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1 Introduction

Since the pioneering papers [1, 3], there has been a great deal of work to-
wards understanding of the algebraic structure underlying the notion of the
operator product expansion (OPE) of chiral fields of a conformal field theory.
The singular part of the OPE encodes the commutation relations of fields,
which leads to the notion of a Lie conformal algebra [8]. In the past few
years a structure theory [16], representation theory [17, 18] and comohology
theory [4] of finite Lie conformal algebras has been developed. The associa-
tive conformal algebra CendN and the corresponding general Lie conformal
algebra gcN are the most important examples of simple conformal algebras
which are not finite ([8], Section 2.10).

Recall an associative conformal algebra R is defined as a C[∂]-module
endowed with a C-linear map,

R⊗R→ C[λ ]⊗R, a⊗ b→ aλb,

called the λ-product , and satisfying the following axioms (a, b, c ∈ R),

(A1) (∂a)λb = −λaλb, aλ(∂b) = (λ+ ∂)aλb,

(A2) aλ(bµc) = (aλb)λ+µc.

A conformal Lie algebra R is a C[∂ ]-module endowed with a C-linear
map R⊗R→ C[λ ]⊗R, a⊗ b→ [aλb] called the λ-bracket , and satisfying
the following axioms (a, b, c ∈ R),

(C1) [(∂a)λb ] = −λ[aλb ],

(C2) [aλb ] = −[b−∂−λa ],

(C3) [aλ[bµc] ] = [[aλb]λ+µc ] + [bµ[aλc] ].

In general, given any associative conformal algebra R with λ-product
aλb, the λ-bracket defined by

[aλb] := aλb− b−∂−λa

makes R a Lie conformal algebra.
A module M over a conformal Lie algebra R is a C[∂ ]-module endowed

with a C-linear map R ⊗M → C[[λ ]] ⊗M, a ⊗ v → aMλ v, satisfying the
properties (a, b ∈ R, v ∈M),

(M1) (∂a)Mλ v = −λ aMλ v,
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(M2) [aMλ , b
M
µ ] v := [aλb]

M
λ+µ v = aMλ (bMµ v)− bMµ (aMλ v).

A module M over a conformal Lie algebra R is called a conformal module
if aMλ v ∈ R⊗C[λ] for all a ∈ R, v ∈M and it called finite, if it has a finite
rank as a C[∂]-module.

Remark. (a) If R is a conformal Lie algebra, we have that the λ-bracket
is of the form [aλb] =

∑
n∈Z+

λ(n)a(n)b for all a, b ∈ R, where a(n)b is called

the n-product such that a(n)b = 0, n � 0 and λ(n) = λn/n! Therefore, we
can define a conformal Lie algebra R giving C-bilineal products a(n)b for all
n ∈ Z+, a, b ∈ R, such that satisfy equivalent axioms to (C1) − (C3) (see
[8]).

(b) Similarly, a conformal module M over a conformal algebra R, can
be defined giving C-bilineal actions a(n)v for all n ∈ Z+, a ∈ R, v ∈M such
that, a(n)v = 0, n� 0 that satisfy equivalent axioms to (M1)− (M3).

Given two C[∂]-modules M and N, a conformal linear map from M
to N is a C-linear map τ : M → C[λ ] ⊗C N, denoted by v → τλ(v),
such that τλ(∂Mv) = (λ + ∂N )τλ(v). The vector space of all such maps,
denoted by Chom(M, N), is a C[∂]-module with (∂τ)λ(v) := −λτλ(v). Now,
we consider CendM := Chom(M, M), and provided that M is a finite
C[∂]-module, CendM has a canonical structure of an associative conformal
algebra defined by

(τλσ)µv = τλ(σµ−λ v), τ, σ ∈ CendM, v ∈M.

The Lie conformal algebra associated to CendM is called the general con-
formal Lie algebra and denoted by gcM.

Remark. Observe that, by definition, a structure of conformal module over
an associative conformal algebra in a finite C[∂ ]-module V is the same as a
homomorphism of R to the associative conformal algebra CendV.

For any positive integer N, we set CendN := CendC[∂ ]N .
CendN can also be viewed as the associative conformal algebra associated to
the associative algebra DNas of all N × N matrix valued regular differential
operators on the circle (see[8], Section 2.10.). That is, we consider the
conformal algebra of DNas,

Conf(DNas) := ⊕n∈Z+C[∂]Jn ⊗MatN C

with λ-product given by

JkAλJ
l
B =

k∑
j=0

(
k

j

)
(λ+ ∂)j Jk+l−j

AB ,
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where JkA = Jk ⊗A :=
∑

n∈Z t
n(− d

dt)
kz−n−1 ⊗A, with A ∈ MatN C.

Given α ∈ C, the natural representation of DNas on e−αtCN [t, t−1 ] gives
rise a conformal module structure on C[∂ ]N over Conf(DNas), with λ-action

JmA λv = (λ+ ∂ + α)mAv, m ∈ Z+, v ∈ CN . (1)

Now, using the Remark above, we obtain a natural homomorphism of con-
formal associative algebras from Conf(DNas) to CendN , wich turns out to be
an isomorphism ([8] Proposition 2.10), where the functor Conf was intro-
duced in [8], Charter 2 to associate an associative conformal algebra to a
given associative algebra.

Similarly, the general conformal Lie algebra gcN associated to CendN can
also be viewed as the conformal Lie algebra associated to the Lie algebra
DN , where DN is the Lie algebra associated to the associative algebra DNas.

Also gcN can be identified by MatNC[∂, x], with λ-bracket given by (see
Refs. [5] and [8])

[A(∂, x)λB(∂, x)] = A(−λ, x+λ+∂)B(λ+∂, x)−B(λ+∂,−λ+x)A(−λ, x).

Recall that the Virasoro conformal algebra is defined as the free C[∂ ]-module
of rank 1 generated by an element L, with λ-bracket defined by

[LλL] = (2λ+ ∂)L,

and extended to C[∂ ]L using sesquilinearity. Observe that all Virasoro sub-
algebras of gcN are generated by

L = (x+ α∂)I, α ∈ C and I the N ×N identity matrix

The complete list of infinite rank proper subalgebras of gcN that contain a
Virasoro subalgebra is (see Remark 6.5 in Ref. [5] and Remark 3.10 in Ref.
[6])

gcN,xI = xI MatNC[∂, x],

ocN = {A(∂, x)−A(∂,−∂ − x) : A(∂, x) ∈ MatNC[∂, x]},

spcN,xI = {xI[A(∂, x) +A(∂,−∂ − x)] : A(∂, x) ∈ MatNC[∂, x]},

where the Virasoro element is L = (x+ α∂)I with α = 0, 1
2 , 0, respectively.

To study the finite growth representations over these algebras, we used the
following results, which relate modules over a conformal Lie algebra and
modules over its annihilation Lie algebra. The affinization of a conformal
Lie algebra R is the conformal algebra

R̃ = R[t, t−1] := R⊗ C[t, t−1 ]
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with ∂̃ = ∂ ⊗ 1 + 1 ⊗ ∂t and n-product is defined by (a, b ∈ R, f, g ∈
C[t, t−1], n ∈ Z+) (cf. [8])

(a⊗ f)(n)(b⊗ g) =
∑
j∈Z+

a(n+j)b⊗ ((∂t f)g). (2)

Letting an = a⊗ tn, formula (2) becomes (m,n ∈ Z)

(am)(k)(bm) =
∑
j∈Z+

(
m

j

)
(a(k+j)b)m+n−j . (3)

Letting
LieR = R̃/∂̃R̃

with the bracket induced by the 0-product on R̃, (and keeping the notation
an for its image in LieR ) we obtain the Lie algebra associated to the
conformal algebra R.

Remark. It is clear from (3), that −1⊗∂t is a derivation of the 0-product of
the conformal algebra R̃. Since this operator commutes with ∂̃, it induces a
derivation T of the Lie algebra LieR, given by the formula

T (an) = −nan−1.

From the definition of Lie bracket on R̃ is follows that

(LieR)− = span{an : a ∈ R, n ∈ Z+},

is a Lie subalgebra of Lie R, this is called the annihilation algebra. Is clear
that (LieR)− is T -invariant, then we can consider the direct sum (LieR)− =
CT⊕(LieR)−, which is a Lie algebra called the extended annihilation algebra.

Then we have the following result (cf. [8], Remark 2.9a), a module
M over a conformal algebra R is the same as a module over the extended
annihilation algebra. This R-module is conformal iff the following property
holds:

anv = 0, a ∈ R, v ∈M, n� 0.

Therefore our problem reduces to the study of finite growth representa-
tions of the corresponding extended annihilation algebras, which are certain
subalgebras of DN (see Ref. [5]). The main tools used here are the results
(Refs. [11], [12],[13] and [14]) on the classification of quasifinite highest
weight modules over the central extension of DN and some of its subalge-
bras. The paper is organized as follows, in Sec. 2 we describe the infinite

rank Lie algebra ĝ`
[m]

∞ and its classical subalgebras, and discuss their re-
presentation theory. In Secs. 3-6, we obtain the classification of all finite
growth representations of gcN , gcN,xI , ocN , and spcN,xI respectively.
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2 Lie algebra ĝ`
[m]

∞ and its classical subalgebras

2.1 Lie algebra ĝ`
[m]

∞

Let C+∞ be set of all sequences λ = (λ1, λ2, · · · ) for which all but a finite
number of λi

′ s are zero, and d(λ) the number of nonzero λi
′ s and |λ| be

their sum. Denote by Par+ the subset of C+∞ consisting of nonincreasing
sequences of non-negative integers and denote by g`+∞ the Lie algebra of
all matrices (ai,j)

+∞
i,j=1 with a finite number of nonzero entries ai,j ∈ C.

Given λ ∈ C+∞, there exists a unique irreducible g`+∞-module L+(λ), also
denoted by L(g`+∞, λ), which admits a nonzero vector vλ such that

Ei,jvλ = 0 for i < j and Ei,ivλ = λivλ. (4)

Here and further Ei,j denotes, as usual, the matrix whose (i, j)-entry is 1 and
all other entries are 0. Each L+(λ) has a unique Z+-gradation.
L+(λ) =

⊕
j∈Z+

L+(λ)j , called its principal gradation, which satisfies the
properties

L+(λ)0 = Cvλ, Ei,jL
+(λ)k ⊂ L+(λ)k+i−j .

Since λ ∈ C+∞, it is easy to see that dimL+(λ)j <∞, hence we can define
the q-character

chqL
+(λ) =

∑
j∈Z+

(dimL+(λ)j)q
j .

For λ ∈ Par+, let d = d(λ) and λ̄ = (λ1, · · · , λd). Let g`d be the Lie
algebra of all d × d matrices (ai,j)

d
i,j=1; it may be viewed as subalgebra of

g`+∞ in a natural way. Denote by L̄+ ¯(λ) the (irreducible) g`d-submodule of
L+(λ) generated by vλ. It is, of course, isomorphic to the finite-dimensional
irreducible g`d-module associated to λ̄, so that its q-character is a (well-
known) polynomial in q.

Lemma 1. Let λ ∈ Par+, d = d(λ). Then

chqL
+(λ) = chqL̄+(λ̄)/

d∏
j=1

(1− qj)λd−j+1
q ,

where (1− a)mq = (1− a)(1− qa) · · · (1− qm−1a).

Proof. See Lemma 2.1 in [15].
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Recall that given a vector space V with an increasing filtration by finite-
dimensional subspaces V[j ], the growth of V is defined by (Cf. [15])

growthV = limj→∞(log dimV[j ])/ log j.

We define the growth of L+(λ) using its filtration L+(λ)[j ] =
⊕

i≤j L
+(λ)i

associated to the principal gradation. In Theorem 2.2 [15], it was used the
Lemma above to prove the following Theorem,

Theorem 1. (a) If λ ∈ Par+, then

growthL+(λ) = |λ |.

(b)If λ ∈ C+∞ \ Par+, then growthL+(λ) =∞.

In a similar fashion one may consider the Lie algebra g`−∞ of all ma-
trices (ai,j)

−∞
i,j=0 with a finite number of nonzero entries and the irreducible

g`−∞-modules L−(λ), also denoted by L(g`−∞;λ), parameterized by the set
C−∞ of sequences λ = (· · · , λ−1, λ0) with finitely many nonzero entries. Re-
sults similar to Lemma 1 and Theorem 1 hold for the subset Par− ⊂ C−∞
consisting of nondecreasing sequences of (nonpositive) integers. Let g̃`∞ de-
note the Lie algebra of all matrices (ai,j)i,j∈Z such that ai,j = 0 if |i−j| � 0.

Denote by g̃`+∞ (respectively g̃`−∞) the subalgebra of g̃`∞ consisting of ma-
trices with ai,j = 0 for i or j ≤ 0 (respectively, i or j > 0 ). Note that these

two subalgebras commute and that g̃`±∞ contains g`±∞ as a subalgebra.

Note also g`±∞-modules L±(λ) extended uniquely to g̃`±∞. The Lie alge-

bra g̃`∞ has a well-known central extension ĝ`∞ = g̃`∞ + CC by C defined
by the cocycle

α(A,B) = tr[J,A]B, where J =
∑
i≤0

Ei,i. (5)

The restriction of this cocycle to g̃`+∞ and to g̃`−∞ is zero. We will also

need briefly the Lie algebra ĝ`
[m]

∞ defined for each m ∈ Z+ by replacing C
by Rm = C[u]/um+1. That is, ĝ`

[m]

∞ = g̃`
[m]

∞ ⊕Rm is the central extension of

g̃`
[m]

∞ by the 2-cocycle (5) with values in Rm, where g̃`
[m]

∞ is the Lie algebra
of infinite matrices with finitely many nonzero diagonals with entries in Rm.
The principal Z-gradation of all above Lie algebras are defined by letting

degEi,j = i− j (6)
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(in the case of ĝ`
[m]

∞ we also let degRm = 0). This give us a triangular
decomposition

ĝ`
[m]

∞ = (ĝ`
[m]

∞ )+ ⊕ (ĝ`
[m]

∞ )0 ⊕ (ĝ`
[m]

∞ )− ,

where

(ĝ`
[m]

∞ )± = ⊕j∈N(ĝ`
[m]

∞ )±j .

The Lie algebra ĝ`∞ has a family of modules L(ĝ`∞;λ, c), parameterized
by λ ∈ C∞ = {(λi)i∈Z : all but finitely many ofλi are 0} and c ∈ C defined

by (4) and Cvλ = cvλ. Similarly ĝ`
[m]

∞ has a family of modules L(ĝ`
[m]

∞ ;~λ,~c)
where ~λ ∈ (C∞)m+1, c ∈ Cm+1, defined in a similar fashion. That is, the

highest weight ĝ`
[m]

∞ -module L(ĝ`
[m]

∞ ; Λ), with highest weight Λ ∈ (ĝ`
[m]

∞ )∗0

that is determined by its labels ~λi
(j)

= Λ(ujEi,i) and the central charges
~cj = Λ(uj). The gradation (6) is obviously consistent with the principal

gradation of L±(λ) and of L(ĝ`∞;λ, c).

2.2 Lie algebras b
[m]
∞ , c

[m]
∞ and d

[m]
∞

The Lie algebra g̃`
[m]

∞ acts on the vector space Rm[t, t−1] via the usual for-
mula

Ei,jvk = δj,kvi,

where vi = t−i, i ∈ Z is a basis of Rm[t, t−1] over Rm. Now consider the
following C-bilinear forms on this spac:

B(um̃vi, u
nvj) = um̃(−u)n δi,−j ,

C(um̃vi, u
nvj) = um̃(−u)n(−1)iδi, 1−j , (7)

D(um̃vi, u
nvj) = um̃(−u)n δi,1−j .

Denote by b̄
[m]
∞ (respectively c̄

[m]
∞ , and d̄

[m]
∞ ) the Lie subalgebra of g̃`

[m]

∞
which preserves the bilinear form B(respectively C and D). We have

b̄[m]
∞ =

{
(ai,j(u))i,j∈Z ∈ g̃`

[m]

∞ : ai,j(u) = −a−j,−i(−u)
}
,

c̄[m]
∞ = {(ai,j(u))i,j∈Z ∈ g̃`

[m]

∞ | ai,j(u) = (−1)i+j+1a1−j, 1−i(−u) },

d̄[m]
∞ =

{
(ai,j(u))i,j∈Z ∈ g̃`

[m]

∞ : ai,j(u) = −a1−j, 1−i(−u)
}
.
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Denote by b
[m]
∞ = b̄

[m]
∞ ⊕ Rm (respectively, c

[m]
∞ = c̄

[m]
∞ ⊕ Rm and

d
[m]
∞ = d̄

[m]
∞ ⊕ Rm) the central extension of b̄∞ (respectively, c̄[m] and d̄

[m]
∞ )

given by the 2-cocycle defined in g̃`
[m]

∞ . Both subalgebras inherit the form

ĝ`
[m]

∞ the principal Z-gradation and the triangular decomposition, (see Refs.
for notation [8] and [19]).

b[m]
∞ = ⊕j∈Z(b[m]

∞ )j , b[m]
∞ = (b[m]

∞ )+ ⊕ (b[m]
∞ )0 ⊕ (b[m]

∞ )−,

c[m]
∞ = ⊕j∈Z(c[m]

∞ )j c[m]
∞ = (c[m]

∞ )+ ⊕ (c[m]
∞ )0 ⊕ (c[m]

∞ )−,

d[m]
∞ = ⊕j∈Z(d[m]

∞ )j , d[m]
∞ = (d[m]

∞ )+ ⊕ (d[m]
∞ )0 ⊕ (d[m]

∞ )−.

In particular when m = 0, we have the usual Lie subalgebras of ĝ`∞, de-

noted by b∞ (respectively, c∞ and d∞). Denote by L(b
[m]
∞ ;λ) [respectively,

L(c
[m]
∞ ;λ) and L(d

[m]
∞ ;λ)] the highest weight module over b

[m]
∞ (respectively

c
[m]
∞ and d

[m]
∞ ) with highest weight λ ∈ (b

[m]
∞ )∗0 (respectively λ ∈ (c

[m]
∞ )∗0 and

λ ∈ (d
[m]
∞ )∗0) parameterized by b~λ ∈ (C∞)m+1, ~c ∈ Cm+1, with

~ci = λ(ui),

b ~λj
(i)

= λ(uiEj,j − (−u)iE−j,−j),

[respectively c~λ ∈ (C∞)m+1 cλ
(i)
j = λ(uiEj, j − (−u)i)E1−j, 1−j and d~λ ∈

(C∞)m+1, d ~λj
(i)

= λ(uiEj,j − (−u)iE1−j, 1−j)]. The superscripts b, c and

d here mean B, C and D type respectively. The b ~λj
(i)

(respectively c ~λj
(i)

and d ~λj
(i)

) are called the labels and ~cj the central charges of L(b
[m]
∞ ;λ)

[respectively, L(c
[m]
∞ ;λ) and L(d

[m]
∞ ;λ)].

All these modules will appear in Sec.V. In Theorems 2.4 and 2.6 in [15],
it was proved the following result. To do this, they used Lemmas 2.3 and
2.5, in [15] about the q-character of each one of the subalgebras of type B,
C and D.

Theorem 2. All non-trivial modules L(g[m];λ) have infinite growth, where

g[m] can be b
[m]
∞ , c

[m]
∞ or d

[m]
∞ .

3 Irreducible finite growth gcN-modules

Let DN− be the Lie algebra of matrix differential operators on C. It con-
sists of linear combinations of matrix differential operators of the form
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f(t)
(
d
dt

)m
ei,j , where f is a polynomial, m ∈ Z+ and ei,j is the standard ba-

sis of MatN C, with i, j ∈ {1, · · · , N}. In particular, Dei,j :=
(
t ddt
)
ei,j ∈ DN− .

The principal Z-gradation DN− = ⊕q∈Z
(
DN−
)
q

is defined by letting

deg t = −N, deg
d

dt
= N, and deg ei,j = j − i . (8)

Given ~∆ = {~∆n}n∈Z+ with ~∆n ∈ CN for all n ∈ Z+, we consider the

highest weight module L(~∆;DN− ) over DN− as the (unique) irreducible module
that has a non-zero vector v~∆ with the following properties:(
DN−
)
p
v~∆ = 0 for p < 0, Dnei,iv~∆ = ∆i

nv~∆ for n ∈ Z+, i = 1, · · · , N .

The principal gradation of DN− induces the principal gradation

L(~∆;DN− ) = ⊕q∈Z+Lq such that L0 = Cv~∆. The module L(~∆;DN− ) is called
quasifinite if dimLq <∞ for all q ∈ Z+.

Quasifinite modules over DN− can be constructed as follows. Consider the

natural action of DN− on C[t, t−1] ⊗ CN , and the action of g̃`∞ on C[t, t−1]
given by Ei,jvk = δj, kvi, where vj = t−j (j ∈ Z) is a base of Laurent poly-
nomials. Let ϕ : C[t, t−1] ⊗ CN → C[t, t−1] be the isomorphism defined by
eit

j → tjN+i−1, where ei with i = 1, · · · , N is the standard base of CN (cf
[11].) This gives an embedding of DN− in g̃`∞. Since C[t ] ⊗ CN is DN− -
invariant, we get DN− -modules (C[t, t−1]⊗CN )/(C[t ]⊗CN ) and C[t ]⊗CN ,

which gives us an embedding of DN− in g̃`+∞ and g̃`−∞ respectively, hence
an embedding of DN− in g̃`+∞ ⊕ g̃`−∞. All these embeddings respect the
principal gradations.

Here and further we will denote CN [t, t−1] := C[t, t−1] ⊗ CN and
CN [t ] := C[t ]⊗ CN .

Now take λ± ∈ C±∞ and consider the g̃`+∞ ⊕ g̃`−∞-module L+(λ+) ⊗
L−(λ−). The same argument as in [10], gives us the following.

Lemma 2. When restricted to DN− , the module L+(λ+)⊗ L−(λ−) remains
irreducible.

It follows immediately that L+(λ+) ⊗ L−(λ−) is an irreducible highest
weight module over DN− , which is obviously quasifinite. It is easy to see that
we have:

∆i
n =

∑
j≥1

(−j)nλ+
jN−i+1 +

∑
j≤0

(−j)nλ−jN−i+1

so that
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∆i(x) : =
∑
n≥0

∆nx
n/n! =

∑
j≥1

λ+
jN−i+1e

−jx +
∑
j≤0

λ−jN−i+1e
−jx .

with i = 1, · · · , N. It is also clear that for λ± ∈ Par± we have (cf. Theo-
rem 1(a)):

growthL+(λ+)⊗ L−(λ−) = |λ+|+ |λ−| .

We shall prove the following theorem.

Theorem 3. The DN− -modules L+(λ+)⊗L−(λ−), where λ± ∈ Par±, exhaust
all quasifinite irreducible highest weight DN− -modules that have finite growth.

Let DN denote the Lie algebra of all matrix differential operators on
C×. The Lie algebra DN is the linear span of matrix differential operators

f(t)

(
d

dt

)k
A, where f(t) ∈ C[t, t−1], k ∈ Z+ and A ∈ MatNC , or equi-

valently of operators tkf(D)ei,j , where f(D) ∈ C[D ], k ∈ Z and ei,j is
the standard basis of MatNC, with i, j ∈ {1, · · · , N}. Obviously, DN− is a
subalgebra of DN , and the principal gradation extends from DN− to DN in
the obvious way.

The basic idea of the proof of Theorem 3 is the same as in [15]: to
reduce the problem to the well developed (in [11]) representation theory of
the universal central extension D̂N of DN . Recall that the central extension
D̂N = DN ⊕ CC is defined by the cocycle [10].

Ψ

(
f(t)

(
d

dt

)m
A, g(t)

(
d

dt

)n
B

)
= Res0

Tr(AB)m!n!

(m+ n+ 1)!
f (n+1)(t)g(m)(t)dt,

(9)
where Tr is the usual trace. The principal gradation of DN lifts to D̂N by
letting degC = 0. Note also that the restriction of the cocycle Ψ to DN− is
zero.

Consider again ϕ : CN [t, t−1]→ C[t, t−1] be the isomorphism defined by
eit

j → tjN+i−1. For each s ∈ C one defines a Lie algebra homomorphism
ϕs : DN → g̃`∞ (via the action of DN on tsCN [t, t−1]) by

ϕs(t
kf(D)ei,j) =

∑
l∈Z

f(−l + s)E(l−k)N−i+1, lN−j+1 . (10)

This homomorphism lifts to a homomorphism of central extension
ϕ̂s : D̂N → ĝ`∞ by

ϕ̂s|(D̂N)
j

= ϕs|(D̂N)
j

if j 6= 0 ,

11



ϕ̂s(e
xDei,i) = ϕs(e

xDei,i)−
esx − 1

ex − 1
,

ϕ̂s(C) = C (11)

More generally, for each m ∈ Z+ one defines a homomorphism

ϕ
[m]
s : DN → g̃`

[m]

∞ by

ϕ[m]
s (tkf(D)ei,j) =

∑
l∈Z

f(−l + s+ u)E(l−k)N−i+1, lN−j+1 , (12)

which lifts to ϕ̂
[m]
s : D̂N → ĝ`

[m]

∞ in a similar way,

ϕ̂[m]
s |(D̂N)

j

= ϕ[m]
s |(D̂N)

j

if j 6= 0 ,

ϕ̂[m]
s (exDei,i) = ϕ[m]

s (exDei,i)−
esx − 1

ex − 1
−

m∑
j=1

xjesx

ex − 1
tj/j!,

ϕ̂[m]
s (C) = C (13)

One of the main results of [11] is the following.

Lemma 3. For each i = 1, . . . , r, pick a collection mi ∈ Z+, si ∈ C, ~λi ∈
(C∞)mi+1, ~ci ∈ Cmi+1, such that si−sj /∈ Z for i 6= j. Then the ⊕ri=1ĝ`

[mi]

∞ -

module ⊗ri=1L
[mi](~λi,~ci) remains irreducible when restricted to D̂N via the

embedding ⊕ri=1ϕ̂
[mi]
si : D̂N → ⊕ri=1ĝ`

[mi]

∞ . All irreducible quasifinite highest

weight D̂N -modules are obtained in this way.

Proof of Theorem 3. Note that for p ≥ 1 there exists a positive integer k
such that p = kN + r = (k + 1)N − (N − r) with 0 6 r 6 N − 1 One has:

(
DN−
)
p

= {t−kf(D)ei, i+r : f(0) = f(1) = . . . = f(k − 1) = 0,

i = 1, · · · , N − r}⋃
(1− δr,0){t−(k+1)g(D)ei, i−N+r : g(0) = g(1) = . . . = g(k) = 0

i = N − r + 1, · · · , N}.
(14)

Hence
(
DN−
)
p

has finite codimension in DNp and therefore the quasifinite-

ness of a DN− -module L(~∆;DN− ) implies the quasifiniteness of any of the D̂N -

modules L(~∆, c; D̂N ). Due to Lemma 3 , L(~∆, c; D̂N ) is a tensor product

12



of the ĝ`
[m]

∞ -modules L[m](~λ,~c) on which D̂N acts via the embedding ϕ̂
[m]
s

defined by (12) and (13).
It is clear from Theorem 1 that all non-trivial modules L[m](~λi,~ci) have

infinite growth (by choosing an appropriate subalgebra isomorphic to g`+∞
in g`∞).

Recall that for any quasifinite D̂N -module one can extend the action

of
(
D̂N
)
p

for p 6= 0 to
(
D̂NO

)
p
, where O is the algebra of all holomorphic

functions on C ( see [11]), in other words, in (12) and in the central extension
of (13) one can take any f ∈ O if p 6= 0. The same holds for DN− , except that

for p ≥ 1, f must obey conditions in (14). We apply this to the D̂N -module

L[m](~λ,~c) on which D̂N acts via ϕ̂
[m]
s . Choosing f1, f2 ∈ O such that if q ∈ Z

and satisfies

(a) q = k1N + r, with k1 ∈ Z and 0 < r ≤ N − 1, then

f1(−l + s) = δl−1, k1 , f
(n)
1 (−l + s) = 0 if n = 1, . . . ,m ,

(b) q = k1N, with k1 ∈ Z, then

f2(−l + s) = δl, k1 , f
(n)
2 (−l + s) = 0 if n = 1, . . . ,m ,

we see from (12) that all operators Eq+1,q lie in the image of ϕ̂
[m]
s (DNO− ),

except for E1,0 when s = 0 (here we use (14) for p = 1). Hence, when

restricted to DN− , the module L[m](~λ,~c) remains irreducible, provided that

s 6= 0. Thus, if L(~∆;DN− ) has finite growth, then L(~∆; D̂N ) = L[m](~λ,~c) on

which D̂N acts via the embedding ϕ̂
[m]
0 .

Let q as in (a), choosing f1 ∈ O to vanish in all l ∈ Z up to mth derivative
except for ith derivative (0 < i ≤ m) at l = k1 +1, and if q as in (b) choosing
f2 ∈ O to vanish in all l ∈ Z up to mth derivative except for ith derivative
(0 < i ≤ m) at l = k1 we see that all operators uiEq+1,q with 0 < i ≤ m lie

in the image of ϕ̂
[m]
s (DNO− ).

Suppose that the mth coordinate of ~λq is non-zero, and that m > 0.
Then v := (umEq+1,q)

nv~λ 6= 0 for all n > 0. But

Eq,qv = (−N + λ0
q)v, Eq+1, q+1v = (N + λ0

q+1)v.

Therefore, restricting to the subalgebra of g`∞ consisting of matrices (ai,j)i,j≤q
or (ai,j)i,j≥q+1 we conclude by Theorem 1, that L[m](~λ,~c) is either trivial or
is of infinite growth.

13



Thus, the only possibility that remains is s = m = 0. As has been
already shown, the image of ϕ̂s(DNO− ) contains all Eq+1,q except for E1,0,
hence it contains all operators from g`−∞⊕g`+∞. Therefore, by Theorem 1,
the highest weight of a finite growth DN− -module must be the same as one
of the DN− -modules L+(λ+)⊗ L−(λ−) with λ± ∈ Par±.

Given two partitions λ± ∈ Par±, we denote by L(λ+, λ−) the
DN− -module, obtained by restriction via ϕ0 from the g̃`+∞ ⊕ g̃`−∞-module
L+(λ+) ⊗ L−(λ−). Now we shall construct the DN− -modules L(λ+, λ−) ex-
plicitly.

Consider the DN− -module CN [t, t−1]. Then CN [t ] is the maximal sub-
module (which is irreducible). Hence the DN− -module

V := CN [t, t−1]/CN [t ] (15)

is irreducible. It is clear that this is the highest weight DN− -module of growth
1 with a highest weight vector (t−1 + C[t])eN , where eN is a vector in CN
which has 1 in the N -entry and zero in the other entries . It is immediate to
deduce that V is isomorphic to L(ω1, 0) where ω1 ∈ Par+, such that ωi1 = 0,
for i 6= 1 and ω1

1 = 1.
Likewise, the DN− -module CN [t ]∗ := (C[t ]⊗ CN )∗ = ⊕j∈Z+(Ctj ⊗ CN )∗

is an irreducible highest weight module of growth 1 with a highest weight
vector (1 ⊗ e1)∗, where e1 is a vector in CN which has 1 in the entry one
and zero in the other entries. This module is isomorphic to L(0, ω−1), where
ω−1 = (. . . , 0,−1) ∈ Par−. We denote this DN− -module by V ′.

As in the Schur-Weyl theory, the DN− -module TM (V ) ⊗ TN (V ′) has a
natural decomposition as (DN− , SM × SN )-modules:

TM (V )⊗ TN (V ′) = ⊕λ±∈Par±

|λ+|=M
|λ−|=N

(Vλ+ ⊗ V ′λ−)⊗ (Uλ+ ⊗ Uλ−)

where Uλ+ (resp. λ−) denotes the irreducible SM (resp. N)-module corres-
ponding to the partition λ+ (resp. λ−).

Lemma 4. The DN− -modules Vλ+ ⊗ V ′λ− are irreducible.

Proof. As in the proof of Theorem 3, we extend the action of DN− on
Vλ+ ⊗ V ′λ− to

(
DNO−

)
j

for each j 6= 0, to obtain that any DN− -submodule

of Vλ+ ⊗ V ′λ− is a submodule of g`+∞ ⊕ g`−∞. But, by Schur–Weyl the-
ory, the g`+∞⊕ g`−∞-module Vλ+ ⊗V ′λ− is irreducible, which completes the
proof.
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Thus, we have proved

Theorem 4. The DN− -module L(λ+, λ−) is isomorphic to Vλ+⊗V ′λ− for any
pair λ± ∈ Par±.

Remark. Considering λ = (λ−, λ+) ∈ C∞ we may say that irreducible hi-
ghest weightDN− -modules of finite growth are parameterized by non-increasing
sequences of integers (λj)j∈Z ∈ C∞ with the exception that λ0 ≤ λ1. Equi-
valently, letting mi = λi − λi+1 we may say that these modules are pa-
rameterized by sequences of non-negative integers (mi)i∈Z\{0}, all but finite
numbers of which are zero.

Recall that the extended annihilation algebra Lie−(gcN ) for gcN is iso-
morphic to the direct sum of the Lie algebra DN− and the N -dimensional
Lie algebra CN (∂ + d

dt) and that conformal modules for a Lie conformal
algebra coincide with the conformal modules over the associated extended
annihilation algebra [7].

Given a module M over a Lie conformal algebra R and α ∈ C, we may
construct the α-twisted module Mα by replacing ∂ by ∂+α in the formulas
for action of R on M . Theorems 3 and 4 and the above remarks imply

Theorem 5. The gcN -modules L(λ+, λ−)α, where λ± ∈ Par±, α ∈ C,
exhaust all irreducible conformal gcN -modules of finite growth.

Corollary. The gcN -modules CN [∂]α and CN [∂]∗α, where α ∈ C, exhaust all
finite irreducible gcN -modules.

4 Irreducible finite growth gcN,xI-modules

Let DN0 (respectively DN0,−) be the Lie subalgebra of DN (respectively DN− )
of all matrix regular differential operator on C× (respectively, C) that kill
constants. That is DN0 consists of linear combinations of elements of the
form tkDf(D)ei,j , where f is a polynomial, i, j ∈ {1, · · · , N}, k ∈ Z≥0 and

ei,j is the standard basis of MatN (C). Denote by D̂N0 the corresponding

central extension. These algebras inherit the Z-gradation from D̂N . In this
section, we will need the representation theory of the Lie algebra D̂N0,−.

Given ~∆ = {~∆n}n∈Z+ with ~∆n ∈ CN for all n ∈ Z+ we consider the high-

est weight module L(~∆,DN0,−) over DN0,− as the (unique) irreducible module
that has a nonzero vector v~∆ with the following properties:

(DN0,−)pv~∆ = 0 for p < 0, Dnei iv~∆ = ∆i
nv~∆ forn ∈ N, i = 1, · · · , N.
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The principal gradation ofDN0,− induces the principal gradation of L(~∆;DN0,−).

Quasifinite modules over DN0,− can be constructed as follows.

The DN0,−-modules CN [t, t−1]/CN [t ] and CN [t ]/CN give us an embedding

of DN0,− in g̃`+∞ and g̃`−∞ respectively, hence an embedding of DN0,− in

g̃`+∞ ⊕ g̃`−∞. All these embedding respect the principal gradation. Now

take λ± ∈ C±∞ and consider the g̃`+∞ ⊕ g̃`−∞-module L+(λ+)⊗ L−(λ−).
The same argument as in [10], gives us the following.

Lemma 5. When restricted to DN0,−, the module L+(λ+)⊗L−(λ−) remains
irreducible.

It follows immediately that L+(λ+) ⊗ L−(λ−) is an irreducible highest
weight module over DN0,−, which is obviously quasifinite.

We have the following theorem.

Theorem 6. The DN0,−-modules L+(λ+) ⊗ L−(λ−), where λ± ∈ Par±,

exhaust all quasifinite irreducible highest weight DN0,−-modules that have fi-
nite growth.

The proof of Theorem 6 is the same as Theorem 3, but in this case
we reduce the problem to the representation theory of the universal central
extension D̂N0 of DN0 that was developed in Refs. [9] and [13].

Recall that the homomorphism ϕ̂
[m]
s : D̂N → ĝ`

[m]

∞ defined in (13) lifts to

a homomorphism ϕ̂
[m]
s : D̂NO → ĝ`

[m]

∞ . Now, the restriction ϕ̂
[m]
s : D̂NO0 →

ĝ`
[m]

∞ to D̂NO0 is surjective iff s /∈ Z. If s ∈ Z, m 6= 0 we denote by ĝ`
[m]

∞,s

the Lie subalgebra of ĝ`
[m]

∞ where we remove all the elements {Ei, sN−j+1 :

i ∈ Z, j = 1, · · · , N}. The homomorphism ϕ̂
[m]
s defined on (13), restricted

to D̂NO0 is an epimorphism over ĝ`
[m]

∞,s. If s = 0 = m we redefine ĝ`∞,0 as

the Lie subalgebra of ĝ`∞ generated by C and {Ei,j : i 6= 0, j 6= 0} and ϕ̂0

by the homomorphism p0 ◦ ϕ̂0 : D̂N0 → ĝ`∞ where p0 : ĝ`∞ → ĝ`∞,0 is the

projection map. Observe that ĝ`∞,0 is naturally isomorphic to ĝ`∞. Then

ϕ̂0 : D̂N0 → ĝ`∞,0 ' ĝ`∞ is a surjective homomorphism.

Now, let us consider the restriction to D̂NO0,− . Since the constrains given

by (14) do not affect the case s 6= 0, we still have that ϕ̂
[m]
s : D̂NO0,− →

ĝ`
[m]

∞ (s /∈ Z) is surjective.

Remark. The description of the image of the homomorphism ϕ̂
[m]
s , with

s ∈ Z and m 6= 0 in Ref. [13] (pag. 9), as the Lie subalgebra of ĝ`
[m]

∞ from
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which we remove the elements {EsN−i+1, sN−j+1 : , i, j = 1, · · · , N}, should

be replaced by ĝ`
[m]

∞,s the Lie subalgebra of ĝ`
[m]

∞ where all the elements
{Ei, sN−j+1 : i ∈ Z, j = 1, · · · , N} were removed.

One of the results of Ref. [13] (see also Ref. [9]) is the following:

Lemma 6. For each i = 1, . . . , r, pick a collection mi ∈ Z+, si ∈ C, ~λi ∈
(C∞)mi+1, ~ci ∈ Cmi+1, such that si − sj /∈ Z for i 6= j. Then the ⊕ri=1g

[mi]-

module ⊗ri=1L
[mi](~λi,~ci) remains irreducible when restricted to D̂N0 via the

embedding ⊕ri=1ϕ̂
[mi]
si : D̂N0 → ⊕ri=1g

[mi], where g[mi] = ĝ`
[mi]

∞ (respectively,

ĝ`
[mi]

∞,si ) if si /∈ Z (respectively si ∈ Z). All irreducible quasifinite highest

weight D̂N0 -modules are obtained in this way.

Proof of Theorem 6. The proof is the same as Theorem 3 but use Lemma
6, but in the case s = 0,m 6= 0 we do no get the operators Eq+1, q with

q = −N + 1, · · · , 0 since Imϕ
[m]
0 = ĝ`

[m]

∞,0. Then the argument is the same
that Theorem 3 but in the case s = 0,m 6= 0 restrict to the subalgebra of

ĝ`
[m]

∞,0 instead of ĝ`
[m]

∞ consisting the matrices (ai,j)i,j≤r or (ai,j)i,j≥r+1 in the
case s = 0 = m redefine ϕ0 as p0 ◦ ϕ̂0.

Given two partitions λ± ∈ Par±, the DN− -module L(λ+, λ−), that is ob-

tained by restriction via ϕ0 from the g̃`+∞ ⊕ g̃`−∞-module
L+(λ+) ⊗ L−(λ−) remains irreducible as a DN0,−-modules. The construc-

tion of the DN0,−-module L(λ+, λ−) is the same as before and Lemma 4 and

Theorem 4 hold for DN0,−. In this case, the extended annihilation algebra
Lie(gcN,xI) for gcN,xI is isomorphic to the direct sum of the Lie algebra

DN0,− and the N -dimensional algebra CN [∂+ (d/dt)]. Theorems 4 and 6 and
the above remarks imply the following.

Theorem 7. The gcN,xI-modules L(λ+, λ−)α, where λ± ∈ Par±, α ∈ C,
exhaust all irreducible conformal gcN,xI-modules of finite growth.

Corollary. The gcN,xI-modules CN [∂]α and CN [∂]∗α, where α ∈ C, exhaust
all finite irreducible gcN,xI-modules.

5 Irreducible finite growth ocN-modules.

For any A ∈ MatN C we define (A)†i j = AN+1−j N+1−i. Consider the anti-

involution on D = D1, introduced in [19],

τ+,−1(tkf(D)) = tkf(−D − k − 1).
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We extend τ+,−1 to a map on MatND = D ⊗ MatN C by letting
[τ+,−1(A)]i j = τ+,−1(Ai,j). Now, consider the anti-involution σ in DN de-
fined by

σ
(
tkf(D)A

)
= σ+,−1

(
tkf(D)A†

)
. (16)

We denote by DNσ the Lie subalgebra of DN given by −σ-fixed points in DN .
This subalgebra corresponds to the Lie algebra denoted by DNo in [12]. Let
D̂Nσ = DNσ ⊕CC denote the central extension given by the restriction of the
cocycle (9) on DN .

We are interested in the representation theory of the Lie algebra
DNσ,− = D̂Nσ

⋂
DN− of matrix regular differential operators on C that are

invariant by −σ. Both subalgebras inherit a Z-gradation from DN , since σ
preserve the principal Z-gradation of DN , and we have DNσ = ⊕p∈Z

(
DNσ
)
p

where, if p = kN + r, with k ∈ N and 0 ≤ r ≤ N − 1,

(DNσ )p =
{
t−k(f(D−(k+1))ei, i+r − f(−D−(k+1)eN+1−r−i, N+1−i),

1 ≤ i ≤ [N + 1− r/2]
}

⋃{
t(−k+1)(g(D−(k+2))ei, i−N+r − g−(k+2)e2N+1−i−r,N+1−i),

N − r + 1 ≤ i ≤ [2N + 1− r/2]
}
(17)

where here and further Dk = D + k/2 and [x], x ∈ R is the integer less
or equal than x. In the case of (Dσ,−)p, we need to add condition (14) for
p > 0. As before, we have the corresponding subalgebras of DNO, denoted
by DNOσ and DNOσ,− . As in the case of DN− , given ~∆ = {~∆n} with ~∆n ∈
C[N2 ]+δN odd we consider the highest weight module L(~∆;DNσ,−) over DNσ,−
as the (unique) irreducible module that has a non-zero vector v~∆ with the
following properties:(
DNσ,−

)
p
v~∆ = 0 for p < 0, ((D1)nei,i − (−D1)neN+1−i, N+1−i)v~∆ = ∆i

nv~∆

for n ∈ Z+ i = 1, · · · ,
[
N
2

]
+δN, odd . The principal gradation of DNσ,− induces

the principal gradation L(~∆;DNσ,−) = ⊕p∈Z+Lp such that L0 = Cv~∆. The

module L(~∆;DNσ,−) is called quasifinite if dimLp <∞ for all p ∈ Z+.
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Quasifinite modules over DNσ,− can be constructed as follows. The DNσ,−-

modulo CN [t, t−1]/CN gives us an embedding of DNσ,− in g̃`+∞ . This em-
bedding respect the principal gradations.

Now take λ+ ∈ C+∞ and consider the g̃`+∞-module L+(λ+). The same
argument as in [10], gives us the following.

Lemma 7. When restricted to DNσ,−, the module L+(λ+) remains irre-
ducible.

It follows immediately that L+(λ+) is an irreducible highest weight mo-
dule over DNσ,−, which is obviously quasifinite. It is easy to see that we
have:

∆i
n =

∑
j≥1

(−j + 1/2)nλ+
jN−i+1 − (j − 1/2)nλ−(j−1)N+i

so that

∆i(x) :=
∑
n≥0

∆i
nx

n/n! =
∑
j≥1

e(−j+1/2)x λ+
jN−i+1 + e(j−1/2)x λ−(j−1)N+i .

with i = 1, · · · ,
[
N
2

]
+ δN,odd. We shall prove the following theorem.

Theorem 8. The DNσ,−-modules L+(λ+), where λ+ ∈ Par+, exhaust all

quasifinite irreducible highest weight DNσ,−-modules that have finite growth.

The basic idea of the proof of Theorem 8 is the same as in Theorem 3:
to reduce the problem to the well developed (in [12]) representation theory
of the universal central extension D̂Nσ .

Recall that the homomorphism ϕ̂
[m]
s : D̂N → ĝ`

[m]

∞ defined in (13) lift to

a homomorphism ϕ̂
[m]
s : D̂NO → ĝ`

[m]

∞ . Now, the restriction ϕ̂
[m]
s : D̂NOσ →

ĝ`
[m]

∞ to D̂NOσ is surjective iff s /∈ Z/2, and in the other cases, using (21), we
have that (see Ref. [12] for details)

ϕ̂
[m]
0 : D̂NOσ → d[m]

∞ ; ϕ̂
[m]
1/2 : D̂NOσ → d[m]

∞ if Neven,

ϕ̂
[m]
1/2 : D̂NOσ → b[m]

∞ if Nodd. (18)

are surjective homomorphism. Now, let us consider the restriction to D̂NOσ,− .
Since the constrains given by (14) do not affect the case s 6= 0, we still have

that ϕ̂
[m]
s : D̂NOσ,− → ĝ`

[m]

∞ (s /∈ Z/2) and ϕ̂
[m]
1/2 are surjective. One of the main

results of Ref [12] is the following.
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Lemma 8. For each i = 1, . . . , r, pick a collection mi ∈ Z+, si ∈ C, ~λi ∈
(C∞)mi+1, ~ci ∈ Cmi+1, such that si ∈ Z implies si = 0, si ∈ 1

2 + Z implies

si = 1
2 , and si−sj /∈ Z for i 6= j. Then the ⊕ri=1g

[mi]-module ⊗ri=1L
[mi](~λi,~ci)

remains irreducible when restricted to D̂Nσ via the embedding ⊕ri=1ϕ̂
[mi]
si :

D̂Nσ → ⊕ri=1g
[mi], where g[mi] = ĝ`

[mi]

∞ (respectively b
[mi]
∞ or d

[mi]
∞ ) if si /∈ Z/2

(respectively , si = 1/2, N odd or si = 0 or si = 1/2, N even.) All irreducible
quasifinite highest weight D̂Nσ -modules are obtained in this way.

Proof of Theorem 8. The proof is similar to that of Theorem 3 Due to
Lemma 8, Theorem 2 and (16), it is easy to see that if L(~∆,DNσ,−) has

finite growth, then L(~∆,DNσ,−) = L(d
[m]
∞ ;~λ,~c) on which D̂Nσ acts via the

embedding ϕ̂
[m]
0 . Now consider q ∈ Z such that,

(a) if q = k1N + r, with k1 ∈ Z and 1 ≤ r ≤ N − 1, choosing f1 ∈ O
to vanish in all l ∈ Z up to mth derivative except for ith derivative
(0 < i ≤ m) at l = k1 + 1.

(b) If q = k1N, with k1 ∈ Z and choosing f2 ∈ O to vanish in all l ∈ Z up
to mth derivative except for ith derivative (0 < i ≤ m) at l = k1

we see that all operators uiEq+1, q − (−u)iE−q+1,−q, with 0 < i ≤ m lie in

the image of ϕ̂
[m]
s (DNOσ,− ).

Suppose that the mth coordinate of ~λq is non-zero, and that m > 0.
Then v := (umEq+1 q − (−u)iE−q+1−q)

nv~λ 6= 0 for all n > 0. But

(Eq+1,q+1 − E−q,−q)v = (−N + λ0
q+1)v.

As in Theorem 3, restricting to the subalgebra of d
[m]
∞ isomorphic to g`+∞consisting

of matrices (ai,j−a1−j,1−i)i,j≥q+1 we conclude by Theorem 2, that L[m](d
[m]
∞ ;~λ,~c)

is either trivial or is of infinite growth.
Thus, the only possibility that remains is s = m = 0. As has been

already shown, the image of ϕ̂s(DNOσ,− ) contains all Eq+1,q − E1−q,−q except

for q 6= 0, hence it contains all operators from d
[m]
∞ ∩ g`−∞ ⊕ g`+∞ ' g`+∞.

Therefore, by Theorem 2 , the highest weight of a finite growth DNσ,−-module

must be the same as one of the DNσ,−-modules L+(λ+) with λ+ ∈ Par+.

Now we shall construct the DNσ,−-modules L(λ+) explicitly. The DN− -

module V = CN [t, t−1]/CN [t ] defined in (14), viewed as a DNσ,−-module,

remains irreducible. This is the highest weight DNσ,−-module of growth 1
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isomorphic to L+(ω1) where ω1 ∈ Par+, such that ωi1 = 0, for i 6= 1 and ω1
1 =

1. Observe that the DNσ,−-module CN [t ]∗ = ⊕j∈Z+(CN tj)∗ is isomorphic to

L+(ω1). As in the Schur-Weyl theory, the DNσ,−-module TM (V ) has a natural

decomposition as (DNσ,−, SM )-modules:

TM (V ) = ⊕λ+∈Par+

|λ+|=M
Vλ+ ⊗ Uλ+

where Uλ+ denotes the irreducible SM -module corresponding to the partition
λ+.

Lemma 9. The DNσ,−-modules Vλ+ are irreducible.

Proof. As in the proof of Theorem 8, we extend the action of DNσ,− on Vλ+

to
(
DNOσ,−

)
j

for each j 6= 0, to obtain that any DNσ,−-submodule of Vλ+ is a

submodule of g`+∞ ' d∞ ∩ g`+∞ ⊕ g`−∞. But, by Schur–Weyl theory, the
g`+∞-module Vλ+ is irreducible, which completes the proof.

Thus, we have proved

Theorem 9. The DNσ,−-module TM (V ) has the following decomposition as

(DNσ,−, SM )-modules:

TM (V ) = ⊕λ+∈Par+

|λ+|=M
Vλ+ ⊗ Uλ+

where Uλ+ denotes the irreducible SM -module corresponding to the partition
λ+.

Remark. Considering λ+ ∈ C+∞ we may say that irreducible highest weight
DNσ,−-modules of finite growth are parameterized by non-increasing sequences
of integers (λj)j∈Z ∈ C∞ with the exception that λ0 ≤ λ1. Equivalently,
letting mi = λi − λi+1 we may say that these modules are parameterized
by sequences of non-negative integers (mi)i∈Z\{0}, all but finite numbers of
which are zero.

Recall that the extended annihilation algebra Lie−(ocN ) for ocN is iso-
morphic to the direct sum of the Lie algebra DNσ,− and the N -dimensional

Lie algebra CN (∂ + d
dt) and that conformal modules for a Lie conformal

algebra coincide with the conformal modules over the associated extended
annihilation algebra [7].

Theorem 8 and the above remarks imply the following
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Theorem 10. The ocN -modules L(λ+)α, where λ+ ∈ Par+, α ∈ C, exhaust
all irreducible conformal ocN -modules of finite growth.

Corollary. The ocN -modules CN [∂]α α ∈ C, exhaust all finite irreducible
ocN -modules.

6 Irreducible finite growth spcN,xI-modules.

Now, consider

σ̃(tkf(D)Dei,j) = −tkf(−D − k)Dej,i,

the anti-involution on DN0 , corresponding to those that defines the sym-
plectic type conformal subalgebra in gcN,x (cf.[5] pag.56). Observe that this
coincide with Bloch’s anti-involution for N = 1 (cf. [2]). This anti-involution
does not preserve the principal gradation of DN . However it is conjugated
by the automorphism τ(tkf(D)Dei,j) = tkf(D)Dei, N+1−j , to the following
anti-involution

σ̄(tkf(D)Dei,j) = −tkf(−D − k)DeN+1−j,N+1−i, (19)

where k ∈ Z. Denote by DN0,σ̄ the Lie subalgebra of DN0 fixed by −σ̄. Let

D̂N0,σ̄ = DN0,σ̄ ⊕ CC denote the central extension given by the restriction of

the cocycle on DN .
We are interested in the representation theory of the Lie subalgebra

DN0,σ̄,− = DN− ∩ D̂N0,σ̄ of matrix regular differential operators on C that
kills constants and are invariant by −σ̄. Both subalgebras inherit a Z-
gradation from DN0 , since σ̄ preserves the principal Z-gradation of DN0 ,
DN0,σ̄ = ⊕p∈Z(DN0,σ̄)p, where if p = kN + r, with k ∈ N and 0 ≤ r ≤ N − 1,

(DN0,σ̄)p =
{
t−k(f(D−k)ei, i+r + f(−D−k)eN+1−r−i, N+1−i),

1 ≤ i ≤ [N + 1− r/2]
}

⋃{
t(−k+1)(g(D−(k+1))ei ,i−N+r + g(−D−(k+1))e2N+1−i−r,N+1−i),

N − r + 1 ≤ i ≤ [2N + 1− r/2]
}
(20)

In the case of (DN0,σ̄,−)p, we need to add condition (14) for p > 0. Similarly, we

have the corresponding subalgebras of DNO, denoted by DNO0,σ̄ and DNO0,σ̄,−.
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As in the case of DN− , given ~∆ = {~∆n} with ~∆n ∈ C[N2 ]+δN , odd for all

n ∈ Z+, we consider the highest weight module L(~∆;DN0,σ̄,−) over DN0,σ̄,−
as the (unique) irreducible module that has a non-zero vector v~∆ with the
following properties:(
DN0,σ̄,−

)
p
v~∆ = 0 for p < 0, (Dnei, i + (−D)neN+1−i, N+1−i)v~∆ = ∆i

nv~∆

for n ∈ Z+ i = 1, · · · ,
[
N
2

]
+ δN,odd .

The principal gradation of DN0,σ̄,− induces the principal gradation

L(~∆;DN0,σ̄,−) = ⊕p∈Z+Lp such that L0 = Cv~∆. The module L(~∆;DN0,σ̄,−)
is called quasifinite if dimLp <∞ for all p ∈ Z+.

As in the preceding section, the DN0,σ̄,−-module CN [t, t−1]/CN gives us

an embedding of DN0,σ̄,− in g̃`+∞ . This embedding respect the principal
gradations.

Now take λ+ ∈ C+∞ and consider the g̃`+∞-module L+(λ+). The same
argument as in [10], gives us the following.

Lemma 10. When restricted to DN0,σ̄,−, the module L+(λ+) remains irre-
ducible.

Theorem 11. The DN0,σ̄,−-modules L+(λ+), where λ+ ∈ Par+, exhaust all

quasifinite irreducible highest weight DN0,σ̄,−-modules that have finite growth.

The basic idea of the proof of Theorem 11 is the same as in Theorem 3:
to reduce the problem to the well developed (in [14]) representation theory
of the universal central extension D̂N0,σ̄.

Recall that the homomorphism ϕ̂
[m]
s : D̂N → ĝ`

[m]

∞ defined in (13) lift to

a homomorphism ϕ̂
[m]
s : D̂NO → ĝ`

[m]

∞ . Now, the restriction ϕ̂
[m]
s : D̂NO0,σ̄ →

ĝ`
[m]

∞ to D̂NO0,σ̄ is surjective iff s /∈ Z/2, and in the other cases, using (20), we
have that (see Ref. for details [14])

ϕ̂
[m]
1
2

: D̂NO0,σ̄ → c[m]
∞ , (21)

ϕ̂0 : D̂NO0,σ̄ → c∞, (22)

And

ϕ̂
[m]
0 : D̂NO0,σ̄ → g̃`

[m]

∞,0, if m 6= 0, (23)

with g̃`
[m]

∞,0 is the subalgebra of g`
[m]
∞ generated by

{(uk − (m̃+ 1)uk−1)Eij − ((−u)k − (n+ 1)(−u)k−1)E−N+1−j,−N+1−i}
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with 1 ≥ k, i = nN + q; j = m̃N + q̄ and 1 ≤ q, q̄ ≤ N, are surjective
homomorphism. Now, let us consider the restriction to D̂NO0,σ̄,−. Since the
constrains given by (14) do not affect the case s 6= 0, we still have that

ϕ̂
[m]
s : D̂NO0,σ̄,− → ĝ`

[m]

∞ (s /∈ Z/2) and ϕ̂
[m]
1/2 : D̂NO0,σ̄ → c

[m]
∞ are surjective.

Remark. The description of the image of the homomorphism ϕ̂
[m]
0 , with

m 6= 0 in Ref. [14] (Proposition 5.3), as the Lie subalgebra c
[m]
∞ should be

replaced by g̃`
[m]

∞,0 the Lie subalgebra of ĝ`
[m]

∞ generated by

{(uk − (m̃+ 1)uk−1)Eij − ((−u)k − (n+ 1)(−u)k−1)E−N+1−j,−N+1−i}

with 1 ≥ k, i = nN + q; j = m̃N + q̄ and 1 ≤ q, q̄ ≤ N.
One of the main results of Ref [14] is the following.

Lemma 11. For each i = 1, . . . , r, pick a collection mi ∈ Z+, si ∈ C,
~ci ∈ (C∞)mi+1, ~ci ∈ Cmi+1, such that si ∈ Z implies si = 0, si ∈ 1

2 + Z
implies si = 1

2 , and si − sj /∈ Z for i 6= j. Then the ⊕ri=1g
[mi]-module

⊗ri=1L(g[mi], ~λi,~ci) remains irreducible when restricted to D̂N0,σ̄ via the em-

bedding ⊕ri=1ϕ̂
[mi]
si : D̂N0,σ̄ → ⊕ri=1g

[mi], where g[mi] = ĝ`
[mi]

∞ (respectively

c
[mi]
∞ , g`

[m]
∞,si) if si /∈ Z/2 (respectively , si = 1/2, or si = 0.) All irreducible

quasifinite highest weight D̂N0,σ̄-modules are obtained in this way.

Proof of Theorem 11. The proof is similar to that of Theorem 3 Due to
Lemma 11, Theorem 2 and (21)-(23), it is easy to see that if L(~∆,DN0,σ̄,−)

has finite growth, then L(~∆,DN0,σ̄,−) = L(c
[m]
∞ ;~λ,~c) on which D̂Nσ acts via

the embedding ϕ̂
[m]
0 . Now consider q ∈ Z such that,

(a) if q = k1N + r, with k1 ∈ Z, k1 6= −1 and 1 ≤ r ≤ N − 1 choosing
f1 ∈ O such that f1(x)x to vanish in all l ∈ Z up to mth derivative
except for ith derivative (0 < i ≤ m) at l = k1 + 1. If k1 = −1
choosing f1 ∈ O such to vanish in all l ∈ Z up to mth derivative
except for (i− 1)th derivative (0 < i ≤ m) at l = k1 + 1.

(b) If q = k1N, with k1 ∈ Z, k1 6= 0 choosing f2 ∈ O such that f2(x)x
to vanish in all l ∈ Z up to mth derivative except for ith derivative
(0 < i ≤ m) at l = k1.

we see that all operators uiEq+1,q + (−u)iE−q+1−N,−q−N , with 0 < i ≤ m

lie in the image of ϕ̂
[m]
s (DNO0,σ̄,−), q 6= 0.
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Suppose that the mth coordinate of ~λq is non-zero, and that m > 0.
Then v := (umEq+1,q + (−u)iE−q+1−N,−q−N )nv~λ 6= 0 for all n > 0. But

(Eq,q − E−q−N,−q−N )v = (N + λ0
q)v.

for all q 6= {−N+1, · · · , 0}. As in Theorem 3, restricting to the subalgebra of

g`
[m]
∞,s isomorphic to g`+∞ consisting of matrices (aij−(−1)i+ja−N−j,−N−i)i,j≥q+1

we conclude by Theorem 2, that L[m](c
[m]
∞ ;~λ,~c) is either trivial or is of infinite

growth.
Thus, the only possibility that remains is s = m = 0. As has been

already shown, the image of ϕ̂s(DNO0,σ̄,−) contains all Eq+1,q +E1−q,−q except

for q 6= 0, hence it contains all operators from c
[m]
∞ ∩ g`−∞ ⊕ g`+∞ ' g`+∞.

Therefore, by Theorem 3 , the highest weight of a finite growth DN− -module
must be the same as one of the DN0,σ̄,−-modules L+(λ+) with λ+ ∈ Par+.

As the preceding section, we can construct the DN0,σ̄,−-modules L(λ+)

explicitly. The DN− -module V = CN [t, t−1]/CN [t ] defined in (14), viewed
as a DNσ,−-module, remains irreducible. This is the highest weight DN0,σ̄,−-

module of growth 1 isomorphic to L+(ω1) where ω1 ∈ Par+, such that
ωi1 = 0, for i 6= N and ωN1 = 1.

As in the Schur-Weyl theory, the DN0,σ̄,−-module TM (V ) has a natural

decomposition as (DN0,σ̄,−, SM )-modules:

TM (V ) = ⊕λ+∈Par+

|λ+|=M
Vλ+ ⊗ Uλ+

where Uλ+ denotes the irreducible SM -module corresponding to the partition
λ+.

Lemma 12. The DN0,σ̄,−-modules Vλ+ are irreducible.

Proof. As in the proof of Theorem 8, we extend the action of DN0,σ̄,− on Vλ+

to
(
DNO0,σ̄,−

)
j

for each j 6= 0, to obtain that any DN0,σ̄,−-submodule of Vλ+ is a

submodule of g`+∞ ' c∞ ∩ g`+∞ ⊕ g`−∞. But, by Schur–Weyl theory, the
g`+∞-module Vλ+ is irreducible, which completes the proof.

Theorem 12. The DN0,σ̄,−-module TM (V ) has the following decomposition

as (DN0,σ̄,−, SM )-modules:

TM (V ) = ⊕λ+∈Par+

|λ+|=M
Vλ+ ⊗ Uλ+
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where Uλ+ denotes the irreducible SM -module corresponding to the partition
λ+.

Recall that the extended annihilation algebra Lie−(spcN,xI) for spcN,xI is
isomorphic to the direct sum of the Lie algebraDN0,σ̄,− and theN -dimensional

Lie algebra CN (∂ + d
dt) and that conformal modules for a Lie conformal

algebra coincide with the conformal modules over the associated extended
annihilation algebra [7].

Theorem 11 and the above remarks imply the following

Theorem 13. The spcN,xI-modules L(λ+)α, where λ+ ∈ Par+, α ∈ C,
exhaust all irreducible conformal spcN,xI-modules of finite growth.

Corollary. The spcN,xI-modules CN [∂]α α ∈ C, exhaust all finite irreducible
spcN,xI-modules.

Acknowledgement: We are grateful to J. Liberati and J. Garćıa for
pointed out that the images of some homomorphism consider trough this
paper needed to be corrected.
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