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Abstract We estimate the effects of climate anomalies (heat stress and drought) on annual maize
production, variability, and trend from the country level to the global scale using a statistical model.
Moderate climate anomalies and extremes are diagnosed with two indicators of heat stress and drought
computed over maize growing regions during the most relevant period of maize growth. The calibrated
model linearly combines these two indicators into a single Combined Stress Index. The Combined Stress
Index explains 50% of the observed global production variability in the period 1980–2010. We apply the
model on an ensemble of high‐resolution global climate model simulations. Global maize losses, due to
extreme climate events with 10‐year return times during the period 1980–2010, will become the new normal
already at 1.5 °C global warming levels (approximately 2020s). At 2 °C warming (late 2030s), maize areas will
be affected by heat stress and drought never experienced before, affecting many major and minor
production regions.

Plain Language Summary Global warming is negatively affecting several aspects of ecosystems
and societies. This study analyzes the impact of climate on global and regional maize production in the
past and in the future. The effects of warmer temperatures and lack of rain on maize production is first
analyzed from reported national maize production time series, and these relationships are then projected
into the future, using state‐of‐the‐art global climate model simulations. The worse climate events
causing the larger maize production losses observed in the past will become normal already at the global
warming level of 1.5 °C compared to the preindustrial period. Our findings highlight the importance of
Paris Agreement mitigation goals to hold the increase of global temperature well below 2 °C and pursuing
efforts to limit increase to 1.5 °C, as well as the need of identifying and adopting efficient
adaptation measures.

1. Introduction

Maize became the most important staple crop with a global production amounting to more than 1 × 109 t
(1012 kg) since 2013 (FAOSTAT, 2017). Currently, maize is predominantly produced in the United States
under well‐watered conditions (Klopfenstein et al., 2013; Ranum et al., 2014). Maize was originally
cultivated in the tropics, where it was and it is still grown under rainfed conditions (see Figure S1). Maize
often provides the primary feedstock for human food products and animal feed and it is sometimes used
as fuel (Shiferaw et al., 2011).

Ranging between 28 °C and 32 °C, the optimum daytime temperature to grow maize is higher than for the
other important grain crops such as wheat and rice (Sánchez et al., 2014). Nevertheless, maize yields are
quite sensitive to the effects of climate anomalies related to high daytime temperatures (Lobell et al.,
2011; Lobell et al., 2013; Schlenker & Roberts, 2009; Tebaldi & Lobell, 2018; Zhao et al., 2017).

Several mechanisms can explain the impact of high temperature onmaize yields. High seasonal temperature
anomalies accelerate maize phenological phase transitions reducing yields (Tebaldi & Lobell, 2018). Daily
temperatures above 32 °C can induce heat stress reducing maize photosynthetic rate and increases leaf
transpiration (Crafts‐Brandner & Salvucci, 2002), compromising water use efficiency. Maize is particularly
sensitive to heat stress during the anthesis (flowering) stage by reducing the pollen germination (Gourdji
et al., 2013). During the grain filling period, high temperatures shorten kernel filling and decrease yield.
Since maize is left in the field to dry up before harvesting, it is usually not sensitive to heat stress and drought
in the final period of the cropping season (e.g., Ceglar et al., 2018).
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Maize yields are also affected by drought (Zipper et al., 2016) and its nonlinear interactions with heat stress
(Iizumi & Ramankutty, 2016; Lesk et al., 2016; Matiu et al., 2017) earlier in the growing season. Drought can
cause considerable delays in maize female organ development (Barnabas et al., 2008). During the reproduc-
tive stage, water shortage can also result in the inhibition of photosynthesis, thus also reducing the nutrient
supply to generative organs. In addition, reduced soil moisture availability can further increase the likeli-
hood of heat stress (Lobell et al., 2013; Ray et al., 2002; Zampieri et al., 2009, 2016).

Under climate change conditions, CO2 fertilization effects on maize growth should also be taken into
account. Despite high uncertainties, most experimental and modeling results point to limited CO2 effects
for the C4 crop maize, compared to the other main C3 crops such as wheat and rice (Bassu et al., 2014;
Deryng et al., 2014; Kimball, 2016; Makowski et al., 2015; Schleussner et al., 2018; Semenov & Shewry,
2008). Higher CO2 concentrations potentially increase maize water use efficiency and may alleviate the
effects of drought onmaize yields (Crafts‐Brandner & Salvucci, 2002). However, the reduced evapotranspira-
tion might result in higher canopy temperatures that can exacerbate heat stress (Kimball, 2016). The effects
of CO2 fertilization are anyway reduced in case of nitrogen and water limitation (Kimball, 2016), which is a
common situation in most developing countries.

Climate change has been postulated to be responsible for significant reductions of observed maize yield
trends (Lobell et al., 2011) albeit proportionally small compared to the increase related to the agronomical
improvements (Ray et al., 2012). However, considering that maize production is stagnating in nearly 26%
of the producing areas, global production may become insufficient to meet the projected demand from rising
population (Ray et al., 2013). Moreover, water availability for irrigation may become an increasingly critical
limiting factor (Scanlon et al., 2012). Notably, in most assessments of climate change impacts on crops,
maize stands out to be the most negatively affected (Deryng et al., 2014; Iizumi et al., 2017; Tebaldi &
Lobell, 2018).

These concerns motivate our analysis, which adopts statistical methods able to explain a significant portion
of the observed interannual production variability (Frieler et al., 2017; Ray et al., 2015; Zampieri, Ceglar,
Dentener, & Toreti, 2017). As in similar studies (Lobell, Schlenker, & Costa‐Roberts, 2011; Tebaldi &
Lobell, 2018), we adopt a statistical approach to estimate the impacts of climate anomalies (namely, heat
stress and drought) on the observed crop production variability and trend. Differently from previous studies,
we focus on production instead of yield, in order to account also for the effects of climate anomalies on the
harvested area (Cohn et al., 2016). The statistical method is then applied to future conditions, influenced by
climate change.

For long‐term future climate change projections, the validity of the statistical model (inferred with observed
data) is questionable when climatic anomalies fall outside the range of values used for its estimation.
However, these models can be still applied for near‐real‐term future projections (Lobell & Asseng, 2017;
Tebaldi & Lobell, 2018).

Previous global model studies relied on relatively coarse‐resolution climate data, while high‐resolution data
for impact studies were available at the regional level only. In this study, we compute the statistical indica-
tors on a novel ensemble of high‐resolution (approximately 50 km) global climate projections (Dosio et al.,
2018; Naumann et al., 2018) and we limit the analysis to the period when the projected climatic anomalies
are expected to become comparable with themost intense climate extremes observed in the past. By focusing
the analysis on the near future (2020s and 2030s), we also reduce the uncertainty associated with unknown
adaptation practices and uncertainties in the sensitivities of plant physiological processes to other climate
related factors, such as atmospheric CO2 concentration (Tebaldi & Lobell, 2018).

2. Materials and Methods
2.1. Definition of the Heat and Water Stress Indexes and Description of the Statistical Model

In a statistical framework, the main effects of climate anomalies can be diagnosed through heat and water
stress indicators, here the Heat Magnitude Day (HMD; Zampieri et al., 2016, 2018; Zampieri, Ceglar,
Dentener & Toreti, 2017) and the Standardized Precipitation Evapotranspiration Index (SPEI;
Vicente‐Serrano et al., 2013). These two indicators are computed for a specific period before harvesting,
encompassing the flowering stage and the grain filling period (Ceglar et al., 2018; Zampieri, Cegla,
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Dentener & Toreti, 2017). The HMD integrates the amplitude and duration of maximum daily temperature
anomalies exceeding the 90th percentile, which is seasonally and spatially varying. The SPEI is a standar-
dized index cumulating precipitation and evapotranspiration to estimate the state of soil moisture. The non-
parametric nature of these indicators bears the advantage of automatically removing the possible biases in
the climatic data (Naumann et al., 2018; Zampieri et al., 2018; Zampieri, Ceglar, Dentener & Toreti, 2017)
as well as preserving the consistency among atmospheric variables (Naumann et al., 2018).

Time series of heat and water stress indicators are computed on a spatial grid according to the periods
defined in the global cropping calendar data set MIRCA 2000 (Portmann et al., 2010). Spatial aggregations
at country level are employed using the harvested area information included in the MIRCA 2000 data set
as weighting factor, and the harvesting month as reference for the period when the heat and water stress
indicators are computed (see Figure S1).

Like previous statistical studies for maize (Ceglar et al., 2018), we use a two‐month time window for comput-
ing the HMD and a four‐month window for the SPEI, both counting backward from the second month
before harvesting. Thus, the period after ripening, when the crop is left in the field to dry up and is not
any more sensitive to climate variations, is excluded. This approach obviously excludes crop losses asso-
ciated with field accessibility under extremely wet conditions. Several studies have considered seasonally
averaged correlations with crop yields (Iizumi & Ramankutty, 2016; Lobell, Bänziger, et al., 2011; Ray
et al., 2015; Tebaldi & Lobell, 2018). Compared to the mean seasonal temperature anomalies computed on
the same period, the HMD is more sensitive to warm temperature anomalies and extremes while it is less
sensitive to cold anomalies. The HMD is statistically equivalent to themean seasonal temperature anomalies
for small departures from the climatology (see Figure S2 and Text S1).

The combination of HMD and SPEI (i.e., the so‐called Combined Stress Index (CSI; Zampieri, Ceglar,
Dentener & Toreti, 2017) indirectly also takes into account the effects of other correlated drivers of yield
anomalies related to meteorological variations, such as solar radiation, acceleration of phenological stages,
weeds, pests, and diseases (Leng et al., 2016; Lobell & Gourdji, 2012; Zampieri et al., 2018).

When focusing on the interannual yield variation, assuming constant harvested area and removing the base-
line trend of yields and climate indexes, the CSI explains 50% of maize yield interannual variability in
Europe (Ceglar et al., 2018).

The signal of climate variability on harvested area and production can be sometimes larger than that on yield
alone (Cohn et al., 2016). In order to take into account the effects of climate variability on the harvested area
as well, we consider the production time series instead of yields. Thus, we decompose the observed
(FAOSTAT, 2017) country‐level production annual time series (P) into an annually varying CSI‐driven com-
ponent and a slowly varying component due to nonclimatic and other external factors (PNC):

P ¼ PCSI þ PNC þ ε (1)

PCSI ¼ α·CSI≡β·HMDþ γ·SPEI (2)

In equation (1), ε represents the residual error component. In equation (2), β and γ are regression coeffi-
cients. The calibrated linear combination of HMD and SPEI is the CSI (Ceglar et al., 2018; Zampieri,
Ceglar, Dentener & Toreti, 2017), which is proportional to the production loss PCSI through the α coefficient.

We adopt an iterative procedure to determine PCSI and PNC. The algorithm consists of computing

• a first estimate of the climate component (PCSI) using equation (2) evaluated with first guesses of the para-
meters β and γ obtained from bilinear regression on the production anomalies after removing a linear
trend;

• PNC + ε using equation (1);
• PNC by using the LOESS method (Cleveland & Devlin, 1988);
• the production anomalies with respect to PNC; and
• a more accurate estimate of the PCSI parameters using bilinear regression on the production anomalies.

This procedure converges quickly after a few iterations, providing the final estimates of β and γ for each
country. The CSI iterative algorithm is equivalent to statistical methods including time as regressor for
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linear technological trends in the production time series (e.g., Lobell, Schlenker, & Costa‐Roberts, 2011), but
it also allows to disentangle the signal due to the climatic anomalies from the nonlinear technological trends
(see Figures S3 and S4a–S4c and Text S2).

SPEI is often the dominant predictor in the tropics, indicating larger sensitivity of maize production to
drought events. In contrast, in the middle latitude and especially in the United States, the HMD is often
the best predictor indicating larger sensitivity to heat stress (Figure S4c).

The nonclimatic component (PNC) is referred as “Estimated Optimal Production” in the Graphical abstract
and in Figure 1. The gray dots in the graphical abstract are obtained removing the sum of the losses esti-
mated by the CSI at country level from the FAOSTAT global production records (FAOSTAT, 2017).

2.2. Application to Climate Simulations

We use the statistically derived parameters characterizing the production losses simulated in the period
1980–2010 to interpret the projected changes of heat stress and drought. For each country, the 90th percen-
tile values of the CSI‐related production losses (corresponding to the 10‐year return period events) computed
over period 1980–2010 for each simulation are used to characterize the worse events. For each simulation,
we diagnose the timings after 2010 when these values are reached by the 11‐year running means of the

Figure 1. Time series of observed maize production (FAOSTAT; black lines), estimated optimal component (PNC; gray lines) and estimated optimal component
minus the anomalies due to heat stress and drought (PNC − PCSI; in red) for (a) global, (b) United States, (c) China, (d) the sum of Brazil and Argentina, (e) the
sum of all countries of the European Union (EU28), (f) the sum of Ukraine and Russia, and (g) the sum of other smaller producing countries.
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projected production losses, both for each country and for regional aggregates. To summarize the results, we
report the median of these estimates.

3. Data
3.1. Data for Calibration in the Reference Period

We use annual production data at country level (FAOSTAT, 2017), available for the period 1971–2016. The
meteorological conditions in the calibration period are taken from a bias‐corrected reanalysis developed spe-
cifically for crop model applications (AgMERRA; Ruane et al., 2015), available from 1980 to 2010, at
0.25 × 0.25° resolution. In the following we call these data “observations.”

3.2. Climate Model Outputs

The HMD and the SPEI are computed for seven realizations of historical climate conditions and future cli-
mate projections from global climate models downscaled at higher resolution in the context of the High‐End
cLimate Impacts and eXtremes project (HELIX; https://www.helixclimate.eu/) for the period 1971–2100.
The simulations were performed with the SMHI EC‐EARTH global atmospheric model at a horizontal reso-
lution of around 50 km. The sea surface temperature and sea ice were prescribed using the output of seven
general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5)
ensemble (Taylor et al., 2012). The greenhouse gas concentration scenario considered in these simulations
(i.e., the RCP8.5) assumes a CO2 equivalent of about 1,370 ppm and a corresponding warming of approxi-
mately 4.0 °C with respect to preindustrial temperatures by the end of the twenty‐first century (van
Vuuren et al., 2011), which allows evaluating climate change effects under low as well as high levels
of warming.

This data set has been used in earlier publications to estimate future changes of heat waves (Dosio et al.,
2018) and drought (Naumann et al., 2018). We also validate the climate simulation for the specific purposes
of this study by comparing the HMD and the SPEI mean values and the values characterized by a return per-
iod of 10 years computed on the simulation ensemble with respect to the same values computed from the
observations (see Figure S4 and Text S4).

The final results of the timings when worse maize losses of the past become normal are discussed in compar-
ison with the timings when the different levels of global warming are reached in the simulations (see Text S3
and Table S1).

4. Results

Figure 1a shows the observed global production (i.e., the sum of production in all maize‐producing coun-
tries) for 1980–2010 and the estimated optimal production. The time series including the anomalies due to
heat stress and drought are qualitatively similar to the observations. However, the CSI model skill in captur-
ing the observed anomalies depends on the region (see Table 1 and Figures S4a and S4b). The corresponding
trend in production losses is reported in Table 1.

Globally, the sum of the country‐level production anomalies estimated by the CSI captures 49% of the var-
iance, in agreement with previous studies (Ceglar et al., 2018; Ray et al., 2015).

In the United States (Figure 1b; 42% variance explained), the observed production losses and those explained
by the CSI are higher at the beginning of the time series, consistently with the observed reduction in high‐
temperature extremes (Troy et al., 2015). Interestingly, in addition to a trend due to technological progress of

Table 1
Skill of the CSI Iterative Model in Capturing the Observed Production Anomalies With Respect to the Estimated Optimal
Baselines (R2)

World United States China Bra + Arg Europe Ukr + Rus Others

R2 0.49 0.42 0.33 0.36 0.75 0.51 0.51
PCSI trend 0.00 0.49 −0.21 0.03 −0.29 −0.11 −0.08
p value 0.99 0.36 0.09 0.65 0.01 0.01 0.43

Note. Production trend due to climate (PCSI trend; in million tons per year), with the corresponding p values.
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4.4 × 106 t per year, we compute a positive trend of 0.49 × 106 t per year due to decreasing intensity of climate
anomalies, consistently with the finding of a recent study by Kukal & Irmak (2018). However, this climatic
driven trend is not statistically significant when compared to the interannual production variability, in
agreement with Lobell, Bänziger, et al. (2011).

In the EU28 (i.e., the 28 member states of the European Union; Figure 1e), the CSI captures a large fraction
(75%) of the variance of the interannual production anomalies. The production losses due to heat and water
stress are well captured especially after the 1990s, when climate started to warm faster in western and south-
ern Europe (Zampieri et al., 2013; Zampieri, Toreti, Schindler, Scoccimarro, & Gualdi, 2017). The production
of the EU28, without the intensification of the climatic stress, would have reached an additional production
trend of 0.29 × 106 t per year larger than the one actually observed. For the EU28, our estimations suggest a
nonlinear nonclimatic component consisting of a quick increase in the first half of the period and a stagna-
tion or a small decline afterward, confirming the results of Hawkins et al. (2013) for France, the most impor-
tant maize producer of the EU. Agronomical reasons (politically and economically driven) might explain the
yield stagnation in Europe (e.g., Brisson et al., 2010).

European, Ukrainian and Russian production time series are affected by discontinuities due to the fall of
Yugoslavia and of the Communist block. On the contrary, the PCSI time series, being reconstructed on cli-
matic data available from 1980, are homogeneous. Over Ukraine and Russia, the CSI detects a progressively
detrimental effect of climate variability in terms of increasing heat and water stress in the last years of the
observed period that is responsible for a production trend of −0.11 t per year. The trend in Ukraine and
Russia is influenced by the 2010 heat wave event (Zampieri et al., 2016).

An increasing influence of climate variability is found in China as well, consistently with previous estimates
(Lobell, Schlenker, & Costa‐Roberts, 2011). There, the CSI explains only one third of interannual variance,
which is less than in other regions. The global maize loss trend predicted by the CSI over Europe, China, and
the other countries is about half million tons per year and it is completely balanced by the trend recorded in
the United States.

Table 2 upper row displays the 10‐year return levels (90th percentile) of production losses estimated by the
CSI based on observations from 1980 to 2010. The next seven rows in Table 2 display the production losses in
the reference period, as well as the year when these production losses become the norm in the future. We
quantify the latter by calculating the year when the median of the 11‐year running means of the seven indi-
vidual members of the climate simulations ensemble reaches the production loss for the historical period. In
the calibration period, the model calculated production losses are generally consistent with the observations,
but the global production losses estimated by the CSI tend to somewhat exceed the observed values, probably
because of the overestimation of drought impact amplitude (see Figure S3). The 10‐year return level values
recorded in the United States are quite well represented in the simulation ensemble.

Figure 2 shows the production losses computed through the CSI for the seven‐member ensemble of climate
change simulations from 1980 to 2100. Table S1 lists the years corresponding to the global warming level
timings and discuss their computations in the simulations' ensemble.

Table 2
The 90th Percentile of Observed and Simulated Production Losses Estimated by the CSI, Corresponding to the 10‐Year Return
Levels of Maize Losses Due to Climate Anomalies in the Period 1980–2010, in Million Tons, and Years when the Same Values
Are Reached by the 11‐Year Running Means in the Individual Projections of the HELIX Ensemble (see Figure 2)

World United States China Bra + Arg Europe Ukr + Rus Others

Obs 90th 88 70 12 5.4 14 1.8 9.5
Ens#1 90th 117 (2028) 71 (2033) 15 (2031) 11 (2020) 20 (2041) 3.7 (never) 17 (2014)
Ens#2 90th 100 (2019) 66 (2024) 17 (2050) 10 (2031) 19 (2022) 3.5 (2088) 19 (2021)
Ens#3 90th 129 (2032) 93 (2058) 16 (2035) 11 (2025) 16 (2019) 3.0 (2052) 19 (2019)
Ens#4 90th 96 (2025) 71 (2051) 13 (2026) 10 (2020) 16 (2053) 4.3 (never) 16 (2017)
Ens#5 90th 90 (2030) 52 (2038) 15 (2029) 12 (2029) 17 (2048) 3.1 (never) 20 (2023)
Ens#6 90th 114 (2028) 57 (2040) 16 (2028) 11 (2022) 17 (2036) 3.1 (2094) 17 (2018)
Ens#7 90th 101 (2022) 71 (2050) 14 (2026) 12 (2036) 19 (2022) 3.6 (2083) 20 (2031)

Note. The 90th percentile is not reached until 2100 in the aggregatedUkraine and Russia production projections in some
of the ensemble members. The median, the earlier, and the later timings are shown in Figure S5 for each country.
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At the global level, the effects of climate change on maize production are likely to be comparable to the large
historical crop losses already in the next decade (2020–2030) in some of the simulation ensemble members.
The median timing when the worse losses simulated in the past are reached almost coincides with the med-
ian timing of the 1.5 °C global warming level. We note that in our analysis we assume that current manage-
ment practices will also be applied in the next decade (i.e., no adaptation). When the 2 °C global warming
level is reached, climate change is expected to produce unprecedented losses in global maize production,
as indicated in all simulations. At 3 °C global warming level (about 2060 in our model simulations) the situa-
tion is even worse. However, in this case the statistical parameters of our model are beyond the “training”
range of validity, and results should be considered with caution. Other environmental factors, such as ele-
vated atmospheric CO2 concentration and changes in fertilization, may become important as well
(Tebaldi & Lobell, 2018). Most importantly, by that time significant adaptation measures will likely
be adopted.

The effect of CO2 on production due to the increased water use efficiency (Bassu et al., 2014; Deryng et al.,
2014), but also increased sensitivity to temperature (Kimball, 2016), can be roughly estimated in our frame-
work by disentangling the effects of heat stress from drought (Figure S6).

Figure 2. Maize production losses due to heat and water stress (PCSI) in the historical and future climate simulations according to the RCP8.5 emission scenario
(the full range is given by the thin black lines, with the bold line representing the median). The time series represented by the red lines are the estimated production
losses due to climate in the observations. Light‐orange bands indicate the period when the past worse largest losses become normal (PWLBN), that is, when
the 10‐year return level production losses (estimated on the period 1980–2010) are reached by the 11‐year running mean in the simulations. The orange vertical
bands represent the median timing of the ensemble. Vertical blue, green, and purple lines in the (a) indicate the median timings when the 1.5, 2, and 3 °C global
warming levels (GWL) are reached in the climate simulation ensemble (see Table S1 and Text S3).
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Heat stress is the most important driver of the CSI changes in the United States (Figure S6b). In contrast,
drought seems to be responsible for significant losses of maize production in China, Brazil, and
Argentina, and the group of the smaller producers (Figures S6c, S6e, and S6g), which could be in principle
benefited by CO2 increase. Large production losses are projected to happen comparatively earlier in China,
Europe, and Brazil‐Argentina (Figures S6b, S6d, and S6e) with respect to the other regions. The largest rela-
tive production losses are found for minor producers (Figure S6g). Notably, climate change is favoring maize
production in Ukraine and Russia (Figure S6f) due to a compensation effect between projected increasing
heat and decreasing water stress (Figure S6f).

5. Discussion and Conclusions

The statistical model adopted in this study, relating interannual variability and trend of maize production
losses to heat and water stress, leads to results consistent with prior analyses on climate impact on crop yield
(Lobell, Bänziger, et al., 2011). In particular, our study corroborates the finding that in the period 1980–2010
increasing losses due to climate variability observed in most parts of the world have been compensated by
lower variability in the U.S. maize production (Kukal & Irmak, 2018). This production stability was asso-
ciated with large increases in irrigation capacity (Troy et al., 2015) leading to unsustainable groundwater
depletion (Scanlon et al., 2012).

This situation may be changing. The severe 2012 drought in the United States caused maize production
losses similar to those in the 1980s (Boyer et al., 2013), which raises question on the resilience of maize pro-
duction under future climate change conditions.

Statistical crop modeling can provide reliable estimates of the expected impacts of near‐term climate change
(Lobell & Asseng, 2017; Tebaldi & Lobell, 2018), provided that the climate change is not far beyond the cur-
rent climate variability. Here we used an ensemble of climate model simulations for 1971–2100 under the
RCP8.5 scenario at a global resolution of approximately 50 km. Compared to earlier studies, climate model
simulations have higher horizontal global resolution and the applied method is less dependent on climate
model biases.

To demonstrate the importance of future climate impacts, we compared the timings when the most detri-
mental climatic events (10‐year return level) affecting maize production in the past become normal in the
future. We found that global warming will substantially increase the risk of maize production losses in most
world regions, including the United States. The climatic events affecting historical global maize production
once every 10 years will become normal at the 1.5 °C global warming level, which is reached in the 2020s in
most of the analyzed climate model simulations. This global signal is mostly driven by the U.S. production.
In contrast, maize production is projected to be relatively stable in Ukraine and Russia across the twenty‐first
century driven by compensating impacts of reduced water stress and increasing temperature. Our analysis
suggests an alarming situation for several other regions, which to a large extent rely on maize for human
consumption, livestock feed, and biofuel production.

At the 2 °C warming level (approximately late 2030s), our projections suggest that global maize production
will suffer from unprecedented losses, if no adaptation practices will be adopted. Efforts are advisable to
identify new regions suitable for maize cultivation (Davis et al., 2017; Leng & Huang, 2017; Ramirez‐
Cabral et al., 2017), as well as to develop efficient and sustainable adaptation strategies (Muller et al.,
2015; Scanlon et al., 2012). Adaptation and relocation of production strategies have to account for other sus-
tainability goals, including reducing GHG emissions and other environmental pressures (i.e., less fertiliza-
tion) and optimize water use. Better understanding of several major uncertainties (i.e., CO2 and canopy
effects; Kimball et al., 2016) is needed.
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