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a b s t r a c t

We introduce and discuss a new computational model for
the Hermite–Lagrange interpolation with nonlinear classes of
polynomial interpolants. We distinguish between an interpolation
problem and an algorithm that solves it. Our model includes also
coalescence phenomena and captures a large variety of known
Hermite–Lagrange interpolation problems and algorithms. Like in
traditional Hermite–Lagrange interpolation, our model is based
on the execution of arithmetic operations (including divisions)
in the field where the data (nodes and values) are interpreted
and arithmetic operations are counted at unit cost. This leads
us to a new view of rational functions and maps defined on
arbitrary constructible subsets of complex affine spaces. For this
purpose we have to develop new tools in algebraic geometry
which themselves are mainly based on Zariski’s Main Theorem
and the theory of places (or equivalently: valuations). We finish
this paper by exhibiting two examples of Lagrange interpolation
problems with nonlinear classes of interpolants, which do not
admit efficient interpolation algorithms (one of these interpolation
problems requires even an exponential quantity of arithmetic
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operations in terms of the number of the given nodes in order to
represent some of the interpolants).

In other words, classic Lagrange interpolation algorithms are
asymptotically optimal for the solution of these selected interpola-
tion problems and nothing is gained by allowing interpolation al-
gorithms and classes of interpolants to be nonlinear. We show also
that classic Lagrange interpolation algorithms are almost optimal
for generic nodes and values. This generic data cannot be substan-
tially compressed by using nonlinear techniques.

We finish this paper highlighting the close connection of
our complexity results in Hermite–Lagrange interpolation with
a modern trend in software engineering: architecture tradeoff
analysis methods (ATAM).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

This paper discusses complexity issues of well-known problems of (mainly multivariate)
polynomial interpolation from a systematic nonlinear point of view. Instead of analyzing the run-time
behavior of concrete interpolation algorithms, we ask what are the best possible complexity bounds
we can hope for when we have freedom to chose the data structures and types which represent the
interpolants. This question leads in a natural way to the consideration of classes of interpolants which
do not form linear spaces, but more general geometric structures, as e.g. algebraic varieties.

A universal framework for themathematical aspects of interpolation is developed in [10, Section 2].
Here we are concerned with the algorithmic, and in particular with the computational complexity
aspects of interpolation problems and procedures. Therefore we have to deal not only with structural
concepts like functionals and interpolants, but alsowith the (possible) data structures and typeswhich
represent them. Although our algorithmic view may be combined with the general framework for
interpolation of [10], the outcome would be a rather clumsy formalism, difficult or impossible to
decipher for the non-specialist, and hiding instead of unveiling the ideas behind our argumentation.
Therefore we focus our attention on Hermite–Lagrange interpolation problems and algorithms.
Our interpolants will always be multivariate polynomials over the complex numbers C. This turns
structural mathematical formulations much simpler and the context is better known to non-
specialists than the general model of interpolation introduced in [10].

Classical interpolation algorithms return the interpolating polynomials in dense or sparse
representation and the (finite) dimension of the vector space where they live becomes then a lower
bound for the complexity of these procedures. In this paper we address the question of the intrinsic
complexity of Hermite–Lagrange interpolation algorithms admitting more general representations of
the interpolants, e.g., their straight-line program encoding.

A general feature of interpolation problems and algorithms consists of the identity of input object
and input representation (see [9] for a motivation and a mathematical discussion of the distinction of
these concepts). In Hermite–Lagrange interpolation, input object and representation are always given
by a finite list of nodes and the corresponding function values. This settingwill bemaintained through
this paper. However we shall admit more freedom as usual in the representation of the output objects,
i.e., the interpolants, which alwayswill be polynomials of bounded degree, that howevermay become
exponential in the number of nodes.

We shall make a substantial use of the identity of input object and input representation in
order to establish a general mathematical model for the intuitive meaning of the Hermite–Lagrange
interpolation problem and algorithm with polynomial interpolants (see the discussion in Section 3.1
and Definition 7).

In Section 4 we motivate by geometric arguments a notion of coalescence for interpolation
algorithms (and problems) which will become fundamental in this paper: geometric robustness.

Our mathematical model for Hermite–Lagrange interpolation has a direct translation to
fundamental concepts of software engineering. In Appendix A we establish a dictionary which



N. Giménez et al. / Journal of Complexity 27 (2011) 151–187 153

identifies the components of our model with current classical notions of software architecture.
Geometric robustness turns out to be a non-functional requirement on the routine which represents
an interpolation algorithm.

The remaining results we are going to present in this paper all have a negative flavor. One
might hope that nonlinear data structures and algorithmic techniques could help to improve the
complexity of interpolation procedures. However, nonlinearity is not a panacea for everything. In
this spirit we shall exhibit in Section 5 two families of natural Hermite–Lagrange interpolation
problems which under a suitable coalescence restriction (called ‘‘geometrical robustness’’) require
for their algorithmic solution procedures of intrinsically high complexity, even if we admit nonlinear
interpolation techniques (see Proposition 22 for an incompressibility result and Theorem 23 for an
exponential lower bound for the output size). It is not very hard to prove, but worth to state, that
nonlinear techniques are not able to compress the output size when they are applied to the usual
context of Lagrange interpolation of generic input data (see Proposition 21).

In conclusion, the main outcome of the paper is twofold. On the one hand, we establish a general
mathematical model for Hermite–Lagrange interpolation. The components of this model may be
identified with basic concepts of software engineering. In this sense, our model seems to be ‘‘natural’’,
since it is reflected by the contemporary thinking on programming. On the other hand, we show that
a non-functional requirement that is well-motivated by interpolation theory and numerical analysis,
namely geometric robustness, may produce an exponential blow up of another quality attribute
of the procedure, namely the computational complexity. We do not know of any other example
in software engineering where such a tradeoff of quality attributes is certified by a mathematical
argument.

Let us say a word about our presentation of proofs. The paper deals with a subject which belongs
to applied mathematics (interpolation theory) and computer science (mainly algebraic complexity
theory with a view to software engineering). However, the proofs rely on methods which come from
puremathematics, namely (elementary and not so elementary) algebraic geometry and commutative
algebra.

Weuse elementary concepts fromalgebraic geometry like (affine) algebraic varieties, constructible
sets, coordinate rings and function fields (of an affine variety) and rational maps. Not elementary is
Zariski’sMain Theoremwhich becomes also to be applied. Elementary notions of commutative algebra
that we rely on are place, localization and finite module. For a reader with a background in applied
mathematics or computer science these notions may be unfamiliar. For this reason we illustrate by
numerous examples the main concepts of algebraic geometry and commutative algebra applied in
this paper.

We hope that this will contribute to the insight that our notions from algebraic geometry and
commutative algebra are not abstract, but have a concrete and relevant meaning for our subject.

2. Basic definitions and notations

In this section we collect the basic algebraic and geometric facts which allow us to establish a
mathematical model for the Hermite–Lagrange interpolation with multivariate polynomials. We use
standard notions and notations of commutative algebra and algebraic geometry, which can be found
in, e.g., [20,29,19,26].

For any n ∈ N, we denote by An
:= An(C) the n-dimensional affine space Cn, equipped with its

respective Zariski and Euclidean topologies over C. In algebraic geometry, the Euclidean topology of
An is also called the strong topology. We shall use this terminology only exceptionally. In general it
will be clear by the context to which one of these two topologies we are going to refer.

Let X1, . . . , Xn be indeterminates over C and let X := (X1, . . . , Xn). We denote by C[X] the ring of
polynomials in the variables X with complex coefficients.

Let V be a closed affine subvariety of An, that is, the set of common zeros in An of a finite set
of polynomials belonging to C[X]. As usual, we write dim V for the dimension of the variety V . For
f1, . . . , fs, g ∈ C[X] we shall use the notation {f1 = 0, . . . , fs = 0} and {f1 = 0, . . . , fs = 0, g ≠ 0} in
order to denote the closed affine subvariety V of An defined by f1, . . . , fs and the Zariski open subset
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Vg of V defined by the intersection of V with the complement of {g = 0}. Observe that Vg is a locally
closed affine subvariety of An whose coordinate ring is the localization C[V ]g of C[V ].

We denote by I(V ) := {f ∈ C[X] : f (x) = 0 for any x ∈ V } the ideal of definition of V in C[X] and
by C[V ] := {ϕ : V → C : there exists f ∈ C[X] with ϕ(x) = f (x) for any x ∈ V } its coordinate ring.
Observe that C[V ] is isomorphic to the quotient C-algebra C[V ] = C[X]/I(V ). If V is irreducible, then
C[V ] is zero-divisor free and the rational functions of V withmaximal domain form a field, denoted by
C(V ), which is called the rational function field of V . Observe that C(V ) is isomorphic to the fraction
field of the integral domain C[V ].

In the general situation,whenV is an arbitrary closed affine subvariety ofAn, the notion of a rational
function of V has also a precise meaning. The only point to underline is that the domain, say U , of a
rational function of V has to be a maximal Zariski open and dense subset of V (hence, in particular,
U has a nonempty intersection with any of the irreducible components of V ). The rational functions
of V form a C-algebra which we also denote by C(V ). In algebraic terms, C(V ) is the total quotient
ring of C[V ] and is isomorphic to the direct product of the rational function fields of the irreducible
components of V .

A partial map φ : V 99K W , whereW is a closed subvariety of some affine space Am and φ1, . . . , φm
are the components ofφ, is called amorphism of affine varieties (or just polynomialmap) if the complex
valued functions φ1, . . . , φm belong to C[V ] (thus, in particular, φ is a total map). If the domain U
of φ is a Zariski open and dense subset of V and φ1, . . . , φm are the restrictions of suitable rational
functions of V to U , we call φ a rational map of V to W . Observe that our definition of a rational map
differs from the usual one in algebraic geometry, since we do not require that the domain U of φ is
maximal. Hence, in the case m := 1, our concepts of a rational function and a rational map do not
coincide.

2.1. Constructible sets and constructible maps

Let M be a subset of the affine space An and, for a nonnegative integer m, let φ : M 99K Am be a
partial map. We call the set M constructible if M is definable by a Boolean combination of polynomial
equations. A basic fact we shall use in the sequel is that if M is constructible, then its Zariski closure
is equal to its Euclidean closure (see, e.g., [23, Chapter I, Section 10, Corollary 1]).

In the same vein we call the partial map φ constructible if the graph of φ is constructible as a
subset of the affine space An

× Am. We say that φ is polynomial if φ is the restriction of a morphism
of affine varieties An

→ Am to a constructible subset M of An (and hence a total map from M to
Am). Furthermore we call φ a rational map of M if the domain U of φ is contained in M and φ is the
restriction to M of a rational map of the Zariski closure M of M. In this case U is a Zariski open and
dense subset of M.

Since the elementary (i.e., first order) theory of algebraically closed fields with constants in C
admits quantifier elimination, constructibility means just elementary definability. In particular, φ
constructible implies that the domain and the image of φ are constructible subsets of An and Am,
respectively. A useful fact concerning constructible maps we are going to use in the sequel is the
following result (see, e.g., [21, Proposition 3.2.14]).

Lemma 1. Let M be a constructible subset of An and let φ : M 99K Am be a partial map. Then φ is
constructible if and only if there exists a partition of its domain in finitely many constructible subsets, say
M1, . . . ,Ms, such that for any 1 ≤ k ≤ s the restriction of φ to Mk is a rational map of Mk which is
defined at any point of Mk.

In particular, if φ : M → Am is a total constructible map, then there exists a Zariski open and dense
subset U of M such that the restriction φ|U of φ to U is a rational map.

We are now going to introduce the notions of a weakly continuous, a strongly continuous, a
topologically robust and ahereditarymapof the constructible setM. These four notionswill constitute
a fundamental tool for the meaningful modeling of Hermite–Lagrange interpolation problems and
algorithms in Sections 3 and 4.
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Definition 2. Let M be a constructible subset of An and let φ : M → Am be a (total) constructible
map. We consider the following four conditions:

(i) there exists a Zariski open and dense subset U of M such that the restriction φ|U of φ to U is a
rational map of M and the graph of φ is contained in the Zariski closure of the graph of φ|U in
M × Am;

(ii) φ is continuous with respect to the Euclidean (i.e. strong) topologies of M and Am;
(iii) for any sequence (xk)k∈N of points of M which converges in the Euclidean topology to a point of

M, the sequence (φ(xk))k∈N is bounded;
(iv) for any constructible subset N of M the restriction φ|N : N → Am is an extension of a rational

map of N and the graph of φ|N is contained in the Zariski closure of this rational map in N ×Am.
We call the map φ

– weakly continuous if φ satisfies condition (i),
– strongly continuous if φ satisfies condition (ii),
– topologically robust if φ satisfies conditions (i) and (iii),
– hereditary if φ satisfies condition (iv).

Remark 3. Let φ : M → Am be a total constructible map. Then φ is topologically robust if and only
if there exists a Zariski open and dense subset U of M for which condition (i) is satisfied and, for
any sequence (xk)k∈N of points of U which converges in the Euclidean topology to a point of M, the
sequence (φ(xk))k∈N is bounded.

Proof. The only if part is obvious.We are going to prove the if part: assume that the second condition
in the statement of the remark is satisfied and let U be the corresponding Zariski open and dense
subset of M. Let (xk)k∈N be an arbitrary sequence of points of M which converges in the Euclidean
topology to a point x ∈ M. Then we deduce from condition (i) that there exists a sequence (yk)k∈N of
points of U such that ‖(xk, φ(xk)) − (yk, φ(yk))‖ < 1/k holds for any k ∈ N, where ‖ · ‖ denotes
the Euclidean norm of M × Am. This implies that the sequence (yk)k∈N converges to x and that
‖φ(xk) − φ(yk)‖ < 1 holds for any k ∈ N. Therefore the sequence (φ(xk))k∈N is bounded. We
conclude that the constructible map φ : M → Am is topologically robust. This finishes the proof
of the Remark 3. �

Let us now analyze the interdependence of the notions of a weakly continuous, a strongly
continuous, a topologically robust and a hereditary map.

Lemma 4. Let φ : M → Am be a strongly continuous constructible map. Then φ is weakly continuous,
topologically robust and hereditary.

Proof. First we prove that φ is weakly continuous. According to Lemma 1, there exists a Zariski open
and dense subset U of M such that φ|U is a rational map. Then the strong continuity of φ implies that
the graph of φ is contained in the Euclidean closure of the graph of φ|U . Since the Euclidean and the
Zariski closure of a constructible set agree, we deduce that φ is weakly continuous.

The constructible map φ is topologically robust since condition (ii) implies condition (iii). It is now
clear that φ is hereditary. �

On the other hand, a weakly continuous or a topologically robust map is not necessarily strongly
continuous, as the following example shows.

Example 5. Let M ⊂ A2 be the constructible set M := {(x1, x2) ∈ A2
: x1 · x2 = 0} and let

φ : M → A1 be the total map defined by

φ(x1, x2) :=


x1

x1 + x2
for (x1, x2) ≠ (0, 0),

0 for (x1, x2) = (0, 0).

Let 0 := (0, 0) and let U := M \ {0}. It is clear that φ is a constructible map, U is a Zariski open and
dense subset of M and the restriction φ|U of φ to U is a rational map of M. Furthermore, we claim
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that the graph G of φ is contained in the Zariski closure of the graph GU of φ|U . Indeed, since GU is a
constructible set, the Zariski closure of GU is equal to the strong closure of GU . Therefore, in order to
show our claim it suffices to prove that the graph G of φ is contained in the strong closure of GU . By
definition, the constructible set G\GU consists only of the point (0, 0). Nevertheless, (0, 0) belongs to
the strong closure of GU , since it is the limit of the sequence


x(k), φ|U(x(k))


k∈N of points of GU defined

by x(k) := (0, 1/k) for any k ∈ N. This finishes the proof of our claim and shows that the map φ is
weakly continuous.

Now we show that φ is topologically robust. For this purpose, we observe φ(x1, 0) = 1 for any
x1 ∈ A1

\ {0} and φ(0, x2) = 0 for any x2 ∈ A1. This proves that the map φ is bounded. Therefore φ
satisfies condition (iii) and hence φ is topologically robust.

Finally, we show that φ is not strongly continuous. Let (x(k))k∈N be the sequence of points of M
defined by x(k) := (1/k, 0) for any k ∈ N. Then it is easy to see that

lim
k→∞

x(k) = 0 ∈ M and lim
k→∞

φ(x(k)) = 1 ≠ φ(0)

holds. This proves that φ is not strongly continuous.

If the constructible map φ : M → Am is weakly continuous, then there is no guarantee that the
restriction of φ to an arbitrary constructible subset of M is also weakly continuous, as it is shown by
the following example. Therefore restrictions of topologically robust maps to constructible subsets of
their domains may happen not to be topologically robust. If the map φ : M → Am is polynomial,
then φ is strongly continuous (and hence weakly continuous, topologically robust and hereditary by
Lemma 4).

Example 6. Consider again the constructible set M ⊂ A2 and the total map φ : M → A1 of
Example 5, namely M := {(x1, x2) ∈ A2

: x1 · x2 = 0} and

φ(x1, x2) :=

 x1
x1 + x2

for (x1, x2) ≠ (0, 0),

0 for (x1, x2) = (0, 0).

Then the restriction φ|N : N → A1 to the constructible subset N := {(x1, 0) ∈ A2
: x1 ∈ A1

} of M
is not weakly continuous. In particular, φ is not hereditary.

The concept of hereditarity sounds rather abstract and axiomatic. We shall need it in the sequel for
a mathematically correct and complete formulation of our algorithmic model. In Section 4 we shall
establish an algorithmically meaningful conditionwhich implies hereditarity of suitable topologically
robust maps (see Definition 14, Proposition 16 and Corollary 18).

2.2. Straight-line programs

Algorithms in computational algebraic geometry are usually described using the standard dense
(or sparse) complexity model, i.e., encoding multivariate polynomials by means of the vector of all
(or of all nonzero) coefficients. Taking into account that a generic n-variate polynomial of degree
d ≥ 2 has


d+n
n


= O(dn) nonzero coefficients, we see that the dense representation of multivariate

polynomials requires an exponential size, and their manipulation usually requires an exponential
number of arithmetic operations with respect to the parameters d and n. In order to avoid this
exponential behavior, we are going to use alternative encodings of input and intermediate results
of our computations, e.g., by means of straight-line programs (see [8]). A straight-line program β over
C(X) := C(X1, . . . , Xn) is a finite sequence of rational functions (f1, . . . , fk) ∈ C(X)k such that for
1 ≤ i ≤ k, the function fi is an element of the set {X1, . . . , Xn} (an input), or an element of C
(a parameter), or there exist 1 ≤ i1, i2 < i such that fi = fi1 ◦i fi2 holds, where ◦i is one of the
arithmetic operations +,−,×,÷. Access to inputs and parameters is considered as free (random
accessmodel). The elements of the set {f1, . . . , fk} are called intermediate results of β . The straight-line
program β is called (essentially) division-free, if for 1 ≤ i ≤ k the arithmetic operation ◦i is different
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from ÷ (or alternatively, if divisions are restricted to nonzero parameters). Observe that the
intermediate results of β belong to the polynomial ring C[X], if β is division-free.

A natural measure of the complexity of β is its length, namely the total number of arithmetic
operations performed during the evaluation process defined by β . Another relevant measure of
complexity is the nonscalar length of β , which is defined as the number of operations ◦i ∈ {×,÷}

with fi1 , fi2 ∉ C for ◦i = × and fi2 ∉ C for ◦i = ÷. The (nonscalar) length of β models the sequential
execution time of the program.

We say that the straight-line program β computes, represents, or encodes a subset S of C(X) if S
is contained in the list of intermediate results {f1, . . . , fk} of β . In this case we call the elements of S
outputs of β .

3. A computational model for Hermite–Lagrange interpolation

Let n,D, K , L,M and N be six discrete parameters belonging to N. As before, let X := (X1, . . . , Xn),
where X1, . . . , Xn are indeterminates over C, and denote by Π (or, more precisely, by Π (n)) the
polynomial ring C[X] = C[X1, . . . , Xn] and by ΠD (or by Π (n)

D ) the C-vector space of polynomials
ofΠ of degree at most D.

In the present paper we shall be concerned with discrete families (depending on part or all of the
parameters n,D, K , L,M and N) of Hermite–Lagrange interpolation problems and algorithms. Before
we introduce a general computation model that contains these two concepts we are going to discuss
them in the more intuitive context of Lagrange interpolation.

3.1. Lagrange interpolation revisited

3.1.1. Lagrange interpolation problems
Informally, a Lagrange interpolation problem is determined by a class D of interpolation data and

a class O of interpolants. In this paper we shall think that for fixed parameters n,D and K the classes
D,O and the relationship between them become realized by the followingmathematical structures:

• The class D is a constructible subset of the affine ambient space A(n+1)×K consisting of suitable
K -tuples ((x1, y1), . . . , (xK , yK )) of nodes xi ∈ An and values yi ∈ C, 1 ≤ i ≤ K , such that xi ≠ xj
holds for any choice of indices 1 ≤ i < j ≤ K .

• The class O is a constructible subset of the finite dimensional vector space ΠD, such that for
any interpolation datum d := ((x1, y1), . . . , (xK , yK )) belonging to D there exists exactly one
interpolant f ∈ O which solves the Lagrange interpolation problem for d, i.e., which satisfies the
condition f (xi) = yi for any index 1 ≤ i ≤ K .

• There exists a constructiblemapΦ : D → ΠD whose image is contained inO andwhich associates
to each interpolation datum d ∈ D the interpolantΦ(d).

In the context of classic Lagrange interpolation, the class of interpolants O is always a finite-
dimensional subspace of the polynomial ring Π (and hence contained in ΠD for some D) and D is
usually a suitable constructible Zariski dense subset of A(n+1)×K . In the present paper the class O may
have a nonlinear geometric structure, e.g., O may be an algebraic subvariety of higher degree of the
affine spaceΠD and the interpolation datamay be interdependent, i.e.,D maybe contained in a proper
algebraic subvariety of A(n+1)×K .

In classical interpolation theory one would like that any convergent sequence of Lagrange
interpolants converges to a Hermite interpolant. Unfortunately this is not true in general. Therefore
we shall require that themapΦ satisfies amoremodest, however quite natural, coalescence condition
whichmaybeparaphrased as aweakkindof ‘‘continuity’’ ofΦwith respect to the Euclidean topologies
of D and O. The map Φ establishes a certain interdependence between the interpolation data from
D and the interpolants from O. We shall also require that the essential (topological or geometrical)
features of this interdependence become preserved when we restrict the class D to an arbitrary
constructible subset. In more technical terms we may think Φ : D → ΠD given as a constructible,
topologically robust and hereditary map in the sense of Section 2. If this is the case, then Φ surely
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meets our (informal) requirements. Needless to say that in classic Lagrange interpolation theory the
map which corresponds to Φ is always strongly continuous (and hence topologically robust and
hereditary by Lemma 4).

This is now thewayweare going to formalize thenotion of a Lagrange interpolation problem, namely
by a constructible subset D of the affine space A(n+1)×K , representing as above the interpolation data
of the problem, and by a topologically robust and hereditary map Φ : D → ΠD which for any
d := ((x1, y1), . . . , (xK , yK )) belonging to D satisfies the conditionΦ(d)(xi) = yi for 1 ≤ i ≤ K .

3.1.2. Lagrange interpolation algorithms
In order to develop our model for the informal concept of a family of Lagrange interpolation

problems, we made only reference to ‘‘objective’’ mathematical structures, like interpolation data,
interpolants and the map Φ . Following the terminology of [9] the elements of D , interpreted as
interpolation data, may be considered as input objects and the elements of O as output objects which
become related by the (mathematical) map Φ . However this does not suffice, since for the modeling
of the concept of a Lagrange interpolation algorithm, we need to deal with data structures and types
which represent input and output objects.

As mentioned in Section 1, a particular feature of Lagrange (and also Hermite) interpolation
consists of the identification of the concepts of input object and the code that represents it. Thus the
constructible subset D of A(n+1)×K has not only to be considered as a set of (objective) interpolation
data, but also, and simultaneously, as a data structure containing the input codes (or representations)
which encode the interpolation data. This is nothing but a computer science interpretation of
something that is already common sense in interpolation theory. Thus, in the context of this
paper, interpolation datum and input code are notions which reflect distinct aspects of the same
mathematical object.

However our point of view differs from the standard one with respect to the interpolants and their
representations, since we do not fix in advance the output data structure, say D∗, that encodes the
output object class of interpolants O. In the context of classical Lagrange (and Hermite) interpolation,
D∗ is always the dense (or suitable sparse) representation of the interpolants by their coefficients.
In the present paper we wish to admit as D∗ more general data structures like, e.g., the domain of
parameter instances of a suitable straight-line program representation of the interpolants. In order to
explain our view we are now going to analyze the relation between Lagrange interpolation and the
straight-line program representation of polynomials in more detail.

We now fix the parameters n and L. Let D := 2L, K := 4(L+n+1)2 +2,M := (L+n+1)2, and let
O be the subset ofΠ (n) of n-variate polynomials that can be evaluated by a division-free straight-line
program of nonscalar length L. From [8, Exercise 9.18] we deduce that O is a constructible subset of
the finite-dimensional vector space ΠD = Π

(n)
D . Moreover, since M = (L + n + 1)2, there exists a

fixed division-free straight line program β of nonscalar length L in M generic parameters (also called
a computation scheme of nonscalar length L) with the following property:
For any polynomial f ∈ O there exists a parameter instance z ∈ AM such that the specialization β(z)
of β in z is a straight-line program of nonscalar length L (with complex parameters z) which encodes
the polynomial f . ConsideringO as a (constructible) subset of the finite-dimensional vector spaceΠD,
wemay describe this encoding by a polynomialmap (i.e.,morphismof affine varieties)ω∗

: AM
→ ΠD.

In particular we have ω∗(z) = f . Observe that the image of ω∗ is O, hence O is irreducible.
Suppose that there are given suitable, mutually distinct points γ1, . . . , γK of An and a suitable

constructible subsetD of AK such that for γ := (γ1, . . . , γK ) the setDγ := {((γ1, y1), . . . , (γK , yK )) :

(y1, . . . , yK ) ∈ D} represents the interpolation data of a Lagrange interpolation problem for the class
of interpolants O. According to our comments in Section 3.1.1 this Lagrange interpolation problem
may be modeled by a topologically robust and hereditary map Φ : D → ΠD with image O.
Thus D and Φ describe a Lagrange interpolation problem. In Section 3.3.3, using the assumption
K = 4(L + n + 1)2 + 2, we shall exhibit a concrete example of this situation.

The algorithmic task is now to compute (in a uniform and deterministic manner), for each input
code d ∈ D , an output code, sayΨ (d), which belongs toAM andwhich represents the interpolantΦ(d)
in the following way: Ψ (d) is a complex parameter instance of the computation scheme β satisfying
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the conditionω∗(Ψ (d)) = Φ(d).Wemodel therefore the notion of a Lagrange interpolation algorithm
using a (total) mapΨ : D → AM which has to satisfy certain conditions we are going to explain now.

Let D∗ be a given constructible subset of AM with ω∗(D∗) = O. For the sake of notational
simplicity we shall also write ω∗

: D∗
→ ΠD for the restriction of ω∗

: AM
→ ΠD to D∗. We

considerD∗ as the output data structure andω∗ as the encoding of output objects of the interpolation
algorithm represented by the map Ψ . Consequently we require that Ψ maps D into D∗.

Further we wish that Ψ is in some sense ‘‘computable’’ and that Ψ remains ‘‘computable’’ if we
restrict it to an arbitrary constructible subset of D , according to the requirement made before on the
interpolation problem Φ . Since a rational map may be considered as ‘‘computable only on generic
inputs’’, we require that Ψ is hereditary.

This condition is very weak, since it includes the case that the Lagrange interpolation algorithm
behind the mapΨ is implemented by a computer program that contains branchings. A typical case of
a branching-free algorithm would arise if Ψ could be a polynomial map. However, from Theorem 23
we deduce that no polynomial map Ψ : D → D∗ exists such that, for M ≤ 2c

√
K , where c > 0 is a

universal constant, the following diagram commutes:

D

Φ &&NNNNNNNNNNNNN
Ψ // D∗

ω∗

��
Π
(n)
D

(1)

In fact, Theorem 23 makes the same assertion for a much larger class of topologically robust and
hereditary maps Ψ , namely for the class of geometrically robust maps which will be introduced in
Section 4.2.

The data D∗, ω∗ and Ψ determine now an interpolation algorithm which solves the interpolation
problem given byΦ .

Our interest for the straight-line program encoding of polynomials is motivated by the fact that
there exist computationally relevant examples of high degree polynomials like (1+T )2

L
or
∑

0≤j≤2L T
j

which can be evaluated using only a few, namely O(L) arithmetical operations, whereas there exist
other examples of high interest, like the Pochhammer–Wilkinson polynomial

∏
0≤j≤2L(T − j) or the

polynomial
∑

0≤j≤2L T
j/j, whose complexity status is unknown (here T denotes a new indeterminate).

On the other hand, the (multivariate) polynomials which occur as by- or end products of elimination
procedures in effective algebraic and semialgebraic geometry may be encoded by straight-line
programs whose length is polynomial in the degree of these polynomials. This implies in typical cases
an exponential improvement of the data structurewith respect to the classical ones, namely the dense
(or sparse) encoding of polynomials.

One may now raise the question whether such elimination polynomials admit also straight-
line program encodings whose length is polylogarithmic in the degree of the given polynomial. The
expected answer is no, since otherwise we would have P = NP in the BSS complexity model over the
real or complex numbers (see, e.g., [7,5,6,15] for more details).

If the concept of ‘‘elimination polynomial’’ is interpreted in a more comprehensive way, namely
beyond the classical examples of resultants, then it can be even proved that general elimination
procedures are not always able to produce polylogarithmic straight-line program representations for
their output polynomials, unless they introduce arbitrary and uncontrolled branchings (see [12,9]).

3.2. The general model

We are now ready to describe the announced computation model which also includes Hermite
interpolation. Replacing in the previous discussion of Lagrange interpolation the quantity (n + 1)K
(or just K ) by the parameter N , we arrive to the following formulation:
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Definition 7. Let n,D,M and N be fixed natural numbers. We say that a given Hermite–Lagrange
interpolation problem is determined by a (suitable) constructible subsetD of the affine spaceAN , acting
as input data structure, and a (suitable) topologically robust and hereditary mapΦ : D → Π

(n)
D .

Furthermore we say that a Hermite–Lagrange interpolation algorithm (solving the given
interpolation problem) is determined by a constructible subset D∗ of the affine space AM , acting as
output data structure, a polynomial encoding ω∗

: D∗
→ Π

(n)
D of output objects and a hereditary

map Ψ : D → D∗, namely the algorithm in the narrow sense, such that the diagram (1) commutes.

Of course, this model captures much more general situations than just the Hermite–Lagrange
interpolation in the usual intuitive sense. Nevertheless, it represents all what we need for our
mathematical discussion of the subject of this paper. In particular there will be no need to model
exactly the informal meaning of Hermite–Lagrange interpolation.

3.3. Three critical families of examples

The purpose of this section is to illustrate the notions of the previous sections, which are discussed
on three significant families of interpolation problems. These families of interpolation problems
constitute our prototypic examples, and shall be further discussed in Sections 4.3 and 5.

The first two families we consider here come from standard univariate Lagrange interpolation.
Their input data structures are (nonempty) Zariski open subsets of suitable affine spaces and therefore
smooth varieties. Then we analyze two cases of multivariate Hermite–Lagrange interpolation on
singular curves. Our last example is that of a family of nonlinear interpolation problems, that is, the
set of interpolants is not a linear subspace, but a constructible set of the corresponding affine ambient
space.

3.3.1. Univariate Lagrange interpolation
In terms of the notations introduced before, let K ≥ 2 be a given natural number, n := 1,D :=

K − 1,M := K ,N := 2K , X := X1 andΠD := Π
(1)
D .

Lagrange interpolation at fixed nodes Fix an arbitrary point γ := (γ1, . . . , γK ) ∈ AK with γi ≠ γj for
1 ≤ i < j ≤ K . The (generic) univariate Lagrange interpolation problem at (fixed) nodes γ1, . . . , γK
consists in finding, for any y := (y1, . . . , yK ) ∈ AK , the (unique) polynomial fγ ,y ∈ ΠD satisfying the
condition

fγ ,y(γj) = yj for 1 ≤ j ≤ K . (2)

Let Dγ be the constructible subset Dγ := {γ1} × A1
× · · · × {γK } × A1 of AN . Then the univariate

Lagrange interpolation problem at fixed nodes γ1, . . . , γK is represented by the map Φγ : Dγ → ΠD
which associates to each d := (γ1, y1, . . . , γK , yK ) ∈ Dγ the unique polynomial fd := fγ ,y of ΠD
determined by condition (2). Since Φγ is a polynomial map, we conclude that Dγ and Φγ determine
a Lagrange interpolation problem in the sense of Definition 7.

Let D∗
:= AM and let ω∗

: D∗
→ ΠD be the encoding of the elements of ΠD by their dense

representation, i.e., let ω∗(a0, . . . , aK−1) :=
∑K−1

j=0 ajX j for (a0, . . . , aK−1) ∈ D∗. Then we know that
for every d :=


(γ1, y1), . . . , (γK , yK )


∈ Dγ with y := (y1, . . . , yK ), the dense representation of

fd ∈ ΠD is given by V−1
γ y, where Vγ := (γ

j−1
i )1≤i,j≤K ∈ AK×K is the Vandermonde matrix associated

to γ . Hence, the polynomial mapΨγ : Dγ → D∗ defined byΨγ (d) := V−1
γ y determines an algorithm

in the sense of Definition 7 which solves the Lagrange interpolation problem given by Dγ andΦγ .
Lagrange interpolation at generic nodes The previous construction can easily be modified in order to
also model the classic univariate Lagrange interpolation in generic nodes. With the same notations as
above, letU be the Zariski open subset ofAK defined byU := {(γ1, . . . , γK ) ∈ AK

: γi ≠ γj for 1 ≤ i <
j ≤ K} and let D be the constructible subset of AN defined by D := U × AK . For any d := (γ , y) ∈ D
we denote by fd the unique polynomial of ΠD determined by the condition (2). Then the generic
univariate Lagrange interpolation problem is represented by D and the regular, i.e., everywhere on
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D well-defined, rational mapΦ : D → ΠD which associates to each d ∈ D the polynomial fd ∈ ΠD.
This implies that Φ is strongly continuous (hence topologically robust and hereditary). Therefore we
conclude that D and Φ determine a Lagrange interpolation problem in the sense of Definition 7.
Since the dense representation of fd with d = (γ , y) ∈ D is given by the vector V−1

γ y, we see that
for D∗

:= AM , the encoding ω∗
: D∗

→ ΠD defined by ω∗(a0, . . . , aK−1) :=
∑K−1

j=0 aiX i, and the
regular rational map Ψ : D → D∗ defined by Ψ (d) := V−1

γ y, determine an algorithm in the sense of
Definition 7 solving the interpolation problem given by D andΦ , because Ψ is hereditary.

3.3.2. Bivariate Hermite–Lagrange interpolation over singular curves
Let X1, X2 be indeterminates over C and let Π (2)

:= C[X1, X2]. In this section we consider two
examples of bivariate Hermite–Lagrange interpolation defined over a Zariski open subset D of a
singular curve C ⊂ A2. In the first example the interpolation problem is determined by a strongly
continuous map Φ : D → Π

(2)
1 , while in the second example the problem is determined by a

topologically robust and hereditary mapΦ : D → Π
(2)
1 which is not strongly continuous.

Interpolation over the curve X3
1 − X2

2 = 0 We consider the irreducible algebraic curve C of A2 defined
by the equation X3

1 −X2
2 = 0, containing the non-empty Zariski open subset D := C \ {(−1,±i)}. Let

a polynomial map f : A2
→ A1 be given. It is clear that the restriction f |D of f to D is topologically

robust and hereditary. Observe that the point 0 := (0, 0) belongs to D .
We consider now the problem of interpolating f from the values f (d) and f (0) for any d ∈ D by

means of polynomials belonging toΠ (2)
1 .

Observe that for any point d := (d1, d2) ∈ D \ {0} there exists a unique polynomial gd of the linear
subspace Ed := C + C · (d1X1 + d2X2) ofΠ

(2)
1 satisfying the condition gd(d) = f (d) and gd(0) = f (0).

Taking into account d21 + d22 ≠ 0, the polynomial gd can be written as

gd := f (0)+


f (d)− f (0)


d1

d21 + d22
X1 +


f (d)− f (0)


d2

d21 + d22
X2.

The C-linear space of interpolants Ed represents the ‘‘least solution space’’ introduced in [10] (see
also [11]).

Finally, we define g0 as the unique polynomial of the C-linear subspace C + C · X1 ofΠ (2)
1 which

interpolates f and its partial derivative ∂ f /∂X1 at the point 0 ∈ A2, namely,

g0 := f (0)+
∂ f
∂X1

(0)X1.

Thus we have g0(0) = f (0) and (∂g0/∂X1)(0) = (∂ f /∂X1)(0).
One sees now easily that the map Φ : D → Π

(2)
1 defined by Φ(d) := gd is constructible and that

Φ|D\{0} is a rational function of D which is regular on D \ {0}.
We claim thatΦ is strongly continuous (and thus, topologically robust and hereditary). In order to

see this, it suffices to show that, for any sequence (d(k))k∈N of points of D \ {0} which converge to 0,
the sequence (Φ(d(k)))k∈N converges toΦ(0).

Fix d := (d1, d2) ∈ D \ {0}. Then we have d31 = d22, d1 ≠ 0, d21 + d22 ≠ 0 and (d2/d1)2 = d1. This
implies

(f (d)− f (0))d1
d21 + d22

=
(f (d)− f (0))d1

d21(1 + d1)
=

f (d)− f (0)
d1

1
1 + d1

(3)

and

(f (d)− f (0))d2
d21 + d22

=
(f (d)− f (0))d2

d21(1 + d1)
=

f (d)− f (0)
d1

d2
d1

1
1 + d1

. (4)
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Furthermore, considering the Taylor expansion of f at 0, we conclude that there exist polynomials
Q1,Q2 ofΠ (2) with Q1(0) = Q2(0) = 0 such that

f (d)− f (0) =


∂ f
∂X1

(0)+ Q1(d)

d1 +


∂ f
∂X2

(0)+ Q2(d)

d2

holds.
Let (d(k))k∈N be a sequence of points of D \ {0} which converges to 0 ∈ D . Since (d(k)2 /d

(k)
1 )

2
= d(k)1

holds for any k ∈ N, we conclude

lim
k→∞

f (d(k))− f (0)

d(k)1

= lim
k→∞


∂ f
∂X1

(0)+ Q1(d(k))+


∂ f
∂X2

(0)+ Q2(d(k))


d(k)2

d(k)1


=

∂ f
∂X1

(0).

Combining this identity with (3) and (4) we infer thatΦ is strongly continuous.
Therefore Φ : D → Π

(2)
1 determines a Hermite–Lagrange interpolation problem in the sense of

Definition 7.
Now letD∗

:= A3 and consider the canonical dense representationω∗ of the bivariate polynomials
over C of degree at most one as the output encoding. More precisely, we define ω∗

: D∗
→ Π

(2)
1 by

ω∗(a0, a1, a2) := a0 + a1X1 + a2X2. Furthermore, let Ψ : D → D∗ be the constructible map defined
for d := (d1, d2) ∈ D \ {0} by

Ψ (d) :=


f (0),

(f (d)− f (0))d1
d21 + d22

,
(f (d)− f (0))d2

d21 + d22


and for d = 0 by

Ψ (0) :=


f (0),

∂ f
∂X1

(0), 0


.

Then Ψ is a strongly continuous map which solves the Hermite–Lagrange problem determined byΦ .

Interpolation over the curve X2
2 = X2

1 + X3
1 We consider now the irreducible algebraic curve C of

A2 defined by the equation X2
2 = X2

1 + X3
1 , containing the non-empty Zariski open subset D :=

C \ {(−2,±2i)}. Again let f : A2
→ A1 be given a polynomial map. It is clear that the restriction f |D

of f to D is topologically robust and hereditary. Observe that the origin 0 := (0, 0) belongs to D .
We now consider the problem of interpolating f from the values f (d) and f (0) for any d ∈ D by

means of polynomials belonging toΠ (2)
1 .

For any point d := (d1, d2) ∈ D \ {0} there exists a unique polynomial gd in the ‘‘least solution
space’’ of [11,10], namely the linear subspace Ed := C + C · (d1X1 + d2X2) of Π

(2)
1 , satisfying the

condition gd(d) = f (d) and gd(0) = f (0). Since d21 + d22 is different from zero, the polynomial gd can
be written as

gd := f (0)+


f (d)− f (0)


d1

d21 + d22
X1 +


f (d)− f (0)


d2

d21 + d22
X2.

Finally, we define g0 as the unique polynomial of the C-linear subspace C + C · (X1 + X2) ofΠ
(2)
1

which interpolates f and the sum of its first partial derivatives at 0, namely

g0 := f (0)+
1
2


∂ f
∂X1

(0)+
∂ f
∂X2

(0)

X1 +

1
2


∂ f
∂X1

(0)+
∂ f
∂X2

(0)

X2.

Thus we have g0(0) = f (0) and (∂g0/∂X1 + ∂g0/∂X2)(0) = (∂ f /∂X1 + ∂ f /∂X2)(0).
One sees now easily that the map Φ : D → Π

(2)
1 defined by Φ(d) := gd is constructible and that

Φ|D\{0} is a rational function of D which is regular on D \ {0}.
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We claim that Φ is also topologically robust. In order to see this, we show first thatΦ(d) remains
bounded when d ∈ D approximates 0 ∈ D . Let d := (d1, d2) ∈ D \ {0}. Then we have
d21 + d22 = 2d21 + d31, d1 ≠ 0 and d21 + d22 ≠ 0. This implies

(f (d)− f (0))d1
d21 + d22

=
(f (d)− f (0))d1

d21(2 + d1)
=

f (d)− f (0)
d1

1
2 + d1

(5)

and

(f (d)− f (0))d2
d21 + d22

=
(f (d)− f (0))d2

d21(2 + d1)
=

f (d)− f (0)
d1

d2
d1

1
2 + d1

. (6)

Furthermore, by considering the Taylor expansion of f at 0, we deduce that there exist polynomials
Q1,Q2 ofΠ (2) with Q1(0) = Q2(0) = 0 such that

f (d)− f (0) =


∂ f
∂X1

(0)+ Q1(d)

d1 +


∂ f
∂X2

(0)+ Q2(d)

d2 (7)

holds.
Let (d(k))k∈N be a sequence of points of D \ {0} which converges to 0 ∈ D . For any k ∈ N we have

f (d(k))− f (0)

d(k)1

=
∂ f
∂X1

(0)+ Q1(d(k))+


∂ f
∂X2

(0)+ Q2(d(k))

d(k)2

d(k)1

.

From the identity (d(k)2 /d
(k)
1 )

2
= 1+d(k)1 and the fact thatQ1,Q2 define strongly continuous functions in

a neighborhood of 0we conclude that the sequence

f (d(k))− f (0)


/d(k)1


k∈N is bounded. Combining

this observation with (5) and (6), we see thatΦ satisfies condition (iii) of Definition 2.
In order to see that Φ is topologically robust it remains to prove that Φ is weakly continuous. We

claim that the graph of Φ is contained in the Zariski closure of the graph of the restriction Φ|U of Φ
to the Zariski open and dense subset U := D \ {0} of D . Indeed, let (rk)k∈N be a sequence of positive
reals converging to 0 ∈ R and let (sk)k∈N be the sequence of positive reals defined by sk := rk

√
1 + rk

for any k ∈ N. It is easy to see that (rk, sk)k∈N is a sequence of points of U and that limk→∞ sk/rk = 1
holds. Combining this remark with (5)–(7) we easily conclude

lim
k→∞

Φ(rk, sk) = g0.

This shows that the point (0, g0) belongs to the Euclidean closure, and thus to the Zariski closure, of
the graph of the restrictionΦ|U ofΦ to U := D \ {0}, as claimed. Therefore,Φ also satisfies condition
(i) of Definition 2. Since D is an irreducible open curve, we conclude that Φ : D → Π

(2)
1 is also

hereditary.
ThereforeΦ determines a Hermite–Lagrange interpolation problem in the sense of Definition 7.
Now let D∗

:= A3 and consider the canonical dense representation ω∗
: D∗

→

Π
(2)
1 , ω∗(a0, a1, a2) := a0 + a1X1 + a2X2 of the bivariate polynomials over C of degree at most

one as the output encoding. Furthermore, let Ψ : D → D∗ be the constructible map defined for
d := (d1, d2) ∈ D \ {0} by

Ψ (d) :=


f (0),

(f (d)− f (0))d1
d21 + d22

,
(f (d)− f (0))d2

d21 + d22


and for d = 0 by

Ψ (0) :=


f (0),

1
2


∂ f
∂X1

(0)+
∂ f
∂X2

(0)


,
1
2


∂ f
∂X1

(0)+
∂ f
∂X2

(0)


.

Then Ψ is a hereditary (and even topologically robust) map which solves the Hermite–Lagrange
problem determined byΦ .
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It is important to observe that, in general, neither Φ nor Ψ are strongly continuous. In fact, let
(rk)k∈N be a sequence of positive reals converging to 0 ∈ R and let (sk)k∈N be the sequence of positive
reals defined by sk := −rk

√
1 + rk for any k ∈ N. It is easy to see that (rk, sk)k∈N is a sequence of

points of D converging to 0 and that limk→∞ sk/rk = −1 holds. Combining this remark with (5)–(7)
we easily conclude

lim
k→∞

Φ(rk, sk) = f (0)+
1
2


∂ f
∂X1

(0)−
∂ f
∂X2

(0)

X1 +

1
2


−
∂ f
∂X1

(0)+
∂ f
∂X2

(0)


X2.

For (∂ f /∂X2)(0) ≠ 0, the right-hand side of the previous identity is not equal to g0. This shows that
Φ is not strongly continuous. A similar argument proves that Ψ is not strongly continuous.

3.3.3. A nonlinear example: identification sequences and interpolation
We retake here the example from Section 3.1.2.
Let n, L ∈ N satisfy the condition 2L/4

≥ n, and let O be the subset ofΠ (n)
= C[X] of the n-variate

polynomials with complex coefficients that can be evaluated by a division-free straight-line program
of nonscalar length at most L.

We remark that any polynomial f ∈ O has a degree bounded by 2L. Moreover O ⊂ Π
(n)
2L

may be

considered as a constructible subset of AnL , where nL :=


2L+n
n


(see [16, Theorem 3.2] or [8, Exercise

9.18]). Observe that O is a cone of AnL .
Let O denote the closure of O with respect to the strong or Zariski topology of AnL . It turns out

that O is an irreducible variety that also forms a cone in AnL . The elements of O may be considered as
polynomials ofΠ (n)

2L
which have approximate complexity bounded by L (see [1, Lemma 2 and Satz 4]).

Let K := 4(L + n + 1)2 + 2. According to [9, Corollary 2] (see also [16, Theorem 4.4]), there exist
integer points γ1, . . . , γK ∈ An of bit length atmost 4(L+1) ≤ 2

√
K such that for any twopolynomials

f , g ∈ O the equalities f (γj) = g(γj) for 1 ≤ j ≤ K imply f = g . Such a sequence γ := (γ1, . . . , γK ) of
points of An is called an identification sequence for the class of polynomialsO. Let γ := (γ1, . . . , γK ) be
a given identification sequence for O and let Ξ : O → AK be the polynomial map defined for f ∈ O
by

Ξ(f ) :=

f (γ1), . . . , f (γK )


.

Furthermore, let N := K and let D be the constructible subset of AN defined by D := Ξ(O). Then [9,
Corollary 3] implies that D is an affine, closed and irreducible cone of AN and Ξ : O → D is a
homeomorphic (with respect to the Zariski and the strong topology), birational, finite morphism of
irreducible affine varieties. In particular, themapΦ := Ξ−1

: D → Π2L is constructible.Moreover, in
terms of Definition 14 of Section 4.2,Φ is geometrically robust. Thus Proposition 16 and Corollary 18
of Section 4.2 imply thatΦ is topologically robust and hereditary. ThereforeΦ determines a Lagrange
interpolation problem in the sense of Definition 7.

Observe that the choice of γ = (γ1, . . . , γK ) as an identification sequence for O implies that for
any point y := (y1, . . . , yK ) ∈ D there exists a unique interpolant f ∈ O which solves the Lagrange
interpolation problem for the interpolation datum y. Therefore the constructible set O represents
the output object class of a Lagrange interpolation problem determined by D and a well-defined
constructible map Φ : D → Π

(n)
2L

with image O. Observe also that this Lagrange interpolation
problem is nonlinear in the sense that the space of interpolants O is nonlinear (it is not closed under
additions).

Section 5.2 will be devoted to the study of the algorithmic hardness of solving this particular
interpolation problem, i.e., to the hardness of reconstructing the polynomials of O from their values
in an identification sequence.
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3.4. A complexity measure for Hermite–Lagrange interpolation algorithms and problems

Let n,D and N be fixed natural numbers, let D be a constructible subset of the affine space AN and
let Φ : D → Π

(n)
D be a given topologically robust and hereditary map such that D and Φ determine

a Hermite–Lagrange interpolation problem. We call N the input size of the given interpolation problem.
Let D∗ be a constructible subset of an affine space AMacting as output data structure, ω∗

: D∗
→

Π
(n)
D a polynomial encoding of the output objects Φ(D) and Ψ : D → D∗ a hereditary map

such that D∗, ω∗ and Ψ represent a Hermite–Lagrange interpolation algorithm that solves the given
interpolation problem. We measure the complexity of this interpolation algorithm by the size of the
output data, namely M .

The complexity of the Hermite–Lagrange interpolation problem determined byD andΦ is theminimal
nonnegative integerM such that there exists an interpolation algorithmwith output data structure of
size M which solves the problem.

For instance, the complexity of the (generic) univariate Lagrange interpolation problem at K fixed
nodes introduced in Section 3.3.1 is at least K = N (compare Proposition 21).

We observe that this notion of complexity is a suitable generalization of three common data size
measures of complexity in effective elimination theory: the size of the dense or sparse representation
and the (nonscalar) length of the straight-line program representation of multivariate polynomials.
For instance, let O be the output object class of a given elimination problem and assume that the
elements of O are of bounded degree. Then the polynomials contained in O generate a C-linear
ambient space of finite dimension, say M . Thus M is a lower bound for the dense representation of
a ‘‘worst-case’’ element of O. This implies that any algorithm that solves the underlying elimination
problem and returns the output polynomials belonging to O in their dense representation, requires
at least time M .

On the other hand, for a given polynomial F ∈ Π (n) we may consider the minimal nonscalar
length L(F) of a division-free straight-line program that evaluates F . Let L ∈ N and set WL := {F ∈

C[X1, . . . , Xn] : L(F) ≤ L}. From [8, Exercise 9.18] (see also [16, Theorem 3.2]) we deduce that WL

is a constructible subset of Π (n)
2L

which is the image of a polynomial map A(L+n+1)2
→ Π

(n)
2L

, where
(L + n + 1)2 is the number of parameters required to represent the elements of WL as instances
of a generic division-free straight-line program of nonscalar size Lwith n inputs. Thus the dimension
(L+n+1)2 of the parameter spaceA(L+n+1)2 reflects the data size of the representation of the elements
of WL by means of division-free straight-line programs. Since a generic element of WL requires such
a representation of size at least (L + n + 1)2, we conclude that, in case that WL is contained in
O, the quantity (L + n + 1)2 is a lower bound for the complexity of any algorithm which solves
the elimination problem considered before and returns the output polynomials belonging to O in
a straight-line program representation.

4. Robust interpolation algorithms

This section is devoted to the geometric and algebraic modeling of coalescence phenomena (see,
e.g., [4,10,24]) in the context of Hermite–Lagrange interpolation.

The main issue is the notion of a geometrically robust map which captures simultaneously the
concepts of topological robustness and hereditarity introduced in Section 2. This allows us to model
geometrically and algebraically the intuitive meaning of limit interpolation problems and algorithms.
The notion of topological robustness will serve us as an intermediate step for a better understanding
of the rather technical concept of geometrical robustness.

To this end we shall begin with an algebraic characterization of the notion of a topologically
robust map (Theorem 9 and Corollary 11). Then we shall introduce the notion of a geometrically
robust map and show that such maps are always hereditary (Corollary 18). Using the concept of
geometrical robustness of constructible maps we shall finally arrive at the notion of a geometrically
robust interpolation problem and algorithm, which captures a certain meaning of coalescence. This
notion will be discussed by means of concrete examples in Sections 4.3 and 5 under the aspects of
interpolation and complexity theory.
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We start by recalling some basic definitions and facts from the theory of valuations and places.

4.1. Basic notions and facts from the theory of places

Webriefly state the definition of places and somebasic algebraic facts concerning them (see [29,20]
for more details and proofs). In order to avoid unnecessary generality, we limit our exposition to the
context of C-algebras and fields.

Let K andΩ be two (commutative) C-fields. AnΩ-valued place (or simply place) of the C-field K is
a ring homomorphism ϑ : Rϑ → Ω where Rϑ is a C-algebra contained in K such that Rϑ and ϑ satisfy
the following condition:

x ∈ K \ Rϑ implies 1/x ∈ Rϑ and ϑ(1/x) = 0.

The C-algebra Rϑ with maximal ideal ker ϑ is local, and is called the valuation ring of the place ϑ .
Associating to x ∈ K \ Rϑ the value ‘‘infinity’’ we shall write ϑ(x) := ∞. Thus we may interpret the
place ϑ as a (total) map ϑ : K → Ω ∪ {∞}.

We recall the following two basic and well-known results.

Theorem I (Extension of Places [29, Ch. VI, Section 4, Theorem 5’] and [20, Ch. VII, Section 3, Corollary
3.3]). Let A be a C-algebra contained in the field K and let ϵ : A → Ω be a C-algebra homomorphism
from A to the C-fieldΩ . Then ϵ can be extended to a place ϑ of K . If Ω is algebraically closed, the place ϑ
can be chosen to beΩ-valued.

Theorem II (Places and Integral Closure [20, Ch. VII, Section 3, proof of Proposition 3.5]). Let A be a C-
algebra contained in the field K . Then the intersection


ϑ Rϑ , where ϑ runs over all places of K with

A ⊂ Rϑ , is the integral closure of A in K .
If A is an integral domain which is a local C-algebra with residue class field C and is essentially of finite

type (i.e., is a localization of a ring which is finitely generated over C), then the integral closure of A in its
fraction field is the intersection of the valuation rings of the C-valued places containing A.

We are now going to paraphrase geometrically the rather abstract notion of a C-valued place.
Let V be an irreducible affine variety and let x be a fixed point of V . Observe that evaluating

the coordinate functions of V , namely the elements of C[V ], at the point x yields a C-algebra
homomorphism evx : C[V ] → C which characterizes the point x ∈ V . Let A := C[V ], K :=

C(V ),Ω := C, ϵ := evx and fix any C-valued place ϑ : K → C ∪ {∞} such that ϑ extends ϵ. Then
ϑ associates to each rational function ϕ of V a value ϑ(ϕ) which may be finite or infinite. In the first
case we consider the rational function well defined and evaluable with value ϑ(ϕ) at the point x ∈ V .
In the second case we consider the point x ∈ V as a point of indeterminacy or pole of the rational
function ϕ. In view of [28, 1.3.4, Corollaire 2] we may say that the place ϑ mimics the evaluation of
rational functions on the normalization of a suitable curve germ at the point x of the variety V .

4.2. The notion of geometrical robustness

For themoment let us fix a constructible subsetM of the affine space An and a (total) constructible
map φ : M → Am with components φ1, . . . , φm. Suppose the φ is weakly continuous in the sense of
Definition 2 in Section 2, namely

there exists a Zariski open and dense subset U of M such that the restriction φ|U is a rational map of
M and the graph of φ is contained in the Zariski closure Γ of the graph of φ|U in M × Am.

Observe that Γ is a constructible subset of An
× Am that contains the graph of φ. Furthermore, let

π : Γ → M be the first projection of Γ onto M which for (x, y) ∈ Γ is defined by π(x, y) := x.
Observe that π is a polynomial map.

We recall from Definition 2 of Section 2 that the constructible map φ : M → Am is topologically
robust if and only if it is weakly continuous and satisfies the following condition:
(∗) for any sequence (xk)k∈N of Mwhich converges in the Euclidean topology to a point of M, the sequence

(φ(xk))k∈N is bounded.
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This condition is equivalent to the robustness of the surjective polynomial map π : Γ → M in the
sense of [9, Definition 3]. More precisely, we have the following fact.

Remark 8. Let notations and assumptions be as above. The weakly continuous constructible map
φ satisfies condition (∗) if and only if for any sequence (xk, yk)k∈N of points of Γ such that (xk)k∈N
converges to a point x0 ∈ M, there exists an accumulation point y0 of the sequence (yk)k∈N with
(x0, y0) ∈ Γ .

Proof. Assume that φ satisfies condition (∗) above and let (xk, yk)k∈N be a sequence of points of Γ
such that (xk)k∈N converges to a point x0 ∈ M. Let (uk, vk)k∈N be a sequence of the graph of φ|U with
‖(xk, yk)− (uk, vk)‖ < 1/k for any k ∈ N, where ‖ · ‖ denotes the Euclidean norm of An

× Am. Then
(uk)k∈N converges to x0 ∈ M and thus condition (∗) implies that the sequence (vk)k∈N = (φ(uk))k∈N is
bounded. We conclude that the sequence (yk)k∈N is also bounded, containing therefore a convergent
subsequence. Hence the sequence (xk, yk)k∈N has a convergent subsequence, whose limit (x0, y0)
necessarily belongs to Γ because Γ is closed in M × Am with respect to the Euclidean topology and
x0 belongs to M.

Assume now that φ satisfies the second condition of the statement of the remark and let (xk)k∈N
be a sequence of M which converges in the Euclidean topology to a point x0 ∈ M. Then there exists
a sequence (uk)k∈N of U converging also to x0. We claim that the sequence (φ(uk))k∈N is bounded.
Otherwise, there exists a sequence (φ(ukl))l∈N such that (‖φ(ukl)‖)l∈N diverges to infinity. On the other
hand, the sequence (ukl , φ(ukl))l∈N satisfies the hypothesis of the second condition of the statement of
the remark, but the sequence (φ(ukl))l∈N has no accumulation point. This contradicts the hypothesis
on φ and proves the claim. Hence the sequence (φ(xk))k∈N is bounded, which finishes the proof. �

We now consider the Zariski closure M of the constructible subset M of An. Observe that M is a
closed affine subvariety of An and that we may interpret C(M) as a C[M]-module (or algebra). Now
fix an arbitrary point x of M. By Mx we denote the maximal ideal of coordinate functions of C[M]

which vanish at the point x, by C[M]Mx the local C-algebra of the variety M at the point x, i.e., the
localization of C[M] at the maximal ideal Mx and by C(M)Mx the localization of the C[M]-module
C(M) at Mx.

We suppose now that the constructible map φ : M → Am is topologically robust. Then we may
interpretφ1, . . . , φm as rational functions of the affine varietyM and therefore as elements of the total
fraction ring C(M) of C[M]. Thus C[M][φ1, . . . , φm] and C[M]Mx [φ1, . . . , φm] are C-subalgebras of
C(M) and C(M)Mx which contain C[M] and C[M]Mx , respectively.

With these notationswe are able to formulate the following statementwhich establishes the bridge
to an algebraic understanding of the notion of topological robustness.

Theorem 9. Let notations and assumptions be as before. Assume that the constructible mapφ : M → Am

is topologically robust and let x be an arbitrary point of M. ThenC[M]Mx [φ1, . . . , φm] is a finiteC[M]Mx-
module.

Theorem 9 is an immediate consequence of Remark 8 and [9, Lemma 3], which in its turn is based
on a non-elementary and deep result from algebraic geometry, namely Zariski’s Main Theorem (see,
e.g., [17, Section IV.2]). This illustrates that Theorem 9 is a nontrivial result of interpolation theory that
requires sophisticated tools from algebraic geometry.

In what follows, Theorem 9 will be only used as a motivation for the more technical notion of
geometric robustness which we are going to define later in this section. If we replace condition (∗)
above by a stronger condition, namely

(∗∗) for any sequence (xk)k∈N of points of M which converges in the Euclidean topology to a point x ∈ M,
the sequence (φ(xk))k∈N remains bounded,

the conclusion of Theorem 9 is easier to prove.
In this sense we shall give in Remark 10 an elementary proof of Theorem 9 under the assumption

that M is closed, i.e., in case M = M. Therefore, if we accept to restrict the notion of topological
robustness to the cases where condition (∗∗) is satisfied, then Remark 10 allows us to keep the paper



168 N. Giménez et al. / Journal of Complexity 27 (2011) 151–187

self-contained. We observe that all statements of this paper about topologically robust maps remain
valid if we replace in the condition (∗) in the definition of the notion of topologically robust maps by
the requirement (∗∗).

The following arguments retake techniques of the proofs of [28, 1.3.4, Corollaire 2] and [1, Satz 2].

Remark 10 (Proof of Theorem 9 in case M = M). Suppose that M = M holds. Thus M is a closed
subvariety of An.

First of all we observe that we may assume without loss of generality that M is irreducible. Hence
C[M] is a zero-divisor-free C-algebra, C(M) is a C-field and for any x ∈ M the C-algebras C[M]Mx
and C[M]Mx [φ1, . . . , φm] are extensions of C[M] and C[M][φ1, . . . , φm] respectively.

Under these conditions, Theorem 9 asserts that C[M]Mx [φ1, . . . , φm] is an integral C-algebra
extension of C[M]Mx .

Interpreted as a rational map, φ has a domain, say U , which is a nonempty Zariski open subset of
M. Denote by r the dimension of M and suppose without loss of generality that X1, . . . , Xn are in a
generic position with respect to M. Furthermore, let us write X ′

:= (X1, . . . , Xr) and ν : M → Ar for
the finite surjective morphism of affine varieties defined for an arbitrary point z := (z1, . . . , zn) of M
by ν(z) := (z1, . . . , zr).

Suppose now that the conclusion of Theorem9 iswrong. Then there exists a point x := (x1, . . . , xn)
of M and a component of φ, say the rational function φ1, such that φ1 is not integral over C[M]Mx .

Write x′
:= (x1, . . . , xr) and letMx′ be themaximal ideal ofC[X ′

] generated by X1−x1, . . . , Xr −xr .
Then φ1 is not integral over C[X ′

]Mx′
, either.

Let T be a new indeterminate and let α(X ′, T ) := AqT q
+ · · · + A0 with Aq, . . . , A0 ∈ C[X ′

], q > 0
and deg Aq ≥ 1, be the primitive irreducible polynomial of φ1 over C[X ′

]. Since φ1 is not integral over
C[X ′

]Mx′
, there exists an index 0 ≤ h < q such that Ah/Aq does not belong to C[X ′

]Mx′
. Observe that

the polynomial α(X ′, T ) describes the Zariski closure of the image of the map µ : U → Ar+1 defined
for z ∈ U by µ(z) := (ν(z), φ1(z)). Thus there exists a nonempty Zariski open subset G of Ar such
that any y ∈ G satisfies the condition Aq(y) ≠ 0 and such that for any t ∈ C with α(y, t) = 0 there
exists an element z ∈ U with µ(z) = (ν(z), φ1(z)) = (y, t).

In order to simplify notations, we shall assume without loss of generality that the nonzero
polynomials Ah and Aq contain no common prime divisors. From [13, Chapter V, Theorem 3.12] we
deduce that there exists a sequence (sk)k∈N of elements of G such that (sk)k∈N converges to x′ in the
Euclidean topology of Ar and such that the sequence


Ah
Aq
(sk)


k∈N

converges to infinity.
Therefore there exists an unbounded sequence (tk)k∈N of complex numbers which satisfies for any

k ∈ N the condition α(sk, tk) = 0.
This implies the existence of a sequence (zk)k∈N of elements of U such that µ(zk) =

(ν(zk), φ1(zk)) = (sk, tk) holds for any k ∈ N. Hence the sequence (φ1(zk))k∈N is unbounded, whereas
the sequence ν(zk)k∈N tends to x′. Since ν : M → Ar is a finite morphism of affine varieties, we
conclude that the sequence (zk)k∈N is bounded. Therefore we may assume without loss of generality
that (zk)k∈N converges to a point z ∈ An.

Since by assumptionM is closed and zk belongs toM for any k ∈ N, we infer that z is an element of
M.Wehave therefore found a sequence of points ofM, namely (zk)k∈N, which converges to an element
of M, namely z, such that the sequence (φ1(zk))k∈N is unbounded. This implies the unboundedness of
the sequence (φ(zk))k∈N, which contradicts by (∗) the assumption that φ is topologically robust. �

Corollary 11. Let notations and assumptions be as before and suppose in particular that the constructible
map φ : M → Am is weakly continuous. Then φ is topologically robust if and only if for any point x of M
the C-algebra C[M]Mx [φ1, . . . , φm] is a finite C[M]Mx-module.

Proof. The only if part of this statement is the content of Theorem 9.
We are now going to show the if part. Our argumentation is self-contained and uses ideas of the

proof of [9, Lemma 3].
Since φ is weakly continuous, there exists an open dense Zariski subset U of M which satisfies

condition (i) of Definition 2. Let (xk)k∈N be a given sequence of points of U which converges to a point
x ∈ M. Following Remark 3, it suffices to show that the sequence (φ(xk))k∈N is bounded.
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By assumption C[M]Mx [φ1, . . . , φm] is a finite C[M]Mx-module. Therefore there exists an element
g of C[M] with g(x) ≠ 0 such that C[M]g [φ1, . . . , φm] is also a finite C[M]g-module.

There exist at most finitely many indices k ∈ N with g(xk) = 0, since otherwise the continuity of
g would imply g(x) = 0, a contradiction. Therefore we may suppose without loss of generality that
g(xk) ≠ 0 holds for any k ∈ N.

Let T be a new indeterminate. There exists a monic polynomial P1(T ) of C[M]g [T ] with P1(φ1) =

0. Observe that P1(T ) may be specialized for x and xk, k ∈ N, into well-defined polynomials
P1(x)(T ), P1(xk)(T ) of C[T ] and complex numbers P1(xk)(φ1(xk)). Moreover we have deg P1(x)(T ) =

deg P1(xk)(T ) = deg P1(T ) and there exists an upper bound for the roots of the polynomials P1(xk)(T )
which does not depend on k ∈ N. From P1(φ1) = 0 we infer therefore that P1(xk)(φ1(xk)) = 0 holds
for any k ∈ N. This implies that the sequence (φ1(xk))k∈N is bounded. Repeating the same argument
for φ2, . . . , φm we conclude that (φ(xk))k∈N is also bounded. �

Corollary 12. Let φ : M → Am be topologically robust and suppose that the affine variety M is normal
at any point of M. Then φ : M → Am is a rational map of M whose domain contains M and is therefore
strongly continuous.

Proof. Let x be an arbitrary point of M. Since M is normal at x, it follows that x belongs to a unique
irreducible component, sayM1, ofM. Observe now the identity C[M]Mx = C[M1]Mx . The topological
robustness of φ implies that the C-algebra extension C[M1]Mx ↩→ C[M1]Mx [φ1, . . . , φm] is integral.
Taking into account that x is a normal point ofM1, we infer thatC[M1]Mx is integrally closed inC(M1).
Theorem 9 implies now that the rational functions φ1, . . . , φm are contained in C[M1]Mx = C[M]Mx .
Therefore the rational map φ is well defined at the point x. �

In case that the constructible set M is irreducible, we may characterize the topological robustness
of the constructible map φ : M → Am in a very natural way by means of places. In Section 5 the use
of the notion of topological robustness will be limited to this case.

Proposition 13. Let notations and assumptions be as before and suppose that M is irreducible. Then the
constructible map φ : M → Am is topologically robust if and only if φ is weakly continuous and if for any
point x ∈ M and any C-valued place ϑ : C(M) → C ∪ {∞} that extends the C-algebra homomorphism
evx : C[M] → C, the values ϑ(φ1), . . . , ϑ(φm) are finite.

Proposition 13 is an immediate consequence of Corollary 11 and Theorem II and its proof will be
omitted here.

By the way, let us observe that for x ∈ M, the C-valued place ϑ extends the C-algebra
homomorphism evx if and only if the local C-algebra C[M]Mx is contained in the valuation ring of
ϑ .

Proposition 13 motivates the following notion of geometrical robustness.

Definition 14. Let φ : M → Am be a constructible map with components φ1, . . . , φm and assume
that M is an irreducible constructible subset of the affine space An. Then φ is called geometrically
robust if it satisfies the following condition: for any point x ∈ M and any C-valued place ϑ : C(M) →

C ∪ {∞} that extends the C-algebra homomorphism evx : C[M] → C, the values ϑ(φ1), . . . , ϑ(φm)
are finite and are uniquely determined by the point x (i.e., they do not depend on the particular
extension of theC-algebra homomorphism evx to aC-valued placeϑ ofC(M)). Moreover, they satisfy
the identities ϑ(φ1) = φ1(x), . . . , ϑ(φm) = φm(x).

Remark 15. Regular maps and compositions of geometrically robust maps with polynomial maps are
geometrically robust.

Proposition 16. Let notations and assumptions be as in Definition 14 and suppose that the constructible
map φ : M → Am is geometrically robust. Then φ is topologically robust.

Proof. By assumption M is an irreducible constructible subset of the affine space An. Therefore M is
an irreducible closed subvariety of An. Let ξ1, . . . , ξn be the coordinate functions of M induced by the
indeterminates X1, . . . , Xn. Let X := (X1, . . . , Xn) and ξ := (ξ1, . . . , ξn).



170 N. Giménez et al. / Journal of Complexity 27 (2011) 151–187

In view of Proposition 13 we have only to show that φ is weakly continuous.
Following Lemma 1, there exists a Zariski open and dense subset U of M such that φ|U is a rational

map. We claim that the graph of φ is contained in the Zariski closure of the graph of φ|U in M × Am.
Let Y := (Y1, . . . , Ym), where Y1, . . . , Ym are new indeterminates, and let Q ∈ C[X, Y ] be an

arbitrary polynomial which satisfies the condition Q (x, φ(x)) = 0 for any point x ∈ U . Then Q
vanishes at any point of the Zariski closure of the graph of φ|U in M × Am. It suffices to show that
Q (x, φ(x)) = 0 holds for any point x ∈ M.

Observe that the assumption made on Q implies Q (ξ , φ) = Q (ξ , φ1, . . . , φm) = 0, where
φ1, . . . , φm are interpreted as elements of C(M). Let x be an arbitrary point of M and let ϑ :

C(M) → C ∪ {∞} be any C-valued place that extends the C-algebra homomorphism evx :

C[M] → C. Then Q (ξ , φ) = 0 implies Q (x, ϑ(φ1), . . . , ϑ(φm)) = 0. By assumption we
have ϑ(φ1) = φ1(x), . . . , ϑ(φm) = φm(x) and hence Q (x, φ(x)) = Q (x, φ1(x), . . . , φm(x)) =

Q (x, ϑ(φ1), . . . , ϑ(φm)) = 0. �

We are now going to show that a geometrically robust map φ : M → Am is always hereditary.
For this purpose, we prove the stronger result that the restriction of φ to an irreducible constructible
subset of M is geometrically robust.

Theorem 17. Let notations and assumptions be as in Definition 14. Let φ : M → Am be a geometrically
robust map and let N be an irreducible constructible subset of M. Then the restriction map φ|N is a
geometrically robust map.

Proof. By assumption M is an irreducible constructible subset of the affine space An and hence M is
a closed and irreducible affine variety of An.

LetZ := N be the Zariski closure ofN in the affine ambient spaceAn. ThenZ is a closed irreducible
subvariety of M and N contains a nonempty Zariski open (and hence Zariski dense) subset of Z.

For any point z ∈ Z, let evz(M) : C[M] → C and evz(Z) : C[Z] → C be the C-
algebra homomorphisms given by the evaluation of the coordinate functions of C[M] and C[Z] at
z, respectively.

We are now going to show that there exist rational functionsψ1, . . . , ψm ∈ C(Z) such that for any
point z ∈ N and any C-valued place ϑ of C(Z) that extends the C-algebra homomorphism evz(Z),
the following holds:

the values of ϑ at ψ1, . . . , ψm are finite and satisfy ϑ(ψ1) = φ1(z), . . . , ϑ(ψm) = φm(z).

Consider the canonical surjective C-algebra homomorphism π : C[M] → C[Z] induced by the
natural embedding of Z into M. From Theorem I we deduce that there exists a field Ω containing
C(Z) such that π can be extended to anΩ-valued place of C(M) that we also denote by π . Let Rπ be
the valuation ring of the place π . Observe that Rπ contains C[M] and even its localization C[M]Mz at
the (maximal) vanishing ideal Mz of any point z of Z.

Let 1 ≤ j ≤ m and let z0 be an arbitrary (but fixed) element of Z. We denote by M′
z0 the maximal

ideal of the coordinate functions of C[Z] that vanish at the point z0. By assumption φ : M → Am is
geometrically robust. Therefore, by Theorem II, the rational function φj belongs to the integral closure
of C[M]Mz0

in C(M). Hence there exists a monic polynomial

α = α(T ) = T s
+ as−1T s−1

+ · · · + a0

of C[M]Mz0
[T ] such that α(φj) = 0 holds in C(M) (here s is a positive integer and T a new

indeterminate). Taking into account that the valuation ring Rπ contains C[M]Mz0
, we deduce from

Theorem II that φj belongs to Rπ . Therefore the value ψj := π(φj) is finite and integral over C[Z]M′
z0
.

In particular, ψj ∈ Ω is algebraic over C(Z) and

π(α) = π(α)(T ) := T s
+ π(as−1)T s−1

+ · · · + π(a0) ∈ C[Z]M′
z0

[T ]

is an algebraic dependence relation for ψj over C(Z) (which is not necessarily of minimal degree).



N. Giménez et al. / Journal of Complexity 27 (2011) 151–187 171

Let mψj ∈ C(Z)[T ] be the minimal (monic) polynomial of ψj over C(Z) and let∆ψj ∈ C(Z) be its
discriminant. Since mψj is irreducible and C(Z) is of characteristic zero, we have∆ψj ≠ 0. Therefore
there exists a nonempty Zariski open subset U∗ of Z such that for any z ∈ U∗ the coefficients of the
polynomialmψj (and hence also∆ψj ) are well defined at z and such that∆ψj(z) ≠ 0 holds. Therefore
mψj(z, T ) is square-free. Since N is Zariski dense in Z there exists a nonempty Zariski open subset Uj
of Z which is contained in N ∩ U∗ (and hence in N ). Now assume that z0 ∈ Uj. Thenmψj(T ) belongs
to C[Z]M′

z0
[T ] andmψj(z0, T ) is square-free.

Let Q (T ) be an arbitrary polynomial of C[M]Mz0
[T ] with Q (φj) = 0 and let π(Q )(T ) be the

polynomial ofC[Z]M′
z0

[T ] obtained by applying the placeπ to the coefficients ofQ (T ). SinceC[M]Mz0

is contained in Rπ , the place π takes only finite values on the coefficients of Q (T ). Thus π(Q )(T ) is
well defined. From Q (φj) = 0 we deduce 0 = π(Q (φj)) = π(Q )(π(φj)) = π(Q )(ψj). Therefore
the polynomial mψj(T ) divides π(Q )(T ) in C(Z)[T ] and hence also in C[Z]M′

z0
[T ], because mψj(T ) is

monic. This implies that π induces a surjective C-algebra homomorphism

ϕ : C[M]Mz0
[φj] → C[Z]M′

z0
[T ]/mψj .

Summarizing we have the following commutative diagram:

C[M]Mz0

��

π ′

// C[Z]M′
z0

��
C[M]Mz0

[φj]
ϕ // C[Z]M′

z0
[T ]/mψj ,

where the vertical arrows are injective and the horizontal arrows are surjective C-algebra
homomorphisms and π ′ is the restriction of the place π to C[M]Mz0

.
Let τ ∈ C be an arbitrary root of the monic polynomial mψj(z0, T ) ∈ C[T ]. Then evaluation at z0

and τ induces a C-algebra homomorphism evτ : C[Z]M′
z0

[T ]/mψj → C such that the diagram

C[M]Mz0

��

evz0 (M)
// C

C[Z]M′
z0

[T ]/mψj

evτ

99ttttttttttt

commutes and such that ϕ(φj), namely the class of T in C[Z]M′
z0

[T ]/mψj , is mapped onto τ ∈ C. From

Theorem I we deduce now that the C-algebra homomorphism evτ ◦ ϕ : C[M]Mz0
[φj] → C may

be extended to a C-valued place ϑτ of the field C(M). Observe that C[M]Mz0
[φj] is contained in the

valuation ring of ϑτ and that ϑτ (φj) = evτ (ϕ(φj)) = τ holds. Since by assumption φ : M → Am

is geometrically robust, the value ϑτ (φj) does not depend on the place ϑτ . Therefore the univariate
polynomialmψj(z0, T ) has a single zero inC, namely τ . From z0 ∈ Uj ⊂ U∗ we deduce thatmψj(z0, T )
is a square-free polynomial of C[T ]. Therefore we have degmψj(T ) = degmψj(z0, T ) = 1, which
implies that ψj belongs to C[Z]M′

z0
.

We conclude that ψj is defined everywhere on Uj for 1 ≤ j ≤ n. In this way we obtain
rational functions ψ1, . . . , ψm and nonempty Zariski open subsets U1, . . . ,Um of Z such that for
any 1 ≤ j ≤ m the rational function ψj is well defined in Uj and such that Uj is contained in N .

ThereforeU := U1∩· · ·∩Um is a nonempty Zariski open subset ofN where the rational functions
ψ1, . . . , ψm are well defined. Moreover, for any point z ∈ U we have ψ1(z) = φ1(z), . . . , ψm(z) =

φm(z).
Let ψ := (ψ1, . . . , ψm). Then ψ is a rational map from Z to Am with ψ |U = φ|U. We are going to

show that φ|N is geometrically robust.
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Let z be an arbitrary point of N and let ϑ be an arbitrary C-valued place of C(Z) that extends
the C-algebra homomorphism evz(Z) : C[Z] → C. Lifting, following Theorem I, the place ϑ to a
C-valued place of the field Ω and composing the result with the Ω-valued place π , we obtain a C-
valued place ϑ ′ of C(M)which extends the C-algebra homomorphism evz(M). Since by assumption
φ : M → Am is geometrically robust, we conclude that for any 1 ≤ j ≤ m the value ϑ(ψj) =

ϑ(π(φj)) = ϑ ◦ π(φj) = ϑ ′(φj) is finite and independent of the choice of ϑ ′ and hence also of the
choice of ϑ . Moreover we have ϑ(ψj) = ϑ ′(φj) = φj(z) for 1 ≤ j ≤ m. We conclude that ψ |N is
geometrically robust. �

Now we are able to prove that a geometrically robust map is hereditary.

Corollary 18. Let notations and assumptions be as in Definition 14. Suppose that the constructible map
φ : M → Am is geometrically robust. Then φ is hereditary.

Proof. Let N be an arbitrary constructible subset of M. We have to show that φ|N : N → Am is
weakly continuous, namely that φ|N is an extension of a rational map of N such that the graph of
φ|N is contained in the Zariski closure of the graph of this rational map in N × Am.

Without loss of generality we may assume that N is irreducible. According to Theorem 17, the
restriction map φ|N is geometrically robust. Then Proposition 16 implies that φ|N is topologically
robust, and in particular weakly continuous. This finishes the proof of the corollary. �

Definition 19. Let n and D be fixed natural numbers and let be given a Hermite–Lagrange
interpolation problem determined by a topologically robust and hereditary map Φ : D → Π

(n)
D .

Furthermore, let ω∗
: D∗

→ Π
(n)
D be given a polynomial map and a hereditary map Ψ : D → D∗

determining a Hermite–Lagrange interpolation algorithm which solves this problem in the sense of
Definition 7. We call this interpolation algorithm geometrically robust if Ψ has this property.

Remark 15 implies the following statement.

Remark 20. If for the interpolation problem determined by D and Φ in Definition 19 there
exists a geometrically robust Hermite–Lagrange algorithm, then the constructible map Φ itself is
geometrically robust.

4.3. Examples of geometrically robust interpolation algorithms

In this section we analyze whether the algorithms introduced in Sections 3.3.1 and 3.3.2 for the
generic Lagrange interpolation problem and the bivariate Lagrange interpolation problem are robust.

4.3.1. Univariate Hermite–Lagrange interpolation of a fixed polynomial
With a slightly different view we turn now back to the second example of Section 3.3.1, namely to

the Lagrange interpolation of univariate polynomials in K ≥ 2 generic nodes. Thus let n := 1,D :=

K − 1,M := K ,N := K , X := X1 and ΠD := Π
(n)
D = Π

(1)
D . Let F be given a univariate polynomial

of Π := C[X] with deg F ≫ K and let D := {(d1, . . . , dN) ∈ AN
: di ≠ dj for 1 ≤ i < j ≤ N}.

We consider the univariate Lagrange interpolation problem which consists in finding for any point
d := (d1, . . . , dN) ∈ D the unique polynomial fd inΠD interpolating F in the nodes d1, . . . , dN .

Thus fd is determined by the condition fd(di) = F(di) for any 1 ≤ i ≤ N .
Let as in Section 3.3.1 be D∗

:= AM and denote by ω∗
: D∗

→ ΠD the encoding of the elements
ofΠD by their dense representation.

For any d := (d1, . . . , dN) ∈ D let Vd := (dj−1
i )1≤i,j≤N be the Vandermonde matrix associated to d

and F(d) := (F(d1), . . . , F(dN)). Then the dense representation of fd is given by V−1
d F(d). Observe

that the (regular) rational maps ΨF : D → D∗ and ΦF : D → ΠD defined for d ∈ D by
ΨF (d) := V−1

d F(d) and ΦF (d) := ω∗(ΨF (d)) are strongly continuous (hence topologically robust and
hereditary). ThereforeD andΦF , andD∗, ω∗ andΨF determine a Lagrange interpolation problem and
an algorithm in the sense of Definition 7.
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The rational map ΨF is well defined at any point of D but it is not a priori clear whether ΨF has a
rational (hence polynomial) extension to D = AN . However, we may deduce from the well-known
Newton or divided difference interpolation method (see, for instance, [27]) that ΨF is a polynomial
map.

In order to see this, let T1, . . . , TN be new indeterminates, T := (T1, . . . , TN) and let
Ψ
(1)
F (T ), . . . ,Ψ (N)

F (T ) ∈ C(T )be the components ofΨF (T ).Moreover, for 1 ≤ j ≤ N let F [T1, . . . , Tj] ∈

C[T ] be the j-th divided difference of F . Observe that Ψ (1)
F (T ), . . . ,Ψ (N)

F (T ) appear as the coefficients
of the polynomial

∑N
j=1 F [T1, . . . , Tj](X − T1) . . . (X − Tj−1)with respect to the indeterminate X .

This implies that ΨF : D → D∗ is a polynomial map and hence geometrically robust. In other
words, the Hermite–Lagrange interpolation algorithm determined by D∗, ω∗ and ΨF is geometrically
robust. HenceΦF : D → ΠD is also geometrically robust.

Let D+
:= AN . Since ΨF is a polynomial map and D∗

= AM we conclude that ΨF may be extended
to a geometrically robust map Ψ+

F : D+
→ D∗. Let Φ+

F := ω∗
◦ Ψ+

F . Then Φ+

F : D+
→ ΠD

is also geometrically (and hence topologically) robust and hereditary. Thus D+ and Φ+

F determine
a Hermite–Lagrange interpolation problem and the algorithm determined by D∗, ω∗ and Ψ+

F solves
this problem in the sense of Definition 7.

We are now going to analyze the Hermite–Lagrange interpolation problem determined byD+ and
Φ+

F for an arbitrary point d := (d1, . . . , dM) ∈ D+.
If d belongs to D we have the Lagrange interpolation problem considered before. Therefore let

d ∈ D+
\ D . Then there exist repetitions between the complex numbers d1, . . . , dN . For the sake of

simplicity we shall assume d1 = d2 and that d1, d3, . . . , dN are all distinct. Then fd := ω∗(Ψ+

F (d))
is the (unique) polynomial of ΠD which satisfies the condition fd(d1) = F(d1), f ′

d(d1) = F ′(d1) and
fd(di) = F(di) for 3 ≤ i ≤ N where f ′

d and F ′ denote the first (formal) derivatives of the polynomials
fd and F .

Therefore D+ and Φ+

F determine a Hermite–Lagrange interpolation problem which is not simply
of Lagrangian type.

On the other hand, in view of Corollary 12, this example is not very illustrative, since D+
= AN

implies that any algorithm determined by D∗, ω∗ and a topologically robust, hereditary map Ψ :

D+
→ D∗, which solves the Hermite–Lagrange interpolation problem given by D+ and Φ+

F , is
geometrically robust. In this case Ψ is even a polynomial map.

4.3.2. Robustness in presence of singular points: examples of Section 3.3.2 revisited
Let X1, X2 be indeterminates over C and letΠ (2)

:= C[X1, X2]. We analyze now the algorithms of
the two examples for bivariate Hermite–Lagrange interpolation considered in Section 3.3.2. In both
examples, there is given a polynomial function f : A2

→ A1 which we wish to interpolate and, as
input data structure, an open curve D ⊂ A2 containing 0 := (0, 0) as singular point. These two
examples differ from the previous one (classical univariate Hermite–Lagrange interpolation) in the
fact that the input data structure D is singular at 0.
Interpolation over the curve X3

1 − X2
2 = 0 Let D := {X3

1 − X2
2 = 0} \ {(−1,±i)} ⊂ A2 and let

Φ : D → Π
(2)
1 be the constructible map defined for d := (d1, d2) ∈ D \ {0} by

Φ(d) := f (0)+
(f (d)− f (0))d1

d21 + d22
X1 +

(f (d)− f (0))d2
d21 + d22

X2

and for d := 0 by

Φ(0) := f (0)+
∂ f
∂X1

(0)X1.

In Section 3.3.2 we showed that Φ is strongly continuous. Hence D and Φ determine a
Hermite–Lagrange interpolation problem.

As in Section 3.3.2, let D∗
:= A3 and let ω∗

: D∗
→ Π

(2)
1 be the canonical dense encoding

of bivariate polynomials of degree at most one over C. Furthermore, let Ψ : D → D∗ be the
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constructible map defined for d := (d1, d2) ∈ D \ {0} by

Ψ (d) :=


f (0),

(f (d)− f (0))d1
d21 + d22

,
(f (d)− f (0))d2

d21 + d22


and for d := 0 by

Ψ (0) :=


f (0),

∂ f
∂X1

(0), 0


.

Then Ψ is hereditary and D∗, ω∗ and Ψ determine an algorithm that solves the Hermite–Lagrange
interpolation problem given by D andΦ .

We are now going to prove that Ψ is geometrically robust.
Let Ψ := (Ψ1,Ψ2,Ψ3) and denote for any point d ∈ D by Md the maximal ideal of coordinate

functions of C[C], where C := {X3
1 − X2

2 = 0} is the (irreducible) Zariski closure of D in A2. The
rational functions Ψ1,Ψ2,Ψ3 belong to C[C]Md for any d ∈ D \ {0} and thus satisfy the condition of
Definition 14 at any point d ∈ D \ {0}. Taking into account that Ψ1 = f |D is a polynomial function,
we may restrict our attention to the local properties of Ψ2 and Ψ3 at the point 0 ∈ D .

Since the plane curve C is irreducible, C[D] = C[C] is an integral domain with fraction field
C(D). Let ξ1 and ξ2 be the coordinate functions of C[D] induced by the indeterminates X1 and X2 and
let ξ := (ξ1, ξ2). We have ξ 31 = ξ 22 and ξ1 ≠ 0.

We are now going to show that the rational functions Ψ2 and Ψ3 satisfy the condition of
Definition 14 at the point 0 ∈ D , thus proving the geometrical robustness of Ψ .

For this purpose consider an arbitrary C-valued place ϑ of C(D)whose valuation ring Rϑ contains
the local algebra C[D]M0 .

From ξ 31 = ξ 22 and ξ1 ≠ 0 we deduce that (ξ2/ξ1)2 − ξ1 = 0 holds in C(D). Therefore ξ2/ξ1 is
integral overC[D] and (ξ2/ξ1)2 belongs toM0Rϑ . This implies that ξ2/ξ1 is an element of Rϑ contained
in the maximal ideal of Rϑ . Therefore we have ϑ(ξ2/ξ1) = 0. Observe that ϑ(ξ1) = ϑ(ξ2) = 0 and
ϑ(1 + ξ1) = 1 holds. From the Taylor development of the polynomial f at the point 0 we see that
there exist polynomials Q1,Q2,Q3 ofΠ (2) such that

f (ξ)− f (0)
ξ1

=
∂ f
∂X1

(0)+
ξ2

ξ1

∂ f
∂X2

(0)+ ξ1Q1(ξ)+
ξ 22

ξ1
Q2(ξ)+ ξ2Q3(ξ)

holds in C(M). This implies

ϑ


f (ξ)− f (0)
ξ1(1 + ξ1)


=

∂ f
∂X1

(0).

On the other hand we have ξ 21 + ξ 22 = ξ 21 (1 + ξ1) and this implies

Ψ2(ξ) =
f (ξ)− f (0)
ξ1(1 + ξ1)

, Ψ3(ξ) =
f (ξ)− f (0)
ξ1(1 + ξ1)

ξ2

ξ1
.

Therefore the place ϑ has at Ψ2(ξ) and Ψ3(ξ) the finite values

ϑ(Ψ2(ξ)) =
∂ f
∂X1

(0) = Ψ2(0), ϑ(Ψ3(ξ)) = 0 = Ψ3(0).

Thus the constructible map Ψ is geometrically robust. This means that the Hermite–Lagrange
interpolation algorithm determined by D∗, ω∗ and Ψ is geometrically robust.
Interpolation over the curve X2

2 − X2
1 − X3

1 = 0 Suppose now that the given polynomial map
f : A2

→ A1 satisfies the condition

∂ f /∂X1(0), ∂ f /∂X2(0)


≠ 0. We consider the open curve

D := {X2
2 − X2

1 − X3
1 = 0} \ {(−2,±2i)} ⊂ A2 and the constructible mapΦ : D → Π

(2)
1 defined for

d := (d1, d2) ∈ D \ {0} by

Φ(d) := f (0)+
(f (d)− f (0))d1

d21 + d22
X1 +

(f (d)− f (0))d2
d21 + d22

X2
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and for d := 0 by

Φ(0) := f (0)+
1
2


∂ f
∂X1

(0)+
∂ f
∂X2

(0)


X1 +

1
2


∂ f
∂X1

(0)+
∂ f
∂X2

(0)


X2.

In Section 3.3.2 we showed that Φ is topologically robust and hereditary. Hence D and Φ determine
a Hermite–Lagrange interpolation problem.

Again like in Section 3.3.2, let D∗
:= A3 and let ω∗

: D∗
→ Π

(2)
1 be the canonical dense

encoding of bivariate polynomials of degree at most one over C. Furthermore, let Ψ : D → D∗

be the constructible map defined for d := (d1, d2) ∈ D \ {0} by

Ψ (d) :=


f (0),

(f (d)− f (0))d1
d21 + d22

,
(f (d)− f (0))d2

d21 + d22


and for d := 0 by

Ψ (0) :=


f (0),

1
2

 ∂ f
∂X1

(0)+
∂ f
∂X2

(0)

,
1
2

 ∂ f
∂X1

(0)+
∂ f
∂X2

(0)

.

ThenΨ is hereditary andD∗, ω∗ andΨ determine an algorithm that solves the Hermite–Lagrange
interpolation problem given by D andΦ .

We claim that Ψ is not geometrically robust.
Let Ψ := (Ψ1,Ψ2,Ψ3) and denote M0 the maximal ideal of coordinate functions of C[C] at the

point 0 ∈ D , where C := {X2
2 − X2

1 − X3
1 = 0} is the (irreducible) Zariski closure of D in A2. Since the

plane curve C is irreducible, C[D] = C[C] is an integral domain with fraction field C(D). Let ξ1 and
ξ2 be the coordinate functions of C[D] induced by the indeterminates X1 and X2 and let ξ := (ξ1, ξ2).
We have ξ 22 = ξ 21 + ξ 31 and ξ1 ≠ 0.

We are now going to show that the rational functions Ψ2 and Ψ3 do not satisfy the condition of
Definition 14 at the point 0 ∈ D , thus finishing the proof of our claim.

For this purpose consider an arbitrary C-valued place ϑ of C(D)whose valuation ring Rϑ contains
the local algebra C[D]M0 .

From ξ 22 = ξ 21 + ξ 31 and ξ1 ≠ 0 we deduce that (ξ2/ξ1)2 = 1+ ξ1 holds in C(D). Therefore ξ2/ξ1 is
integral over C[D] and (ξ2/ξ1)2 − 1 belongs to M0Rϑ . This implies that ξ2/ξ1 is an element of Rϑ and
(ϑ(ξ2/ξ1))

2
= 1 holds. Observe ϑ(ξ1) = ϑ(ξ2) = 0 and ϑ(2+ξ1) = 2. From the Taylor development

of the polynomial f at 0we see that there exist polynomials Q1,Q2,Q3 ofΠ (2) such that

f (ξ)− f (0)
ξ1

=
∂ f
∂X1

(0)+
ξ2

ξ1

∂ f
∂X2

(0)+ ξ1Q1(ξ)+
ξ 22

ξ1
Q2(ξ)+ ξ2Q3(ξ)

holds in C(M). This implies

ϑ


f (ξ)− f (0)
ξ1(2 + ξ1)


=

1
2


∂ f
∂X1

(0)+ ϑ
ξ2
ξ1

 ∂ f
∂X2

(0)


.

On the other hand we have ξ 21 + ξ 22 = ξ 21 (2 + ξ1) and this implies

Ψ2(ξ) =
f (ξ)− f (0)
ξ1(2 + ξ1)

, Ψ3(ξ) =
f (ξ)− f (0)
ξ1(2 + ξ1)

ξ2

ξ1
.

Therefore the place ϑ has at Ψ2(ξ) and Ψ3(ξ) the finite values

ϑ(Ψ2(ξ)) =
1
2


∂ f
∂X1

(0)+ ϑ
ξ2
ξ1

 ∂ f
∂X2

(0)


, ϑ(Ψ3(ξ)) =

1
2


ϑ
ξ2
ξ1

 ∂ f
∂X1

(0)+
∂ f
∂X2

(0)


.

By assumption we have

∂ f /∂X1(0), ∂ f /∂X2(0)


≠ 0. Therefore, the condition ϑ(Ψ (ξ)) = Ψ (0)

is equivalent to the condition ϑ(ξ2/ξ1) = 1.
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Let T be a new indeterminate over C and let C[[T ]] be the ring of formal power series in T with
coefficients inC. Let σ ∈ C[[T ]] be the unique formal power series satisfying the condition σ 2

= 1+T
and σ(0) = −1. Consider the C-algebra homomorphism χ : C[C] → C[[T ]] defined by χ(ξ1) := T
and χ(ξ2) := Tσ(T ). Observe that χ is well defined since the identity (Tσ)2 = T 2

+ T 3 holds in
C[[T ]]. Furthermore, χ is injective since Y 2

− 1 − T is the minimal polynomial of σ over C(T ). We
conclude that χ admits a well-defined extension C(C) → C((T )), whichwe also denote by χ . Finally,
let ν : C((T )) → C be the unique place extending the evaluation at 0 and let ϵ : C(C) → C be the
composition ϵ := ν ◦ χ .

From ϵ(ξ1) = ν(T ) = 0 and ϵ(ξ2) = ν(T ) · ν(σ ) = 0, we conclude that ϵ : C(C) → C is a place
extending the evaluation homomorphism of C[C] at the point 0. Furthermore, we have

ϵ(ξ2/ξ1) = ν

χ(ξ2)/χ(ξ1)


= ν(σ ) = σ(0) = −1.

As we have seen before, ϵ(ξ2/ξ1) ≠ 1 implies ϵ

Ψ (ξ)


≠ Ψ (0). Therefore, the map Ψ is not

geometrically robust.

5. Lower complexity bounds for Hermite–Lagrange interpolation problems

This section is devoted to the presentation of themain results of this paper.We are going to exhibit
lower complexity bounds (in the sense of Section 3.4) for (typically geometrically robust) algorithms
which solve selected Lagrange interpolation problems. The lower complexity bounds are expressed in
terms of the number K of nodes involved in the Lagrange interpolation under consideration and may
be linear in K (incompressibility results) or exponential in K .

5.1. Incompressibility results

In this section we shall exhibit two Lagrange interpolation problems involving K nodes which
require algorithms of complexity at least K for their solution.

We first consider the complexity of generic Lagrange interpolation by n-variate polynomials of
degree at most D.

Then we exhibit a Lagrange interpolation problem involving K nodes such that the interpolants
may be evaluated (in principle) using O(log K) arithmetical operations. However, any geometrically
robust algorithm solving this problem requires an output data structure of size at least K . In particular
it is not possible to retrieve the existing size O(log K) straight-line program representation of the
interpolants by means of a geometrically robust interpolation algorithm.

5.1.1. Generic n-variate Lagrange interpolation problems
Let n,D, K andM be natural numbers and let D be a constructible Zariski dense subset of A(n+1)×K

which will serve as an input data structure for the interpolation problems we are going to consider in
this section. Observe that the size N of the input data structure D is (n + 1)K .

A generic n-variate Lagrange interpolation problem inΠ (n)
D is determined by D and a topologically

robust and hereditary mapΦ : D → Π
(n)
D , such that for any input datum d := (x1, y1, . . . , xK , yK ) ∈

D with x1, . . . , xK ∈ An and y1, . . . , yK ∈ A1, the polynomialΦ(d) satisfies the conditionΦ(d)(xj) =

yj for any 1 ≤ j ≤ K . For such an interpolation problem, the constructible set O := Φ(D) constitutes
the class of interpolants.

With these notations and assumptions we have the following incompressibility result.

Proposition 21. Let D∗ be a constructible subset of AM , ω∗
: D∗

→ O a polynomial encoding of the
class of interpolants O and Ψ : D → D∗ a constructible hereditary map, such that D∗,Ψ and ω∗

determine an algorithm which solves the generic n-variate Lagrange interpolation problem given by D
and Φ . Then we have M ≥ K, i.e., the complexity of the Lagrange interpolation algorithm determined by
D∗, ω∗ and Ψ is at least K = N/(n + 1).



N. Giménez et al. / Journal of Complexity 27 (2011) 151–187 177

Proof. Since D is constructible, there exists a nonempty Zariski open subset U of A(n+1)×K which is
contained in D . We choose now a point γ := (γ1, . . . , γK ) of An×K with γj ∈ An, 1 ≤ j ≤ K , such that
the set

Dγ := {(y1, . . . , yK ) ∈ AK
: (γ1, y1, . . . , γK , yK ) ∈ U}

is Zariski dense in AK . Such a point γ ∈ An×K can be obtained as the image of a point of U under the
canonical projection A(n+1)×K

→ An×K .
Let ϕ1 : Dγ → D∗ and ϕ2 : D∗

→ AK be the constructible maps defined for y ∈ Dγ and d∗
∈ D∗

by ϕ1(y) := Ψ (γ , y) and ϕ2(d∗) := (ω∗(d∗)(γ1), . . . , ω
∗(d∗)(γK )).

Since D∗, ω∗ and Ψ determine an algorithm which solves the Lagrange interpolation problem
given by D andΦ , we have ω∗

◦ Ψ = Φ . This implies that for any y ∈ Dγ the identity

ϕ2 ◦ ϕ1(y) = ϕ2(Ψ (γ , y)) =

ω∗(Ψ (γ , y))(γ1), . . . , ω∗(Ψ (γ , y))(γK )


= (Φ(γ , y)(γ1), . . . ,Φ(γ , y)(γK )) = y

holds. Therefore we have ϕ2 ◦ ϕ1 = idDγ . We obtain the following estimates:

M = dimAM
≥ dimD∗ ≥ dimϕ1(Dγ ) ≥ dimϕ2 ◦ ϕ1(Dγ ) = dimDγ = dimAK

= K ,

which imply the conclusion of Proposition 21. �

5.1.2. An incompressible Lagrange interpolation problem with interpolants which are ‘‘easy to compute’’
The following example of a Lagrange interpolation problem is taken from [9], where it is analyzed

from a different point of view.
Let K and M be natural numbers with K ≥ 2, let N := 2K , D := K − 1,Π := Π (1), let T and X be

indeterminates over C and let

F(X, T ) := (TD+1
− 1)

D−
k=0

T kXk.

Our input data structure is the constructible subset D of AN defined by

D := {(x1, y1, . . . , xK , yK ) ∈ AN
: ∃t ∈ C with F(xi, t) = yi for 1 ≤ i ≤ K

and xi ≠ xj for any 1 ≤ i < j ≤ K}.

The constructible set D is irreducible. In order to see this, let U := {(x1, . . . , xK ) ∈ AK
:

xi ≠ xj for 1 ≤ i < j ≤ K} and let σ : U × A1
→ AN be the polynomial map defined for

x = (x1, . . . , xK ) ∈ U and t ∈ A1 by σ(x, t) := (x1, F(x1, t), . . . , xK , F(xK , t)). Then clearly D is
the image of σ and hence irreducible.

Moreover, for any d ∈ D the fiber σ−1(d) is a nonempty finite set (i.e., a zero-dimensional
algebraic variety) and therefore the Theorem on the Dimension of Fibers of algebraic geometry (see,
e.g., [26, Section I.6.3, Theorem 7]) implies that

dimD = dim σ(U × A1) = dimU × A1 = dimU × A1
= dimAK

× A1
= K + 1

holds.
Let Φ : D → ΠD be the constructible map which associates to any interpolation datum

d := (x1, y1, . . . , xK , yK ) ofD the uniquepolynomial ofΠD, namelyΦ(d), which satisfies the condition
Φ(d)(xj) = yj for 1 ≤ j ≤ K . Taking into account the definition of D , we see that there exists a (not
necessarily unique) point t ∈ A1 such thatΦ(d) = F(X, t) holds. From the discussion in Section 4.3.1
one deduces easily that Φ is a regular map. Hence Φ is geometrically robust and therefore also
topologically robust and hereditary. Therefore D andΦ determine a Lagrange interpolation problem
in the sense of Definition 7.

Observe that the input data structure D of this interpolation problem is not dense in its ambient
space AN , since dimD = K +1 < 2K = N = dimAN holds. Thus our Lagrange interpolation problem
is therefore not generic like the one of Section 5.1.1.
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Let us denote by O := {F(X, t) : t ∈ C} the class of interpolants of the Lagrange interpolation
problem determined by D andΦ .

From the definition of F it follows that any interpolant f ∈ O may be evaluated by a division-free
straight-line program of size O(logD) = O(log K). Hence f is a univariate polynomial which is ‘‘easy
to compute’’ (see [8] for this notion and the context). This is another particular feature of our Lagrange
interpolation problem.

Proposition 22. Let notations and assumptions be as before. Let D∗ be a given constructible subset of
AM , a polynomial encoding ω∗

: D∗
→ ΠD of the space of interpolantsO and a geometrically robust map

Ψ : D → D∗ such that D∗, ω∗ and Ψ determine an algorithm which solves the Lagrange interpolation
problem represented by D and Φ (such a solution exists for a suitable natural number M, since Φ is
geometrically robust). Then we have M ≥ K, i.e. the complexity of the Lagrange interpolation algorithm
determined by D∗, ω∗ and Ψ is at least K = N/2.

Proof. Denote by GD the subset of A1 consisting of the (D + 1)-th roots of unity and let ψ1, . . . , ψM
be the components of Ψ : D → D∗. By Lemma 1 there exists a nonempty Zariski open subset U of
D which is contained in D and where ψ1, . . . , ψM are regular (i.e., well-defined) rational functions.

Let T be a new indeterminate. We now fix an arbitrary point (a1, b1, . . . , aK , bK ) of U and write
a := (a1, . . . , aK ). Now we consider the polynomial map ε : A1

→ D which for t ∈ A1 is defined by

ε(t) := (a1, F(a1, t), . . . , aK , F(aK , t)).

In particular there exists a complex number t0 with F(a1, t0) = b1, . . . , F(aK , t0) = bK and therefore
the image of ε and U have a nonempty intersection. This implies that λ1 := ψ1 ◦ ε, . . . , λM := ψM ◦ ε
are well-defined rational functions which belong to C(T ). Moreover, for any ζ ∈ GD we have
ε(ζ ) = (a1, 0, . . . , aK , 0).

Claim. The rational functions λ1, . . . , λM are all well defined at any point of ζ ∈ GD and the values
λ1(ζ ), . . . , λM(ζ ) are independent from the choice of ζ ∈ GD.

Proof of Claim. Consider an arbitrary (D + 1)-th root of unity ζ ∈ GD and an arbitrary index
1 ≤ j ≤ M .

Let M be the maximal ideal of the coordinate functions of C[D] which vanish at the point α :=

(a1, 0, . . . , aK , 0) = ε(ζ ) of D . Since by assumption Ψ is geometrically robust, there exist s ∈ N and
p0, . . . , ps−1 ∈ C[D]M such that the identity

ψ s
j + ps−1ψ

s−1
j + · · · + p0 = 0 (8)

holds in C(D). Since the rational functions p0, . . . , ps−1 are well defined at the point α, the
compositions π0 := p0 ◦ ε, . . . , πs−1 := ps−1 ◦ ε are well defined at ζ . Therefore π0, . . . , πs−1 belong
to the local ring C[T ]Nζ , where Nζ = C[T ] · (T − ζ ) is the maximal ideal generated by T − ζ in C[T ].

Identity (8) implies that

λsj + πs−1λ
s−1
j + · · · + π0 = 0

holds in C[T ]Nζ . Therefore λj is integral over C[T ]Nζ . Since λj belongs to C(T ) and C[T ]Nζ is integrally
closed in C(T ), we conclude λj ∈ C[T ]Nζ . This means that the rational function λj is well defined at
ζ . Since ζ ∈ GD was chosen arbitrarily we conclude that λj is well defined at any point ζ ∈ GD. This
proves the first part of the claim for 1 ≤ j ≤ M . We are now going to show the second part.

The morphism of irreducible varieties ε : A1
→ D induces a C-algebra homomorphism ε∗

:

C[D] → C[T ]. From Theorem I we deduce that there exists a field Ω containing C(T ) such that ε∗

can be extended to anΩ-valued place of C(D) that we also denote by ε∗. Let Rε∗ be the valuation ring
of the place ε∗. Observe that Rε∗ contains C[D] and its localization C[D]M at the maximal ideal M.
Therefore identity (8) implies that ε∗(ψj) is finite. Moreover, since ψj is a rational function of C(D)
and the composition ψj ◦ ε is well defined, we have ε∗(ψj) = ψj ◦ ε = λj.

Let ζ and η be arbitrary elements of GD. Then ζ and η induce by evaluation two C-algebra
homomorphisms µζ : C[T ] → C and µη : C[T ] → C. From Theorem I we conclude that µζ and
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µη can be extended to two C-valued places ofΩ which we also denote byµζ andµη . Let Rµζ and Rµη
be the valuation rings of the places µζ and µη . Then Rµζ contains C[T ]Nζ and Rµη contains C[T ]Nη .
Composing now the evaluation ε∗ with the valuation µζ , and with the valuation µη , we obtain two
C-valued valuations νζ and νη of C(D) which extend the evaluation of the coordinate functions of
C[D] at the point α ∈ D . Since by assumption Ψ is geometrically robust we have νζ (ψj) = νη(ψj).
On the other hand, from λj ∈ C[T ]Nζ we infer νζ (ψj) = µζ (ε

∗(ψj)) = µζ (λj) = λj(ζ ) and similarly
νη(ψj) = λj(η). This implies λj(ζ ) = λj(η). Therefore the value of λj(ζ ) does not depend on ζ ∈ GD.
Since 1 ≤ j ≤ M was chosen arbitrarily, the claim is proved. �

We conclude now that λ := (λ1, . . . , λM) is a rational map of C(T )M which is well defined at any
point ζ ∈ GD and whose value α∗

:= λ(ζ ) is independent from ζ .
Consider now the polynomial map ϕ : D∗

→ AK which at any point h ∈ D∗ is defined by
ϕ(h) := (ω∗(h)(a1), . . . , ω∗(h)(aK )).

Observe that θ := ϕ ◦ λ is a well-defined rational map (with maximal domain) from A1 to AK . For
any point t ∈ A1, such that ψj is well defined at ε(t), we have

θ(t) = ϕ(λ(t)) = ϕ(Ψ (ε(t))) = (ω∗(Ψ (ε(t)))(a1), . . . , ω∗(Ψ (ε(t)))(aK ))
= (Φ(ε(t))(a1), . . . ,Φ(ε(t))(aK ))
= (F(a1, t), . . . , F(aK , t)).

Thus θ is a polynomial map from A1 to AK and is therefore well defined at any point t of A1.
From

∂

∂T
F(T , X) = (D + 1)TD

D−
k=0

T kXk
+ (TD+1

− 1)
∂

∂T

D−
k=0

T kXk

we deduce that for any ζ ∈ GD and any x ∈ A1 the identity

∂F
∂T
(ζ , x) = (D + 1)ζ D

D−
k=0

ζ kxk

holds.
Let ζ1, . . . , ζD+1 be the (distinct) elements of GD. The chain rule for differential maps and the

previous claim imply now that for any 1 ≤ ℓ ≤ D + 1 the identity

(D + 1)ζ D
ℓ



D−
k=0

ζ k
ℓ a

k
1

...
D−

k=0

ζ k
ℓ a

k
K

 = (dθ)(ζℓ)

= (dϕ)(λ(ζℓ)) · (dλ)(ζℓ) = (dϕ)(α∗) · (dλ)(ζℓ) (9)

ismeaningful and valid (here dθ denotes the total derivative of θ and (dθ)(ζℓ) its value at the point ζℓ).
For 1 ≤ ℓ ≤ D + 1 let vℓ := ((D + 1)ζ D

ℓ )
−1((dθ)(ζℓ)) and let C be the complex (K × M)-matrix

C := (dϕ)(α∗), namely the Jacobian of ϕ at the point α∗, which is independent of the index ℓ. Observe
that K = D + 1 holds. From (9) we deduce that v1, . . . , vK are C-linear combinations of the columns
of C . We assert that v1, . . . , vK are C-linearly independent. In order to see this, let V the complex
(K × K)-matrix whose column vectors are v1, . . . , vK , VK := (ζ k−1

ℓ )1≤ℓ,k≤K andWα := (ak−1
ℓ )1≤ℓ,k≤K .

Then we have V = WαV t
K . Since VK and Wα are invertible Vandermonde matrices we conclude that

V is of maximal rank K . This implies that the rank of the complex (K × M)-matrix C is at least K and
therefore we have M ≥ K = N/2. This proves Proposition 22. �
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5.2. Straight-line program encoded polynomials: Lagrange interpolation is hard

Let n, L,M be natural numbers with 2L/4
≥ n, K := 4(L + n + 1)2 + 2 and N := K . In terms of

the notions and notations introduced in Sections 3.1.2 and 3.3.3, we are now going to show that any
geometrically robust interpolation algorithm,which reconstructs the n-variate polynomials that can be
evaluated by a division-free straight-line programof nonscalar length atmost L from their values on an
identification sequence of length K , has exponential complexity of order 2Ω(Ln) = 2Ω(

√
K)

= 2Ω(
√
N).

This means that traditional Lagrange interpolation at nL :=


2L+n
n


= 2O(Ln) nodes is almost optimal

for this very special and meager class of polynomials.
The following result, with a slightly coarser complexity bound, was exhibited in the context of

constraint databases in [14].

Theorem 23. Let notations and assumptions be as before, let D be the irreducible, constructible subset of
AN and let Φ : D → Π

(n)
2L

be the geometrically robust map introduced in Section 3.3.3. Thus D and Φ
determine a Lagrange interpolation problem in the sense of Definition 7 and the interpolants O := Φ(D)
are the polynomials inΠ (n) which can be evaluated by a division-free straight-line program of nonscalar
length at most L.

Let D∗ be a given constructible subset of AM , a polynomial encoding ω∗
: D∗

→ O of the class
of interpolants O and a geometrically robust map Ψ : D → D∗ such that D∗, ω∗ and Ψ determine an
algorithmwhich solves the Lagrange interpolation problem represented byD andΦ (such a solution exists
for a suitable natural number M, sinceΦ is geometrically robust). Then we have

M ≥


2⌊

L
2 +1⌋

− 1 + n
n


= 2Ω(Ln) = 2Ω(

√
K)

= 2Ω(
√
N).

In other words, the complexity of the Lagrange interpolation algorithm determined by D∗, ω∗ and Ψ is at
least exponential in L and n or alternatively in

√
K =

√
N.

Proof. Let ℓ :=
 L

2 + 1

and let Y be the subset ofΠ2L := Π

(n)
2L

defined by

Y :=


t
2ℓ−1−
k=0

(λ1X1 + · · · + λnXn)
k
: (t, λ1, . . . , λn) ∈ An+1


.

Taking into account that any polynomial h ∈ Y can be evaluated by a division-free straight-line
program of nonscalar length at most 2(ℓ − 1), we conclude that Y is contained in the class of
interpolants O. Let Y denote the Zariski closure of Y in its ambient space AnL (here we identify Π2L

with AnL ). Observe that Y is an irreducible affine subvariety of O, because Y is the Zariski closure of
the image of a polynomial morphism which maps the irreducible affine variety An+1 to AnL .

In Section 3.3.3 we already fixed points γ1, . . . , γK of An (e.g., integer points of bit length at most
4(L + 1) ≤ 2

√
K ) such that γ := (γ1, . . . , γK ) becomes an identification sequence for the class

of polynomials O. Let Ξ : O → AN be the polynomial map defined for f ∈ O by Ξ(f ) :=

(f (γ1), . . . , f (γK )). Recall D := Ξ(O).
Then D is an affine, closed and irreducible subvariety of AN

= AK and Ξ : O → D is a
homeomorphic (with respect to the strong topology), birational, finite morphism of irreducible affine
varieties. In particular, the map Φ := Ξ−1

: D → Π2L is geometrically robust and D and Φ
determine the Lagrange interpolation problem under consideration.

Let Z be the irreducible constructible subset of D ⊂ AN defined by Z := Ξ(Y). Observe that Z
is Zariski closed because Ξ : O → D is a finite morphism of affine varieties (i.e., the associated ring
homomorphism is an integral monomorphism). Thus Z is an irreducible and closed affine subvariety
of D and AN . Observe that the point (0, . . . , 0) ∈ AN belongs to Z ∩ D . The closeness of Z in
the strong topology follows also easily from the above mentioned fact that Ξ : O → D is a
homeomorphism.
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Let ψ1, . . . , ψM be the components of the given constructible map Ψ : D → AM . Following
Lemma 1, there exists a (nonempty Zariski) open affine subvariety U of D with U ⊂ D , where the
rational functions ψ1, . . . , ψM are regular. Thus ψ1|U, . . . , ψM |U are coordinate functions of the C-
algebra C[U] which is contained in the rational function field C(D).

Theorem 17 justifies now the following argumentation: There exist rational functions η1, . . . , ηM
of C(Z) such that, for any point z of the intersection of their domains and D , the condition η1(z) =

ψ1(z), . . . , ηM(z) = ψM(z) is satisfied. Moreover, if M denotes the (maximal) vanishing ideal of
C[Z] at the point (0, . . . , 0) ∈ Z ∩ D , since by assumption Ψ is geometrically robust and Z is an
irreducible closed subvariety of D , the rational functions η1, . . . , ηM are integral over C[Z]M (see
also Proposition 16 and Theorem 9).

Therefore there exist s ∈ N and rational functions pij ∈ C[Z]M, 0 ≤ i ≤ s − 1, 1 ≤ j ≤ M , such
that

ηsj + ps−1jη
s−1
j + · · · + p0j = 0 (10)

holds in C(Z) for any 1 ≤ j ≤ M .
Let T ,U1, . . . ,Un and Y1, . . . , YK be new indeterminates, let U := (U1, . . . ,Un) and X :=

(X1, . . . , Xn), and let GT ,U(X) be the polynomial of C[T ,U, X] defined by

GT ,U(X) := T
2ℓ−1−
k=0

(U1X1 + · · · + UnXn)
k.

Moreover, let gT ,U := (GT ,U(γ1), . . . ,GT ,U(γK )). Then gT ,U induces a dominating morphism of
affine varieties An+1

→ Z. This morphism induces a C-algebra isomorphism between the C-
algebras C[Z] and C[gT ,U ], where C[gT ,U ] is interpreted as the subalgebra of C[T ,U] generated by
GT ,U(γ1), . . . ,GT ,U(γK ). This isomorphism maps the maximal ideal M of C[Z] onto the maximal
ideal M of C[gT ,U ] generated by GT ,U(γ1), . . . ,GT ,U(γK ). Further, this isomorphism maps the rational
functions pij ∈ C[Z]M, 1 ≤ i ≤ s − 1, 1 ≤ j ≤ M , onto rational functionspij ∈ C[gT ,U ]M and induces
a C-field isomorphism between C(Z) and C(gT ,U) which maps η1, . . . , ηK onto rational functionsη1, . . . ,ηK ∈ C(gT ,U). More precisely, we haveη1 = η1 ◦ gT ,U , . . . ,ηK = ηK ◦ gT ,U with well-defined
compositions.

Let Y := (Y1, . . . , YK ) and S := {P(gT ,U) : P ∈ C[Y ], P(0, . . . , 0) ≠ 0 }. Then S is a multiplicative
subset of C[gT ,U ] and hence of C[T ,U]. Observe C[gT ,U ]M = S−1C[gT ,U ]. Identity (10) implies that

ηsj +ps−1jηs−1
j + · · · +p0j = 0 (11)

holds in C(T ,U) for any 1 ≤ j ≤ M . Therefore η1, . . . ,ηM are integral over C[gT ,U ]M = S−1C[gT ,U ]

and hence over S−1C[T ,U]. Since C[T ,U] is integrally closed, the C-algebra S−1C[T ,U] is also
integrally closed (see, e.g., [20, Ch. VII, Section 1, Proposition 1.9]). Moreover, S−1C[T ,U] contains
S−1C[gT ,U ]. We conclude now that the rational functions η1, . . . ,ηM of C(T ,U) belong to S−1C[T ,U].

Let u be an arbitrary point of An and P an arbitrary polynomial of C[Y ] with P(0, . . . , 0) ≠ 0. We
have G0,u(X) = 0 and therefore g0,u = (0, . . . , 0). This implies P(g0,u) = P(0, . . . , 0) ≠ 0. Hence any
rational function of S−1C[T ,U] is well defined at the point (0, u) ∈ An+1. In particular the rational
functionsηj andpij, 1 ≤ i ≤ s − 1, 1 ≤ j ≤ M , are well defined at (0, u). Moreover, the value
αij :=pij(0, u) does not depend on u, sincepij belongs to C[gT ,U ]M.

Therefore (11) implies that

ηj(0, u)s + αs−1,jηj(0, u)s−1
+ · · · + α0,j = 0

holds in C. Hence forηj(0, u), u ∈ An, there are only finitely many possible values. On the other hand,
the map An

→ A1 which assigns to any point u ∈ An the valueηj(0, u) ∈ A1 is a rational function
which is regular everywhere on An and therefore a polynomial map whose image consists of finitely
many points.We conclude now that the valuesη1(0, u), . . . ,ηM(0, u) are independent from the point
u ∈ An.
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Let N0 := {0}∪N and, for α := (α1, . . . , αn) ∈ Nn
0, let |α| := α1+· · ·+αn. For a given nonnegative

integerm, let

Σm := {α ∈ Nn
0 : |α| ≤ m}.

Observe thatΣm consists of
m+n

n


elements.

Since every polynomial of O has degree at most 2L, we may consider for any α ∈ Σ2L with
α := (α1, . . . , αn) the coordinate function θα of C[O] which, applied to f ∈ O, yields the coefficient
of the polynomial f ∈ Π

(n)
2L

which corresponds to the monomial Xα := Xα11 . . . Xαn1 . Moreover, for any
t ∈ A1 and any u := (u1, . . . , un) ∈ An we have

Gt,u = t
−

0≤k≤2ℓ−1

−
α∈Nn

0
|α|=k

k!
α1!α2! . . . αn!

uα11 Xα11 . . . uαnn Xαnn

= t
−
α∈Nn

0
0≤|α|≤2ℓ−1

|α|!

α1!α2! . . . αn!
uα11 Xα11 . . . uαnn Xαnn .

Observe that degGt,u ≤ 2ℓ−1 ≤ 2L holds and thatGt,u can be evaluated by a division-free straight-
line program of nonscalar length 2(ℓ− 1) ≤ L. Therefore Gt,u belongs toΠ (n)

2L
and in particular to O.

Thus for α ∈ Σ2L the value θα(Gt,u) is well defined and we have

θα(Gt,u) =


t|α|!

α1! · · ·αn!
uα if α ∈ Σ2ℓ−1,

0 if α ∈ Σ2L \Σ2ℓ−1.

For any ρ ∈ A1, let ρ := (ρ, ρ2ℓ , ρ22ℓ , . . . , ρ2(n−1)ℓ
) and let βρ : A1

→ An+1 be the (polynomial)
map defined for t ∈ A1 by

βρ(t) := (t, ρ, ρ2ℓ , ρ22ℓ , . . . , ρ2(n−1)ℓ
).

From our previous argumentation, we infer that the composition

σρ := ω∗
◦η ◦ βρ (12)

of the rational maps ω∗,η := (η1, . . . ,ηM) and βρ is well defined and regular at the point t := 0.
We now choose a small open polydisc∆ of A2

= C2 around the origin such that for any (t, ρ) ∈ ∆

the rational mapη is well defined at βρ(t). Let η := (η1, . . . , ηM). Then we have for (t, ρ) ∈ ∆ the
identitiesη(βρ(t)) = η(gt,ρ) = Ψ (gt,ρ)

and therefore

σρ(t) = ω∗(η(βρ(t))) = ω∗(η(gt,ρ)) = ω∗(Ψ (gt,ρ)) = Φ(gt,ρ) = Gt,ρ .

This implies that for any α ∈ Σ2L with α := (α1, . . . , αn), we have that

θα(σρ(t)) =
t|α|!

α1! · · ·αn!
ρα =

t|α|!

α1! · · ·αn!
ρα1+α22

ℓ
+α322ℓ+···+αn2(n−1)ℓ

(13)

holds if α ∈ Σ2ℓ−1 and θα(σρ(t)) = 0 holds if α ∈ Σ2L \Σ2ℓ−1.
Observe that the elements of the sequence


α1 + α22ℓ + · · · + αn2(n−1)ℓ


(α1,...,αn)∈Σ2ℓ−1

are all

distinct, since (α1, . . . , αn) ∈ Σ2ℓ−1 implies that α1, . . . , αn are nonnegative integers which are
bounded by 2ℓ − 1.
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Let us fix ρ ∈ A1 with (0, ρ) ∈ ∆. Applying the chain rule to the functional decomposition
σρ(t) = ω∗

◦η ◦ βρ(t)with (t, ρ) ∈ ∆we obtain

d
dt
σρ(0) = (dω∗)(η(βρ(0))) ·

d
dt
(η ◦ βρ)(0),

where (dσρ/dt)(0) denotes the derivative of σρ at the point t := 0. As we have seen before, the value

µ :=η(βρ(0)) =η(0, ρ) = (η1(0, ρ), . . . ,ηK (0, ρ))
is independent from ρ.

Let C be the complex (nL × M)-matrix C := (dω∗)(η(βρ(0))) = dω∗(µ), namely the Jacobian of
ω∗ at the point µ, which is independent from the value ρ. Then

d
dt
σρ(0) = (dω∗)(η(βρ(0))) ·

d
dt
(η ◦ βρ)(0) = C ·

d
dt
(η ◦ βρ)(0)

implies that (dσρ/dt)(0) is a C-linear combination of the columns of C . From Lemma 24 we deduce
that there exist suitable values ρl ∈ C \ {0}, 1 ≤ l ≤ #Σ2ℓ−1, with (0, ρl) ∈ ∆ such that the column
vectors (dσρl/dt)(0) ∈ AnL are C-linearly independent. This implies that the rank of the (nL × M)-
matrix C is at least

#Σ2ℓ−1 =


2ℓ − 1 + n

n


=

2


L
2 +1


− 1 + n
n

 .
Therefore we have

M ≥

2


L
2 +1


− 1 + n
n

 .
From of our assumption 2L/4

≥ nwe deduce2


L
2 +1


− 1 + n
n

 ≥
(2

L
2 − 1)n

n!
≥
(2

L
2 − 1)n

nn
= 2Ω(

L
2 −log n)n

= 2Ω(Ln)

and from N = K = (L + n + 1)2 + 2 we conclude

Ln = Ω(
√
K) = Ω(

√
N).

Thus we obtain the lower bound

M ≥

2


L
2 +1


− 1 + n
n

 = 2Ω(Ln) = 2Ω(
√
K)

= 2Ω(
√
N).

In order to finish the proof of Theorem 23, we make use of the following result.

Lemma 24. Let m ∈ N, n1 < n2 < · · · < nm ∈ N0 be given and nonzero elements a1, . . . , am ∈ A1. Let
Z1, . . . , Zm be indeterminates over C and let P := (Pi,j)1≤i,j≤m ∈ C[Z1, . . . , Zm]

m×m be the (m × m)-
matrix whose entries are the polynomials Pi,j := ajZ

nj
i , 1 ≤ i, j ≤ m. Then we have det P ≠ 0.

In particular, there exist elements ρ1, . . . , ρm ∈ C with arbitrarily small norm for which the matrix
P(ρ1, . . . , ρm) = (ajρ

nj
i )1≤i,j≤m is nonsingular.

Proof. We argue by induction on m. Since the case m = 1 is obvious, we may suppose m > 1. For
1 ≤ i ≤ m, let Qi be the (m−1)×(m−1)-submatrix of P obtained deleting row number i and column
number m. Observe that detQi does not contain the indeterminate Zi. Then we have

det P = (−1)m+1amZ
nm
1 detQ1 + (−1)m+2amZ

nm
2 detQ2 + · · · + amZnm

m detQm.
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For any 1 ≤ i, j ≤ m, we have degZj(detQi) ≤ nm−1. Since Q1 has the shape required by the
statement of the lemma for the case m − 1, we may apply the induction hypothesis to Q1. We have
therefore detQ1 ≠ 0. Thus (−1)n+mam detQ1 ≠ 0 is the coefficient of the highest power, namely nm,
of Z1 in P . This implies det P ≠ 0. The rest of the statement of the lemma is then obvious. �

We now apply Lemma 24 to the column vectors (dσρ/dt)(0) ∈ AnL with (0, ρ) ∈ ∆ and ρ ≠ 0.

End of the proof of Theorem 23. With the notations of Lemma 24 and the proof of Theorem 23, let

m := #Σ2ℓ−1 =


2ℓ−1+n

n


=


2


L
2


+1

−1+n
n


and let 0 ≤ n1 < · · · < nm be the elements of the

sequence

α1 +α22ℓ+· · ·+αn2(n−1)ℓ


(α1,...,αn)∈Σ2ℓ−1

in ordered form (recall that the elements of this

sequence are all distinct). For 1 ≤ j ≤ m and α := (α1, . . . , αn) ∈ Σ2ℓ−1 with nj = α1 +α22ℓ + · · ·+

αn2(n−1)ℓ, let aj := |α|!/(α1! · · ·αn!) and P ∈ C[Z1, . . . , Zm]
m×m the (m × m)-matrix defined in the

statement of Lemma 24. Then there exist ρ1, . . . , ρm ∈ Cm with (0, ρ1) ∈ ∆, . . . , (0, ρm) ∈ ∆ such
that det P(ρ1, . . . , ρm) ≠ 0 holds.

Let H be the complex (nL ×m)-matrix consisting of the column vectors (dσρ1/dt)(0), . . . , (dσρm/
dt)(0). Then the identities (13) of the proof of Theorem 23 imply that the (m × m)-submatrix of H
determined by the rows corresponding to the elements of Σ2ℓ−1 is the matrix P(ρ1, . . . , ρm). From
det P(ρ1, . . . , ρm) ≠ 0 we conclude now that H is of maximal rankm.

Therefore the m := #Σ2ℓ−1 column vectors (dσρl/dt)(0) ∈ AnL , 1 ≤ l ≤ m, are C-linearly
independent. This completes the proof of Theorem 23. �
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Appendix A. A dictionary to the language of software engineering

In this Appendixwe are going to translate to the language of software engineering the terminology
previously introduced for the mathematical modeling of the concept of a Hermite–Lagrange
interpolation problem and algorithm with polynomial interpolants. This translation was done by
Andrés Rojas Paredes, Universidad de Buenos Aires, and can be found in full extent in [25].

A.1. The algorithmic model of this paper and its terminology

We start with the presentation of the more general terminology of [9, Sections 2.2, 3 and 5.4]
which we then specialize to the case of Hermite–Lagrange interpolation. Let O and O∗ be classes
of mathematical objects (typically polynomials) which we think embedded as constructible sets in
(typically high-dimensional) affine spaces. Furthermore, let D and D∗ be given constructible subsets
of (typically low-dimensional) affine spaces AN and AM and bijective constructible maps ω : D → O
and ω∗

: D∗
→ O∗. Finally, let Ψ : D → D∗ and Φ : O → O∗ be given constructible maps such

that the diagram
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D

ω
��

Ψ // D∗

ω∗

��
O

Φ // O∗

(A.1)

commutes. We call O and O∗ input and output object classes (and their members mathematical input
and output objects) and D and D∗ input and output data structures (and their members input and
output codes). The constructible maps ω and ω∗ are called encodings of O and O∗. The input and
output code sizes are N and M . The constructible map Ψ is called a (continuous) algorithm which
implements the (abstract) map Φ . The output code size M is considered as a lower bound for the
complexity of Ψ .

Themain concern in [9] is the case whereω andω∗ are polynomial maps, i.e., where the encodings
are holomorphic and Ψ is at least topologically robust and hereditary, whereas Φ is typically a
polynomial map. In case thatD is irreducible one even supposes thatΨ is geometrically robust. If this
condition is satisfied the continuous algorithm Ψ is called branching-free. In the typical case where O
(andO∗) are classes of n-variate polynomialswe consider two queries, called the identity and the value
question:

• For two given codes d, d′
∈ D , decide whether d and d′ represent the same object of O, i.e., decide

whether ω(d) = ω(d′) holds.
• For a given code d ∈ D and an argument point x ∈ An, compute the valueω(d)(x) of the polynomial
ω(d) ∈ O at x.

In the case of Hermite–Lagrange interpolation a fundamental simplification occurs. In this case
the input data structure D and the class of mathematical input objects coincide and ω becomes the
identity map. This is the deeper sense of the double interpretation of D as an input data structure
and as a class of interpolation data in Section 3. An element d ∈ D may be interpreted as input code
as well as a mathematical object, called ‘‘interpolation datum’’, associated to another mathematical
object, namely an interpolant belonging to O.

A.2. The algorithmic model and its terminology in software engineering

We translate now this terminology to the language of software engineering in object oriented
programming. The particular terms we use from software engineering are borrowed from [22]. We
turn now back to the general situation at the beginning of the section.

We start by interpreting D,D∗ and O,O∗ as data types. For this purpose we assume that O and
O∗ are sets of polynomials. Let us only consider D and O (the case of D∗ and O∗ is similar). Since D
is embedded in AN wemay suppose that the data type represented by D contains as constructors the
restrictions to D of the canonical projections of AN onto A1 and the arithmetic operations with them.
Furthermore, the data type D contains the identity relation between elements of D . By assumption
D is a constructible subset of AN . Therefore there are constraints (i.e., a Boolean combination of
polynomial equations) which decide in AN membership to D . The constructible set D is called a class
and its elements are called objects. If the membership query for D in AN belongs to the data type of
D we call the (given) constraints defining D a class invariant.

The data type represented by O is slightly different since we shall avoid the reference to the given
embedding of O in a (possibly high-dimensional) affine space. Since by assumption O is a set of
polynomials we may suppose that the data type O contains as creators the arithmetic operations
with elements of O. Again we suppose that the data type O contains the identity relation between
the elements of O. Since the query for membership of polynomials to O does not belong to the data
type of O, we do not refer to O as a class and consequently we do not speak about class invariants
in this context. The relevant properties of O inherited by its embeddings in an affine space and in a
polynomial ring are expressed by certain axioms satisfied by the data type of O (e.g., the associativity
of the addition of elements of O). In this sense we refer to O as an abstract data type. The elements of
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O are called objects. In order to distinguish the nature of the objects contained in O and D , we refer
to them as abstract and concrete, respectively.

The constructible map ω : D → O is called an abstraction function and the data type of D
an implementation of O. We refer to Φ : O → O∗ as an operation (or abstract function) on the
abstract data type O and to Ψ : D → D∗ as an implementation of Φ . A query which is expressible
by the data type of O and returns Boolean or complex values is called an (abstract) function of O.
The term function is also used for queries on the class D which implement abstract functions of O.
Examples of functions are the identity and the value question. In the context of this paper, namely
the Hermite–Lagrange interpolation, we may interpret the routine Ψ : D → D∗ as a function or as
a procedure (or method). In the first case the values of Ψ are considered as outputs and in the second
case the values of Ψ are only ‘‘intermediate results’’, whereas the values of ω∗

◦ Ψ are considered
as outputs. In any case, Ψ : D → D∗ represents the concrete and Φ : O → O∗ the abstract level
of our program design. The final aim of a computer program is the evaluation of abstract functions.
Procedures may be interpreted as components of such programs. On the other hand, routines which
are functions form the essential ingredients of a program library. The diagrams (1) and (A.1) represent
the design of a program architecture. The (possible) requirement that ω and ω∗ are polynomial maps
forms part of the design.

This paper is devoted to the analysis of algorithms which may be implemented numerically in
fixed precision as well as symbolically in infinite precision. This is the reason why we have chosen
as a ‘‘platform’’ the algebraic complexity model with the arithmetic operations implemented at
unit costs. Consequently, classes and routines have to be constructible. If we require that routines
admit specifications and correctness proofs, the abstract data types, the operations on them and the
abstraction functions have also to be constructible.

If we now require that in the architectural design of Hermite–Lagrange interpolation the
abstraction function ω∗ is polynomial, then we deal with a restriction of the design. This restriction is
wellmotivated ifwe think about the representation of polynomials by their coefficients or by division-
free straight-line programs. In the algebraic complexity model, the sequential time complexity of Ψ
(measured in terms of the number of arithmetic operations) is a (quantitative) quality attribute of Ψ .
Without loss of generality we may assume that the complexity of Ψ is at leastM .

Another (dichotomic) quality attribute of Ψ is geometric robustness. If we think about numerical
implementations, the non-functional requirement (or quality attribute) that Ψ is geometrically robust
seems well motivated because it allows to avoid branchings.

Now we are ready to paraphrase in terms of software engineering Theorem 23 of Section 5.2:
Under the architectural design of Hermite–Lagrange interpolation contained in Definition 7, the non-
functional requirement that Ψ is geometrically robust implies an exponential blow up of the complexity
of Ψ .

We do not know of any other example in software engineering where a tradeoff between two
quality attributes is certified by a mathematical proof. On the other hand, architecture tradeoff
analysis methods (ATAM) represent a modern trend in software engineering (see, e.g., [2,3,18]).
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