Finite growth representations of conformal Lie algebras that contain a Virasoro subalgebra.

Carina Boyallian and Vanesa Meinardi*

Abstract

In the present paper we classify all finite growth representations of all infinite rank conformal subalgebras of ${\rm gc}_N$ that contain a Virasoro subalgebra.

1 Introduction

Since the pioneering papers [1, 3], there has been a great deal of work towards understanding of the algebraic structure underlying the notion of the operator product expansion (OPE) of chiral fields of a conformal field theory. The singular part of the OPE encodes the commutation relations of fields, which leads to the notion of a Lie conformal algebra [8]. In the past few years a structure theory [16], representation theory [17, 18] and comohology theory [4] of finite Lie conformal algebras has been developed. The associative conformal algebra Cend_N and the corresponding general Lie conformal algebras gc_N are the most important examples of simple conformal algebras which are not finite ([8], Section 2.10).

Recall an associative conformal algebra R is defined as a $\mathbb{C}[\partial]$ -module endowed with a \mathbb{C} -linear map,

$$R \otimes R \to \mathbb{C}[\lambda] \otimes R$$
, $a \otimes b \to a_{\lambda}b$,

called the λ -product, and satisfying the following axioms $(a, b, c \in R)$,

(A1)
$$(\partial a)_{\lambda}b = -\lambda a_{\lambda}b, \ a_{\lambda}(\partial b) = (\lambda + \partial)a_{\lambda}b,$$

(A2)
$$a_{\lambda}(b_{\mu}c) = (a_{\lambda}b)_{\lambda+\mu}c.$$

A conformal Lie algebra R is a $\mathbb{C}[\partial]$ -module endowed with a \mathbb{C} -linear map $R \otimes R \to \mathbb{C}[\lambda] \otimes R$, $a \otimes b \to [a_{\lambda}b]$ called the λ -bracket , and satisfying the following axioms $(a,b,c\in R)$,

(C1)
$$[(\partial a)_{\lambda}b] = -\lambda[a_{\lambda}b],$$

(C2)
$$[a_{\lambda}b] = -[b_{-\partial-\lambda}a],$$

(C3)
$$[a_{\lambda}[b_{\mu}c]] = [[a_{\lambda}b]_{\lambda+\mu}c] + [b_{\mu}[a_{\lambda}c]].$$

In general, given any associative conformal algebra R with λ -product $a_{\lambda}b$, the λ -bracket defined by

$$[a_{\lambda}b] := a_{\lambda}b - b_{-\partial -\lambda}a$$

makes R a Lie conformal algebra.

A module M over a conformal Lie algebra R is a $\mathbb{C}[\partial]$ -module endowed with a \mathbb{C} -linear map $R \otimes M \to \mathbb{C}[[\lambda]] \otimes M$, $a \otimes v \to a_{\lambda}^{M}v$, satisfying the properties $(a, b \in R, v \in M)$,

(M1)
$$(\partial a)^M_{\lambda} v = -\lambda a^M_{\lambda} v,$$

(M2)
$$[a_{\lambda}^{M}, b_{\mu}^{M}] v := [a_{\lambda}b]_{\lambda+\mu}^{M} v = a_{\lambda}^{M}(b_{\mu}^{M}v) - b_{\mu}^{M}(a_{\lambda}^{M}v).$$

A module M over a conformal Lie algebra R is called a *conformal module* if $a_{\lambda}^{M} v \in R \otimes \mathbb{C}[\lambda]$ for all $a \in R$, $v \in M$ and it called *finite*, if it has a finite rank as a $\mathbb{C}[\partial]$ -module.

Remark. (a) If R is a conformal Lie algebra, we have that the λ -bracket is of the form $[a_{\lambda}b] = \sum_{n \in \mathbb{Z}_+} \lambda^{(n)} a_{(n)} b$ for all $a,b \in R$, where $a_{(n)}b$ is called

the *n*-product such that $a_{(n)}b = 0$, $n \gg 0$ and $\lambda^{(n)} = \lambda^n/n!$ Therefore, we can define a conformal Lie algebra R giving \mathbb{C} -bilineal products $a_{(n)}b$ for all $n \in \mathbb{Z}_+$, $a, b \in R$, such that satisfy equivalent axioms to (C1) - (C3) (see [8]).

(b) Similarly, a conformal module M over a conformal algebra R, can be defined giving \mathbb{C} -bilineal actions $a_{(n)}v$ for all $n \in \mathbb{Z}_+$, $a \in R$, $v \in M$ such that, $a_{(n)}v = 0$, $n \gg 0$ that satisfy equivalent axioms to (M1) - (M3).

Given two $\mathbb{C}[\partial]$ -modules M and N, a conformal linear map from M to N is a \mathbb{C} -linear map $\tau: M \to \mathbb{C}[\lambda] \otimes_{\mathbb{C}} N$, denoted by $v \to \tau_{\lambda}(v)$, such that $\tau_{\lambda}(\partial^{M}v) = (\lambda + \partial^{N})\tau_{\lambda}(v)$. The vector space of all such maps, denoted by $\mathrm{Chom}(M, N)$, is a $\mathbb{C}[\partial]$ -module with $(\partial \tau)_{\lambda}(v) := -\lambda \tau_{\lambda}(v)$. Now, we consider $\mathrm{Cend}\,M := \mathrm{Chom}(M, M)$, and provided that M is a finite $\mathbb{C}[\partial]$ -module, $\mathrm{Cend}\,M$ has a canonical structure of an associative conformal algebra defined by

$$(\tau_{\lambda}\sigma)_{\mu}v = \tau_{\lambda}(\sigma_{\mu-\lambda}v), \qquad \tau, \sigma \in \text{Cend } M, v \in M.$$

The Lie conformal algebra associated to Cend M is called the *general conformal Lie algebra* and denoted by gc M.

Remark. Observe that, by definition, a structure of conformal module over an associative conformal algebra in a finite $\mathbb{C}[\partial]$ -module V is the same as a homomorphism of R to the associative conformal algebra Cend V.

For any positive integer N, we set $\operatorname{Cend}_N := \operatorname{Cend} \mathbb{C}[\partial]^N$.

Cend_N can also be viewed as the associative conformal algebra associated to the associative algebra \mathcal{D}_{as}^N of all $N \times N$ matrix valued regular differential operators on the circle (see[8], Section 2.10.). That is, we consider the conformal algebra of \mathcal{D}_{as}^N ,

$$\operatorname{Conf}(\mathcal{D}_{as}^N) := \bigoplus_{n \in \mathbb{Z}_+} \mathbb{C}[\partial] J^n \otimes \operatorname{Mat}_N \mathbb{C}$$

with λ -product given by

$$J_{A\lambda}^k J_B^l = \sum_{j=0}^k \binom{k}{j} (\lambda + \partial)^j J_{AB}^{k+l-j},$$

where $J_A^k = J^k \otimes A := \sum_{n \in \mathbb{Z}} t^n (-\frac{d}{dt})^k z^{-n-1} \otimes A$, with $A \in \operatorname{Mat}_N \mathbb{C}$. Given $\alpha \in \mathbb{C}$, the natural representation of \mathcal{D}_{as}^N on $e^{-\alpha t} \mathbb{C}^N[t, t^{-1}]$ gives rise a conformal module structure on $\mathbb{C}[\partial]^N$ over $\operatorname{Conf}(\mathcal{D}_{as}^N)$, with λ -action

$$J_{A\lambda}^m v = (\lambda + \partial + \alpha)^m A v, \qquad m \in \mathbb{Z}_+, \ v \in \mathbb{C}^N.$$
 (1)

Now, using the Remark above, we obtain a natural homomorphism of conformal associative algebras from $Conf(\mathcal{D}_{as}^N)$ to $Cend_N$, wich turns out to be an isomorphism ([8] Proposition 2.10), where the functor Conf was introduced in [8], Charter 2 to associate an associative conformal algebra to a given associative algebra.

Similarly, the general conformal Lie algebra gc_N associated to $Cend_N$ can also be viewed as the conformal Lie algebra associated to the Lie algebra \mathcal{D}^N , where \mathcal{D}^N is the Lie algebra associated to the associative algebra \mathcal{D}_{as}^N .

Also gc_N can be identified by $Mat_N\mathbb{C}[\partial, x]$, with λ -bracket given by (see Refs. [5] and [8])

$$[A(\partial, x)_{\lambda}B(\partial, x)] = A(-\lambda, x + \lambda + \partial)B(\lambda + \partial, x) - B(\lambda + \partial, -\lambda + x)A(-\lambda, x).$$

Recall that the *Virasoro conformal algebra* is defined as the free $\mathbb{C}[\partial]$ -module of rank 1 generated by an element L, with λ -bracket defined by

$$[L_{\lambda}L] = (2\lambda + \partial)L,$$

and extended to $\mathbb{C}[\partial]L$ using sesquilinearity. Observe that all Virasoro subalgebras of gc_N are generated by

$$L = (x + \alpha \partial)I, \alpha \in \mathbb{C}$$
 and I the $N \times N$ identity matrix

The complete list of infinite rank proper subalgebras of gc_N that contain a Virasoro subalgebra is (see Remark 6.5 in Ref. [5] and Remark 3.10 in Ref. [6]

$$gc_{N,xI} = xI \operatorname{Mat}_{N}\mathbb{C}[\partial, x],$$

$$oc_{N} = \{A(\partial, x) - A(\partial, -\partial - x) : A(\partial, x) \in \operatorname{Mat}_{N}\mathbb{C}[\partial, x]\},$$

$$spc_{N,xI} = \{xI[A(\partial, x) + A(\partial, -\partial - x)] : A(\partial, x) \in \operatorname{Mat}_{N}\mathbb{C}[\partial, x]\},$$

where the Virasoro element is $L = (x + \alpha \partial)I$ with $\alpha = 0, \frac{1}{2}, 0$, respectively. To study the finite growth representations over these algebras, we used the following results, which relate modules over a conformal Lie algebra and modules over its annihilation Lie algebra. The affinization of a conformal Lie algebra R is the conformal algebra

$$\widetilde{R} = R[t, t^{-1}] := R \otimes \mathbb{C}[t, t^{-1}]$$

with $\widetilde{\partial} = \partial \otimes 1 + 1 \otimes \partial_t$ and *n*-product is defined by $(a, b \in R, f, g \in \mathbb{C}[t, t^{-1}], n \in \mathbb{Z}_+)$ (cf. [8])

$$(a \otimes f)_{(n)}(b \otimes g) = \sum_{j \in \mathbb{Z}_+} a_{(n+j)} b \otimes ((\partial^t f)g).$$
 (2)

Letting $a_n = a \otimes t^n$, formula (2) becomes $(m, n \in \mathbb{Z})$

$$(a_m)_{(k)}(b_m) = \sum_{j \in \mathbb{Z}_+} {m \choose j} (a_{(k+j)}b)_{m+n-j}.$$
 (3)

Letting

$$\operatorname{Lie} R = \widetilde{R}/\widetilde{\partial}\widetilde{R}$$

with the bracket induced by the 0-product on \widetilde{R} , (and keeping the notation a_n for its image in Lie R) we obtain the Lie~algebra~ associated to the conformal algebra R.

Remark. It is clear from (3), that $-1 \otimes \partial_t$ is a derivation of the 0-product of the conformal algebra \widetilde{R} . Since this operator commutes with $\widetilde{\partial}$, it induces a derivation T of the Lie algebra Lie R, given by the formula

$$T(a_n) = -na_{n-1}.$$

From the definition of Lie bracket on \widetilde{R} is follows that

$$(\operatorname{Lie} R)_{-} = \operatorname{span}\{a_n : a \in R, n \in \mathbb{Z}_+\},\$$

is a Lie subalgebra of Lie R, this is called the *annihilation algebra*. Is clear that (Lie R)₋ is T-invariant, then we can consider the direct sum (Lie R)⁻ = $\mathbb{C}T \oplus (\text{Lie }R)_-$, which is a Lie algebra called the *extended annihilation algebra*.

Then we have the following result (cf. [8], Remark 2.9a), a module M over a conformal algebra R is the same as a module over the extended annihilation algebra. This R-module is conformal iff the following property holds:

$$a_n v = 0, \quad a \in R, v \in M, n \gg 0.$$

Therefore our problem reduces to the study of finite growth representations of the corresponding extended annihilation algebras, which are certain subalgebras of \mathcal{D}^N (see Ref. [5]). The main tools used here are the results (Refs. [11], [12],[13] and [14]) on the classification of quasifinite highest weight modules over the central extension of \mathcal{D}^N and some of its subalgebras. The paper is organized as follows, in Sec. 2 we describe the infinite rank Lie algebra $\widehat{g\ell}_{\infty}^{[m]}$ and its classical subalgebras, and discuss their representation theory. In Secs. 3-6, we obtain the classification of all finite growth representations of gc_N , $gc_{N,xI}$, oc_N , and $spc_{N,xI}$ respectively.

2 Lie algebra $\widehat{g\ell}_{\infty}^{[m]}$ and its classical subalgebras

2.1 Lie algebra $\widehat{gl}_{\infty}^{[m]}$

Let $\mathbb{C}^{+\infty}$ be set of all sequences $\lambda = (\lambda_1, \lambda_2, \cdots)$ for which all but a finite number of λ_i 's are zero, and $d(\lambda)$ the number of nonzero λ_i 's and $|\lambda|$ be their sum. Denote by Par^+ the subset of $\mathbb{C}^{+\infty}$ consisting of nonincreasing sequences of non-negative integers and denote by $g\ell_{+\infty}$ the Lie algebra of all matrices $(a_{i,j})_{i,j=1}^{+\infty}$ with a finite number of nonzero entries $a_{i,j} \in \mathbb{C}$. Given $\lambda \in \mathbb{C}^{+\infty}$, there exists a unique irreducible $g\ell_{+\infty}$ -module $L^+(\lambda)$, also denoted by $L(g\ell_{+\infty},\lambda)$, which admits a nonzero vector v_{λ} such that

$$E_{i,j}v_{\lambda} = 0 \quad \text{for} \quad i < j \quad \text{and} \quad E_{i,i}v_{\lambda} = \lambda_i v_{\lambda}.$$
 (4)

Here and further $E_{i,j}$ denotes, as usual, the matrix whose (i,j)-entry is 1 and all other entries are 0. Each $L^+(\lambda)$ has a unique \mathbb{Z}_+ -gradation. $L^+(\lambda) = \bigoplus_{j \in \mathbb{Z}_+} L^+(\lambda)_j$, called its *principal gradation*, which satisfies the properties

$$L^+(\lambda)_0 = \mathbb{C}v_\lambda, \quad E_{i,j}L^+(\lambda)_k \subset L^+(\lambda)_{k+i-j}.$$

Since $\lambda \in \mathbb{C}^{+\infty}$, it is easy to see that $\dim L^+(\lambda)_j < \infty$, hence we can define the q-character

$$ch_qL^+(\lambda) = \sum_{j \in \mathbb{Z}_+} (\dim L^+(\lambda)_j) q^j.$$

For $\lambda \in \operatorname{Par}^+$, let $d = d(\lambda)$ and $\bar{\lambda} = (\lambda_1, \dots, \lambda_d)$. Let $g\ell_d$ be the Lie algebra of all $d \times d$ matrices $(a_{i,j})_{i,j=1}^d$; it may be viewed as subalgebra of $g\ell_{+\infty}$ in a natural way. Denote by $L^+(\bar{\lambda})$ the (irreducible) $g\ell_d$ -submodule of $L^+(\lambda)$ generated by v_{λ} . It is, of course, isomorphic to the finite-dimensional irreducible $g\ell_d$ -module associated to $\bar{\lambda}$, so that its q-character is a (well-known) polynomial in q.

Lemma 1. Let $\lambda \in Par^+$, $d = d(\lambda)$. Then

$$ch_q L^+(\lambda) = ch_q \bar{L}^+(\bar{\lambda}) / \prod_{j=1}^d (1 - q^j)_q^{\lambda_d - j + 1},$$

where $(1-a)_q^m = (1-a)(1-qa)\cdots(1-q^{m-1}a)$.

Proof. See Lemma 2.1 in [15].

Recall that given a vector space V with an increasing filtration by finite-dimensional subspaces $V_{[i]}$, the *growth* of V is defined by (Cf. [15])

$$\operatorname{growth} V = \overline{\lim}_{j \to \infty} (\log \dim V_{[j]}) / \log j.$$

We define the growth of $L^+(\lambda)$ using its filtration $L^+(\lambda)_{[j]} = \bigoplus_{i \leq j} L^+(\lambda)_i$ associated to the principal gradation. In Theorem 2.2 [15], it was used the Lemma above to prove the following Theorem,

Theorem 1. (a) If $\lambda \in Par^+$, then

$$growthL^{+}(\lambda) = |\lambda|.$$

(b) If
$$\lambda \in \mathbb{C}^{+\infty} \setminus Par^+$$
, then $growthL^+(\lambda) = \infty$.

In a similar fashion one may consider the Lie algebra $g\ell_{-\infty}$ of all matrices $(a_{i,j})_{i,j=0}^{-\infty}$ with a finite number of nonzero entries and the irreducible $g\ell_{-\infty}$ -modules $L^-(\lambda)$, also denoted by $L(g\ell_{-\infty};\lambda)$, parameterized by the set $\mathbb{C}^{-\infty}$ of sequences $\lambda=(\cdots,\lambda_{-1},\lambda_0)$ with finitely many nonzero entries. Results similar to Lemma 1 and Theorem 1 hold for the subset $\Pr^- \subset \mathbb{C}^{-\infty}$ consisting of nondecreasing sequences of (nonpositive) integers. Let $g\ell_{\infty}$ denote the Lie algebra of all matrices $(a_{i,j})_{i,j\in\mathbb{Z}}$ such that $a_{i,j}=0$ if $|i-j|\gg 0$. Denote by $g\ell_{+\infty}$ (respectively $g\ell_{-\infty}$) the subalgebra of $g\ell_{\infty}$ consisting of matrices with $a_{i,j}=0$ for i or $j\leq 0$ (respectively, i or j>0). Note that these two subalgebras commute and that $g\ell_{\pm\infty}$ contains $g\ell_{\pm\infty}$ as a subalgebra. Note also $g\ell_{\pm\infty}$ -modules $L^{\pm}(\lambda)$ extended uniquely to $g\ell_{\pm\infty}$. The Lie algebra $g\ell_{\infty}$ has a well-known central extension $g\ell_{\infty}=g\ell_{\infty}+\mathbb{C}C$ by \mathbb{C} defined by the cocycle

$$\alpha(A, B) = tr[J, A]B, \quad \text{where } J = \sum_{i < 0} E_{i,i}.$$
 (5)

The restriction of this cocycle to $\widetilde{g\ell}_{+\infty}$ and to $\widetilde{g\ell}_{-\infty}$ is zero. We will also need briefly the Lie algebra $\widehat{g\ell}_{\infty}^{[m]}$ defined for each $m \in \mathbb{Z}_+$ by replacing \mathbb{C} by $R_m = \mathbb{C}[u]/u^{m+1}$. That is, $\widehat{g\ell}_{\infty}^{[m]} = \widetilde{g\ell}_{\infty}^{[m]} \oplus R_m$ is the central extension of $\widetilde{g\ell}_{\infty}^{[m]}$ by the 2-cocycle (5) with values in R_m , where $\widetilde{g\ell}_{\infty}^{[m]}$ is the Lie algebra of infinite matrices with finitely many nonzero diagonals with entries in R_m . The principal \mathbb{Z} -gradation of all above Lie algebras are defined by letting

$$\deg E_{i,j} = i - j \tag{6}$$

(in the case of $\widehat{gl}_{\infty}^{[m]}$ we also let $\deg R_m = 0$). This give us a triangular decomposition

$$\widehat{g\ell}_{\infty}^{[m]} = (\widehat{g\ell}_{\infty}^{[m]})_{+} \oplus (\widehat{g\ell}_{\infty}^{[m]})_{0} \oplus (\widehat{g\ell}_{\infty}^{[m]})_{-},$$

where

$$(\widehat{g\ell}_{\infty}^{[m]})_{\pm} = \bigoplus_{j \in \mathbb{N}} (\widehat{g\ell}_{\infty}^{[m]})_{\pm j}.$$

The Lie algebra $\widehat{g\ell}_{\infty}$ has a family of modules $L(\widehat{g\ell}_{\infty}; \lambda, c)$, parameterized by $\lambda \in \mathbb{C}^{\infty} = \{(\lambda_i)_{i \in \mathbb{Z}} : \text{ all but finitely many of } \lambda_i \text{ are } 0\}$ and $c \in \mathbb{C}$ defined by (4) and $Cv_{\lambda} = cv_{\lambda}$. Similarly $\widehat{g\ell}_{\infty}^{[m]}$ has a family of modules $L(\widehat{g\ell}_{\infty}^{[m]}; \vec{\lambda}, \vec{c})$ where $\vec{\lambda} \in (\mathbb{C}^{\infty})^{m+1}$, $c \in \mathbb{C}^{m+1}$, defined in a similar fashion. That is, the highest weight $\widehat{g\ell}_{\infty}^{[m]}$ -module $L(\widehat{g\ell}_{\infty}^{[m]}; \Lambda)$, with highest weight $\Lambda \in (\widehat{g\ell}_{\infty}^{[m]})_0^*$ that is determined by its $labels \ \vec{\lambda_i}^{(j)} = \Lambda(u^j E_{i,i})$ and the $central\ charges$ $\vec{c_j} = \Lambda(u^j)$. The gradation (6) is obviously consistent with the principal gradation of $L^{\pm}(\lambda)$ and of $L(\widehat{g\ell}_{\infty}; \lambda, c)$.

2.2 Lie algebras $b_{\infty}^{[m]}, c_{\infty}^{[m]}$ and $d_{\infty}^{[m]}$

The Lie algebra $\widetilde{g\ell}_{\infty}^{[m]}$ acts on the vector space $R_m[t,t^{-1}]$ via the usual formula

$$E_{i,j}v_k = \delta_{j,k}v_i,$$

where $v_i = t^{-i}$, $i \in \mathbb{Z}$ is a basis of $R_m[t, t^{-1}]$ over R_m . Now consider the following \mathbb{C} -bilinear forms on this spac:

$$B(u^{\widetilde{m}}v_{i}, u^{n}v_{j}) = u^{\widetilde{m}}(-u)^{n} \delta_{i,-j},$$

$$C(u^{\widetilde{m}}v_{i}, u^{n}v_{j}) = u^{\widetilde{m}}(-u)^{n}(-1)^{i}\delta_{i,1-j},$$

$$D(u^{\widetilde{m}}v_{i}, u^{n}v_{j}) = u^{\widetilde{m}}(-u)^{n} \delta_{i,1-j}.$$

$$(7)$$

Denote by $\bar{b}_{\infty}^{[m]}$ (respectively $\bar{c}_{\infty}^{[m]}$, and $\bar{d}_{\infty}^{[m]}$) the Lie subalgebra of $\widetilde{g\ell}_{\infty}^{[m]}$ which preserves the bilinear form B(respectively C and D). We have

$$\begin{split} \bar{b}_{\infty}^{[m]} &= \left\{ (a_{i,j}(u))_{i,j \in \mathbb{Z}} \in \widetilde{g\ell}_{\infty}^{[m]} \, : \, a_{i,j}(u) = -a_{-j,-i}(-u) \right\}, \\ \bar{c}_{\infty}^{[m]} &= \left\{ (a_{i,j}(u))_{i,j \in \mathbb{Z}} \in \widetilde{g\ell}_{\infty}^{[m]} \, | \, a_{i,j}(u) = (-1)^{i+j+1} a_{1-j,\, 1-i}(-u) \, \right\}, \\ \bar{d}_{\infty}^{[m]} &= \left\{ (a_{i,j}(u))_{i,j \in \mathbb{Z}} \in \widetilde{g\ell}_{\infty}^{[m]} \, : \, a_{i,j}(u) = -a_{1-j,\, 1-i}(-u) \, \right\}. \end{split}$$

Denote by $b_{\infty}^{[m]} = \bar{b}_{\infty}^{[m]} \oplus R_m$ (respectively, $c_{\infty}^{[m]} = \bar{c}_{\infty}^{[m]} \oplus R_m$ and $d_{\infty}^{[m]} = \bar{d}_{\infty}^{[m]} \oplus R_m$) the central extension of \bar{b}_{∞} (respectively, $\bar{c}^{[m]}$ and $\bar{d}_{\infty}^{[m]}$) given by the 2-cocycle defined in $\tilde{g}\ell_{\infty}^{[m]}$. Both subalgebras inherit the form $\hat{g}\ell_{\infty}^{[m]}$ the principal \mathbb{Z} -gradation and the triangular decomposition, (see Refs. for notation [8] and [19]).

$$b_{\infty}^{[m]} = \bigoplus_{j \in \mathbb{Z}} (b_{\infty}^{[m]})_j, \quad b_{\infty}^{[m]} = (b_{\infty}^{[m]})_+ \oplus (b_{\infty}^{[m]})_0 \oplus (b_{\infty}^{[m]})_-,$$

$$c_{\infty}^{[m]} = \bigoplus_{j \in \mathbb{Z}} (c_{\infty}^{[m]})_j \qquad c_{\infty}^{[m]} = (c_{\infty}^{[m]})_+ \oplus (c_{\infty}^{[m]})_0 \oplus (c_{\infty}^{[m]})_-,$$

$$d_{\infty}^{[m]} = \bigoplus_{j \in \mathbb{Z}} (d_{\infty}^{[m]})_j, \quad d_{\infty}^{[m]} = (d_{\infty}^{[m]})_+ \oplus (d_{\infty}^{[m]})_0 \oplus (d_{\infty}^{[m]})_-.$$

In particular when m=0, we have the usual Lie subalgebras of $\widehat{g\ell}_{\infty}$, denoted by b_{∞} (respectively, c_{∞} and d_{∞}). Denote by $L(b_{\infty}^{[m]};\lambda)$ [respectively, $L(c_{\infty}^{[m]};\lambda)$ and $L(d_{\infty}^{[m]};\lambda)$] the highest weight module over $b_{\infty}^{[m]}$ (respectively $c_{\infty}^{[m]}$ and $d_{\infty}^{[m]}$) with highest weight $\lambda \in (b_{\infty}^{[m]})_{0}^{*}$ (respectively $\lambda \in (c_{\infty}^{[m]})_{0}^{*}$ and $\lambda \in (d_{\infty}^{[m]})_{0}^{*}$) parameterized by ${}^{b}\vec{\lambda} \in (\mathbb{C}^{\infty})^{m+1}$, $\vec{c} \in \mathbb{C}^{m+1}$, with

$$\vec{c_i} = \lambda(u^i),$$

$${}^{b}\vec{\lambda_j}^{(i)} = \lambda(u^i E_{i,j} - (-u)^i E_{-i,-j}),$$

[respectively ${}^{c}\vec{\lambda} \in (\mathbb{C}^{\infty})^{m+1} {}^{c}\lambda_{j}^{(i)} = \lambda(u^{i}E_{j,j} - (-u)^{i})E_{1-j,1-j} \text{ and } {}^{d}\vec{\lambda} \in (\mathbb{C}^{\infty})^{m+1}, {}^{d}\vec{\lambda_{j}}^{(i)} = \lambda(u^{i}E_{j,j} - (-u)^{i}E_{1-j,1-j})].$ The superscripts b, c and d here mean B, C and D type respectively. The ${}^{b}\vec{\lambda_{j}}^{(i)}$ (respectively ${}^{c}\vec{\lambda_{j}}^{(i)}$ and ${}^{d}\vec{\lambda_{j}}^{(i)}$) are called the labels and $\vec{c_{j}}$ the central charges of $L(b_{\infty}^{[m]}; \lambda)$ [respectively, $L(c_{\infty}^{[m]}; \lambda)$ and $L(d_{\infty}^{[m]}; \lambda)$].

All these modules will appear in Sec.V. In Theorems 2.4 and 2.6 in [15], it was proved the following result. To do this, they used Lemmas 2.3 and 2.5, in [15] about the q-character of each one of the subalgebras of type B, C and D.

Theorem 2. All non-trivial modules $L(\mathfrak{g}^{[m]}; \lambda)$ have infinite growth, where $\mathfrak{g}^{[m]}$ can be $b_{\infty}^{[m]}$, $c_{\infty}^{[m]}$ or $d_{\infty}^{[m]}$.

3 Irreducible finite growth gc_N -modules

Let \mathcal{D}_{-}^{N} be the Lie algebra of matrix differential operators on \mathbb{C} . It consists of linear combinations of matrix differential operators of the form

 $f(t) \left(\frac{d}{dt}\right)^m e_{i,j}$, where f is a polynomial, $m \in \mathbb{Z}_+$ and $e_{i,j}$ is the standard basis of $\operatorname{Mat}_N \mathbb{C}$, with $i, j \in \{1, \dots, N\}$. In particular, $De_{i,j} := \left(t \frac{d}{dt}\right) e_{i,j} \in \mathcal{D}^N_-$. The principal \mathbb{Z} -gradation $\mathcal{D}^N_- = \bigoplus_{q \in \mathbb{Z}} \left(\mathcal{D}^N_-\right)_q$ is defined by letting

$$\deg t = -N, \ \deg \frac{d}{dt} = N, \text{ and } \deg e_{i,j} = j - i.$$
 (8)

Given $\vec{\Delta} = {\{\vec{\Delta}_n\}_{n \in \mathbb{Z}_+}}$ with $\vec{\Delta}_n \in \mathbb{C}^N$ for all $n \in \mathbb{Z}_+$, we consider the highest weight module $L(\vec{\Delta}; \mathcal{D}_{-}^{N})$ over \mathcal{D}_{-}^{N} as the (unique) irreducible module that has a non-zero vector $v_{\vec{\lambda}}$ with the following properties:

$$(\mathcal{D}_{-}^{N})_{p} v_{\vec{\Delta}} = 0 \text{ for } p < 0, \quad D^{n} e_{i,i} v_{\vec{\Delta}} = \Delta_{n}^{i} v_{\vec{\Delta}} \text{ for } n \in \mathbb{Z}_{+}, i = 1, \dots, N.$$

The principal gradation of \mathcal{D}_{-}^{N} induces the principal gradation $L(\vec{\Delta}; \mathcal{D}_{-}^{N}) = \bigoplus_{q \in \mathbb{Z}_{+}} L_{q}$ such that $L_{0} = \mathbb{C}v_{\vec{\Lambda}}$. The module $L(\vec{\Delta}; \mathcal{D}_{-}^{N})$ is called quasifinite if dim $L_q < \infty$ for all $q \in \mathbb{Z}_+$.

Quasifinite modules over \mathcal{D}_{-}^{N} can be constructed as follows. Consider the natural action of \mathcal{D}^N_- on $\mathbb{C}[t,t^{-1}]\otimes\mathbb{C}^N$, and the action of $\widetilde{g\ell}_\infty$ on $\mathbb{C}[t,t^{-1}]$ given by $E_{i,j}v_k = \delta_{j,k}v_i$, where $v_j = t^{-j}$ $(j \in \mathbb{Z})$ is a base of Laurent polynomials. Let $\varphi : \mathbb{C}[t,t^{-1}] \otimes \mathbb{C}^N \to \mathbb{C}[t,t^{-1}]$ be the isomorphism defined by $e_it^j \to t^{jN+i-1}$, where e_i with $i = 1, \dots, N$ is the standard base of \mathbb{C}^N (cf [11].) This gives an embedding of \mathcal{D}^N_- in $\widetilde{\mathfrak{g}}\ell_\infty$. Since $\mathbb{C}[t] \otimes \mathbb{C}^N$ is \mathcal{D}^N_- invariant, we get \mathcal{D}^N_- -modules $(\mathbb{C}[t,t^{-1}] \otimes \mathbb{C}^N)/(\mathbb{C}[t] \otimes \mathbb{C}^N)$ and $\mathbb{C}[t] \otimes \mathbb{C}^N$, which gives us an embedding of \mathcal{D}_{-}^{N} in $\widetilde{g\ell}_{+\infty}$ and $\widetilde{g\ell}_{-\infty}$ respectively, hence an embedding of \mathcal{D}_{-}^{N} in $\widetilde{g}\ell_{+\infty} \oplus \widetilde{g}\ell_{-\infty}$. All these embeddings respect the principal gradations.

Here and further we will denote $\mathbb{C}^N[t,t^{-1}]:=\mathbb{C}[t,t^{-1}]\otimes\mathbb{C}^N$ and

 $\mathbb{C}^N[t] := \mathbb{C}[t] \otimes \mathbb{C}^N.$ Now take $\lambda^{\pm} \in \mathbb{C}^{\pm \infty}$ and consider the $\widetilde{\mathrm{g}}\ell_{+\infty} \oplus \widetilde{\mathrm{g}}\ell_{-\infty}$ -module $L^+(\lambda^+) \otimes \mathbb{C}^N$ $L^{-}(\lambda^{-})$. The same argument as in [10], gives us the following.

Lemma 2. When restricted to \mathcal{D}_{-}^{N} , the module $L^{+}(\lambda^{+}) \otimes L^{-}(\lambda^{-})$ remains irreducible.

It follows immediately that $L^+(\lambda^+) \otimes L^-(\lambda^-)$ is an irreducible highest weight module over \mathcal{D}_{-}^{N} , which is obviously quasifinite. It is easy to see that we have:

$$\Delta_n^i = \sum_{j>1} (-j)^n \lambda_{jN-i+1}^+ + \sum_{j<0} (-j)^n \lambda_{jN-i+1}^-$$

so that

$$\Delta_i(x): = \sum_{n\geq 0} \Delta_n x^n / n! = \sum_{j\geq 1} \lambda_{jN-i+1}^+ e^{-jx} + \sum_{j\leq 0} \lambda_{jN-i+1}^- e^{-jx}.$$

with $i = 1, \dots, N$. It is also clear that for $\lambda^{\pm} \in \operatorname{Par}^{\pm}$ we have (cf. Theorem 1(a)):

growth
$$L^+(\lambda^+) \otimes L^-(\lambda^-) = |\lambda^+| + |\lambda^-|$$
.

We shall prove the following theorem.

Theorem 3. The \mathcal{D}_{-}^{N} -modules $L^{+}(\lambda^{+})\otimes L^{-}(\lambda^{-})$, where $\lambda^{\pm}\in \operatorname{Par}^{\pm}$, exhaust all quasifinite irreducible highest weight \mathcal{D}_{-}^{N} -modules that have finite growth.

Let \mathcal{D}^N denote the Lie algebra of all matrix differential operators on \mathbb{C}^{\times} . The Lie algebra \mathcal{D}^N is the linear span of matrix differential operators $f(t)\left(\frac{d}{dt}\right)^k A$, where $f(t) \in \mathbb{C}[t,t^{-1}]$, $k \in \mathbb{Z}_+$ and $A \in \operatorname{Mat}_N\mathbb{C}$, or equivalently of operators $t^k f(D) e_{i,j}$, where $f(D) \in \mathbb{C}[D]$, $k \in \mathbb{Z}$ and $e_{i,j}$ is the standard basis of $\operatorname{Mat}_N\mathbb{C}$, with $i,j \in \{1,\cdots,N\}$. Obviously, \mathcal{D}^N_- is a subalgebra of \mathcal{D}^N , and the principal gradation extends from \mathcal{D}^N_- to \mathcal{D}^N in the obvious way.

The basic idea of the proof of Theorem 3 is the same as in [15]: to reduce the problem to the well developed (in [11]) representation theory of the universal central extension $\widehat{\mathcal{D}}^N$ of \mathcal{D}^N . Recall that the central extension $\widehat{\mathcal{D}}^N = \mathcal{D}^N \oplus \mathbb{C}C$ is defined by the cocycle [10].

$$\Psi\left(f(t)\left(\frac{d}{dt}\right)^m A, g(t)\left(\frac{d}{dt}\right)^n B\right) = \operatorname{Res}_0 \frac{\operatorname{Tr}(AB)m!n!}{(m+n+1)!} f^{(n+1)}(t)g^{(m)}(t)dt,$$
(9)

where Tr is the usual trace. The principal gradation of \mathcal{D}^N lifts to $\widehat{\mathcal{D}}^N$ by letting deg C=0. Note also that the restriction of the cocycle Ψ to \mathcal{D}^N_- is zero.

Consider again $\varphi: \mathbb{C}^N[t,t^{-1}] \to \mathbb{C}[t,t^{-1}]$ be the isomorphism defined by $e_i t^j \to t^{jN+i-1}$. For each $s \in \mathbb{C}$ one defines a Lie algebra homomorphism $\varphi_s: \mathcal{D}^N \to \widetilde{\mathrm{g}}\ell_{\infty}$ (via the action of \mathcal{D}^N on $t^s \mathbb{C}^N[t,t^{-1}]$) by

$$\varphi_s(t^k f(D)e_{i,j}) = \sum_{l \in \mathbb{Z}} f(-l+s) E_{(l-k)N-i+1, lN-j+1}.$$
 (10)

This homomorphism lifts to a homomorphism of central extension $\widehat{\varphi}_s:\widehat{\mathcal{D}}^N\to \widehat{g\ell}_\infty$ by

$$\widehat{\varphi}_s|_{(\widehat{\mathcal{D}}^N)_i} = \varphi_s|_{(\widehat{\mathcal{D}}^N)_i} \text{ if } j \neq 0,$$

$$\widehat{\varphi}_s(e^x D e_{i,i}) = \varphi_s(e^{xD} e_{i,i}) - \frac{e^{sx} - 1}{e^x - 1},$$

$$\widehat{\varphi}_s(C) = C$$
(11)

More generally, for each $m \in \mathbb{Z}_+$ one defines a homomorphism $\varphi_s^{[m]}: \mathcal{D}^N \to \widetilde{\mathfrak{gl}}_{\infty}^{[m]}$ by

$$\varphi_s^{[m]}(t^k f(D)e_{i,j}) = \sum_{l \in \mathbb{Z}} f(-l+s+u) E_{(l-k)N-i+1, lN-j+1}, \qquad (12)$$

which lifts to $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}^N\to \widehat{g\ell}_{\infty}^{[m]}$ in a similar way,

$$\widehat{\varphi}_s^{[m]}|_{(\widehat{\mathcal{D}}^N)_j} = \varphi_s^{[m]}|_{(\widehat{\mathcal{D}}^N)_j} \text{ if } j \neq 0,$$

$$\widehat{\varphi}_s^{[m]}(e^{xD}e_{i,i}) = \varphi_s^{[m]}(e^{xD}e_{i,i}) - \frac{e^{sx} - 1}{e^x - 1} - \sum_{j=1}^m \frac{x^j e^{sx}}{e^x - 1} t^j / j!,$$

$$\widehat{\varphi}_s^{[m]}(C) = C \tag{13}$$

One of the main results of [11] is the following.

Lemma 3. For each $i=1,\ldots,r$, pick a collection $m_i \in \mathbb{Z}_+$, $s_i \in \mathbb{C}$, $\vec{\lambda}_i \in \mathbb{C}^{\infty}$ $(\mathbb{C}^{\infty})^{m_i+1}$, $\vec{c}_i \in \mathbb{C}^{m_i+1}$, such that $s_i - s_j \notin \mathbb{Z}$ for $i \neq j$. Then the $\bigoplus_{i=1}^r \widehat{g\ell}_{\infty}^{[m_i]}$ module $\bigotimes_{i=1}^r L^{[m_i]}(\vec{\lambda}_i, \vec{c}_i)$ remains irreducible when restricted to $\widehat{\mathcal{D}}^N$ via the embedding $\bigoplus_{i=1}^r \widehat{\varphi}_{s_i}^{[m_i]} : \widehat{\mathcal{D}}^N \to \bigoplus_{i=1}^r \widehat{g\ell}_{\infty}^{[m_i]}$. All irreducible quasifinite highest weight $\widehat{\mathcal{D}}^N$ -modules are obtained in this way.

Proof of Theorem 3. Note that for $p \ge 1$ there exists a positive integer k such that p = kN + r = (k+1)N - (N-r) with $0 \le r \le N-1$ One has:

$$(\mathcal{D}_{-}^{N})_{p} = \{t^{-k}f(D)e_{i,i+r} : f(0) = f(1) = \dots = f(k-1) = 0,$$

$$i = 1, \dots, N-r\}$$

$$\bigcup (1 - \delta_{r,0})\{t^{-(k+1)}g(D)e_{i,i-N+r} : g(0) = g(1) = \dots = g(k) = 0$$

$$i = N-r+1, \dots, N\}.$$

$$(14)$$

Hence $(\mathcal{D}_{-}^{N})_{p}$ has finite codimension in \mathcal{D}_{p}^{N} and therefore the quasifiniteness of a \mathcal{D}_{-}^{N} -module $L(\vec{\Delta}; \mathcal{D}_{-}^{N})$ implies the quasifiniteness of any of the $\widehat{\mathcal{D}}^{N}$ -modules $L(\vec{\Delta}, c; \widehat{\mathcal{D}}^{N})$. Due to Lemma 3, $L(\vec{\Delta}, c; \widehat{\mathcal{D}}^{N})$ is a tensor product

of the $\widehat{g\ell}_{\infty}^{[m]}$ -modules $L^{[m]}(\vec{\lambda}, \vec{c})$ on which $\widehat{\mathcal{D}}^N$ acts via the embedding $\widehat{\varphi}_s^{[m]}$ defined by (12) and (13).

It is clear from Theorem 1 that all non-trivial modules $L^{[m]}(\vec{\lambda}_i, \vec{c}_i)$ have infinite growth (by choosing an appropriate subalgebra isomorphic to $g\ell_{+\infty}$ in $g\ell_{\infty}$).

Recall that for any quasifinite $\widehat{\mathcal{D}}^N$ -module one can extend the action of $(\widehat{\mathcal{D}}^N)_p$ for $p \neq 0$ to $(\widehat{\mathcal{D}}^{N\mathcal{O}})_p$, where \mathcal{O} is the algebra of all holomorphic functions on \mathbb{C} (see [11]), in other words, in (12) and in the central extension of (13) one can take any $f \in \mathcal{O}$ if $p \neq 0$. The same holds for \mathcal{D}_-^N , except that for $p \geq 1$, f must obey conditions in (14). We apply this to the $\widehat{\mathcal{D}}^N$ -module $L^{[m]}(\vec{\lambda}, \vec{c})$ on which $\widehat{\mathcal{D}}^N$ acts via $\widehat{\varphi}_s^{[m]}$. Choosing $f_1, f_2 \in \mathcal{O}$ such that if $q \in \mathbb{Z}$ and satisfies

(a)
$$q = k_1 N + r$$
, with $k_1 \in \mathbb{Z}$ and $0 < r \le N - 1$, then

$$f_1(-l+s) = \delta_{l-1,k_1}, \ f_1^{(n)}(-l+s) = 0 \text{ if } n = 1,\ldots,m,$$

(b) $q = k_1 N$, with $k_1 \in \mathbb{Z}$, then

$$f_2(-l+s) = \delta_{l,k_1}, \ f_2^{(n)}(-l+s) = 0 \text{ if } n = 1,\dots,m,$$

we see from (12) that all operators $E_{q+1,q}$ lie in the image of $\widehat{\varphi}_s^{[m]}(\mathcal{D}_-^{N\mathcal{O}})$, except for $E_{1,0}$ when s=0 (here we use (14) for p=1). Hence, when restricted to \mathcal{D}_-^N , the module $L^{[m]}(\vec{\lambda},\vec{c})$ remains irreducible, provided that $s \neq 0$. Thus, if $L(\vec{\Delta}; \mathcal{D}_-^N)$ has finite growth, then $L(\vec{\Delta}; \widehat{\mathcal{D}}^N) = L^{[m]}(\vec{\lambda},\vec{c})$ on which $\widehat{\mathcal{D}}^N$ acts via the embedding $\widehat{\varphi}_0^{[m]}$.

Let q as in (a), choosing $f_1 \in \mathcal{O}$ to vanish in all $l \in \mathbb{Z}$ up to m^{th} derivative except for i^{th} derivative $(0 < i \le m)$ at $l = k_1 + 1$, and if q as in (b) choosing $f_2 \in \mathcal{O}$ to vanish in all $l \in \mathbb{Z}$ up to m^{th} derivative except for i^{th} derivative $(0 < i \le m)$ at $l = k_1$ we see that all operators $u^i E_{q+1,q}$ with $0 < i \le m$ lie in the image of $\hat{\varphi}_s^{[m]}(\mathcal{D}_-^{N\mathcal{O}})$.

Suppose that the m^{th} coordinate of $\vec{\lambda}_q$ is non-zero, and that m > 0. Then $v := (u^m E_{q+1,q})^n v_{\vec{\lambda}} \neq 0$ for all n > 0. But

$$E_{q,q}v = (-N + \lambda_q^0)v, E_{q+1, q+1}v = (N + \lambda_{q+1}^0)v.$$

Therefore, restricting to the subalgebra of $g\ell_{\infty}$ consisting of matrices $(a_{i,j})_{i,j\leq q}$ or $(a_{i,j})_{i,j\geq q+1}$ we conclude by Theorem 1, that $L^{[m]}(\vec{\lambda},\vec{c})$ is either trivial or is of infinite growth.

Thus, the only possibility that remains is s=m=0. As has been already shown, the image of $\widehat{\varphi}_s(\mathcal{D}_-^{N\mathcal{O}})$ contains all $E_{q+1,q}$ except for $E_{1,0}$, hence it contains all operators from $g\ell_{-\infty} \oplus g\ell_{+\infty}$. Therefore, by Theorem 1, the highest weight of a finite growth \mathcal{D}_-^N -module must be the same as one of the \mathcal{D}_-^N -modules $L^+(\lambda^+) \otimes L^-(\lambda^-)$ with $\lambda^{\pm} \in \operatorname{Par}^{\pm}$.

Given two partitions $\lambda^{\pm} \in \operatorname{Par}^{\pm}$, we denote by $L(\lambda^{+}, \lambda^{-})$ the \mathcal{D}_{-}^{N} -module, obtained by restriction via φ_{0} from the $\widetilde{\operatorname{g\ell}}_{+\infty} \oplus \operatorname{g\ell}_{-\infty}$ -module $L^{+}(\lambda^{+}) \otimes L^{-}(\lambda^{-})$. Now we shall construct the \mathcal{D}_{-}^{N} -modules $L(\lambda^{+}, \lambda^{-})$ explicitly.

Consider the \mathcal{D}^N_- -module $\mathbb{C}^N[t,t^{-1}]$. Then $\mathbb{C}^N[t]$ is the maximal submodule (which is irreducible). Hence the \mathcal{D}^N_- -module

$$V := \mathbb{C}^N[t, t^{-1}]/\mathbb{C}^N[t]$$

$$\tag{15}$$

is irreducible. It is clear that this is the highest weight \mathcal{D}_{-}^{N} -module of growth 1 with a highest weight vector $(t^{-1} + \mathbb{C}[t])e_{N}$, where e_{N} is a vector in \mathbb{C}^{N} which has 1 in the N-entry and zero in the other entries. It is immediate to deduce that V is isomorphic to $L(\omega_{1},0)$ where $\omega_{1} \in \operatorname{Par}^{+}$, such that $\omega_{1}^{i} = 0$, for $i \neq 1$ and $\omega_{1}^{1} = 1$.

Likewise, the \mathcal{D}_{-}^{N} -module $\mathbb{C}^{N}[t]^{*} := (\mathbb{C}[t] \otimes \mathbb{C}^{N})^{*} = \bigoplus_{j \in \mathbb{Z}_{+}} (\mathbb{C}t^{j} \otimes \mathbb{C}^{N})^{*}$ is an irreducible highest weight module of growth 1 with a highest weight vector $(1 \otimes e_{1})^{*}$, where e_{1} is a vector in \mathbb{C}^{N} which has 1 in the entry one and zero in the other entries. This module is isomorphic to $L(0, \omega_{-1})$, where $\omega_{-1} = (\ldots, 0, -1) \in \operatorname{Par}^{-}$. We denote this \mathcal{D}_{-}^{N} -module by V'.

As in the Schur-Weyl theory, the \mathcal{D}_{-}^{N} -module $T^{M}(V) \otimes T^{N}(V')$ has a natural decomposition as $(\mathcal{D}_{-}^{N}, S_{M} \times S_{N})$ -modules:

$$T^{M}(V) \otimes T^{N}(V') = \bigoplus_{\substack{\lambda^{\pm} \in \operatorname{Par}^{\pm} \\ |\lambda^{+}| = M \\ |\lambda^{-}| = N}} (V_{\lambda^{+}} \otimes V'_{\lambda^{-}}) \otimes (U_{\lambda^{+}} \otimes U_{\lambda^{-}})$$

where $U_{\lambda^+\,({\rm resp.}\ \lambda^-)}$ denotes the irreducible $S_{M\,({\rm resp.}\ N)}$ -module corresponding to the partition $\lambda^+\,({\rm resp.}\ \lambda^-)$.

Lemma 4. The \mathcal{D}^N_- -modules $V_{\lambda^+} \otimes V'_{\lambda^-}$ are irreducible.

Proof. As in the proof of Theorem 3, we extend the action of \mathcal{D}_{-}^{N} on $V_{\lambda^{+}} \otimes V_{\lambda^{-}}'$ to $(\mathcal{D}_{-}^{N\mathcal{O}})_{j}$ for each $j \neq 0$, to obtain that any \mathcal{D}_{-}^{N} -submodule of $V_{\lambda^{+}} \otimes V_{\lambda^{-}}'$ is a submodule of $g\ell_{+\infty} \oplus g\ell_{-\infty}$. But, by Schur–Weyl theory, the $g\ell_{+\infty} \oplus g\ell_{-\infty}$ -module $V_{\lambda^{+}} \otimes V_{\lambda^{-}}'$ is irreducible, which completes the proof.

Thus, we have proved

Theorem 4. The \mathcal{D}^{N}_{-} -module $L(\lambda^{+}, \lambda^{-})$ is isomorphic to $V_{\lambda^{+}} \otimes V'_{\lambda^{-}}$ for any pair $\lambda^{\pm} \in \operatorname{Par}^{\pm}$.

Remark. Considering $\lambda = (\lambda^-, \lambda^+) \in \mathbb{C}^{\infty}$ we may say that irreducible highest weight \mathcal{D}^N_- -modules of finite growth are parameterized by non-increasing sequences of integers $(\lambda_j)_{j\in\mathbb{Z}} \in \mathbb{C}^{\infty}$ with the exception that $\lambda_0 \leq \lambda_1$. Equivalently, letting $m_i = \lambda_i - \lambda_{i+1}$ we may say that these modules are parameterized by sequences of non-negative integers $(m_i)_{i\in\mathbb{Z}\setminus\{0\}}$, all but finite numbers of which are zero.

Recall that the extended annihilation algebra $\operatorname{Lie}^-(\operatorname{gc}_N)$ for gc_N is isomorphic to the direct sum of the Lie algebra \mathcal{D}^N_- and the N-dimensional Lie algebra $\mathbb{C}^N(\partial + \frac{d}{dt})$ and that conformal modules for a Lie conformal algebra coincide with the conformal modules over the associated extended annihilation algebra [7].

Given a module M over a Lie conformal algebra R and $\alpha \in \mathbb{C}$, we may construct the α -twisted module M_{α} by replacing ∂ by $\partial + \alpha$ in the formulas for action of R on M. Theorems 3 and 4 and the above remarks imply

Theorem 5. The gc_N -modules $L(\lambda^+, \lambda^-)_{\alpha}$, where $\lambda^{\pm} \in Par^{\pm}$, $\alpha \in \mathbb{C}$, exhaust all irreducible conformal gc_N -modules of finite growth.

Corollary. The gc_N -modules $\mathbb{C}^N[\partial]_{\alpha}$ and $\mathbb{C}^N[\partial]_{\alpha}^*$, where $\alpha \in \mathbb{C}$, exhaust all finite irreducible gc_N -modules.

4 Irreducible finite growth $gc_{N,xI}$ -modules

Let \mathcal{D}_0^N (respectively $\mathcal{D}_{0,-}^N$) be the Lie subalgebra of \mathcal{D}^N (respectively \mathcal{D}_-^N) of all matrix regular differential operator on \mathbb{C}^\times (respectively, \mathbb{C}) that kill constants. That is \mathcal{D}_0^N consists of linear combinations of elements of the form $t^k Df(D)e_{i,j}$, where f is a polynomial, $i, j \in \{1, \dots, N\}, k \in \mathbb{Z}_{\geq 0}$ and $e_{i,j}$ is the standard basis of $\mathrm{Mat}_N(\mathbb{C})$. Denote by $\widehat{\mathcal{D}}_0^N$ the corresponding central extension. These algebras inherit the \mathbb{Z} -gradation from $\widehat{\mathcal{D}}^N$. In this section, we will need the representation theory of the Lie algebra $\widehat{\mathcal{D}}_0^N$.

Given $\vec{\Delta} = {\{\vec{\Delta}_n\}_{n \in \mathbb{Z}_+}}$ with $\vec{\Delta}_n \in \mathbb{C}^N$ for all $n \in \mathbb{Z}_+$ we consider the highest weight module $L(\vec{\Delta}, \mathcal{D}_{0,-}^N)$ over $\mathcal{D}_{0,-}^N$ as the (unique) irreducible module that has a nonzero vector $v_{\vec{\Delta}}$ with the following properties:

$$(\mathcal{D}_{0,-}^{N})_{p}v_{\vec{\Delta}}=0 \text{ for } p<0, \quad D^{n}e_{i\,i}v_{\vec{\Delta}}=\Delta_{n}^{i}v_{\vec{\Delta}} \quad \text{for } n\in\mathbb{N}, \ i=1,\cdots,N.$$

The principal gradation of $\mathcal{D}_{0,-}^N$ induces the principal gradation of $L(\vec{\Delta}; \mathcal{D}_{0,-}^N)$. Quasifinite modules over $\mathcal{D}_{0,-}^N$ can be constructed as follows. The $\mathcal{D}_{0,-}^N$ -modules $\mathbb{C}^N[t,t^{-1}]/\mathbb{C}^{\stackrel{\circ}{N}[t]}$ and $\mathbb{C}^N[t]/\mathbb{C}^N$ give us an embedding of $\mathcal{D}_{0,-}^N$ in $\widetilde{g\ell}_{+\infty}$ and $\widetilde{g\ell}_{-\infty}$ respectively, hence an embedding of $\mathcal{D}_{0,-}^N$ in $g\ell_{+\infty} \oplus g\ell_{-\infty}$. All these embedding respect the principal gradation. Now take $\lambda^{\pm} \in \mathbb{C}^{\pm \infty}$ and consider the $\widetilde{g\ell}_{+\infty} \oplus \widetilde{g\ell}_{-\infty}$ -module $L^+(\lambda^+) \otimes L^-(\lambda^-)$. The same argument as in [10], gives us the following.

Lemma 5. When restricted to $\mathcal{D}_{0,-}^N$, the module $L^+(\lambda^+) \otimes L^-(\lambda^-)$ remains

It follows immediately that $L^+(\lambda^+) \otimes L^-(\lambda^-)$ is an irreducible highest weight module over $\mathcal{D}_{0,-}^N$, which is obviously quasifinite.

We have the following theorem.

irreducible.

Theorem 6. The $\mathcal{D}_{0,-}^N$ -modules $L^+(\lambda^+) \otimes L^-(\lambda^-)$, where $\lambda^{\pm} \in \operatorname{Par}^{\pm}$, exhaust all quasifinite irreducible highest weight $\mathcal{D}_{0,-}^N$ -modules that have finite growth.

The proof of Theorem 6 is the same as Theorem 3, but in this case we reduce the problem to the representation theory of the universal central

extension $\widehat{\mathcal{D}}_0^N$ of \mathcal{D}_0^N that was developed in Refs. [9] and [13]. Recall that the homomorphism $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}^N\to \widehat{g\ell}_{\infty}^{[m]}$ defined in (13) lifts to a homomorphism $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}^{N\mathcal{O}}\to \widehat{g\ell}_{\infty}^{[m]}$. Now, the restriction $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}_0^{N\mathcal{O}}\to \widehat{g\ell}_{\infty}^{[m]}$ $\widehat{g\ell}_{\infty}^{[m]}$ to $\widehat{\mathcal{D}}_{0}^{N\mathcal{O}}$ is surjective iff $s \notin \mathbb{Z}$. If $s \in \mathbb{Z}$, $m \neq 0$ we denote by $\widehat{g\ell}_{\infty,s}^{[m]}$ the Lie subalgebra of $\widehat{g\ell}_{\infty}^{[m]}$ where we remove all the elements $\{E_{i,sN-j+1}:$ $i \in \mathbb{Z}, j = 1, \dots, N$. The homomorphism $\hat{\varphi}_s^{[m]}$ defined on (13), restricted to $\widehat{\mathcal{D}}_0^{N\mathcal{O}}$ is an epimorphism over $\widehat{g\ell}_{\infty,s}^{[m]}$. If s=0=m we redefine $\widehat{g\ell}_{\infty,0}$ as the Lie subalgebra of $\widehat{g\ell}_{\infty}$ generated by C and $\{E_{i,j}: i \neq 0, j \neq 0\}$ and $\widehat{\varphi}_{0}$ by the homomorphism $p_{0} \circ \widehat{\varphi}_{0}: \widehat{\mathcal{D}}_{0}^{N} \to \widehat{g\ell}_{\infty}$ where $p_{0}: \widehat{g\ell}_{\infty} \to \widehat{g\ell}_{\infty,0}$ is the projection map. Observe that $\widehat{g\ell}_{\infty,0}$ is naturally isomorphic to $\widehat{g\ell}_{\infty}$. Then $\widehat{\varphi}_0:\widehat{\mathcal{D}}_0^N\to \widehat{g\ell}_{\infty,0}\simeq \widehat{g\ell}_{\infty}$ is a surjective homomorphism.

Now, let us consider the restriction to $\widehat{\mathcal{D}}_{0,-}^{N\mathcal{O}}$. Since the constrains given by (14) do not affect the case $s \neq 0$, we still have that $\widehat{\varphi}_s^{[m]}: \widehat{\mathcal{D}}_{0,-}^{N\mathcal{O}} \to$ $\widehat{g\ell}_{\infty}^{[m]}$ $(s \notin \mathbb{Z})$ is surjective.

Remark. The description of the image of the homomorphism $\hat{\varphi}_s^{[m]}$, with $s \in \mathbb{Z}$ and $m \neq 0$ in Ref. [13] (pag. 9), as the Lie subalgebra of $\widehat{g\ell}_{\infty}^{[m]}$ from

which we remove the elements $\{E_{sN-i+1,sN-j+1}:, i, j=1, \cdots, N\}$, should be replaced by $\widehat{g\ell}_{\infty,s}^{[m]}$ the Lie subalgebra of $\widehat{g\ell}_{\infty}^{[m]}$ where all the elements $\{E_{i,sN-j+1}: i \in \mathbb{Z}, j=1, \cdots, N\}$ were removed.

One of the results of Ref. [13] (see also Ref. [9]) is the following:

Lemma 6. For each $i=1,\ldots,r$, pick a collection $m_i \in \mathbb{Z}_+$, $s_i \in \mathbb{C}$, $\vec{\lambda}_i \in (\mathbb{C}^{\infty})^{m_i+1}$, $\vec{c}_i \in \mathbb{C}^{m_i+1}$, such that $s_i - s_j \notin \mathbb{Z}$ for $i \neq j$. Then the $\bigoplus_{i=1}^r g^{[m_i]}$ -module $\bigotimes_{i=1}^r L^{[m_i]}(\vec{\lambda}_i, \vec{c}_i)$ remains irreducible when restricted to $\widehat{\mathcal{D}}_0^N$ via the embedding $\bigoplus_{i=1}^r \widehat{\varphi}_{s_i}^{[m_i]} : \widehat{\mathcal{D}}_0^N \to \bigoplus_{i=1}^r g^{[m_i]}$, where $g^{[m_i]} = \widehat{g\ell}_{\infty}^{[m_i]}$ (respectively, $\widehat{g\ell}_{\infty,s_i}^{[m_i]}$) if $s_i \notin \mathbb{Z}$ (respectively $s_i \in \mathbb{Z}$). All irreducible quasifinite highest weight $\widehat{\mathcal{D}}_0^N$ -modules are obtained in this way.

Proof of Theorem 6. The proof is the same as Theorem 3 but use Lemma 6, but in the case $s=0, m\neq 0$ we do no get the operators $E_{q+1,q}$ with $q=-N+1,\cdots,0$ since $\mathrm{Im}\varphi_0^{[m]}=\widehat{g\ell}_{\infty,0}^{[m]}$. Then the argument is the same that Theorem 3 but in the case $s=0, m\neq 0$ restrict to the subalgebra of $\widehat{g\ell}_{\infty,0}^{[m]}$ instead of $\widehat{g\ell}_{\infty}^{[m]}$ consisting the matrices $(a_{i,j})_{i,j\leq r}$ or $(a_{i,j})_{i,j\geq r+1}$ in the case s=0=m redefine φ_0 as $p_0\circ\widehat{\varphi}_0$.

Given two partitions $\lambda^{\pm} \in \operatorname{Par}^{\pm}$, the \mathcal{D}_{-}^{N} -module $L(\lambda^{+}, \lambda^{-})$, that is obtained by restriction via φ_{0} from the $\widetilde{g\ell}_{+\infty} \oplus \widetilde{g\ell}_{-\infty}$ -module $L^{+}(\lambda^{+}) \otimes L^{-}(\lambda^{-})$ remains irreducible as a $\mathcal{D}_{0,-}^{N}$ -modules. The construction of the $\mathcal{D}_{0,-}^{N}$ -module $L(\lambda^{+}, \lambda^{-})$ is the same as before and Lemma 4 and Theorem 4 hold for $\mathcal{D}_{0,-}^{N}$. In this case, the extended annihilation algebra $\operatorname{Lie}(\operatorname{gc}_{N,xI})$ for $\operatorname{gc}_{N,xI}$ is isomorphic to the direct sum of the Lie algebra $\mathcal{D}_{0,-}^{N}$ and the N-dimensional algebra $\mathbb{C}^{N}[\partial + (d/dt)]$. Theorems 4 and 6 and the above remarks imply the following.

Theorem 7. The $gc_{N,xI}$ -modules $L(\lambda^+, \lambda^-)_{\alpha}$, where $\lambda^{\pm} \in Par^{\pm}$, $\alpha \in \mathbb{C}$, exhaust all irreducible conformal $gc_{N,xI}$ -modules of finite growth.

Corollary. The $gc_{N,xI}$ -modules $\mathbb{C}^N[\partial]_{\alpha}$ and $\mathbb{C}^N[\partial]_{\alpha}^*$, where $\alpha \in \mathbb{C}$, exhaust all finite irreducible $gc_{N,xI}$ -modules.

5 Irreducible finite growth oc_N -modules.

For any $A \in \operatorname{Mat}_N \mathbb{C}$ we define $(A)_{ij}^{\dagger} = A_{N+1-jN+1-i}$. Consider the anti-involution on $\mathcal{D} = \mathcal{D}^1$, introduced in [19],

$$\tau_{+,-1}(t^k f(D)) = t^k f(-D - k - 1).$$

We extend $\tau_{+,-1}$ to a map on $\operatorname{Mat}_N \mathcal{D} = \mathcal{D} \otimes \operatorname{Mat}_N \mathbb{C}$ by letting $[\tau_{+,-1}(A)]_{ij} = \tau_{+,-1}(A_{i,j})$. Now, consider the anti-involution σ in \mathcal{D}^N defined by

$$\sigma\left(t^{k}f(D)A\right) = \sigma_{+,-1}\left(t^{k}f(D)A^{\dagger}\right). \tag{16}$$

We denote by \mathcal{D}_{σ}^{N} the Lie subalgebra of \mathcal{D}^{N} given by $-\sigma$ -fixed points in \mathcal{D}^{N} . This subalgebra corresponds to the Lie algebra denoted by \mathcal{D}_{o}^{N} in [12]. Let $\widehat{\mathcal{D}}_{\sigma}^{N} = \mathcal{D}_{\sigma}^{N} \oplus \mathbb{C}C$ denote the central extension given by the restriction of the cocycle (9) on \mathcal{D}^{N} .

We are interested in the representation theory of the Lie algebra $\mathcal{D}_{\sigma,-}^N = \widehat{\mathcal{D}}_{\sigma}^N \cap \mathcal{D}_{-}^N$ of matrix regular differential operators on \mathbb{C} that are invariant by $-\sigma$. Both subalgebras inherit a \mathbb{Z} -gradation from \mathcal{D}^N , since σ preserve the principal \mathbb{Z} -gradation of \mathcal{D}^N , and we have $\mathcal{D}_{\sigma}^N = \bigoplus_{p \in \mathbb{Z}} (\mathcal{D}_{\sigma}^N)_p$ where, if p = kN + r, with $k \in \mathbb{N}$ and $0 \le r \le N - 1$,

$$(\mathcal{D}_{\sigma}^{N})_{p} = \left\{ t^{-k} (f(D_{-(k+1)}) e_{i,i+r} - f(-D_{-(k+1)} e_{N+1-r-i,N+1-i}), \\ 1 \le i \le [N+1-r/2] \right\}$$

$$\bigcup \left\{ t^{(-k+1)} (g(D_{-(k+2)}) e_{i,i-N+r} - g_{-(k+2)} e_{2N+1-i-r,N+1-i}), \\ N-r+1 \le i \le [2N+1-r/2] \right\}$$

$$(17)$$

where here and further $D_k = D + k/2$ and $[x], x \in \mathbb{R}$ is the integer less or equal than x. In the case of $(\mathcal{D}_{\sigma,-})_p$, we need to add condition (14) for p > 0. As before, we have the corresponding subalgebras of $\mathcal{D}^{N\mathcal{O}}$, denoted by $\mathcal{D}^{N\mathcal{O}}_{\sigma}$ and $\mathcal{D}^{N\mathcal{O}}_{\sigma,-}$. As in the case of \mathcal{D}^N_- , given $\vec{\Delta} = \{\vec{\Delta}_n\}$ with $\vec{\Delta}_n \in \mathbb{C}^{\left[\frac{N}{2}\right] + \delta_{N \text{ odd}}}$ we consider the highest weight module $L(\vec{\Delta}; \mathcal{D}^N_{\sigma,-})$ over $\mathcal{D}^N_{\sigma,-}$ as the (unique) irreducible module that has a non-zero vector $v_{\vec{\Delta}}$ with the following properties:

$$(\mathcal{D}_{\sigma,-}^{N})_{p} v_{\vec{\Delta}} = 0 \text{ for } p < 0, \quad ((D_{1})^{n} e_{i,i} - (-D_{1})^{n} e_{N+1-i,N+1-i}) v_{\vec{\Delta}} = \Delta_{n}^{i} v_{\vec{\Delta}}$$

for $n \in \mathbb{Z}_+$ $i = 1, \dots, \left[\frac{N}{2}\right] + \delta_{N, odd}$. The principal gradation of $\mathcal{D}_{\sigma,-}^N$ induces the principal gradation $L(\vec{\Delta}; \mathcal{D}_{\sigma,-}^N) = \bigoplus_{p \in \mathbb{Z}_+} L_p$ such that $L_0 = \mathbb{C}v_{\vec{\Delta}}$. The module $L(\vec{\Delta}; \mathcal{D}_{\sigma,-}^N)$ is called *quasifinite* if dim $L_p < \infty$ for all $p \in \mathbb{Z}_+$.

Quasifinite modules over $\mathcal{D}_{\sigma,-}^N$ can be constructed as follows. The $\mathcal{D}_{\sigma,-}^N$ -modulo $\mathbb{C}^N[t,t^{-1}]/\mathbb{C}^N$ gives us an embedding of $\mathcal{D}_{\sigma,-}^N$ in $\widetilde{\mathrm{g}\ell}_{+\infty}$. This embedding respect the principal gradations.

Now take $\lambda^+ \in \mathbb{C}^{+\infty}$ and consider the $\widetilde{g\ell}_{+\infty}$ -module $L^+(\lambda^+)$. The same argument as in [10], gives us the following.

Lemma 7. When restricted to $\mathcal{D}_{\sigma,-}^N$, the module $L^+(\lambda^+)$ remains irreducible.

It follows immediately that $L^+(\lambda^+)$ is an irreducible highest weight module over $\mathcal{D}_{\sigma,-}^N$, which is obviously quasifinite. It is easy to see that we have:

$$\Delta_n^i = \sum_{j>1} (-j+1/2)^n \lambda_{jN-i+1}^+ - (j-1/2)^n \lambda_{(j-1)N+i}^-$$

so that

$$\Delta_i(x) := \sum_{n \ge 0} \Delta_n^i x^n / n! = \sum_{j \ge 1} e^{(-j+1/2)x} \, \lambda_{jN-i+1}^+ + e^{(j-1/2)x} \, \lambda_{(j-1)N+i}^-.$$

with $i=1,\cdots,\left[\frac{N}{2}\right]+\delta_{N,odd}$. We shall prove the following theorem.

Theorem 8. The $\mathcal{D}_{\sigma,-}^N$ -modules $L^+(\lambda^+)$, where $\lambda^+ \in \operatorname{Par}^+$, exhaust all quasifinite irreducible highest weight $\mathcal{D}_{\sigma,-}^N$ -modules that have finite growth.

The basic idea of the proof of Theorem 8 is the same as in Theorem 3: to reduce the problem to the well developed (in [12]) representation theory of the universal central extension $\widehat{\mathcal{D}}_{\sigma}^{N}$.

Recall that the homomorphism $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}^N\to\widehat{g}\widehat{\ell}_{\infty}^{[m]}$ defined in (13) lift to a homomorphism $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}^{N\mathcal{O}}\to\widehat{g}\widehat{\ell}_{\infty}^{[m]}$. Now, the restriction $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}_{\sigma}^{N\mathcal{O}}\to\widehat{g}\widehat{\ell}_{\infty}^{[m]}$ to $\widehat{\mathcal{D}}_{\sigma}^{N\mathcal{O}}$ is surjective iff $s\notin\mathbb{Z}/2$, and in the other cases, using (21), we have that (see Ref. [12] for details)

$$\widehat{\varphi}_0^{[m]}: \widehat{\mathcal{D}}_{\sigma}^{N\mathcal{O}} \to d_{\infty}^{[m]}; \qquad \widehat{\varphi}_{1/2}^{[m]}: \widehat{\mathcal{D}}_{\sigma}^{N\mathcal{O}} \to d_{\infty}^{[m]} \quad if \ Neven,$$

$$\widehat{\varphi}_{1/2}^{[m]}: \widehat{\mathcal{D}}_{\sigma}^{N\mathcal{O}} \to b_{\infty}^{[m]} \quad if \ Nodd. \tag{18}$$

are surjective homomorphism. Now, let us consider the restriction to $\widehat{\mathcal{D}}_{\sigma,-}^{N\mathcal{O}}$. Since the constrains given by (14) do not affect the case $s \neq 0$, we still have that $\widehat{\varphi}_s^{[m]}: \widehat{\mathcal{D}}_{\sigma,-}^{N\mathcal{O}} \to \widehat{g\ell}_{\infty}^{[m]} \ (s \notin \mathbb{Z}/2)$ and $\widehat{\varphi}_{1/2}^{[m]}$ are surjective. One of the main results of Ref [12] is the following.

Lemma 8. For each i = 1, ..., r, pick a collection $m_i \in \mathbb{Z}_+$, $s_i \in \mathbb{C}$, $\vec{\lambda}_i \in (\mathbb{C}^{\infty})^{m_i+1}$, $\vec{c}_i \in \mathbb{C}^{m_i+1}$, such that $s_i \in \mathbb{Z}$ implies $s_i = 0$, $s_i \in \frac{1}{2} + \mathbb{Z}$ implies $s_i = \frac{1}{2}$, and $s_i - s_j \notin \mathbb{Z}$ for $i \neq j$. Then the $\bigoplus_{i=1}^r g^{[m_i]}$ -module $\bigotimes_{i=1}^r L^{[m_i]}(\vec{\lambda}_i, \vec{c}_i)$ remains irreducible when restricted to $\widehat{\mathcal{D}_{\sigma}^{N}}$ via the embedding $\bigoplus_{i=1}^{r} \widehat{\varphi}_{s_{i}}^{[m_{i}]}$: $\widehat{\mathcal{D}_{\sigma}^{N}} \to \bigoplus_{i=1}^{r} g^{[m_{i}]}$, where $g^{[mi]} = \widehat{gl}_{\infty}^{[m_{i}]}$ (respectively $b_{\infty}^{[m_{i}]}$ or $d_{\infty}^{[m_{i}]}$) if $s_{i} \notin \mathbb{Z}/2$ (respectively, $s_{i} = 1/2$, N odd or $s_{i} = 0$ or $s_{i} = 1/2$, N even.) All irreducible quasifinite highest weight $\widehat{\mathcal{D}}_{\sigma}^{N}$ -modules are obtained in this way.

Proof of Theorem 8. The proof is similar to that of Theorem 3 Due to Lemma 8, Theorem 2 and (16), it is easy to see that if $L(\vec{\Delta}, \mathcal{D}_{\sigma,-}^N)$ has finite growth, then $L(\vec{\Delta}, \mathcal{D}_{\sigma,-}^N) = L(d_{\infty}^{[m]}; \vec{\lambda}, \vec{c})$ on which $\widehat{\mathcal{D}}_{\sigma}^N$ acts via the embedding $\widehat{\varphi}_0^{[m]}$. Now consider $q \in \mathbb{Z}$ such that,

- (a) if $q = k_1N + r$, with $k_1 \in \mathbb{Z}$ and $1 \le r \le N 1$, choosing $f_1 \in \mathcal{O}$ to vanish in all $l \in \mathbb{Z}$ up to mth derivative except for ith derivative $(0 < i \le m)$ at $l = k_1 + 1$.
- (b) If $q = k_1 N$, with $k_1 \in \mathbb{Z}$ and choosing $f_2 \in \mathcal{O}$ to vanish in all $l \in \mathbb{Z}$ up to mth derivative except for ith derivative $(0 < i \le m)$ at $l = k_1$

we see that all operators $u^i E_{q+1,q} - (-u)^i E_{-q+1,-q}$, with $0 < i \le m$ lie in the image of $\widehat{\varphi}_s^{[m]}(\mathcal{D}_{\sigma,-}^{N\mathcal{O}})$.

Suppose that the mth coordinate of $\vec{\lambda}_q$ is non-zero, and that m > 0. Then $v := (u^m E_{q+1 q} - (-u)^i E_{-q+1 - q})^n v_{\vec{\lambda}} \neq 0$ for all n > 0. But

$$(E_{q+1,q+1} - E_{-q,-q})v = (-N + \lambda_{q+1}^0)v.$$

As in Theorem 3, restricting to the subalgebra of $d_{\infty}^{[m]}$ isomorphic to $g\ell_{+\infty}$ consisting of matrices $(a_{i,j}-a_{1-j,1-i})_{i,j\geq q+1}$ we conclude by Theorem 2, that $L^{[m]}(d_{\infty}^{[m]};\vec{\lambda},\vec{c})$ is either trivial or is of infinite growth.

Thus, the only possibility that remains is s = m = 0. As has been already shown, the image of $\widehat{\varphi}_s(\mathcal{D}_{\sigma,-}^{N\mathcal{O}})$ contains all $E_{q+1,q} - E_{1-q,-q}$ except for $q \neq 0$, hence it contains all operators from $d_{\infty}^{[m]} \cap g\ell_{-\infty} \oplus g\ell_{+\infty} \simeq g\ell_{+\infty}$. Therefore, by Theorem 2 , the highest weight of a finite growth $\mathcal{D}_{\sigma,-}^N$ -module must be the same as one of the $\mathcal{D}_{\sigma,-}^N$ -modules $L^+(\lambda^+)$ with $\lambda^+ \in \operatorname{Par}^+$.

Now we shall construct the $\mathcal{D}_{\sigma,-}^N$ -modules $L(\lambda^+)$ explicitly. The \mathcal{D}_-^N module $V = \mathbb{C}^N[t, t^{-1}]/\mathbb{C}^N[t]$ defined in (14), viewed as a $\mathcal{D}_{\sigma,-}^N$ -module, remains irreducible. This is the highest weight $\mathcal{D}_{\sigma,-}^N$ -module of growth 1

isomorphic to $L^+(\omega_1)$ where $\omega_1 \in \operatorname{Par}^+$, such that $\omega_1^i = 0$, for $i \neq 1$ and $\omega_1^1 = 1$. Observe that the $\mathcal{D}_{\sigma,-}^N$ -module $\mathbb{C}^N[t]^* = \bigoplus_{j \in \mathbb{Z}_+} (\mathbb{C}^N t^j)^*$ is isomorphic to $L^+(\omega_1)$. As in the Schur-Weyl theory, the $\mathcal{D}_{\sigma,-}^N$ -module $T^M(V)$ has a natural decomposition as $(\mathcal{D}_{\sigma,-}^N, S_M)$ -modules:

$$T^{M}(V) = \bigoplus_{\substack{\lambda^{+} \in \operatorname{Par}^{+} \\ |\lambda^{+}| = M}} V_{\lambda^{+}} \otimes U_{\lambda^{+}}$$

where U_{λ^+} denotes the irreducible S_M -module corresponding to the partition λ^+ .

Lemma 9. The $\mathcal{D}_{\sigma,-}^N$ -modules V_{λ^+} are irreducible.

Proof. As in the proof of Theorem 8, we extend the action of $\mathcal{D}_{\sigma,-}^N$ on V_{λ^+} to $(\mathcal{D}_{\sigma,-}^{N\mathcal{O}})_j$ for each $j \neq 0$, to obtain that any $\mathcal{D}_{\sigma,-}^N$ -submodule of V_{λ^+} is a submodule of $g\ell_{+\infty} \simeq d_{\infty} \cap g\ell_{+\infty} \oplus g\ell_{-\infty}$. But, by Schur-Weyl theory, the $g\ell_{+\infty}$ -module V_{λ^+} is irreducible, which completes the proof.

Thus, we have proved

Theorem 9. The $\mathcal{D}_{\sigma,-}^N$ -module $T^M(V)$ has the following decomposition as $(\mathcal{D}_{\sigma,-}^N, S_M)$ -modules:

$$T^{M}(V) = \bigoplus_{\substack{\lambda^{+} \in \operatorname{Par}^{+} \\ |\lambda^{+}| = M}} V_{\lambda^{+}} \otimes U_{\lambda^{+}}$$

where U_{λ^+} denotes the irreducible S_M -module corresponding to the partition λ^+ .

Remark. Considering $\lambda^+ \in \mathbb{C}^{+\infty}$ we may say that irreducible highest weight $\mathcal{D}_{\sigma,-}^N$ -modules of finite growth are parameterized by non-increasing sequences of integers $(\lambda_j)_{j\in\mathbb{Z}}\in\mathbb{C}^\infty$ with the exception that $\lambda_0\leq \lambda_1$. Equivalently, letting $m_i=\lambda_i-\lambda_{i+1}$ we may say that these modules are parameterized by sequences of non-negative integers $(m_i)_{i\in\mathbb{Z}\setminus\{0\}}$, all but finite numbers of which are zero.

Recall that the extended annihilation algebra $\operatorname{Lie}^-(oc_N)$ for oc_N is isomorphic to the direct sum of the Lie algebra $\mathcal{D}^N_{\sigma,-}$ and the N-dimensional Lie algebra $\mathbb{C}^N(\partial + \frac{d}{dt})$ and that conformal modules for a Lie conformal algebra coincide with the conformal modules over the associated extended annihilation algebra [7].

Theorem 8 and the above remarks imply the following

Theorem 10. The oc_N -modules $L(\lambda^+)_{\alpha}$, where $\lambda^+ \in Par^+$, $\alpha \in \mathbb{C}$, exhaust all irreducible conformal oc_N -modules of finite growth.

Corollary. The oc_N -modules $\mathbb{C}^N[\partial]_{\alpha}$ $\alpha \in \mathbb{C}$, exhaust all finite irreducible oc_N -modules.

6 Irreducible finite growth $spc_{N,xI}$ -modules.

Now, consider

$$\widetilde{\sigma}(t^k f(D)De_{i,j}) = -t^k f(-D-k)De_{j,i},$$

the anti-involution on \mathcal{D}_0^N , corresponding to those that defines the symplectic type conformal subalgebra in $gc_{N,x}$ (cf.[5] pag.56). Observe that this coincide with Bloch's anti-involution for N=1 (cf. [2]). This anti-involution does not preserve the principal gradation of \mathcal{D}^N . However it is conjugated by the automorphism $\tau(t^k f(D)De_{i,j}) = t^k f(D)De_{i,N+1-j}$, to the following anti-involution

$$\bar{\sigma}(t^k f(D)De_{i,j}) = -t^k f(-D - k)De_{N+1-j, N+1-i},$$
(19)

where $k \in \mathbb{Z}$. Denote by $\mathcal{D}_{0,\bar{\sigma}}^N$ the Lie subalgebra of \mathcal{D}_0^N fixed by $-\bar{\sigma}$. Let $\widehat{\mathcal{D}}_{0,\bar{\sigma}}^N = \mathcal{D}_{0,\bar{\sigma}}^N \oplus \mathbb{C}C$ denote the central extension given by the restriction of the cocycle on \mathcal{D}^N .

We are interested in the representation theory of the Lie subalgebra $\mathcal{D}_{0,\bar{\sigma},-}^N = \mathcal{D}_{-}^N \cap \widehat{\mathcal{D}}_{0,\bar{\sigma}}^N$ of matrix regular differential operators on \mathbb{C} that kills constants and are invariant by $-\bar{\sigma}$. Both subalgebras inherit a \mathbb{Z} -gradation from \mathcal{D}_0^N , since $\bar{\sigma}$ preserves the principal \mathbb{Z} -gradation of \mathcal{D}_0^N , $\mathcal{D}_{0,\bar{\sigma}}^N = \bigoplus_{p \in \mathbb{Z}} (\mathcal{D}_{0,\bar{\sigma}}^N)_p$, where if p = kN + r, with $k \in \mathbb{N}$ and $0 \le r \le N - 1$,

$$(\mathcal{D}_{0,\bar{\sigma}}^{N})_{p} = \left\{ t^{-k} (f(D_{-k})e_{i,i+r} + f(-D_{-k})e_{N+1-r-i,N+1-i}), \\ 1 \le i \le [N+1-r/2] \right\}$$

$$\bigcup \left\{ t^{(-k+1)} (g(D_{-(k+1)})e_{i,i-N+r} + g(-D_{-(k+1)})e_{2N+1-i-r,N+1-i}), \\ N-r+1 \le i \le [2N+1-r/2] \right\}$$

$$(20)$$

In the case of $(\mathcal{D}_{0,\bar{\sigma},-}^N)_p$, we need to add condition (14) for p > 0. Similarly, we have the corresponding subalgebras of $\mathcal{D}^{N\mathcal{O}}$, denoted by $\mathcal{D}_{0,\bar{\sigma}}^{N\mathcal{O}}$ and $\mathcal{D}_{0,\bar{\sigma},-}^{N\mathcal{O}}$.

As in the case of \mathcal{D}_{-}^{N} , given $\vec{\Delta} = \{\vec{\Delta}_{n}\}$ with $\vec{\Delta}_{n} \in \mathbb{C}^{\left[\frac{N}{2}\right] + \delta_{N}, odd}$ for all $n \in \mathbb{Z}_{+}$, we consider the highest weight module $L(\vec{\Delta}; \mathcal{D}_{0,\bar{\sigma},-}^{N})$ over $\mathcal{D}_{0,\bar{\sigma},-}^{N}$ as the (unique) irreducible module that has a non-zero vector $v_{\vec{\Delta}}$ with the following properties:

$$(\mathcal{D}_{0,\bar{\sigma},-}^N)_p v_{\vec{\Delta}} = 0 \text{ for } p < 0, \quad (D^n e_{i,i} + (-D)^n e_{N+1-i,N+1-i}) v_{\vec{\Delta}} = \Delta_n^i v_{\vec{\Delta}}$$

for $n \in \mathbb{Z}_+$ $i = 1, \dots, \left[\frac{N}{2}\right] + \delta_{N, \text{odd}}$.

The principal gradation of $\mathcal{D}_{0,\bar{\sigma},-}^N$ induces the principal gradation $L(\vec{\Delta}; \mathcal{D}_{0,\bar{\sigma},-}^N) = \bigoplus_{p \in \mathbb{Z}_+} L_p$ such that $L_0 = \mathbb{C}v_{\vec{\Delta}}$. The module $L(\vec{\Delta}; \mathcal{D}_{0,\bar{\sigma},-}^N)$ is called *quasifinite* if dim $L_p < \infty$ for all $p \in \mathbb{Z}_+$.

As in the preceding section, the $\mathcal{D}_{0,\bar{\sigma},-}^N$ -module $\mathbb{C}^N[t,t^{-1}]/\mathbb{C}^N$ gives us

As in the preceding section, the $\mathcal{D}^N_{0,\bar{\sigma},-}$ -module $\mathbb{C}^N[t,t^{-1}]/\mathbb{C}^N$ gives us an embedding of $\mathcal{D}^N_{0,\bar{\sigma},-}$ in $\widetilde{\mathfrak{g}\ell}_{+\infty}$. This embedding respect the principal gradations.

Now take $\lambda^+ \in \mathbb{C}^{+\infty}$ and consider the $\widetilde{g\ell}_{+\infty}$ -module $L^+(\lambda^+)$. The same argument as in [10], gives us the following.

Lemma 10. When restricted to $\mathcal{D}_{0,\bar{\sigma},-}^N$, the module $L^+(\lambda^+)$ remains irreducible.

Theorem 11. The $\mathcal{D}_{0,\bar{\sigma},-}^N$ -modules $L^+(\lambda^+)$, where $\lambda^+ \in \operatorname{Par}^+$, exhaust all quasifinite irreducible highest weight $\mathcal{D}_{0,\bar{\sigma},-}^N$ -modules that have finite growth.

The basic idea of the proof of Theorem 11 is the same as in Theorem 3: to reduce the problem to the well developed (in [14]) representation theory of the universal central extension $\widehat{\mathcal{D}}_{0,\bar{\sigma}}^N$.

Recall that the homomorphism $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}^N\to \widehat{g\ell}_{\infty}^{[m]}$ defined in (13) lift to a homomorphism $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}^{N\mathcal{O}}\to \widehat{g\ell}_{\infty}^{[m]}$. Now, the restriction $\widehat{\varphi}_s^{[m]}:\widehat{\mathcal{D}}_{0,\overline{\sigma}}^{N\mathcal{O}}\to \widehat{g\ell}_{\infty}^{[m]}$ to $\widehat{\mathcal{D}}_{0,\overline{\sigma}}^{N\mathcal{O}}$ is surjective iff $s\notin\mathbb{Z}/2$, and in the other cases, using (20), we have that (see Ref. for details [14])

$$\widehat{\varphi}_{\frac{1}{2}}^{[m]}: \widehat{\mathcal{D}}_{0,\bar{\sigma}}^{N\mathcal{O}} \to c_{\infty}^{[m]}, \tag{21}$$

$$\widehat{\varphi}_0: \widehat{\mathcal{D}}_{0,\bar{\sigma}}^{N\mathcal{O}} \to c_{\infty},$$
 (22)

And

$$\widehat{\varphi}_0^{[m]}: \widehat{\mathcal{D}}_{0,\bar{\sigma}}^{N\mathcal{O}} \to \widetilde{g\ell}_{\infty,0}^{[m]}, \quad \text{if} \quad m \neq 0,$$
(23)

with $\widetilde{g\ell}_{\infty,0}^{[m]}$ is the subalgebra of $g\ell_{\infty}^{[m]}$ generated by

$$\{(u^k - (\widetilde{m}+1)u^{k-1})E_{ij} - ((-u)^k - (n+1)(-u)^{k-1})E_{-N+1-j,-N+1-i}\}$$

with $1 \geq k$, i = nN + q; $j = \widetilde{m}N + \overline{q}$ and $1 \leq q, \overline{q} \leq N$, are surjective homomorphism. Now, let us consider the restriction to $\widehat{\mathcal{D}}_{0,\overline{\sigma},-}^{N\mathcal{O}}$. Since the constrains given by (14) do not affect the case $s \neq 0$, we still have that $\widehat{\varphi}_s^{[m]}: \widehat{\mathcal{D}}_{0,\overline{\sigma},-}^{N\mathcal{O}} \to \widehat{g\ell}_{\infty}^{[m]}$ ($s \notin \mathbb{Z}/2$) and $\widehat{\varphi}_{1/2}^{[m]}: \widehat{\mathcal{D}}_{0,\overline{\sigma}}^{N\mathcal{O}} \to c_{\infty}^{[m]}$ are surjective.

Remark. The description of the image of the homomorphism $\hat{\varphi}_0^{[m]}$, with $m \neq 0$ in Ref. [14] (Proposition 5.3), as the Lie subalgebra $c_{\infty}^{[m]}$ should be replaced by $\widetilde{g\ell}_{\infty,0}^{[m]}$ the Lie subalgebra of $\widehat{g\ell}_{\infty}^{[m]}$ generated by

$$\{(u^k - (\widetilde{m} + 1)u^{k-1})E_{ij} - ((-u)^k - (n+1)(-u)^{k-1})E_{-N+1-j,-N+1-i}\}$$

with $1 \ge k$, i = nN + q; $j = \widetilde{m}N + \overline{q}$ and $1 \le q, \overline{q} \le N$.

One of the main results of Ref [14] is the following.

Lemma 11. For each $i=1,\ldots,r$, pick a collection $m_i\in\mathbb{Z}_+$, $s_i\in\mathbb{C}$, $\vec{c}_i\in(\mathbb{C}^\infty)^{m_i+1}$, $\vec{c}_i\in\mathbb{C}^{m_i+1}$, such that $s_i\in\mathbb{Z}$ implies $s_i=0$, $s_i\in\frac{1}{2}+\mathbb{Z}$ implies $s_i=\frac{1}{2}$, and $s_i-s_j\notin\mathbb{Z}$ for $i\neq j$. Then the $\bigoplus_{i=1}^r g^{[m_i]}$ -module $\bigotimes_{i=1}^r L(g^{[m_i]},\vec{\lambda}_i,\vec{c}_i)$ remains irreducible when restricted to $\widehat{\mathcal{D}}_{0,\bar{\sigma}}^N$ via the embedding $\bigoplus_{i=1}^r \widehat{\varphi}_{s_i}^{[m_i]}: \widehat{\mathcal{D}}_{0,\bar{\sigma}}^N \to \bigoplus_{i=1}^r g^{[m_i]}$, where $g^{[m_i]}=\widehat{g\ell}_{\infty}^{[m_i]}$ (respectively $c_{\infty}^{[m_i]}, g\ell_{\infty,s_i}^{[m]}$) if $s_i\notin\mathbb{Z}/2$ (respectively, $s_i=1/2$, or $s_i=0$.) All irreducible quasifinite highest weight $\widehat{\mathcal{D}}_{0,\bar{\sigma}}^N$ -modules are obtained in this way.

Proof of Theorem 11. The proof is similar to that of Theorem 3 Due to Lemma 11, Theorem 2 and (21)-(23), it is easy to see that if $L(\vec{\Delta}, \mathcal{D}_{0,\bar{\sigma},-}^N)$ has finite growth, then $L(\vec{\Delta}, \mathcal{D}_{0,\bar{\sigma},-}^N) = L(c_{\infty}^{[m]}; \vec{\lambda}, \vec{c})$ on which $\widehat{\mathcal{D}}_{\sigma}^N$ acts via the embedding $\widehat{\varphi}_0^{[m]}$. Now consider $q \in \mathbb{Z}$ such that,

- (a) if $q = k_1N + r$, with $k_1 \in \mathbb{Z}$, $k_1 \neq -1$ and $1 \leq r \leq N 1$ choosing $f_1 \in \mathcal{O}$ such that $f_1(x)x$ to vanish in all $l \in \mathbb{Z}$ up to mth derivative except for ith derivative $(0 < i \leq m)$ at $l = k_1 + 1$. If $k_1 = -1$ choosing $f_1 \in \mathcal{O}$ such to vanish in all $l \in \mathbb{Z}$ up to mth derivative except for (i-1)th derivative $(0 < i \leq m)$ at $l = k_1 + 1$.
- (b) If $q = k_1 N$, with $k_1 \in \mathbb{Z}$, $k_1 \neq 0$ choosing $f_2 \in \mathcal{O}$ such that $f_2(x)x$ to vanish in all $l \in \mathbb{Z}$ up to mth derivative except for ith derivative $(0 < i \leq m)$ at $l = k_1$.

we see that all operators $u^i E_{q+1,q} + (-u)^i E_{-q+1-N,-q-N}$, with $0 < i \le m$ lie in the image of $\widehat{\varphi}_s^{[m]}(\mathcal{D}_{0,\overline{\sigma},-}^{N\mathcal{O}}), q \ne 0$.

Suppose that the *m*th coordinate of $\vec{\lambda}_q$ is non-zero, and that m > 0. Then $v := (u^m E_{q+1,q} + (-u)^i E_{-q+1-N,-q-N})^n v_{\vec{\lambda}} \neq 0$ for all n > 0. But

$$(E_{q,q} - E_{-q-N,-q-N})v = (N + \lambda_q^0)v.$$

for all $q \neq \{-N+1, \cdots, 0\}$. As in Theorem 3, restricting to the subalgebra of $g\ell_{\infty,s}^{[m]}$ isomorphic to $g\ell_{+\infty}$ consisting of matrices $(a_{ij}-(-1)^{i+j}a_{-N-j,-N-i})_{i,j\geq q+1}$ we conclude by Theorem 2, that $L^{[m]}(c_{\infty}^{[m]}; \vec{\lambda}, \vec{c})$ is either trivial or is of infinite growth.

Thus, the only possibility that remains is s=m=0. As has been already shown, the image of $\widehat{\varphi}_s(\mathcal{D}_{0,\bar{\sigma},-}^{N\mathcal{O}})$ contains all $E_{q+1,q}+E_{1-q,-q}$ except for $q\neq 0$, hence it contains all operators from $c_{\infty}^{[m]}\cap \mathrm{g}\ell_{-\infty}\oplus \mathrm{g}\ell_{+\infty}\simeq \mathrm{g}\ell_{+\infty}$. Therefore, by Theorem 3, the highest weight of a finite growth \mathcal{D}_{-}^{N} -module must be the same as one of the $\mathcal{D}_{0,\bar{\sigma},-}^{N}$ -modules $L^+(\lambda^+)$ with $\lambda^+\in\mathrm{Par}^+$.

As the preceding section, we can construct the $\mathcal{D}^N_{0,\bar{\sigma},-}$ -modules $L(\lambda^+)$ explicitly. The \mathcal{D}^N_- -module $V=\mathbb{C}^N[t,t^{-1}]/\mathbb{C}^N[t]$ defined in (14), viewed as a $\mathcal{D}^N_{\sigma,-}$ -module, remains irreducible. This is the highest weight $\mathcal{D}^N_{0,\bar{\sigma},-}$ -module of growth 1 isomorphic to $L^+(\omega_1)$ where $\omega_1\in \operatorname{Par}^+$, such that $\omega_1^i=0$, for $i\neq N$ and $\omega_1^N=1$.

As in the Schur-Weyl theory, the $\mathcal{D}_{0,\bar{\sigma},-}^N$ -module $T^M(V)$ has a natural decomposition as $(\mathcal{D}_{0,\bar{\sigma},-}^N, S_M)$ -modules:

$$T^M(V) = \bigoplus_{\substack{\lambda^+ \in \operatorname{Par}^+ \\ |\lambda^+| = M}} V_{\lambda^+} \otimes U_{\lambda^+}$$

where U_{λ^+} denotes the irreducible S_M -module corresponding to the partition λ^+ .

Lemma 12. The $\mathcal{D}_{0,\bar{\sigma},-}^N$ -modules V_{λ^+} are irreducible.

Proof. As in the proof of Theorem 8, we extend the action of $\mathcal{D}_{0,\bar{\sigma},-}^N$ on V_{λ^+} to $\left(\mathcal{D}_{0,\bar{\sigma},-}^{N\mathcal{O}}\right)_j$ for each $j \neq 0$, to obtain that any $\mathcal{D}_{0,\bar{\sigma},-}^N$ -submodule of V_{λ^+} is a submodule of $g\ell_{+\infty} \simeq c_{\infty} \cap g\ell_{+\infty} \oplus g\ell_{-\infty}$. But, by Schur–Weyl theory, the $g\ell_{+\infty}$ -module V_{λ^+} is irreducible, which completes the proof.

Theorem 12. The $\mathcal{D}_{0,\bar{\sigma},-}^N$ -module $T^M(V)$ has the following decomposition as $(\mathcal{D}_{0,\bar{\sigma},-}^N, S_M)$ -modules:

$$T^{M}(V) = \bigoplus_{\substack{\lambda^{+} \in \operatorname{Par}^{+} \\ |\lambda^{+}| = M}} V_{\lambda^{+}} \otimes U_{\lambda^{+}}$$

where U_{λ^+} denotes the irreducible S_M -module corresponding to the partition λ^+ .

Recall that the extended annihilation algebra $\mathrm{Lie}^-(spc_{N,xI})$ for $spc_{N,xI}$ is isomorphic to the direct sum of the Lie algebra $\mathcal{D}^N_{0,\bar{\sigma},-}$ and the N-dimensional Lie algebra $\mathbb{C}^N(\partial+\frac{d}{dt})$ and that conformal modules for a Lie conformal algebra coincide with the conformal modules over the associated extended annihilation algebra [7].

Theorem 11 and the above remarks imply the following

Theorem 13. The $spc_{N,xI}$ -modules $L(\lambda^+)_{\alpha}$, where $\lambda^+ \in Par^+$, $\alpha \in \mathbb{C}$, exhaust all irreducible conformal $spc_{N,xI}$ -modules of finite growth.

Corollary. The $spc_{N,xI}$ -modules $\mathbb{C}^N[\partial]_{\alpha}$ $\alpha \in \mathbb{C}$, exhaust all finite irreducible $spc_{N,xI}$ -modules.

Acknowledgement: We are grateful to J. Liberati and J. García for pointed out that the images of some homomorphism consider trough this paper needed to be corrected.

References

- [1] A.Belavin, A. Polyakov y A. Zamolodchikov, Infinite conformal symmetry in two dimensional quantum field theory, Nuclear Phys. B 241, N 2 (1984) 333-380.
- [2] S. Bloch, Zeta values and differential operators on the circle, J. Algebra 182 (1996), 476-500.
- [3] R. Borcherds, Vertex lgebras, Kac-Moody lgebras, and the Monster, Proc. Natl. Acad. Sci. U.S.A 83 (1986) 3068-3071.
- [4] B. Bakalov, V.Kac, A.Voronov, Cohomology of conformal algebras, Comm.Math.Phys.200(1999)561-598.
- [5] C. Boyallian V. G. Kac and J. I. Liberati, On the classification of subalgebras of $Cend_N$ and gc_N . Journal of Algebra **260** (2003), 32-63.
- [6] De Sole, A. and Kac, V.G, Subalgebras of gc_N and Jacobi polybomials, Canad Math Bull, 45(4):567-605, 2002.
- [7] V. G. Kac, Infinite-dimensional Lie algebras, 3rd edition, Cambridge University Press, Cambridge, 1990.

- [8] V. G. Kac, Vertex algebra for Beginners, University Lecture Series, 10 (American Mathematical Society, Providence, RI, 1996) Second edition 1998.
- [9] V. G. Kac and J. I. Liberati, Unitary quasifinite representations of W_{∞} , Letters Math. Phys., **53** (2000), 11-27.
- [10] V. G. Kac and A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys. 157 (1993), 429-457.
- [11] C. Boyallian, V. Kac, J. Liberati and C. Yan, Quasifinite highest weight modules over the Lie algebra of matrix differential operators on the circle, Journal of Math. Phys. 39 (1998), 2910-2928.
- [12] C. Boyallian, V.B Meinardi *QHWM of the orthogonal type Lie subal*gebra of the Lie algebra of matrix differential operators on the circle. Journal of Mahtematical Physics. **51** online (2010).
- [13] C. Boyallian, V.B Meinardi Quasifinite highest weight modules over W_{∞}^{N} . Journal Physics A., Math. Theor. 44 (2011) 235201 (2011).
- [14] C. Boyallian, V.B Meinardi Representations of a sympletic type subalgebra of W_{∞}^N . Journal of Mahtematical Physics. **54** online (14 de junio del 2011.)
- [15] C. Boyallian, V.G. Kac, J.I Liberati Finite growth representationes of infinite Lie conformal algebras. Journal of Mahtematical Physics. 44 (2003) 754-770.
- [16] A. D'Andrea, V.Kac, Structure theory of infinite conformal algebras, Selecta Math. 4 (3) (1998)377-418.
- [17] S. Cheng y V. Kac, Conformal modules, Asian J. Math 1, N 1 (1997) 181-193
- [18] S. Cheng, V. Kac y M. Wakimoto, Extensions of conformal modules in "Topological field theory, primitive forms and related topics (Kyoto), Progress in Math. 160, Birkhauser, Boston (1998), 33-57.
- [19] V. G. Kac, W. Wang and C. Yan, Quasifinite representations of classical Lie subalgebras of $W_{1+\infty}$ Adv. Math. 139 (1998), 56-140.