a 

single carrier system. Similarly, bicompartmental nanoparticles can be used to deliver different 

drugs with independent release kinetics. Figure 3 shows a bicompartmental polymeric nanoparticle 

composed of polylactide-co-glycolide (PLGA) in one compartment and a mixture of PLGA and 
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acetal-modified dextran in the second. In this example, the acetal-modified dextran PLGA 

compartment was pH-responsive and could thus be used to release irinotecan, a cancer therapeutic, 

in an acidic pH microenvironment [275]. Thus, these act as pH responsive carriers, enabling drug 

release at optimal pH conditions.  

Another motive of such multicompartmental systems is to tune the pharmacokinetics of each section 

individually. Although a free drug combination may achieve synergism, the release kinetics of the 

drugs in the NP must be considered to ensure the ratio that achieved that synergism is maintained at 

the tumor site. Tuning the release is also a consideration in the delivery of sensitizing agents prior to 

cytotoxic drugs. Chemosensitizers such as verapamil, elacidar and tariquidar have been used to 

sensitize doxorubicin and paclitaxel and can be used to overcome MDR [274]. Guo L. et al. 

synthesized Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) liposomes (TRAIL-

LP) and doxorubicin-loaded liposomes (DOX-LP). DOX-LP sensitized TRAIL-LPs and therefore 

improved the therapeutic effect [276].  

Among the advantages, NPs can be tailored for drug loading and protection; their surface 

characteristics (size, shape and surface charge) can be exploited for extending the half-life in 

circulation, and they can be precisely biofunctionalized with specific targeting ligand for drug 

accumulation at the tumor site. In summary, NPs are an attractive, less-invasive, drug-delivery 

carrier for glioma immunotherapeutics, capable of overcoming the current challenges encountered 

by traditional therapeutic approaches.  

 

5. CONCLUSION 

Immunotherapy has become a revolution for cancer treatment for its outstanding outcomes in several 

types of malignancies. Applying these modalities to treat malignant glioma in the clinical setting is 
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challenging, as demonstrated by the lack of long-lasting improvements in patient survival. However, 

it is important to learn from the failures to find the best treatment combination to eradicate these 

tumors and generate anti-tumor immunological memory. We hope that this review will help neuro-

oncologists, neurosurgeons, the scientific community and the patients to become aware of the 

diversity of therapies under study in the glioma field and which are the obstacles that we need to 

tackle. 

 

6. EXPERT OPINION 

In the last decade, we have experienced an expansion in the immune-based anti-cancer therapy 

strategies, and many of those innovations have been approved for the treatment of different 

neoplasms in the clinical setting [65, 184, 277]. In the glioma field, many efforts have been devoted 

to the development of therapies aimed to harness the immune system potential to direct it against 

brain tumors and extensive preclinical data investigating different immunotherapeutic modalities 

yielded encouraging outcomes [27]. It is striking to observe how complex and sophisticated these 

therapies have become in order to be as specific and powerful as possible. Several Phase-I/II clinical 

trials have demonstrated safety and feasibility for the administration of immunotherapies in 

combination with SOC [71, 278]. Unfortunately, the outcomes of these trials have not yielded 

consistent results for primary brain tumors, highlighting the need of research models that better 

depict the human disease [73]. Even though these pitfalls, there are still many other alternatives 

under development in the preclinical setting and under evaluation in ongoing clinical trials [73, 277].  

There are several characteristics intrinsic to brain tumors that make them particularly difficult to 

target by the immune system. For instance, the presence of the BBB, the immunosuppressive TME, 

the low mutational burden and the antigen heterogeneity [278]. However, the evidence that patients 
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with disorders related to the hyperactivation of the immune response, such as allergies, had a lower 

risk of suffering glioma [279], evidenced that the immune system plays a role in the development of 

this disease and that pursuing the objective of directing it to fight brain cancer is a path worth taking.  

Lately, the use of CAR T-cells for glioma treatment has become an exciting idea in the neuro-

oncology community and many efforts are being put to obtain the best CAR T-cell. For example, an 

alternative recently presented by Choi BD et al., is the use of CAR T-cells secreting BiTEs. In an 

elegant study, they used T-cells expressing a CAR specific for EGFRvIII and BiTEs against EGFR. 

They could confirm that the secretion of EGFR-BiTEs by the EGFRvIII-CAR T-cells avoided 

antigen escape observed previously with monospecific EGFRvIII-CAR T-cells alone and eliminated 

the tumors in models of heterogeneous glioma, expressing both EGFRvIII and EGFR [204]. The 

clinical relevance of CAR T-cells expressing BiTEs still needs to be evaluated. 

Undoubtedly, combinational therapies constitute the best approach to treat malignant glioma. 

Considering the large amount of immune-based therapies developed, the numerous possible targets, 

the current SOC, and the many possible timings and routes for drug administration, the number of 

potential combinations has increased exponentially. Several combinatorial approaches are today 

under study in clinical trials, not only integrating immunotherapies with SOC but also with other 

immune-stimulant agents. Currently, there is no consensus on which is the best combination or the 

ideal timing for drug administration. Recently, results from a clinical trial in which Pembrolizumab 

(anti PD-L1) was administered before or after surgery resection of the tumor demonstrated the 

importance of the selection of the starting point for the treatment. Patients who received the anti-PD-

L1 as neoadjuvant (before surgery) lived as twice as long as the patients treated with the same drug 

as adjuvant (after surgery) and the infiltration of activated T-cells into the tumor was demonstrated 

in the former group [82]. Also, uncovering the interactions between SOC and new drugs is crucial to 
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decide how and when treat a patient and prevent misleading results in clinical trials [71]. For 

example, while lymphopenia, a common consequence after chemoradiation treatment for malignant 

glioma, is a disadvantage for the application of cancer vaccines, it could represent a favorable 

context for the treatment with adoptive cell therapies, such as CAR T-cells or DCV [71]. Thus, it is 

crucial to keep track of the results of the latest trials studying different treatment variants to improve 

patient selection, to prevent random testing and to build collaborative guidelines for the treatment of 

glioma. 

Moreover, as drug penetration in the brain is an issue for GBM treatment, different ways of 

administering these agents are being assessed and, so far, intracranial delivery, though invasive, has 

demonstrated to be the most efficient in several approaches. However, the development of less 

invasive methods of administration with brain or tumor homing characteristics has given 

encouraging results in the pre-clinical setting lately [251]. Nanoparticles have emerged as a new and 

safe method for the delivery of agents targeting brain tumors and preclinical results are encouraging 

[253]. For example, nanoparticles injected i.v. composed of albumin, a siRNA against STAT3 and 

the tumor penetrating peptide iRGD, showed effective brain tumor delivery and a significant 

survival benefit in an aggressive glioma model [262].  It would be interesting to test the efficacy of 

these particles for the delivery of immune-stimulatory agents in the clinical setting. 

In addition to the progress made in the field of immunotherapeutic approaches, more sophisticated 

imaging systems for brain surgery and more accurate radiotherapy techniques are being developed, 

which would improve current SOC efficacy, reducing the morbidity and clinical deterioration 

associated to these therapies [280]. For example, there was found a correlation between 

hyperfractionated radiation and TMZ administration with CD4+ T-cell depletion in GBM patients, 

indicating immunosuppression [281]. This immunosuppressed state also correlated with worse 

ACCEPTED M
ANUSCRIP

T



35 
 

Information Classification: General 

prognosis [281]. Probably, the application of immune-stimulatory agents in an improved clinical 

setting might show an enhanced synergistic effect for the combinational approach with SOC. 

Moreover, it is highly important to continue with the efforts to develop models that more faithfully 

recapitulate GBM features, in order to be able to predict more accurately the outcomes in the clinical 

setting. Finally, it would be necessary to find biomarkers that will help the neuro-oncologists and 

neurosurgeons to better select patients for clinical trials and to monitor the efficacy of the treatment 

or tumor progression.  
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ANNOTATIONS 

* Ostrom QT, Gittleman H, Truitt G et al. CBTRUS statistical report: primary brain and other central nervous 

system tumors diagnosed in the United States in 2011–2015. Neuro-oncology 2018; 20:iv1-iv86. 

Thorough and comprehensive summary of the epidemiology of primary brain and other central nervous system 

(CNS) tumors in the United States (US) population from 2011 to 2015. This study includes malignant and non-

malignant CNS tumors. 

 

* Louis DN, Perry A, Reifenberger G et al. The 2016 World Health Organization Classification of Tumors of the 

Central Nervous System: a summary. Acta Neuropathologica 2016; 131:803-820. 

The latest World Health Organization classification of tumors of the CNS, using molecular parameters for the first 

time, in addition to histology, to define many tumor entities. 

 

** Verhaak RG. Moving the needle: Optimizing classification for glioma. Science translational medicine 2016; 

8:350fs314. 

Easy-to-follow guidelines for the classification of gliomas taking into account molecular data. 

 

** Mackay A, Burford A, Carvalho D et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and 

diffuse intrinsic pontine glioma. Cancer cell 2017; 32:520-537. e525. 

Comprehensive work on the specific molecular characteristics and classification of pediatric HGG. 

 

ACCEPTED M
ANUSCRIP

T



50 
 

Information Classification: General 

* Engelhardt B, Vajkoczy P, Weller RO. The movers and shakers in immune privilege of the CNS. Nat Immunol 

2017; 18:123-131. 

Comprehensive review that summarizes the current knowledge on the cellular and molecular mechanisms 

involved in immune-cell trafficking and lymphatic drainage from the CNS, emphasizing the fact that 

understanding immune privilege of the CNS requires intimate knowledge of its unique anatomy. 

 

** Negi N, Das BK. CNS: Not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. 

International reviews of immunology 2018; 37:57-68. 

This concise review depicts the current view of the interactions between the immune system and the CNS. 

 

* Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer Cell 2017; 31:326-341. 

Review discussing the brain tumor microenvironment features, including brain-resident cell types, the blood-brain 

barrier, and various aspects of its immune-suppressive environment. 

 

** Young JS, Dayani F, Morshed RA et al. Immunotherapy for high grade gliomas: a clinical update and practical 

considerations for neurosurgeons. World neurosurgery 2019. 

This review summarizes the immuno-therapy strategies for high-grade gliomas in completed and ongoing trials 

until April 2019 and includes recommendations for their practical application in the clinical setting. 

 

ABREVIATIONS 

BBB Blood-Brain Barrier 
CAR Chimeric Antigen Receptor 
CNS Central Nervous System 
CCNU Lomustine 
CT Combination Therapy 
DC Dendritic Cell 
DCV Dendritic Cell Vaccines 
DMG Diffuse Midline Glioma 
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FDA Food And Drug Administration 
GBM Glioblastoma 
HMGB1 High Mobility Group Box 1 
i.v. Intravenously 
IDO1 Indoleamine 2,3-Dioxygenase 1 
MS Median Survival 
NPs Nanoparticles 
OS Overall Survival 
OV Oncolytic Virus 
PFS Progression Free Survival 
rGBM Recurrent Glioblastoma 
SOC Standard Of Care 
TAA Tumor-Associated Antigen 
TCR T-Cell Receptor 
TME Tumor Microenvironment 
TMZ Temozolomide 
TSA Tumor-Specific Antigen 
TT-RNA Total Tumor RNA  
VDX Veledimexin 
VEGF Vascular Endothelial Growth Factor  
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TABLE 1 

 

Type of 
immunotherap

y NCT Title Status Phase URL 
TUMOR 

ASSOCIATED 
ANTIGENS/PE NCT02507583 

Antisense102: Pilot 
Immunotherapy for Newly 
Diagnosed Malignant Glioma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02507583 
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PTIDE 
VACCINES 

NCT02754362 

A Toll-like Receptor Agonist as 
an Adjuvant to Tumor Associated 
Antigens (TAA) Mixed With 
Montanide ISA-51 VG With 
Bevacizumab for Patients With 
Recurrent Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02754362 

NCT02455557 

SurVaxM Vaccine Therapy and 
Temozolomide in Treating 
Patients With Newly Diagnosed 
Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02455557 

NCT02287428 

Personalized NeoAntigen Cancer 
Vaccine w RT Plus 
Pembrolizumab for Patients With 
MGMT Unmethylated, Newly 
Diagnosed GBM Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02287428 

NCT02960230 

H3.3K27M Peptide Vaccine for 
Children With Newly Diagnosed 
DIPG and Other Gliomas Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02960230 

NCT02193347 
IDH1 Peptide Vaccine for 
Recurrent Grade II Glioma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02193347 

NCT02750891 

A Study of DSP-7888 in Pediatric 
Patients With Relapsed or 
Refractory High Grade Gliomas Active, not recruiting Phase-I/II 

https://ClinicalTri
als.gov/show/NC
T02750891 

NCT01814813 

Vaccine Therapy With 
Bevacizumab Versus 
Bevacizumab Alone in Treating 
Patients With Recurrent 
Glioblastoma Multiforme That 
Can Be Removed by Surgery Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01814813 

NCT02924038 

A Study of Varlilumab and 
IMA950 Vaccine Plus Poly-ICLC 
in Patients With WHO Grade II 
Low-Grade Glioma (LGG) Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02924038 

NCT03750071 

VXM01 Plus Avelumab 
Combination Study in 
Progressive Glioblastoma Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03750071 

NCT03382977 

Study to Evaluate Safety, 
Tolerability, and Optimal Dose of 
Candidate GBM Vaccine VBI-
1901 in Recurrent GBM Subjects Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03382977 

NCT02549833 

Neo-adjuvant Evaluation of 
Glioma Lysate Vaccines in WHO 
Grade II Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02549833 

NCT03893903 

AMPLIFYing NEOepitope-
specific VACcine Responses in 
Progressive Diffuse Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03893903 

NCT03299309 

PEP-CMV in Recurrent 
MEdulloblastoma/Malignant 
Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03299309 

NCT01903330 

ERC1671/GM-
CSF/Cyclophosphamide for the 
Treatment of Glioblastoma 
Multiforme Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01903330 

NCT03916757 

V-Boost Immunotherapy in 
Glioblastoma Multiforme Brain 
Cancer Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03916757 

NCT02722512 

Trial of Heat Shock Protein 
Peptide Complex-96 (HSPPC-
96) Vaccine Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02722512 
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NCT03422094 

Neoantigen-based Personalized 
Vaccine Combined With Immune 
Checkpoint Blockade Therapy in 
Patients With Newly Diagnosed, 
Unmethylated Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03422094 

NCT03018288 

Radiation Therapy Plus 
Temozolomide and 
Pembrolizumab With and 
Without HSPPC-96 in Newly 
Diagnosed Glioblastoma (GBM) Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03018288 

NCT02358187 
A Vaccine Trial for Low Grade 
Gliomas Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02358187 

NCT03650257 

A Large-scale Research for 
Immunotherapy of Glioblastoma 
With Autologous Heat Shock 
Protein gp96 Not yet recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03650257 

NCT04015700 

Neoantigen-based Personalized 
DNA Vaccine in Patients With 
Newly Diagnosed, Unmethylated 
Glioblastoma Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04015700 

NCT03223103 

Safety and Immunogenicity of 
Personalized Genomic Vaccine 
and Tumor Treating Fields 
(TTFields) to Treat Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03223103 

NCT03382977 

Study to Evaluate Safety, 
Tolerability, and Optimal Dose of 
Candidate GBM Vaccine VBI-
1901 in Recurrent GBM Subjects Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03382977 

NCT04116658 

First-in-Human, Phase-Ib/2a Trial 
of a Multipeptide Therapeutic 
Vaccine in Patients With 
Progressive Glioblastoma Not yet recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T04116658 

NCT03149003 

A Study of DSP-7888 Dosing 
Emulsion in Combination With 
Bevacizumab in Patients With 
Recurrent or Progressive 
Glioblastoma Following Initial 
Therapy Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03149003 

NCT04013672 

Study of Pembrolizumab Plus 
SurVaxM for Glioblastoma at 
First Recurrence Not yet recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T04013672 

NCT03665545 

Pembrolizumab in Association 
With the IMA950/Poly-ICLC for 
Relapsing Glioblastoma Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03665545 

NCT02864368 

Peptide Targets for Glioblastoma 
Against Novel Cytomegalovirus 
Antigens Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02864368 

NCT04280848 

Anticancer Therapeutic 
Vaccination Using Telomerase-
derived Universal Cancer 
Peptides in Glioblastoma Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T04280848 

NCT03491683 

INO-5401 and INO-9012 
Delivered by Electroporation 
(EP) in Combination With 
Cemiplimab (REGN2810) in 
Newly-Diagnosed Glioblastoma 
(GBM) Active, not recruiting Phase-I/II 

https://ClinicalTri
als.gov/show/NC
T03491683 

DENDRITIC 
CELL 

VACCINES NCT04201873 

Pembrolizumab and a Vaccine 
(ATL-DC) for the Treatment of 
Surgically Accessible Recurrent Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04201873 
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Glioblastoma 

NCT01808820 

Dendritic Cell (DC) Vaccine for 
Malignant Glioma and 
Glioblastoma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T01808820 

NCT02840123 

Safety Study of DIPG Treatment 
With Autologous Dendritic Cells 
Pulsed With Lysated Allegenic 
Tumor Lines Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02840123 

NCT01204684 
Dendritic Cell Vaccine for 
Patients With Brain Tumors Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01204684 

NCT02010606 

Phase I Study of a Dendritic Cell 
Vaccine for Patients With Either 
Newly Diagnosed or Recurrent 
Glioblastoma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02010606 

NCT02529072 
Nivolumab With DC Vaccines for 
Recurrent Brain Tumors Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02529072 

NCT01326104 

Vaccine Immunotherapy for 
Recurrent Medulloblastoma and 
Primitive Neuroectodermal 
Tumor Active, not recruiting Phase I/II 

https://ClinicalTri
als.gov/show/NC
T01326104 

NCT00639639 

Vaccine Therapy in Treating 
Patients With Newly Diagnosed 
Glioblastoma Multiforme Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T00639639 

NCT03615404 

Cytomegalovirus (CMV) RNA-
Pulsed Dendritic Cells for 
Pediatric Patients and Young 
Adults With WHO Grade IV 
Glioma, Recurrent Malignant 
Glioma, or Recurrent 
Medulloblastoma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03615404 

NCT02366728 
DC Migration Study for Newly-
Diagnosed GBM Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02366728 

NCT02808364 

Personalized Cellular Vaccine for 
Recurrent Glioblastoma 
(PERCELLVAC2) Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02808364 

NCT02709616 
Personalized Cellular Vaccine for 
Glioblastoma (PERCELLVAC) Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02709616 

NCT03334305 

Adoptive Cellular Therapy in 
Pediatric Patients With High-
grade Gliomas Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03334305 

NCT03396575 

Brain Stem Gliomas Treated 
With Adoptive Cellular Therapy 
During Focal Radiotherapy 
Recovery Alone or With Dose-
intensified Temozolomide (Phase 
I) Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03396575 

NCT03879512 

Autologous Dendritic Cells and 
Metronomic Cyclophosphamide 
for Relapsed High-Grade 
Gliomas in Children and 
Adolescents Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03879512 

NCT01567202 
Study of DC Vaccination Against 
Glioblastoma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01567202 

NCT03927222 
Immunotherapy Targeted 
Against Cytomegalovirus in Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
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Patients With Newly-Diagnosed 
WHO Grade IV Unmethylated 
Glioma 

T03927222 

NCT02649582 

Adjuvant Dendritic Cell-
immunotherapy Plus 
Temozolomide in Glioblastoma 
Patients Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T02649582 

NCT03395587 

Efficiency of Vaccination With 
Lysate-loaded Dendritic Cells in 
Patients With Newly Diagnosed 
Glioblastoma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03395587 

NCT04115761 

A Phase II, Randomized, Open-
Label, Parallel-Group Study to 
Evaluate the Efficacy and Safety 
of Autologous Dendritic Cell 
Vaccination (ADCV01) as an 
Add-On Treatment for Primary 
Glioblastoma Multiforme (GBM) 
Patients Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T04115761 

NCT03548571 

Dendritic Cell Immunotherapy 
Against Cancer Stem Cells in 
Glioblastoma Patients Receiving 
Standard Therapy Recruiting 

Phase-
II|Phase 
III 

https://ClinicalTri
als.gov/show/NC
T03548571 

NCT03400917 

Autologous Dendritic Cells 
Loaded With Autologous Tumor 
Associated Antigens for 
Treatment of Newly Diagnosed 
Glioblastoma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03400917 

NCT02465268 

Vaccine Therapy for the 
Treatment of Newly Diagnosed 
Glioblastoma Multiforme Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02465268 

ONCOLYTIC 
VIRUS 

NCT02798406 

Combination Adenovirus + 
Pembrolizumab to Trigger 
Immune Virus Effects Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02798406 

NCT02444546 

Wild-Type Reovirus in 
Combination With Sargramostim 
in Treating Younger Patients 
With High-Grade Relapsed or 
Refractory Brain Tumors Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02444546 

NCT03973879 

Combination of PVSRIPO and 
Atezolizumab for Adults With 
Recurrent Malignant Glioma Not yet recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03973879 

NCT03576612 

GMCI, Nivolumab, and Radiation 
Therapy in Treating Patients 
With Newly Diagnosed High-
Grade Gliomas Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03576612 

NCT03178032 

Oncolytic Adenovirus, DNX-
2401, for Naive Diffuse Intrinsic 
Pontine Gliomas Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03178032 

NCT03896568 

Oncolytic Adenovirus DNX-2401 
in Treating Patients With 
Recurrent High-Grade Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03896568 

NCT03072134 

Neural Stem Cell Based 
Virotherapy of Newly Diagnosed 
Malignant Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03072134 

NCT03152318 

A Study of the Treatment of 
Recurrent Malignant Glioma With 
rQNestin34.5v.2 Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03152318 

NCT03657576 
Trial of C134 in Patients With 
Recurrent GBM Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03657576 
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NCT03294486 

Safety and Efficacy of the 
ONCOlytic VIRus Armed for 
Local Chemotherapy, TG6002/5-
FC, in Recurrent Glioblastoma 
Patients Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03294486 

NCT02062827 

Genetically Engineered HSV-1 
Phase-I Study for the Treatment 
of Recurrent Malignant Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02062827 

NCT03714334 
DNX-2440 Oncolytic Adenovirus 
for Recurrent Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03714334 

NCT02457845 

HSV G207 Alone or With a 
Single Radiation Dose in 
Children With Progressive or 
Recurrent Supratentorial Brain 
Tumors Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02457845 

NCT03911388 

HSV G207 in Children With 
Recurrent or Refractory 
Cerebellar Brain Tumors Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03911388 

NCT02986178 
PVSRIPO in Recurrent Malignant 
Glioma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02986178 

NCT01491893 
PVSRIPO for Recurrent 
Glioblastoma (GBM) Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T01491893 

NCT03043391 

Phase-Ib Study PVSRIPO for 
Recurrent Malignant Glioma in 
Children Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03043391 

GENE 
THERAPY 

NCT03679754 

Evaluation of Ad-RTS-hIL-12 + 
Veledimex in Subjects With 
Recurrent or Progressive 
Glioblastoma, a Substudy to 
ATI001-102 Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03679754 

NCT01811992 

Combined Cytotoxic and 
Immune-Stimulatory Therapy for 
Glioma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T01811992 

NCT03330197 

A Study of Ad-RTS-hIL-12 + 
Veledimex in Pediatric Subjects 
With Brain Tumors or DIPG Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03330197 

NCT02026271 

A Study of Ad-RTS-hIL-12 With 
Veledimex in Subjects With 
Glioblastoma or Malignant 
Glioma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02026271 

NCT04006119 

Study of Ad-RTS-hIL-12 + 
Veledimex in Combination With 
Cemiplimab in Subjects With 
Recurrent or Progressive 
Glioblastoma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T04006119 

NCT03636477 

A Study of Ad-RTS-hIL-12 With 
Veledimex in Combination With 
Nivolumab in Subjects With 
Glioblastoma; a Substudy to 
ATI001-102 Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03636477 

IMMUNOSUPP
RESSIVE 

CHECKPOINT 
INHIBITORS 

NCT02794883 

Tremelimumab and Durvalumab 
in Combination or Alone in 
Treating Patients With Recurrent 
Malignant Glioma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02794883 

NCT02311920 

Ipilimumab and/or Nivolumab in 
Combination With Temozolomide 
in Treating Patients With Newly 
Diagnosed Glioblastoma or Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02311920 
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NCT02337686 

Pembrolizumab in Treating 
Patients With Recurrent 
Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02337686 

NCT02530502 

Radiation Therapy With 
Temozolomide and 
Pembrolizumab in Treating 
Patients With Newly Diagnosed 
Glioblastoma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02530502 

NCT02968940 

Avelumab With Hypofractionated 
Radiation Therapy in Adults With 
Isocitrate Dehydrogenase (IDH) 
Mutant Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02968940 

NCT02852655 

A Pilot Surgical Trial To Evaluate 
Early Immunologic 
Pharmacodynamic Parameters 
For The PD-1 Checkpoint 
Inhibitor, Pembrolizumab (MK-
3475), In Patients With Surgically 
Accessible 
Recurrent/Progressive 
Glioblastoma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02852655 

NCT02526017 

Study of Cabiralizumab in 
Combination With Nivolumab in 
Patients With Selected Advanced 
Cancers Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02526017 

NCT02359565 

Pembrolizumab in Treating 
Younger Patients With 
Recurrent, Progressive, or 
Refractory High-Grade Gliomas, 
Diffuse Intrinsic Pontine Gliomas, 
Hypermutated Brain Tumors, 
Ependymoma or 
Medulloblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02359565 

NCT03690869 

REGN2810 in Pediatric Patients 
With Relapsed, Refractory Solid, 
or CNS Tumors and Safety and 
Efficacy of REGN2810 in 
Combination With Radiotherapy 
in Pediatric Patients With Newly 
Diagnosed or rGlioma Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03690869 

NCT03743662 

Nivolumab With Radiation 
Therapy and Bevacizumab for 
Recurrent MGMT Methylated 
Glioblastoma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03743662 

NCT04145115 

A Study Testing the Effect of 
Immunotherapy (Ipilimumab and 
Nivolumab) for People With 
Recurrent Glioblastoma With 
Elevated Mutational Burden Not yet recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T04145115 

NCT03341806 

Avelumab With Laser Interstitial 
Therapy for Recurrent 
Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03341806 

NCT03707457 

Biomarker-Driven Therapy Using 
Immune Activators With 
Nivolumab in Patients With First 
Recurrence of Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03707457 

NCT03673787 
A Trial of Ipatasertib in 
Combination With Atezolizumab Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03673787 
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NCT02311582 

MK-3475 in Combination With 
MRI-guided Laser Ablation in 
Recurrent Malignant Gliomas Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T02311582 

NCT03925246 

Efficacy of Nivolumab for 
Recurrent IDH Mutated High-
Grade Gliomas Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03925246 

NCT03718767 

Nivolumab in People With IDH-
Mutant Gliomas With and 
Without Hypermutator Phenotype Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03718767 

NCT03557359 
Nivolumab for Recurrent or 
Progressive IDH Mutant Gliomas Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03557359 

NCT03173950 

Immune Checkpoint Inhibitor 
Nivolumab in People With Select 
Rare CNS Cancers Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03173950 

NCT03493932 

Cytokine Microdialysis for Real-
Time Immune Monitoring in 
Glioblastoma Patients 
Undergoing Checkpoint 
Blockade Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03493932 

NCT03991832 

Study of Olaparib and 
Durvalumab in IDH-Mutated 
Solid Tumors Not yet recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03991832 

NCT03405792 

Study Testing The Safety and 
Efficacy of Adjuvant 
Temozolomide Plus TTFields 
(OptuneÂ®) Plus Pembrolizumab 
in Patients With Newly 
Diagnosed Glioblastoma (2-THE-
TOP) Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03405792 

NCT03890952 

Translational Study of Nivolumab 
in Combination With 
Bevacizumab for Recurrent 
Glioblastoma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03890952 

NCT03452579 

Nivolumab Plus Standard Dose 
Bevacizumab Versus Nivolumab 
Plus Low Dose Bevacizumab in 
GBM Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03452579 

NCT03277638 

Laser Interstitial Thermotherapy 
(LITT) Combined With 
Checkpoint Inhibitor for 
Recurrent GBM (RGBM) Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03277638 

NCT03174197 

Atezolizumab in Combination 
With Temozolomide and 
Radiation Therapy in Treating 
Patients With Newly Diagnosed 
Glioblastoma Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03174197 

NCT03233152 

Intra-tumoral Ipilimumab Plus 
Intravenous Nivolumab Following 
the Resection of Recurrent 
Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03233152 

NCT03047473 

Avelumab in Patients With Newly 
Diagnosed Glioblastoma 
Multiforme Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03047473 

NCT04047706 

Nivolumab, BMS-986205, and 
Radiation Therapy With or 
Without Temozolomide in 
Treating Patients With Newly 
Diagnosed Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04047706 

NCT03899857 
Pembrolizumab for Newly 
Diagnosed Glioblastoma Not yet recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
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T03899857 

NCT03722342 

TTAC-0001 and Pembrolizumab 
Combination phase1b Trial in 
Recurrent Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03722342 

NCT03961971 

Trial of Anti-Tim-3 in 
Combination With Anti-PD-1 and 
SRS in Recurrent GBM Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03961971 

NCT02336165 
Phase-II Study of MEDI4736 in 
Patients With Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02336165 

NCT02658981 

Anti-LAG-3 Alone & in 
Combination w/ Nivolumab 
Treating Patients w/ Recurrent 
GBM (Anti-CD137 Arm Closed 
10/16/18) Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02658981 

NCT03797326 

Efficacy and Safety of 
Pembrolizumab (MK-3475) Plus 
Lenvatinib (E7080/MK-7902) in 
Previously Treated Participants 
With Select Solid Tumors (MK-
7902-005/E7080-G000-
224/LEAP-005) Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03797326 

NCT04225039 

Anti-GITR/Anti-PD1/Stereotactic 
Radiosurgery, in Recurrent 
Glioblastoma Not yet recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T04225039 

NCT04195139 

Nivolumab and Temozolomide 
Versus Temozolomide Alone in 
Newly Diagnosed Elderly 
Patients With GBM 

Recruiting Phase-II 
https://ClinicalTri
als.gov/show/NC
T04195139 

NCT04267146 

Nivolumab in Combination With 
Temozolomide and Radiotherapy 
in Children and Adolescents With 
Newly Diagnosed High-
grade Glioma Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T04267146 

NCT03661723 

Pembrolizumab and 
Reirradiation in Bevacizumab 
NaÃ¯ve and Bevacizumab 
Resistant Recurrent 
Glioblastoma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03661723 

CAR T-CELLS 

NCT03389230 

Memory-Enriched T Cells in 
Treating Patients With Recurrent 
or Refractory Grade III-IV Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03389230 

NCT02208362 

Genetically Modified T-cells in 
Treating Patients With Recurrent 
or Refractory Malignant Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02208362 

NCT04099797 

C7R-GD2.CAR T Cells for 
Patients With GD2-expressing 
Brain Tumors (GAIL-B) Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04099797 

NCT04003649 

IL13Ralpha2-Targeted Chimeric 
Antigen Receptor (CAR) T Cells 
With or Without Nivolumab and 
Ipilimumab in Treating Patients 
With Recurrent or Refractory 
Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04003649 

NCT03726515 
CART-EGFRvIII + 
Pembrolizumab in GBM Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03726515 

NCT03383978 

Intracranial Injection of NK-
92/5.28.z Cells in Patients With 
Recurrent HER2-positive Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03383978 
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NCT03941626 

Autologous CAR-T/TCR-T Cell 
Immunotherapy for Solid 
Malignancies Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03941626 

NCT03638167 

EGFR806-specific CAR T Cell 
Locoregional Immunotherapy for 
EGFR-positive Recurrent or 
Refractory Pediatric CNS 
Tumors Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03638167 

NCT03500991 

HER2-specific CAR T Cell 
Locoregional Immunotherapy for 
HER2-positive 
Recurrent/Refractory Pediatric 
CNS Tumors Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03500991 

NCT04077866 
B7-H3 CAR-T for Recurrent or 
Refractory Glioblastoma Not yet recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T04077866 

NCT03283631 
Intracerebral EGFR-vIII CAR-T 
Cells for Recurrent GBM Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03283631 

NCT03423992 

Personalized Chimeric Antigen 
Receptor T Cell Immunotherapy 
for Patients With Recurrent 
Malignant Gliomas Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03423992 

NCT04196413 

GD2 CAR T Cells in 
DiffuseIntrinsicPontine 
Gliomas(DIPG) & Spinal 
DiffuseMidline Glioma(DMG) Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04196413 

NCT04185038 

Study of B7-H3-Specific CAR T 
Cell Locoregional 
Immunotherapy for Diffuse 
Intrinsic Pontine Glioma/Diffuse 
Midline Glioma and Recurrent or 
Refractory Pediatric Central 
Nervous System Tumors Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04185038 

NCT04214392 

Chimeric Antigen Receptor 
(CAR) T Cells With a Chlorotoxin 
Tumor-Targeting Domain for the 
Treatment of Recurrent or 
Progressive Glioblastoma Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04214392 

NCT04270461 

NKG2D-based CAR T-cells 
Immunotherapy for Patient With 
r/r NKG2DL+ Solid Tumors Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04270461 

NCT03638206 
Autologous CAR-T/TCR-T Cell 
Immunotherapy for Malignancies Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03638206 

ANTIBODY 
DELIVERY 

NCT01478321 

Efficacy of Hypofractionated XRT 
w/Bev. + Temozolomide for 
Recurrent Gliomas Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01478321 

NCT02330562 

Stage 1: Marizomib + 
Bevacizumab in WHO Gr IV 
GBM; Stage 2: Marizomib Alone; 
Stage 3: Combination of 
Marizomib and Bevacizumab Active, not recruiting Phase I/II 

https://ClinicalTri
als.gov/show/NC
T02330562 

NCT00337207 

Bevacizumab in Treating 
Patients With Recurrent or 
Progressive Glioma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T00337207 

NCT01392209 

Hypofractionated Stereotactic 
Radiotherapy With Bevacizumab 
in the Treatment of Recurrent 
Malignant Glioma Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T01392209 
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NCT01730950 

Bevacizumab With or Without 
Radiation Therapy in Treating 
Patients With Recurrent 
Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01730950 

NCT01125046 

Bevacizumab in Treating 
Patients With Recurrent or 
Progressive Meningiomas Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01125046 

NCT02142803 

TORC1/2 Inhibitor MLN0128 and 
Bevacizumab in Treating 
Patients With Recurrent 
Glioblastoma or Advanced Solid 
Tumors Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02142803 

NCT01149850 

Bevacizumab and Temozolomide 
in Treating Older Patients With 
Newly-Diagnosed Glioblastoma 
Multiforme or Gliosarcoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01149850 

NCT01609790 

Bevacizumab With or Without 
Trebananib in Treating Patients 
With Recurrent Brain Tumors Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01609790 

NCT02974621 

Cediranib Maleate and Olaparib 
Compared to Bevacizumab in 
Treating Patients With Recurrent 
Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02974621 

NCT03139916 

Bavituximab With Radiation and 
Temozolomide for Patients With 
Newly Diagnosed Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03139916 

NCT02540161 

Phase-II Study of Sym004 for 
Adult Patients With Recurrent 
Glioblastoma Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02540161 

NCT00445965 

Iodine I 131 Monoclonal Antibody 
3F8 in Treating Patients With 
Central Nervous System Cancer 
or Leptomeningeal Cancer Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T00445965 

NCT01631552 
Phase I/II Study of IMMU-132 in 
Patients With Epithelial Cancers Active, not recruiting Phase-I/II 

https://ClinicalTri
als.gov/show/NC
T01631552 

NCT02573324 

A Study of ABT-414 in Subjects 
With Newly Diagnosed 
Glioblastoma (GBM) With 
Epidermal Growth Factor 
Receptor (EGFR) Amplification Active, not recruiting 

Phase-
II/III 

https://ClinicalTri
als.gov/show/NC
T02573324 

NCT02590263 

Study Evaluating ABT-414 in 
Japanese Subjects With 
Malignant Glioma Active, not recruiting Phase-I/II 

https://ClinicalTri
als.gov/show/NC
T02590263 

NCT03779230 

Safety and Efficacy of L19TNF in 
Patients With Isocitrate 
Dehydrogenase (IDH) Wildtype 
WHO Grade III / IV Glioma at 
First Relapse Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03779230 

NCT03687957 

rhIL-7-hyFc on Increasing 
Lymphocyte Counts in Patients 
With Newly Diagnosed Non-
lymphopenic Gliomas Following 
Radiation and Temzolomide Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03687957 

NCT03620032 

Study of Re-irradiation at 
Relapse Versus RT and Multiple 
Elective rt Courses Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03620032 

NCT02303678 
D2C7 for Adult Patients With 
Recurrent Malignant Glioma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02303678 

NCT03389802 
Phase I Study of APX005M in 
Pediatric CNS Tumors Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
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T03389802 

NCT03631836 

Phase I Study of Monoclonal 
Antibondy (GS) 5745, an Matix 
Metalloproteinase 9 (MMP9) Mab 
Inhibitor, in Combination With 
Bevacizumab in Patients With 
Recurrent Glioblastoma Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03631836 

NCT02800486 

Super Selective Intra-arterial 
Repeated Infusion of Cetuximab 
(Erbitux) With Reirradiation for 
Treatment of 
Relapsed/Refractory GBM, AA, 
and AOA Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02800486 

NCT03856099 

TTAC-0001 Phase II Trial With 
Recurrent Glioblastoma 
Progressed on Bevacizumab Not yet recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03856099 

NCT03374943 
A Trial of KB004 in Patients With 
Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03374943 

NCT03618667 

GC1118 in Recurrent 
Glioblastoma Patients With High 
EGFR Amplification Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03618667 

NCT01894061 

NovoTTF-100A With 
Bevacizumab (Avastin) in 
Patients With Recurrent 
Glioblastoma Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01894061 

NCT03619239 

Dose-escalation Study to 
Evaluate the Safety and 
Tolerability of GX-I7 in Patients 
With Glioblastoma Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03619239 

NCT02669173 
Capecitabine + Bevacizumab in 
Patients With Recurrent 
Glioblastoma 

Recruiting Phase-I 
https://ClinicalTri
als.gov/show/NC
T02669173 

NCT04160494 
D2C7-IT With Atezolizumab for 
Recurrent Gliomas Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04160494 

NCT04178057 

Phase I Clinical Study of GB222 
to Evaluate the Safety, 
Tolerability and PK Profiles. Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04178057 

NCT04250064 

A Study of Low Dose 
Bevacizumab With Conventional 
Radiotherapy Alone in Diffuse 
Intrinsic Pontine Glioma Not yet recruiting Phase II 

https://ClinicalTri
als.gov/show/NC
T04250064 

OTHERS 

NCT02415153 

Pomalidomide in Treating 
Younger Patients With 
Recurrent, Progressive, or 
Refractory Central Nervous 
System Tumors Active, not recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02415153 

NCT03257631 

A Study of Pomalidomide 
Monotherapy for Children and 
Young Adults With Recurrent or 
Progressive Primary Brain 
Tumors Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03257631 

NCT03532295 

Epacadostat in Combination With 
Radiation Therapy and 
Avelumab in Patients With 
Recurrent Gliomas Not yet recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03532295 

NCT04049669 

Pediatric Trial of Indoximod With 
Chemotherapy and Radiation for 
Relapsed Brain Tumors or Newly 
Diagnosed DIPG Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T04049669 
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FIGURE LEGENDS 

NCT02502708 

Study of the IDO Pathway 
Inhibitor, Indoximod, and 
Temozolomide for Pediatric 
Patients With Progressive 
Primary Malignant Brain Tumors Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T02502708 

NCT03392545 

Combination of Immunization 
and Radiotherapy for Malignant 
Gliomas (InSituVac1) Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03392545 

NCT02661282 

Autologous CMV-Specific 
Cytotoxic T Cells and 
Temozolomide in Treating 
Patients With Glioblastoma Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T02661282 

NCT04254419 

Intra-tumoral Injection of Natural 
Killer Cells in High-Grade 
Gliomas Not yet recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T04254419 

NCT04102436 Non-Viral TCR Gene Therapy Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T04102436 

NCT03344250 
Phase I EGFR BATs in Newly 
Diagnosed Glioblastoma Recruiting Phase-I 

https://ClinicalTri
als.gov/show/NC
T03344250 

NCT03412877 

Administration of Autologous T-
Cells Genetically Engineered to 
Express T-Cell Receptors 
Reactive Against Mutated 
Neoantigens in People With 
Metastatic Cancer Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T03412877 

NCT02343224 

Pegylated Interferon ALFA-2b in 
Children With Juvenile Pilocytic 
Astrocytomas and Optic Pathway 
Gliomas Recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T02343224 

NCT03866109 

A Phase I/IIa Study Evaluating 
Temferon in Patients With 
Glioblastoma & Unmethylated 
MGMT Recruiting 

Phase-
I|Phase-II 

https://ClinicalTri
als.gov/show/NC
T03866109 

NCT01188096 

A Trial of Poly-ICLC in the 
Management of Recurrent 
Pediatric Low Grade Gliomas Active, not recruiting Phase-II 

https://ClinicalTri
als.gov/show/NC
T01188096 
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Figure 1. Immune Checkpoint Inhibitors Therapy for glioma. The immunosuppressive 

microenvironment, which abrogates the antitumor activity of effector T-cells, is a characteristic of 

malignant glioma. Within the local tumor microenvironment, glioma cells express PD-L1 that interacts 

with PD-1 on CD8 T-cells, eliciting immune evasion. Tregs suppress immune responses by secreting 

cytokines like TGF-β and IL-10. These factors shift the activity of resident APCs towards a more 

tolerogenic state to inhibit T-cell function. The engagement of CD80 on APCs with the self-inhibitory 

signal receptor CTLA-4 prevents T-cell activation. There is also recruitment and accumulation of 

myeloid derived suppressor cells, which engage co-inhibitory receptors Tim3 and Lag3 on activated T-

cells, suppressing their activity. Immune checkpoint inhibitors, such as monoclonal antibodies targeting 

PD-1 (i.e., Nivolumab), PD-L1 (i.e., Durvalumab) and CTLA-4 (i.e., Ipilimumab) remove the hurdle 

and restore the immune response of activating tumor-specific CD8 + T-cells. 

Figure 2. Schematic of DC vaccine generation being tested in clinical trials. After tumor resection, 

tumor cells are used to obtain the lysate or to extract its RNA. Autologous DCs are obtained by isolation 

of PBMCs by leukapharesis and ex vivo differentiation into monocytic-derived DC. DC could be pulsed 

with tumor antigens like autologous or allogeneic tumor lysate, TT-RNA, TAA or TSA peptides or with 

neo-antigens. DCV therapy is combined with adjuvants like GM-CSF, tetanus/diphtheria toxoid or TLR 

agonist to improve its effect. Combination with the SOC and/or non-standard therapies are being 

assessed in ongoing trials. 

Figure 3: Bicompartmental polymeric particles. A.-C.) Confocal microscopy images of particles 

where A. shows the PLGA compartment, B. is the PLGA acetal-modified dextran compartment, and C. 

shows both compartments. D. Scanning Electron Microspcopy image. Scale bar: 10 µM. Adapted from 

[275]. 
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