Finite growth representations of conformal Lie
algebras that contain a Virasoro subalgebra.

Carina Boyallian and Vanesa Meinardi*

Abstract

In the present paper we classify all finite growth representations of
all infinite rank conformal subalgebras of gc, that contain a Virasoro
subalgebra.

*Ciem - FAMAF, Universidad Nacional de Cérdoba - (5000) Cérdoba, Argentina
<boyallia@mate.uncor.edu - meinardi@mate.uncor.edu>>.



1 Introduction

Since the pioneering papers [1, 3|, there has been a great deal of work to-
wards understanding of the algebraic structure underlying the notion of the
operator product expansion (OPE) of chiral fields of a conformal field theory.
The singular part of the OPE encodes the commutation relations of fields,
which leads to the notion of a Lie conformal algebra [8]. In the past few
years a structure theory [16], representation theory [17, 18] and comohology
theory [4] of finite Lie conformal algebras has been developed. The associa-
tive conformal algebra Cendy and the corresponding general Lie conformal
algebra gcp are the most important examples of simple conformal algebras
which are not finite ([8], Section 2.10).

Recall an associative conformal algebra R is defined as a C[0]-module
endowed with a C-linear map,

R®R — CAN]®R, a®b— ayb,
called the A-product , and satisfying the following axioms (a, b, c € R),
(A1) (0a)rxb = —Aaxb, ax(0b) = (A + 0)axb,
(A2) ax(buc) = (axb)ruc.

A conformal Lie algebra R is a C[0]-module endowed with a C-linear
map R® R — C|]\]| ® R, a ® b — [a)b] called the A-bracket , and satisfying
the following axioms (a, b, c € R),

(C1) [(Qa)rb] = —A[axb],
(C2) [axb] = —[b-p-xra],
(C3) [axlbuc]] = [[arblxypc] + [bulaxc]].

In general, given any associative conformal algebra R with A-product
axb, the A\-bracket defined by

[a)\b] = a>\b — b,a,)\a

makes R a Lie conformal algebra.

A module M over a conformal Lie algebra R is a C[0]-module endowed
with a C-linear map R® M — C[[A]] ® M, a ® v — a}v, satisfying the
properties (a,b € R,v € M),

(M1) (9a)¥ v = —Xadlv,



(M2) [ay,b/]y} V= [a,\b]%mv = aﬁ/[(bﬂ/[v) - bﬂ”(ayv).

A module M over a conformal Lie algebra R is called a conformal module
if alv € R®C[) for all a € R, v € M and it called finite, if it has a finite
rank as a C[0]-module.

Remark. (a) If R is a conformal Lie algebra, we have that the A-bracket

is of the form [ayb] = > /\(”)a(n)b for all a,b € R, where a(,)b is called
neZly

the n-product such that ag,)b = 0, n > 0 and A = A" /n! Therefore, we
can define a conformal Lie algebra R giving C-bilineal products a(,)b for all
n € Z4, a,b € R, such that satisfy equivalent axioms to (C1) — (C3) (see
8)).

(b) Similarly, a conformal module M over a conformal algebra R, can
be defined giving C-bilineal actions a(,yv for alln € Z,, a € R, v € M such
that, a(,v =0, n > 0 that satisfy equivalent axioms to (M1) — (M3).

Given two C[0]-modules M and N, a conformal linear map from M
to N is a C-linear map 7 : M — C[A] ®c N, denoted by v — 7x(v),
such that 7,(0Mv) = (A + 0")7\(v). The vector space of all such maps,
denoted by Chom(M, N), is a C[0]-module with (07)x(v) := —A7)\(v). Now,
we consider Cend M := Chom(M, M), and provided that M is a finite
C[0]-module, Cend M has a canonical structure of an associative conformal
algebra defined by

(Tr0) v = TA(Tp—rv), 7,0 € Cend M, v e M.

The Lie conformal algebra associated to Cend M is called the general con-
formal Lie algebra and denoted by gc M.

Remark. Observe that, by definition, a structure of conformal module over
an associative conformal algebra in a finite C[0]-module V is the same as a
homomorphism of R to the associative conformal algebra Cend V.

For any positive integer N, we set Cendy := Cend C[0]".

Cendy can also be viewed as the associative conformal algebra associated to
the associative algebra DX, of all N x N matrix valued regular differential
operators on the circle (see[8], Section 2.10.). That is, we consider the
conformal algebra of DN

Conf(DY)) := @pez, C[0]J" ® Maty C
with A-product given by

k

k ; .

Tl =3 ( j> (A + 0y T
=0



where Jk = JF @ A= ,t"(—4)F 2"t ® A, with A € Maty C.
Given o € C, the natural representation of DY, on e~ CN[t,t71] gives
rise a conformal module structure on C[0]" over Conf(DL,), with A-action

Jiv=(A+0+a)" A, meZy,veCV, (1)

Now, using the Remark above, we obtain a natural homomorphism of con-
formal associative algebras from Conf(DZX.) to Cendy, wich turns out to be
an isomorphism ([8] Proposition 2.10), where the functor Conf was intro-
duced in [8], Charter 2 to associate an associative conformal algebra to a
given associative algebra.

Similarly, the general conformal Lie algebra gc associated to Cendy can
also be viewed as the conformal Lie algebra associated to the Lie algebra
DN where DY is the Lie algebra associated to the associative algebra DX..

Also gcy can be identified by Mat yC[0, x], with A-bracket given by (see
Refs. [5] and [8])

[A(0,2)AB(0,x)] = A(=\,z+ A+ 0)B(A+0,2) — B(A+0, = A+ z)A(—\, z).

Recall that the Virasoro conformal algebra is defined as the free C[0 ]-module
of rank 1 generated by an element L, with A-bracket defined by

[LyL] = (2X + O)L,

and extended to C[0]L using sesquilinearity. Observe that all Virasoro sub-
algebras of gcy are generated by

L= (z+ad)l,acCandl the N x N identity matrix

The complete list of infinite rank proper subalgebras of gc, that contain a
Virasoro subalgebra is (see Remark 6.5 in Ref. [5] and Remark 3.10 in Ref.
[6])

gcn o1 = xI MatyC[0, z],
ocy = {A(0,x) — A(9,—0 — x) : A(9,x) € MatyC[0, z]},

spen p1 = {xI[A(0,z) + A(D,—0 — x)] : A(0,x) € MatyC[0, x]},

where the Virasoro element is L = (x + «d)I with a = 0, %, 0, respectively.

To study the finite growth representations over these algebras, we used the
following results, which relate modules over a conformal Lie algebra and
modules over its annihilation Lie algebra. The affinization of a conformal
Lie algebra R is the conformal algebra

R=R[t,t"']:== RoC[t,t""]



with d = 0® 1+ 1® 9, and n-product is defined by (a,b € R, f,g €
Clt, ™Y, n € Z4) (cf. [8])

(@® P 9) =Y aminb® (9 f)g). (2)

JEL4

Letting a, = a ® t", formula (2) becomes (m,n € Z)

m
(am)(k)(bm) = Z ( > (a(k+j)b)m+n—j- (3)
JELy J
Letting o
LieR = R/0R
with the bracket induced by the 0-product on ]?i, (and keeping the notation
a, for its image in Lie R ) we obtain the Lie algebra associated to the
conformal algebra R.

Remark. Tt is clear from (3), that —1® J; is a derivation of the 0-product of
the conformal algebra R. Since this operator commutes with 9, it induces a
derivation T of the Lie algebra Lie R, given by the formula

T(ap) = —nap—_1.
From the definition of Lie bracket on R is follows that
(LieR)_ = span{ay, :a € R, n € Z},

is a Lie subalgebra of Lie R, this is called the annihilation algebra. Is clear
that (Lie R)_ is T-invariant, then we can consider the direct sum (Lie R)™ =
CT'®(Lie R)_, which is a Lie algebra called the extended annihilation algebra.

Then we have the following result (cf. [8], Remark 2.9a), a module
M over a conformal algebra R is the same as a module over the extended
annihilation algebra. This R-module is conformal iff the following property
holds:

apv =0, a€ Rve M n>0.

Therefore our problem reduces to the study of finite growth representa-
tions of the corresponding extended annihilation algebras, which are certain
subalgebras of DV (see Ref. [5]). The main tools used here are the results
(Refs. [11], [12],[13] and [14]) on the classification of quasifinite highest
weight modules over the central extension of DYV and some of its subalge-
bras. The paper is organized as follows, in Sec. 2 we describe the infinite

rank Lie algebra gAKEZ ] and its classical subalgebras, and discuss their re-
presentation theory. In Secs. 3-6, we obtain the classification of all finite
growth representations of gcy, gen o1, 0cn, and spey .1 respectively.



2 Lie algebra g/\ﬁ[;l] and its classical subalgebras

2.1 Lie algebra gAE[OTZ]

Let CT* be set of all sequences A = (A1, \g, -+ ) for which all but a finite
number of \;' s are zero, and d(\) the number of nonzero \;’ s and |A| be
their sum. Denote by Par™ the subset of C** consisting of nonincreasing
sequences of non-negative integers and denote by g, the Lie algebra of
all matrices (ai,j):}ﬁl with a finite number of nonzero entries a;; € C.
Given A € CT°, there exists a unique irreducible g/, o.-module L*(\), also
denoted by L(gl+0,A), which admits a nonzero vector vy such that

Emv,\ =0 for <5 and Em"u,\ = \;Un. (4)

Here and further E; ; denotes, as usual, the matrix whose (4, j)-entry is 1 and
all other entries are 0. Each L*(\) has a unique Z,-gradation.
LT(\) = Djez, LT (N);, called its principal gradation, which satisfies the
properties

L+()\)0 = CU)\, EiJ‘LJr()\)].C C L+()\)k+ifj‘

Since A € CT, it is easy to see that dimL™()); < oo, hence we can define
the g-character
chgLT(X) = Y (dimL*(A);)g’.
JEL4
For A € Par™, let d = d(\) and A = (\(,---,)\q). Let gfq be the Lie

algebra of all d x d matrices (ai,j)%i,j:ﬁ it may be viewed as subalgebra of
gl4 o0 in a natural way. Denote by L+()) the (irreducible) gfg4-submodule of
L*(\) generated by vy. It is, of course, isomorphic to the finite-dimensional
irreducible g/g-module associated to A, so that its g-character is a (well-

known) polynomial in g.

Lemma 1. Let A € Par™, d = d(\). Then

chy LT (X\) = chy LT (N)/

J

d
(1 - q])gd_]+17
=1

where (1 —a)i" = (1—a)(1—qa)--- (1 —¢" 'a).

Proof. See Lemma 2.1 in [15]. O



Recall that given a vector space V with an increasing filtration by finite-
dimensional subspaces V[;1, the growth of V' is defined by (Cf. [15])

growthV = lim;_, (log dimV};;)/ log j.

We define the growth of L*()) using its filtration LT (X)) = @,;<; LT ()
associated to the principal gradation. In Theorem 2.2 [15], it was used the
Lemma above to prove the following Theorem,

Theorem 1. (a) If X € Par", then
growthL™(\) = |\|.
(b)If X € CT>°\ Par™, then growthL™()\) = cc.

In a similar fashion one may consider the Lie algebra gf_., of all ma-
trices (a;;); ;~o with a finite number of nonzero entries and the irreducible
gl_oo-modules L™ (), also denoted by L(gl_oo; A), parameterized by the set
C=*° of sequences A = (--- , A_1, Ag) with finitely many nonzero entries. Re-
sults similar to Lemma 1 and Theorem 1 hold for the subset Par™ ¢ C~°
consisting of nondecreasing sequences of (nonpositive) integers. Let g~€ de-
note the Lie algebra of all matrices (a; ) jez such that aij = 0if li—j| > 0.
Denote by gﬁ 1o (respectively gﬁ ) the subalgebra of g€ consisting of ma-
trices with a; ;j = 0 for ¢ or j < 0 (respectively, ¢ or j > 0 ). Note that these
two subalgebras commute and that gNEiOO contains gﬁioo as a subalgebra.
Note also glio-modules L*()\) extended unlquely to gﬁioo The Lie alge-
bra gf has a well-known central extension g€ = gE + CC by C defined
by the cocycle

a(A,B) =tr[J,A|B, whereJ =) Ej;. (5)
<0

The restriction of this cocycle to gﬁ 1oo and to g~€_ is zero. We will also

o
need briefly the Lie algebra g/\é[m] defined for each m € Z, by replacing C
by Ry, = Clu]/u™*!. That is, gf[ " €[ "
gf]VEE: ] by the 2-cocycle (5) with values in R,,, where gﬂ[oo} is the Lie algebra

of infinite matrices with finitely many nonzero diagonals with entries in R,,.
The principal Z-gradation of all above Lie algebras are defined by letting

@ R,, is the central extension of

degEij =1—j (6)



(in the case of g/\ﬂg] we also let degR,, = 0). This give us a triangular
decomposition

R W T I T
where - -
(gﬁ )i = @jGN(ggoo )ig

The Lie algebra gAKOO has a family of modules L(gAﬁoo;)\, ¢), parameterized
by A € C* = {(\;)iez : all but finitely many of \; are 0} and ¢ € (C deﬁned

by (4) and Cvy, = cvy. Similarly gf[ ™l has a family of modules L(gf _)
where X € (C®)™+! ¢ e €™ defined in a similar fashion. That is, the

il ; A), with highest weight A € (gE[ ])

that is determined by its labels )\i( ) = A(uJEM) and the central charges
¢; = A(u?). The gradation (6) is obviously consistent with the principal
gradation of L¥()\) and of L(gl..; A, c).

highest weight gé[ ]—module L(g€

2.2 Lie algebras b@, " and @2

The Lie algebra gNE([:: ! acts on the vector space R,,[t,t71] via the usual for-
mula
E; jup = 65 v;,

where v; = t=¢,i € Z is a basis of R,,[t,t"!] over R,,. Now consider the
following C-bilinear forms on this spac:
Bu™v;, uv;) = u™(—u)" 6,
C(u™v;, u™vj) = u™(—u)(—=1)%6; 14, (7)
D(u™v;, u"v;) = u™(—u)" 61— .
~ [m]

Denote by BL@ (respectively EL@], and J[;ﬂ) the Lie subalgebra of gf.,
which preserves the bilinear form B(respectively C and D). We have

[m]

) = { (@i (w)igez € gl + aig(u) = —a—ji(~w)},

_[m ~ [m] g
el = {(ai(u))ijez € gl | aij(u) = (=)™ ar_j1-i(-u) },

m ~ [m]
diy) = {(ai,j(U))z‘,jez € glos  aij(u) = —al—j,l—z‘(—U)}-



[m] [m]

Denote by bs' = ng] @ R,, (respectively, coo' = EL@] ® R,, and
d([;? - J[Q] ® R,,) the central extension of by, (respectively, &™) and a—l[oﬁ,1 ])

given by the 2-cocycle defined in g~€[£]

gAE([;:L ] the principal Z-gradation and the triangular decomposition, (see Refs.
for notation [8] and [19]).

. Both subalgebras inherit the form

)= oy B = (), 0o 042
= @jen(cl); = () @ ()o@ (),
4 = ey, ) = (), 0 (o ()

In particular when m = 0, we have the usual Lie subalgebras of gAEOO, de-
noted by boo (respectively, co and d,). Denote by L(b([:é,1 ]; A) [respectively,
L(ng]; A) and L(dgon}; A)] the highest weight module over b (respectively
™ and dL’Z}]) with highest weight \ € (bL’Z}])g (respectively A\ € (c[;'}])g and
e (d@)g) parameterized by *X € (C>®)™+1 e C™1 | with

G = Mu'),

- (1) i i
X = AWE;; — (—u)'E_j ),

[respectively °X € (C®)m+? CA? = AMu'Ej j — (—u)")E1—j 1—; and i) e

(Cooym+L, d)\_;-(i) = Mu'E;; — (—u)'E1_j 1-;)]. The superscripts b, ¢ and
d here mean B, C' and D type respectively. The b)\_;(Z) (respectively C)\_;(Z)

and dA}(Z)) are called the labels and ¢j the central charges of L(b@];)\)
[respectively, L(c[org};)\) and L(dL’J}]; A)].

All these modules will appear in Sec.V. In Theorems 2.4 and 2.6 in [15],
it was proved the following result. To do this, they used Lemmas 2.3 and

2.5, in [15] about the g-character of each one of the subalgebras of type B,
C and D.

Theorem 2. All non-trivial modules L(g[m}; A) have infinite growth, where
(] gl

g[m] can be bL@], Coo' OT

3 Irreducible finite growth gc,-modules

Let DY be the Lie algebra of matrix differential operators on C. It con-
sists of linear combinations of matrix differential operators of the form



f(t) (%)m ei j, where f is a polynomial, m € Z and e; ; is the standard ba-
sis of Maty C, with ¢, j € {1,--- , N'}. In particular, De; ; := (t%) €ij € DN,

The principal Z-gradation DY = Dqez (Df )q is defined by letting
d .
degt = —N, deg%:]\f, and dege;; =j — 1. (8)

Given A = {ﬁn}neer with A, € CN for all n € 7, we consider the
highest weight module L(A; DY) over DY as the (unique) irreducible module
that has a non-zero vector vz with the following properties:

(DJ_V) vz =0 for p <0, De”UA—A’v forneZy,i=1,--- ,N.

The principal gradation of DY induces the principal gradation
L(A;DN) = @®qez, Lq such that Lo = Cvz. The module L(A; DY) is called
quasifinite if dim L, < oo for all ¢ € Z.

Quasifinite modules over DY can be constructed as follows. Consider the
natural action of DY on C[t,#7!] @ CV, and the action of gf,_ on C[t,t!]
given by E; jup = ; ,v;, where v; = 77 (j € Z) is a base of Laurent poly-
nomials. Let ¢ : C[t,t~!] ® CV — C[t,#+!] be the isomorphism defined by
et — t"NT=1 where e; with i = 1,--- , N is the standard base of CV (cf
[11].) This gives an embedding of DY in gf... Since C[t] ® CV is DN-
invariant, we get DY-modules (C[t,t7!] @ CV)/(C[t] ® CV) and C[t] ® CV,
which gives us an embedding of DY in gﬁ 1oo and gﬂ_oo respectively, hence
an embedding of DY in Gl o ® Gl_o. All these embeddings respect the
principal gradations.

Here and further we will denote CN[t,t71] := C[t,t7!] ® CV and
CN[t] :=C[t]® CN.

Now take A* € C** and consider the g/, . ® gf_.-module L* (A1) ®
L= (X\7). The same argument as in [10], gives us the following.

Lemma 2. When restricted to DY, the module LT (A1) ® L™ (A7) remains
irreducible.

It follows immediately that LT(AT) ® L™ (A7) is an irreducible highest
weight module over DY, which is obviously quasifinite. It is easy to see that
we have:

_ . B
A, = Z( n/\gN z+1+z n)‘gN i+1
§>1 5<0
so that

10



ZAnx”/n' Z/\JN 1€ ”—i—Z)\]N 1€ 0T

n>0 ji>1 3<0

with 4 = 1,---, N. It is also clear that for A* € Par®™ we have (cf. Theo-
rem 1(a)):
growth LTAT)Y @ L™ (A7) = |[AT| + |2 7.

We shall prove the following theorem.

Theorem 3. The DY -modules LT (A\Y)®L™ (A7), where \* € Par*, exhaust
all quasifinite irreducible highest weight DY -modules that have finite growth.

Let DV denote the Lie algebra of all matrix differential operators on
C*. The Lie algebra DY is the linear span of matrix differential operators

k
f(t) <jt> A, where f(t) € C[t,t7 '], k € Z; and A € MatyC , or equi-

valently of operators t*f(D)e; ;, where f(D) € C[D], k € Z and e;; is
the standard basis of MatyC, with 4,5 € {1,---,N}. Obviously, DY is a
subalgebra of DV, and the principal gradation extends from DY to DV in
the obvious way.

The basic idea of the proof of Theorem 3 is the same as in [15]: to
reduce the problem to the well developed (in [11]) representation theory of
the universal central extension DV of DV. Recall that the central extension
DN = DN g CC is defined by the cocycle [10].

v (10 (5) 490 () B) = Reso g P F D )y 0,
)

where Tr is the usual trace. The principal gradation of DY lifts to DN by
letting deg C' = 0. Note also that the restriction of the cocycle ¥ to DV is
Z€ero.

Consider again ¢ : CN[t,t71] — C[t,t~!] be the isomorphism defined by
eit! — tIN +i_1. For each s € C one defines a Lie algebra homomorphism
@s : DN — gl (via the action of DV on t* CN[t,t71]) by

0s(t* f(D)eiy) =Y f(=1+ 8)E(_pyN—it1,iN—j+1 (10)
leZ
This homomorphism lifts to a homomorphism of central extension

g : DN — gl by

8/53|(5N)' = @S‘(ﬁN)v if j #0,

J J

11



Bs(e®De; ;) = @s(e®Pe; ;) — i
Ps i) = Ps i) ot — 1

ps(C)=C (11)
More generally, for each m € Z; one defines a homomorphism
DV gl by

Mk F(D)eiy) =Y f(—=1+ s+ W) Eq_pyn_it1,iN—j+1 5 (12)
€7,

which lifts to go[m] DN gAEgZ ] in a similar way,

5lm] — My, - T
»:" (B vy, =5 |(DN)j if j #0,

m
0l 2l es®
@Lm](ezDem) = w[sm](exDei,i — _ E J/j|

pilc)=c (13)
One of the main results of [11] is the following.

Lemma 3. For each i =1,...,r, pick a collection m; € Zy, s; € C, X €
(Cooymitl & e C™itL) such that s;—s; ¢ Z fori # j. Then the &f_ E[ il

module ®}_ L[ml}(/\ Gi) remains irreducible when restricted to DN via the
embedding @©}_ IQDLTZ] DN - @?Zl@zi]
wesght DN modules are obtained in this way.

. All irreducible quasifinite highest

Proof of Theorem 3. Note that for p > 1 there exists a positive integer k
such that p=kN +r=(k+1)N — (N —r) with 0 <7 < N — 1 One has:

(Dy)p ={t*f(D)esirr : FO)=f1)=...=f(k—1)=0,
i=1,---,N—r}
@ = 60){t=**Vg(D)es insr = 9(0) = g(1) = ... = g(k) =0
i=N—-r+1,---,N}.

(14)

Hence (Dy )p has finite codimension in DI])V and therefore the quasifinite-

ness of a DY-module L(&; DY) implies the quasifiniteness of any of the DN-
modules L(A, ¢; DV). Due to Lemma 3 , L(A,¢; DY) is a tensor product

12



of the gAK[g:]—modules LIM(X, &) on which DV acts via the embedding @Lm]
defined by (12) and (13).

It is clear from Theorem 1 that all non-trivial modules L™ (X;, &) have
infinite growth (by choosing an appropriate subalgebra isomorphic to gl
in gloo).

Recall that for any quasifinite DN_module one can extend the action
of (ﬁN ) for p £ 0 to (ZSN O) , where O is the algebra of all holomorphic

P P

functions on C ( see [11]), in other words, in (12) and in the central extension
of (13) one can take any f € O if p # 0. The same holds for DV, except that
for p > 1, f must obey conditions in (14). We apply this to the DN-module
L[ml(X, ¢) on which DN acts via @Lm} Choosing f1, fo € O such that if ¢ € Z
and satisfies

(a) ¢g=Fk1N +r, with k; € Z and 0 <r < N — 1, then
Fi(=l+8) =61 ps (~l+5)=0ifn=1,...,m,
(b) q = k1N, with ki € Z, then
Fol=l+58) =61, F(=1+5)=0ifn=1,....m,

we see from (12) that all operators Ey41 4 lie in the image of (ﬁ[sm] (DNO),
except for E19 when s = 0 (here we use (14) for p = 1). Hence, when
restricted to DY, the module L[m}(A, @) remains irreducible, provided that
s # 0. Thus, if L(&; DY) has finite growth, then L(&; ZSN) = L[ml(i,a) on
which DV acts via the embedding @Em]

Let g as in (a), choosing f1 € O to vanish in all I € Z up to m*" derivative
except for i*" derivative (0 < i < m) at I = k1 +1, and if ¢ as in (b) choosing
fo € O to vanish in all [ € Z up to m'" derivative except for i*" derivative
(0 <i < m) at | = k; we see that all operators u’E,1 4 with 0 < i < m lie
in the image of @Lm] (DNO).

Suppose that the m™ coordinate of Xq is non-zero, and that m > 0.
Then v := (U™ Eqy1,4)"v5 # 0 for all n > 0. But

Eqqv = (_N + )\2)’% Eqi1,q110 = (N + >\2+1)U-

Therefore, restricting to the subalgebra of gl., consisting of matrices (a; ;)i j<q
or (a; ;)ij>q+1 we conclude by Theorem 1, that L™ (X, &) is either trivial or
is of infinite growth.

13



Thus, the only possibility that remains is s = m = 0. As has been
already shown, the image of 3s(DN?) contains all Eq11,4 except for Eq,
hence it contains all operators from gf_., & gl+o0. Therefore, by Theorem 1,
the highest weight of a finite growth DY-module must be the same as one
of the DN-modules L*(A*) ® L™ (A7) with A* € Par™.

O

Given two partitions A& € Par™, we denote by LQOL, A7) the
DN-module, obtained by restriction via g from the gf 1o & gl_-module
LT(AT)® L= (A\7). Now we shall construct the D¥-modules L(AT, A7) ex-
plicitly.

Consider the D¥-module CV[t,t~1]. Then CN[t] is the maximal sub-
module (which is irreducible). Hence the D-module

V= CN[t,t71/CN[t] (15)

is irreducible. It is clear that this is the highest weight DY-module of growth
1 with a highest weight vector (t~! 4+ C[t])en, where ey is a vector in CV
which has 1 in the N-entry and zero in the other entries . It is immediate to
deduce that V is isomorphic to L(wq,0) where w; € Par™t, such that wi = 0,
for i # 1 and wi = 1.

Likewise, the DY-module CV[t]* := (C[t] ® CV)* = @jez, (Ct/ @ CN)*
is an irreducible highest weight module of growth 1 with a highest weight
vector (1 ® e1)*, where e is a vector in C which has 1 in the entry one
and zero in the other entries. This module is isomorphic to L(0,w_1), where
w_1=1(..,0,—1) € Par~. We denote this D-module by V".

As in the Schur-Weyl theory, the DY-module 7™ (V) @ TV (V') has a
natural decomposition as (DY, Sy; x Sy)-modules:

™) TNV = @Aifpari(vﬁ @ Vi) ® (Uy+ @ Uy-)
At |=M
A~ |=N
where Uy+ (resp. A-) denotes the irreducible Sy (resp. n)-module corres-
ponding to the partition A™ (resp. A\7).

Lemma 4. The DY -modules Vy\+ ® V!_ are irreducible.

Proof. As in the proof of Theorem 3, we extend the action of DY on
Vit @ VI_ to (Divo)j for each j # 0, to obtain that any DN _submodule
of Vy+ ® V/_ is a submodule of gl . @ gf_o. But, by Schur-Weyl the-

ory, the gl oo ® gl_-module Vy+ ® V) _ is irreducible, which completes the
proof. O
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Thus, we have proved

Theorem 4. The DY -module L(A™, A7) is isomorphic to Vy+ @V _ for any
pair \* € Par®.

Remark. Considering A = (A7, \") € C* we may say that irreducible hi-
ghest weight DY-modules of finite growth are parameterized by non-increasing
sequences of integers (\;);jez € C* with the exception that A\g < A;. Equi-
valently, letting m; = A\; — A\;41 we may say that these modules are pa-
rameterized by sequences of non-negative integers (mi)iez\{o}, all but finite
numbers of which are zero.

Recall that the extended annihilation algebra Lie™ (gcy) for gy is iso-
morphic to the direct sum of the Lie algebra DY and the N-dimensional
Lie algebra CN (9 + %) and that conformal modules for a Lie conformal
algebra coincide with the conformal modules over the associated extended
annihilation algebra [7].

Given a module M over a Lie conformal algebra R and a € C, we may
construct the a-twisted module M, by replacing 9 by 0+ « in the formulas
for action of R on M. Theorems 3 and 4 and the above remarks imply

Theorem 5. The gcy-modules LAY, 7)o, where \* € Par®, a € C,
exhaust all irreducible conformal gepy-modules of finite growth.

Corollary. The gcy-modules CV (0], and CN[9]%, where a € C, ezhaust all
finite irreducible gc-modules.

4 Irreducible finite growth gcy ,-modules

Let DY (respectively Dé\f_) be the Lie subalgebra of DV (respectively DY)
of all matrix regular differential operator on C* (respectively, C) that kill
constants. That is Dév consists of linear combinations of elements of the
form t*Df(D)e; j, where f is a polynomial, 4,5 € {1,--- ,N}, k € Z>( and
e;; is the standard basis of Maty(C). Denote by 5(1)\7 the corresponding
central extension. These algebras inherit the Z-gradation from DN, In this
section, we will need the representation theory of the Lie algebra 736\77_.
Given A = {&n}neh with A,, € CV for all n € Z, we consider the high-
est weight module L(A, DY) over DY as the (unique) irreducible module

that has a nonzero vector vz with the following properties:

(D(])\L)p”& =0forp <0, D"evx = Aflv& forneN, i=1,---,N.
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The principal gradation of Dé\f _ induces the principal gradation of L(&; Dé\f _).
Quasifinite modules over Dé\f_ can be constructed as follows.
The Dév -modules CN[t,t=']/CN[t] and CN[t]/CYN give us an embedding
of DO in g~€ 1o and g~€ o respectively, hence an embedding of Dév in
gﬁ too P gﬁ . All these embeddmg respect the principal gradation. Now

take AT € (Cioo and consider the g£+oo @ gl_-module Lt(AT) @ L~(A").
The same argument as in [10], gives us the following.

Lemma 5. When restricted to D(J)\’[_, the module LT (A\T) ® L™ (\™) remains
irreducible.

It follows immediately that LT (A1) ® L™(\7) is an irreducible highest
weight module over Dé\f_, which is obviously quasifinite.
We have the following theorem.

Theorem 6. The Dj_-modules LT (A*) ® L™ (A7), where A* € Par™,

erhaust all quasifinite irreducible highest weight Dé\j_ -modules that have fi-
nite growth.

The proof of Theorem 6 is the same as Theorem 3, but in this case
we reduce the problem to the representation theory of the universal central

extension DY of DY that was developed in Refs. [9] and [13].
Recall that the homomorphism gD[ m DN gE[ " defined in (13) lifts to
a homomorphism go[ m . pNo gé[ ]. Now, the restriction g/i[sm] : ﬁN o

gAE[]

the Lie subalgebra of gE[ ] where we remove all the elements {E; sn—j1 :
i€Z,j=1,---,N}. The homomorphism gpL ™ defined on (13), restricted

to ZS(J)V is surjective iff s ¢ Z. If s € Z, m # 0 we denote by gE[ ]

to ﬁ is an eplmorphlsm over gﬁ[ " . If s = 0 = m we redefine gZOO 0 as
the Lie subalgebra of gf generated by Cand {E;;: i 7é 0,7 7& 0} and @
by the homomorphism pg o @y : DO — gE where py : g€ — g€ o is the
prOJectlon map. Observe that gﬁoo 0 is naturally isomorphic to gﬁ Then
Do : DO — gfoo 0 g€ is a surjective homomorphlsm

Now, let us consider the restriction to DO NO_ Since the constrains given

by (14) do not affect the case s # 0, we still have that cp[m] Dévo —

~m] -

gl (s & Z) is surjective.

Remark. The description of the image of the homomorphism @Lm], with

s € Z and m # 0 in Ref. [13] (pag. 9), as the Lie subalgebra of gAKLT] from
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which we remove the elements {Esy_it1, sN—j+1 15 6,5 = 1,---, N}, should
be replaced by gAK[OZ]S the Lie subalgebra of gA&[)T] where all the elements
{Ei sn—j41:1€Z,j=1,---,N} were removed.

One of the results of Ref. [13] (see also Ref. [9]) is the following:

Lemma 6. For each i =1,...,r, pick a collection m; € Z,, s; € C, X €
(Cooymitl & e C™itL) such that s; —s; & Z fori # j. Then theA@fL?:lg[mi]_

module ®f:1L[mi}(Xi,E¢) remains irreducible when restricted to DY via the
[mi

l (respectively,

~[m;]

embedding ®i_,ps; " : ﬁév — @;Zlg[mi], where glmil = ﬂ
~ [m]

gt ) if si & Z (respectively s; € Z). All irreducible quasifinite highest
weight ﬁév -modules are obtained in this way.

e}

00,84

Proof of Theorem 6. The proof is the same as Theorem 3 but use Lemma
6, but in the case s = 0,m # 0 we do no get the operators E,;1,, with

q=—-N+1,---,0 since Imcp%m} = gAEC[ZL}O. Then the argument is the same

that Theorem 3 but in the case s = 0,m # 0 restrict to the subalgebra of
gAEEZ,]O instead of gAELZL] consisting the matrices (a; ;)i j<r or (@i ;)i j>r+1 in the
case s = 0 = m redefine g as pg o Qp.

O

Given two partitions A* € Par™, the DN-module L(AT, A7), that is ob-
tained by restriction via g from the g?? too @ g?,oo-module
LT(AT) @ L™ (A7) remains irreducible as a D&l—modules. The construc-
tion of the Dé\f_—module L(\T, A7) is the same as before and Lemma 4 and
Theorem 4 hold for Dé\f_. In this case, the extended annihilation algebra
Lie(gcy ,r) for gey ,p is isomorphic to the direct sum of the Lie algebra
Dé\yl and the N-dimensional algebra CV[9 + (d/dt)]. Theorems 4 and 6 and
the above remarks imply the following.

Theorem 7. The gey ,r-modules L(AY,A\7)q, where A* € Par®, o € C,
exhaust all irreducible conformal gey ,r-modules of finite growth.

Corollary. The gcy ,;-modules CN[0], and CN 9]}, where a € C, ezhaust
all finite irreducible gep ,r-modules.

5 Irreducible finite growth ocy-modules.

For any A € Maty C we define (A)Ij = AN41—jN+1—i- Consider the anti-
involution on D = D!, introduced in [19],

Tt F(D) =t (=D — k= 1).
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We extend 74 _1 to a map on MatyD = D ® MatyC by letting
[T+ -1(A)]i; = 7+-1(A; ;). Now, consider the anti-involution ¢ in DV de-
fined by

o (tk f(D)A) —_— (tk f(D)AT) . (16)

We denote by DY the Lie subalgebra of DV given by —o-fixed points in D*.
This subalgebra corresponds to the Lie algebra denoted by DY in [12]. Let
ﬁ]fv = DY @ CC denote the central extension given by the restriction of the
cocycle (9) on DV.

We are interested in the representation theory of the Lie algebra
Dé\{_ = ﬁé_v MDY of matrix regular differential operators on C that are
invariant by —o. Both subalgebras inherit a Z-gradation from DY, since o
preserve the principal Z-gradation of DV, and we have DY = Bpez (Df,v )

where, if p= kN +7, with k € Nand 0 < r < N — 1, g

(DY), = {t_k(f(D—(k-i-l))ei,iJrr — f(=D_(kr1)eN+1—r—i, N+1-i),

1§i§[N+1—r/2]}

U {t(_k"'l)(g(D_(k_‘_Q))GLZ;NJFT — 9 (k42)€2N+1—i—r, N+1—i)s
N-r+1<i< [2N+1—7“/2]}
(17)

where here and further Dy, = D + k/2 and [z], € R is the integer less
or equal than z. In the case of (D, —),, we need to add condition (14) for

p > 0. As before, we have the corresponding subalgebras of DN?, denoted
by DYC and Df,vf) As in the case of DV, given A = {A,} with A, €

N
2

Clz]+v et we consider the highest weight module L(&;D(]X_) over D(],\f_
as the (unique) irreducible module that has a non-zero vector vz with the
following properties:

(D(]X_)pvﬁ =0 for p < 0, ((Dl)"em — (—Dl)neN_;,_l_i’ N+1_7;)UE = A%U&

for neZyi=1,---, [%] +0N, odd - The principal gradation of D(]X_ induces
the principal gradation L(&;Dé\f,) = @pez, Lp such that Ly = Cvgz. The
module L(A; ’Df,\f_) is called quasifinite if dim L, < oo for all p € Z.
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Quasifinite modules over D(J,\f _ can be constructed as follows. The D(],\f _-
modulo CV[t,t7!]/CN gives us an embedding of DY_ in gl 4oo - This em-
bedding respect the principal gradations.

Now take AT € C** and consider the g/, ..-module L™ (A"). The same
argument as in [10], gives us the following.

Lemma 7. When restricted to D(]f\f_, the module Lt (A1) remains irre-
ducible.

It follows immediately that L™ (A1) is an irreducible highest weight mo-
dule over Dé\f_, which is obviously quasifinite. It is easy to see that we
have:

A = Z(—j+ 1/2)n)‘;rzv i1 — (= 1/2)"A (j—1)N+i

j=1
so that
(o i+1/2)z + 1/2)x
Z%A /n! = z;l —j /))\ L te eli— /))‘(fl)NJrz
n J>
with ¢ =1,---, [%] + 0N 0aa- We shall prove the following theorem.

Theorem 8. The DY _-modules LT(AT), where AT € Part, ezhaust all
quasifinite irreducible highest weight D]\ff—modules that have finite growth.

The basic idea of the proof of Theorem 8 is the same as in Theorem 3:
to reduce the problem to the well developed (in [12]) representation theory
of the universal central extension D

] ]

Recall that the homomorphism &g : DN - gE

a homomorphism @L ml . pNO gﬁ[ "

defined in (13) lift to

. Now, the restriction @Lm] : 73;\7 0

gAK[ " o DNO is surjective iff s ¢ Z/2, and in the other cases, using (21), we
have that (see Ref. [12] for details)
g/ﬁ[m] DNO — d[m] @[77] ’DNO — d[m] if Neven,
Brjy: DYO = bl if Nodd. (18)

are surjective homomorphism. Now, let us consider the restriction to DY©.

Since the constrains given by (14) do not affect the case s # 0, we still have

that (p[m] DNO — gE ( ¢ 7/2) and ‘/7[1/; are surjective. One of the main
results of Ref [12] is the following.
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Lemma 8. For each i = 1,...,r, pick a collection m; € Z4, s; € C, XZ €
(C®)ymitl & € C™tL) such that s; € Z implies s; = 0, s; € %Jr Z implies
S = %, and s;—s;j ¢ 7 fori # j. Then the ©_,g™il-module ®§:1L[mﬂ(Xi, é)

remains irreducible when restricted to DY wvia the embedding @§:1$L7i] :

Z/DUN — @7_, g™ where glmil = !}\g([;%] (respectively bl o d[f.?i]) if si ¢ 7.)2
(respectively , si = 1/2, N odd ors; =0 ors; = 1/2, N even.) All irreducible
quasifinite highest weight DY -modules are obtained in this way.

Proof of Theorem 8. The proof is similar to that of Theorem 3 Due to
Lemma 8, Theorem 2 and (16), it is easy to see that if L(A,DY_) has
finite growth, then L(&,Dé\f_) = L(d!f.?];i,aj on which DY acts via the
embedding g’o?([)m}. Now consider ¢ € Z such that,
(a) if ¢ = k4N 4+ r, with ky € Z and 1 < r < N — 1, choosing f1 € O
to vanish in all [ € Z up to mth derivative except for ith derivative
(0<i<m)atl==Fk +1.

(b) If ¢ = k1N, with k; € Z and choosing fo € O to vanish in all [ € Z up
to mth derivative except for ith derivative (0 <i <m) at | = k1

we see that all operators u'Eyi1, 4 — (—u) E_g+1, ¢, with 0 < i < m lie in
the image of @Lm] (Dév o).

Suppose that the mth coordinate of Xq is non-zero, and that m > 0.
Then v := (U™ Egy14 — (—u)' E_g41¢)"v; # 0 for all n > 0. But

(Egt1,9+1 — E_gq—g)v = (=N + )\24—1)1’-

[l

Asin Theorem 3, restricting to the subalgebra of doo' isomorphic to gl ,consisting
of matrices (a; j—a1—j1-:)i,j>q+1 We conclude by Theorem 2, that L (d[;g}; X, 0
is either trivial or is of infinite growth.

Thus, the only possibility that remains is s = m = 0. As has been
already shown, the image of Qg (D(],V 9) contains all E 14— E1—g—q except

for ¢ # 0, hence it contains all operators from d([;? 'n 8l 00 D glico =~ 8lioo-

Therefore, by Theorem 2 , the highest weight of a finite growth D(J,\f _-module
must be the same as one of the DY _-modules LT(AT) with A* € Par™.
O

Now we shall construct the DY _-modules L(AT) explicitly. The DY-
module V' = CN[t,t7']/CN]t] defined in (14), viewed as a DY _-module,
remains irreducible. This is the highest weight Dé\f_—module of growth 1
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isomorphic to L* (w;) where w; € Par™, such that wi = 0, for i # 1 and w} =
1. Observe that the DY _-module CN[t]* = @jcz, (CN#7)* is isomorphic to
L*(w1). As in the Schur-Weyl theory, the DY _-module T (V) has a natural

decomposition as (DY _, Sy)-modules:

TM(V) = B+ epart Vat+ @ Up+
At|=M

where Uy + denotes the irreducible Sy;-module corresponding to the partition
AT

Lemma 9. The Dé\f_—modules Vi+ are irreducible.

Proof. As in the proof of Theorem &8, we extend the action of D(J,\f _on Vy+
to (Dg?)y for each j # 0, to obtain that any Dj\f_—submodule of Vy+ is a
submodule of gl ~ doo N gline B gl—_oo- But, by Schur-Weyl theory, the
gl -module Vy+ is irreducible, which completes the proof. ]

Thus, we have proved

Theorem 9. The Dé\f_-module TM (V) has the following decomposition as
(DY, Snr)-modules:

TM(V) = Dt+cpart Vit @ Uy+
A=

where Uy+ denotes the irreducible Syr-module corresponding to the partition

AT

Remark. Considering AT € CT* we may say that irreducible highest weight
D;’,\f _-modules of finite growth are parameterized by non-increasing sequences
of integers (\;)jez € C*> with the exception that A\g < A;. Equivalently,
letting m; = A; — A\j41 we may say that these modules are parameterized
by sequences of non-negative integers (1m;);cz\ 0}, all but finite numbers of
which are zero.

Recall that the extended annihilation algebra Lie™ (ocy) for ocy is iso-
morphic to the direct sum of the Lie algebra ’Dé_\f _ and the N-dimensional
Lie algebra CV(0+ &) and that conformal modules for a Lie conformal
algebra coincide with the conformal modules over the associated extended
annihilation algebra [7].

Theorem 8 and the above remarks imply the following
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Theorem 10. The ocy-modules L(A"),, where AT € Part, a € C, exhaust
all irreducible conformal ocy-modules of finite growth.

Corollary. The ocy-modules CN[0], a € C, evhaust all finite irreducible
ocy -modules.

6 Irreducible finite growth spcy .r-modules.
Now, consider
G(t"f(D)De; ;) = —t" f(—D — k)De; ;,

the anti-involution on D(])V , corresponding to those that defines the sym-
plectic type conformal subalgebra in gcy ,, (cf.[5] pag.56). Observe that this
coincide with Bloch’s anti-involution for N = 1 (cf. [2]). This anti-involution
does not preserve the principal gradation of DV. However it is conjugated
by the automorphism 7(t¥ f(D)De; ;) = t* f(D)De; n+1—j, to the following
anti-involution

(" f(D)Deij) = —=t"f(=D — k) Den-y1-j, N-41-i, (19)

where k € Z. Denote by Dé\i—, the Lie subalgebra of Dév fixed by —a. Let
ﬁé\% = D(])\,fa— @ CC denote the central extension given by the restriction of
the cocycle on DV,

We are interested in the representation theory of the Lie subalgebra
Dé\j&’_ =DV n ﬁé\% of matrix regular differential operators on C that
kills constants and are invariant by —o&. Both subalgebras inherit a Z-

gradation from D(]]V , since & preserves the principal Z-gradation of D(]]V ,
DYy = @pez(Dy'y)p, where if p=kN +r, with k e Nand 0 <r < N —1,

(D(])\,/a)p = {fk(f(ka)ei, itr T f(—D—k)€N+1—r—i7N+1—z‘)a
1<i<[N+1-7/2]}

U {t(*kﬂ)(g(D_(kH))ei i—N+r + 9(=D_(ps1))€2N+1—imr, N+1-i)5
N-rt+1<i< [2N+1—r/2]}
(20)

In the case of (DY, 5.—)p> We need to add condition (14) for p > 0. Similarly, we
have the corresponding subalgebras of DVO. denoted by Dé\f 50 and Dé\f (9 _.
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As in the case of DV, given A = {A,} with A, € clalton.odd g a1
n € Zy, we consider the highest weight module L(&;Dé\i-,’_) over Dé\f&’_
as the (unique) irreducible module that has a non-zero vector vz with the
following properties:

(D(J)\{E,—)pvﬁ =0 for p <0, (D"em- + (*D)n6N+17i7N+17i)’UA = A;vﬂ

for neZyi=1,---, [%] +5N,Odd'

The principal gradation of D(])\%’_ induces the principal gradation
L(A;DY5 ) = @pez, Ly such that Ly = Cvg. The module L(A; DY, )
is called quasifinite if dim L, < oo for all p € Z.

As in the preceding section, the Dé\’f&ﬁ—module CN[t, t71]/CN gives us
an embedding of Dé\ii_ in gﬁ 400 - This embedding respect the principal
gradations. B

Now take AT € C** and consider the g, -module L™ (AT). The same
argument as in [10], gives us the following.

Lemma 10. When restricted to D(])Yc-ﬂ_, the module L™ (X\T) remains irre-
ducible.

Theorem 11. The Dé\f&ﬁ—modules LT (\T), where AT € Par™, ezhaust all
quasifinite irreducible highest weight Dé\’[aﬁ—modules that have finite growth.

The basic idea of the proof of Theorem 11 is the same as in Theorem 3:
to reduce the problem to the well developed (in [14]) representation theory
of the universal central extension Dé\f 5

Recall that the homomorphism (ﬁ[sm] : DN K;EEZ ] defined in (13) lift to
[m]

[m]

[m] . Now, the restriction g ° : ﬁé\f(g) —

a homomorphism @g * : DNO g/\ﬁ

o0
gAE[OT:] to ﬁé\/g) is surjective iff s ¢ Z/2, and in the other cases, using (20), we

have that (see Ref. for details [14])

P DY sl (21)
2
%o : ﬁ(])\jg — Coo, (22)
And -
o DYO = gbly, it m A0, (23)

[m]

with gNE([:Z ]0 is the subalgebra of gfs" generated by

{(u* — (m+ D" " HE; — (—u)f — (n+ 1)(—u)k_l)E_N+1_j7_N+1_i}
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with 1 > k,i=nN+q; j=mN+gand 1 < q,§ < N, are surjective
homomorphism. Now, let us consider the restriction to Dé\fg_. Since the
constrains given by (14) do not affect the case s # 0, we still have that

@[Sm] : 73(])\%9,— N é\g[org] (s ¢ Z/2) and {5[17"% : 736\%9 — cL’Q] are surjective.

Remark. The description of the image of the homomorphism gbém], with

m # 0 in Ref. [14] (Proposition 5.3), as the Lie subalgebra ™ should be
replaced by ;KE: ]0 the Lie subalgebra of gAZLTg ] generated by

{(uf = (m+ DuF N E; — (—u)* — (n+ D)(—uw)* ) E_ny1-j N1}

withl >k, i=nN+g¢gj=mN+gandl<qqg<N
One of the main results of Ref [14] is the following.

Lemma 11. For each i = 1,...,7, pick a collection m; € Z4, s; € C,
¢; € (C®)ymitl & e C™itl such that s; € 7 implies s; = 0, s; € %—|— Z
implies s; = %, and s; — s; ¢ Z for i # j. Then the @’{Zlg[mi]—module
®§:1L(g[mi],Xi,EL-) remains irreducible when restricted to ﬁé\f& via the em-
bedding EB;-":lg/p\LTi] : ﬁé\% — @_ g™ where g™l = gAE([::Z] (respectively
cgi],gﬁgg}&) if si ¢ Z)2 (Cespectz'vely , 8t =1/2, or s; = 0.) All irreducible

N

quastifinite highest weight Dy 5-modules are obtained in this way.

Proof of Theorem 11. The proof is similar to that of Theorem 3 Due to
Lemma 11, Theorem 2 and (21)-(23), it is easy to see that if L(A,Dé\f&ﬁ)
has finite growth, then L(&,Dga_) = L(cc[:g];x,é’) on which DY acts via
the embedding (ﬁgm]. Now consider ¢ € Z such that,

(a) if g = kyN +r, with ky € Z, k1 # —1 and 1 < r < N — 1 choosing
f1 € O such that fi(z)x to vanish in all [ € Z up to mth derivative
except for ith derivative (0 < i < m) at |l = ky + 1. If ky = —1
choosing f1 € O such to vanish in all [ € Z up to mth derivative
except for (i — 1)th derivative (0 <3 <m) at [ = k1 + 1.

(b) If ¢ = k1N, with k1 € Z,k1 # 0 choosing fa € O such that fo(x)z
to vanish in all [ € Z up to mth derivative except for ith derivative
(0<i<m)atl=k.

we see that all operators u'Egi14 + (—u)'E_g41-N, —g—n, With 0 < i < m
lie in the image of cﬁ[sm] (DY), q # 0.

07677
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Suppose that the mth coordinate of Xq is non-zero, and that m > 0.
Then v := (W Eqy1,4 + (—u)' E_g41-N, —g—N)"v5 # 0 for all n > 0. But

(Eqq — E—g-N,—g-N)v= (N + )\2)1).

forallg # {—N-+1,---,0}. As in Theorem 3, restricting to the subalgebra of
gﬁgg,]s isomorphic to g/, consisting of matrices (a;;— (—1)i+ja_N_j7_N_i)i7qu+1
we conclude by Theorem 2, that L™ (CC[Q;L ]; X, €) is either trivial or is of infinite
growth.

Thus, the only possibility that remains is s = m = 0. As has been
already shown, the image of Qs (Dé\f g_) contains all Eg 1 4+ E1_q 4 except
for ¢ # 0, hence it contains all operators from cL’Z}] Ngl_oo B lioo ~ glivo-
Therefore, by Theorem 3 , the highest weight of a finite growth DY-module
must be the same as one of the Dy, _-modules LT(A") with A* € Par*.

O]

As the preceding section, we can construct the Dé\%v_—modules L(\T)
explicitly. The DN-module V' = CV[t,t~!]/CN[t] defined in (14), viewed
as a Df,\f _-module, remains irreducible. This is the highest weight Dé\f&’;
module of growth 1 isomorphic to L*(w;) where w; € Part, such that
wi =0, for i # N and w) = 1.

As in the Schur-Weyl theory, the D(])\f&,_—module TM(V) has a natural
decomposition as (Dé\j 5.—» S )-modules:

TM(V) = @)\+€Par+ V)\+ X U)\-!—
=M

where Uy + denotes the irreducible Sjs-module corresponding to the partition
AT

Lemma 12. The Dé\fﬁﬁ—modules Vi+ are irreducible.

Proof. As in the proof of Theorem 8, we extend the action of Dé\fi, on Vy+
to (DNO )j for each j # 0, to obtain that any Dé\f&’;submodule of Vy+ is a

0,5,—
submodule of gl 2 Coo N glioo P gl—xo. But, by Schur—Weyl theory, the
gl o-module Vy+ is irreducible, which completes the proof. O

Theorem 12. The Dé\f&_-module TM (V) has the following decomposition
as (D(])Y(-,’_, S )-modules:

TM(V) = B+ epart Vat+ @ Up+
At =M
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where Uy+ denotes the irreducible Syr-module corresponding to the partition
AT

Recall that the extended annihilation algebra Lie™ (spcy 1) for spen p1 is
isomorphic to the direct sum of the Lie algebra Dé\f 5,— and the N-dimensional
Lie algebra CN (9 + %) and that conformal modules for a Lie conformal
algebra coincide with the conformal modules over the associated extended
annihilation algebra [7].

Theorem 11 and the above remarks imply the following

Theorem 13. The spey zr-modules L(AT),, where AT € Par™, a € C,
exhaust all irreducible conformal spcy .r-modules of finite growth.

Corollary. The spcy qr-modules CcN [0]a @ € C, exhaust all finite irreducible
SpeN o1-modules.

Acknowledgement: We are grateful to J. Liberati and J. Garcia for
pointed out that the images of some homomorphism consider trough this
paper needed to be corrected.
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