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a b s t r a c t

Canonical correlation analysis (CCA) is a dimension-reduction technique in which two
random vectors from high dimensional spaces are reduced to a new pair of low
dimensional vectors after applying linear transformations to each of them, retaining as
much information as possible. The components of the transformed vectors are called
canonical variables. One seeks linear combinations of the original vectors maximizing the
correlation subject to the constraint that they are to be uncorrelated with the previous
canonical variables within each vector. By these means one actually gets two transformed
random vectors of lower dimension whose expected square distance has been minimized
subject to have uncorrelated components of unit variance within each vector. Since the
closeness between the two transformed vectors is evaluated through a highly sensitive
measure to outlying observations as the mean square loss, the linear transformations we
are seeking are also affected. In this paper we use a robust univariate dispersion measure
(like an M-scale) based on the distance of the transformed vectors to derive robust S-
estimators for canonical vectors and correlations. An iterative algorithm is performed
by exploiting the existence of efficient algorithms for S-estimation in the context of
Principal Component Analysis. Some convergence properties are analyzed for the iterative
algorithm. A simulation study is conducted to compare the newprocedurewith some other
robust competitors available in the literature, showing a remarkable performance. We also
prove that the proposal is Fisher consistent.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Principal component analysis (PCA) and canonical correlation analysis (CCA) are two dimension-reduction techniques
of widespread use in statistics. Though the principal component analysis relates to an internal analysis, i.e. within-group
spectral decomposition for the study of dispersion, and the canonical correlations to an external analysis, i.e. between-
group interrelations or correlations, conceptually they are interrelated. We will further explore this relationship. For a
random vector x in the Euclidean space of dimension q, with positive definite dispersion matrix Σ , PCA looks for the
spectral decomposition ofΣ , the eigenvectors v1, . . . , vq associatedwith the corresponding eigenvalues in decreasing order
δ1 ≥ δ2 ≥ · · · ≥ δq > 0, that is,

Σ =

q
i=1

δivivti . (1)
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The variables vt1(x − Ex), . . . , vtq(x − Ex) are usually referred as principal components. The spectral decomposition gives
the orthonormal directions of maximum dispersion for x, where the eigenvalues and eigenvectors can be defined through
an optimization scheme,

δ1 = max
a∈Rq, ∥a∥=1

Var(at(x − Ex)), v1 = arg max
a∈Rq, ∥a∥=1

Var(at(x − Ex)) (2)

δj = max
∥a∥=1, Cov(at (x−Ex),vtk(x−Ex))=0, k=1,...,j−1

Var(at(x − Ex)), j > 1

vj = arg max
∥a∥=1, Cov(at (x−Ex),vtk(x−Ex))=0, k=1,...,j−1

Var(at(x − Ex)),

where Var and Cov stand for the variance and the covariance operators for randomvariables. On the other hand, the principal
components are the best linear predictors for z = x − Ex when looking for linear combinations

p
k=1(a

t
kz)ak based on an

orthonormal set

a1, . . . , ap, ap+1, . . . , aq


, p < q. More precisely, principal components solve the optimization problem

(µx, Vp) = arg min
µ∈Rp,V

E ∥(x − µ)− PV (x − µ)∥2

= arg min
µ∈Rp,V

E
PV⊥ (x − µ)

2 , (3)

where PV stands for the orthogonal projection on a subspace V of dimension p < q, V =

a1, . . . , ap


means that V is gen-

erated by the orthonormal set

a1, . . . , ap


and V⊥

=

ap+1, . . . , aq


denotes the orthogonal complement of V . Then, the

solutions (µx, Vp) for (3) are given by

µx = Ex, Vp =

v1, . . . , vp


and PVp(z) =

p
k=1

(vtkz)vk.

CCAwas proposed byHotelling [10] to determine the relationship between two sets of variables obtained by transforming
the vectors x and y into two vectors z andw in lower dimensions whose association has been greatly strengthened (see Das
and Sen [5] for a very thorough account on CCA and their wide variety of applications). In recent years, CCA has also gained
popularity as a method for the analysis of genomic data, since CCA has the potential to be a powerful tool for identifying
relationships between genotype and gene expression. It has also been used in geostatistical applications (see Furrer and
Genton [8]). CCA is closely related to multivariate regression when the vectors x and y are not treated symmetrically (see
Yohai and García Ben [20]). Given the two random vectors x and y of dimensions p and q respectively, with dispersionmatrix
given by

Σ =


E(x − Ex)(x − Ex)t E(x − Ex)(y − Ey)t
E(y − Ey)(x − Ex)t E(y − Ey)(y − Ey)t


=


Σxx Σxy
Σyx Σyy


, (4)

det(Σxx) > 0 < det(Σyy), 0 < r = rank(Σxy) ≤ min(p, q) = s. (5)

CCA seeks linear combinations of the variables in x and the variables in y that are maximally correlated with each other,
that is, the first canonical vectors α1 and β1 are defined (except for the signs) as

α1,β1


= argmax
(a,b)∈(Rp−{0})×(Rq−{0})

Corr

atx, bty


. (6)

Since the correlationmeasure is scale invariant, we can define the first canonical vectors α1,β1 as solutions to the optimiza-
tion problem,

α1,β1


= argmax
(a,b)∈A1

Corr

atx, bty


, (7)

with

A1 =

(a, b) ∈ Rp

× Rq
: Var


atx


= atΣxxa = 1,Var

bty


= btΣyyb = 1

. (8)

The variables αt
1(x − Ex) and βt

1(y − Ey) are called the first canonical variables and its positive correlation ρ1 = Corr(αt
1x,

βt
1y) is called the first canonical correlation. Canonical vectors and variables of higher order are defined recursively. Given

k > 1, let us take the first k − 1 canonical variables αt
1(x − Ex), . . . ,αt

k−1(x − Ex) and βt
1(y − Ey), . . . ,βt

k−1(y − Ey)
based on canonical vectors {α1, . . . ,αk−1} ⊂ Rp and


β1, . . . ,βk−1


⊂ Rq. Then, the kth canonical variables αt

k(x − Ex)
and βt

k(y − Ey) can be obtained by seeking the vectors αk ∈ Rp and βk ∈ Rq so that the linear combinations αt
kx and βt

ky
with unit variance, uncorrelated toαt

1x, . . . ,α
t
k−1x andβt

1y, . . . ,β
t
k−1y, maximize the correlation coefficient between them.

More precisely, we look for vectors defined as
αk,βk


= argmax

(a,b)∈Ak

Corr

atx, bty


, (9)
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with

Ak =

(a, b) ∈ Rp
× Rq

:
Var(atx) = 1, Corr(atx,αt

jx) = 0,
Corr(bty,βt

j y) = 0, Var(bty) = 1,
j = 1, 2, . . . , k − 1

 . (10)

If ρk stands for the positive correlation between αt
kx and βt

ky (the kth canonical correlation), then ρ2
k =


Corr(αt

kx,β
t
ky)
2

and one gets a decreasing sequence of squared canonical correlations, ρ2
1 ≥ · · · ≥ ρ2

r for r = rank(Σxy) ≤ s = min(p, q).
The vectors αk and βk will be unique (apart from signs) if the canonical correlations are distinct. It is well known that the
optimization problem given by (9) and (10) is equivalent to solving the eigensystem

Σ−1
xx ΣxyΣ

−1
yy Σyxαk = ρ2

kαk, k = 1, . . . , r (11)

Σ−1
yy ΣyxΣ

−1
xx Σxyβk = ρ2

kβk, k = 1, . . . , r, (12)

which makes the search computationally more tractable. Classical estimators are obtained by replacing in (11) and (12) by
the sample covariance matrix. A robust counterpart can be easily performed by solving the linear system

Σ (R)−1

xx Σ (R)
xy Σ

(R)−1
yy Σ (R)

yx α
(R)
k =


ρ
(R)
k

2
α
(R)
k , k = 1, . . . , r (13)

Σ (R)−1

yy Σ (R)
yx Σ

(R)−1

xx Σ (R)
xy β

(R)
k =


ρ
(R)
k

2
β
(R)
k , k = 1, . . . , r,

withΣ (R) a robust dispersion estimator partitioned as in (4).
CCA can also be seen from a predictive point of view as it was done in (3) for PCA (see Seber [16], p. 260). The canonical

variables

z = (αt
1(x − Ex), . . . ,αt

r(x − Ex))t and w = (βt
1(y − Ey), . . . ,βt

r(y − Ey))t

are the best linear combinations to predict each other by making the mean squared loss E(∥z − w∥
2) as small as possible

since they solve the optimization problem
AC , BC ,µx,µy


= argmin
(Ā,B̄,µ,ν)∈C

E
Ā (x − µ)− B̄(y − ν)

2 (14)

with

C =


Ā, B̄,µ, ν


: Ā ∈ Rr×p, B̄ ∈ Rr×q,µ ∈ Rp, ν ∈ Rq, ĀΣxxĀt
= Ir = B̄ΣyyB̄t , (15)

Ir an r × r identity matrix and

AC , BC ,µx,µy


given by the canonical and expected vectors (the subscript C stands for

Classical), AC =

α1 α2 · · · αr

t
, BC =


β1 β2 · · · βr

t
, µx = Ex and µy = Ey.

The robust proposals for CCA parallel the development of robust procedures for PCA. Romanazzi [14] showed that the
classical canonical analysis is sensitive to outlying observations. Karnel [11] considered robust CCA estimators by using
M-estimators of multivariate scatter in (13). Because of its low breakdown point for high dimensions, Croux and Dehon [4]
used instead the MCD estimator proposed by Rousseeuw [15], which has high breakdown point to estimate the same
covariances. Taskinen et al. [17] stated asymptotic properties for CCA based on robust estimators of the covariance matrix.
Filzmoser et al. [7] derived a robust method for obtaining the first canonical variables using robust alternating regressions
(RAR) following the approach suggested byWold [19]. Branco et al. [3] extended themethod introduced in Filzmoser et al. [7]
and they proposed a robust method for obtaining all the canonical variables using RAR.

Branco et al. [3] also dealt with a robust projection pursuit procedure along the lines given by the Eqs. (7)–(10), in which
the measure of association given by the correlation Corr


atx, bty


is replaced by a robust correlation index IR


atx, bty


. IR

can be defined either using a rank correlation measure or taking a 2 × 2 robust dispersion matrixΣ (R) based on (atx, bty),
in which Σ (R) can be computed using many robust options for multivariate scatter matrix and location available in the
statistical literature and the robust correlation index is given by IR


atx, bty


= σ12/(σ11σ22).

Our proposal follows the predictive approach proposed in the context of PCA by Maronna [12], by taking (14) and (15)
andmeasuring themean squared loss through a robust scale. An efficient algorithm is implemented to compute CCAmaking
use of the connection between PCA and CCA: the PCA algorithm implemented in Maronna [12] is adapted to compute the
robust canonical vectors and correlations.

In Section 2 we define a robust predictive approach for CCA by considering a robust scale rather than the mean squared
loss in Eq. (14). In Section 3 we establish the Fisher consistency under elliptical distributions and we discuss briefly the
concept of breakdown point in this setting. In Section 4 the computing algorithm is established with some convergence
properties. Section 5 includes a simulation study to analyze the performance of several proposals for robust CCA. In Section 6
we include some concluding remarks. Proofs are deferred to the Appendix.
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2. A robust proposal for CCA

The optimization problems (14) and (15) shed light on the relationship between CCA and PCA. Given the matrices
Ā ∈ Rr×p and B̄ ∈ Rr×q, let us take A = ĀΣ1/2

xx , B = B̄Σ1/2
yy , D =


A −B


∈ Rr×m, m = p + q and the random vector

z = (xtΣ−1/2
xx , ytΣ−1/2

yy )t . By reformulating (14) and (15) for the standardized vectorsΣ−1/2
xx x andΣ−1/2

yy y, we have

min
(Ā,B̄,µ,ν)∈C

E
Āx − B̄y − (Āµ − B̄ν)

2 = min
(D,a)∈Br,m

E

∥Dz − a∥2 (16)

with

Br,m =

(D, a) : a ∈ Rr ,D =


A −B


∈ Rr×m, AAt

= Ir = BBt ,
which is the optimization problem given by (3), except for a missing normalizing constant 1

√
2
in

A −B


. Since the covari-

ance matrix for the standardized random vector z is given by

M =


Ip Σ−1/2

xx ΣxyΣ
−1/2
yy

Σ−1/2
yy ΣyxΣ

−1/2
xx Iq


, (17)

(3) and (16) give more insight into the relationship between CCA and PCA based on the covariance matrix M (see ten
Berge [18]). We next introduce a prediction-based approach to construct robust canonical vectors and correlations, mimick-
ing the ideas given in Maronna [12] for PCA. If we take a look at (16) the nonrobust mean squared loss might be replaced for
a robust loss to evaluate the ‘‘largeness’’ of the ‘‘residuals’’

Ax̃ − Bỹ − a
2, withΣ (R)

xx andΣ (R)
yy robust dispersion estimators

for Σxx and Σyy respectively, x̃ =


Σ
(R)
xx

−1/2
x and ỹ =


Σ
(R)
yy

−1/2
y, and


A −B


, a


∈ Br,m. Therefore, to assess the

‘‘largeness’’ of
Ax̃ − Bỹ − a

2 we compute an M-scale σ = σ(A, B, a) implicitly defined through

Eρ

Ax̃ − Bỹ − a
2

σ


= δ, (18)

where 0 < δ < 1 and ρ : [0,∞) → [0, 1] is a nondecreasing, left-continuous function such that ρ(0) = 0 and limx→∞ ρ(x)
= 1. Then, the robust standardized SM-canonical vectors are defined through the equation

(Ao, Bo, ao) = arg min
(A,B,a)∈Br,m

σ(A, B, a), (19)

and the final SM-canonical vectors are defined as

ASM = Ao

Σ (R)

xx
−1/2

, BSM = Bo

Σ (R)

yy
−1/2

.

The sample version of the estimates is simply obtained by replacing the population expectation by the empirical expecta-
tion. The algorithm is easily derived from the fact that we have a constrained minimization and the Lagrange multipliers
method applies.

Either robust PCA in [12] or the proposal in (19) are reminiscent of the S-estimators for multivariate scatter and location,
in which a scale of the squared Mahalanobis distances

d2(z,µ,Σ) = (z − µ)tΣ−1(z − µ) (20)

is minimized to yield robust estimates for multivariate dispersion and location. A common procedure is used in the three
cases (multivariate scatter, PCA or CCA respectively), in which the smallness of ‘‘residuals’’ is assessed by means of a
robustM-scale. Even though themultivariate S-estimators encompass all the information relative to principal and canonical
vectors, the two proposals either for PCA or CCA gain remarkably in accuracy as the simulation study reveals.

3. Fisher-consistency of the proposal

In the multivariate location and dispersion model (MLDM) we observe an m-dimensional random vector z = (z1, . . . ,
zm)t with distribution Fµ,6(B) = F0


6−1/2(B − µ)


, where F0 is a known distribution in Rm, B is a Borel set in Rm, µ ∈ Rm

and Σ ∈ Sm, the set of m × m positive definite matrices. An important case is the family of elliptical distributions. We say
that anm-dimensional random vector has an elliptical distribution if it has a density of the form

f (z,µ0,Σ0) =
1

(detΣ0)1/2
f0((z − µ0)

tΣ−1
0 (z − µ0)), (21)

where f0 : R+
→ R+ is decreasing. If µ0 = 0 and Σ0 = Im in (21), then atz has the same distribution for all a ∈ Sm−1

= {a ∈ Rm
: ∥a∥ = 1}. Let us denote Or,m =


A ∈ Rr×m

: AAt
= Ir


. Ifw ∈ Rm, and Dm stands for the set of distributions of
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w denoted by D(w), we call a multivariate location and dispersion functional to an application (T, S) : Dm → Rm
× Rm×m

such that (i) S(D(w)) ∈ Sm, if m stands for the dimension of the random vector w, (ii) it is affine equivariant, i.e., given a
nonsingular matrix G ∈ Rm×m and a vector b ∈ Rm,

T(D(Gw + b)) = GT(D(w))+ b,
S(D(Gw + b)) = GS(D(w))Gt .

Let us take location and dispersion functionals (T, S) such that (Tx, Sx) = (T(D(x)), S(D(x))) and (Ty, Sy) = (T(D(y)),
S(D(y))) respectively. Take x̄ = S−1/2

x (x − Tx) and ȳ = S−1/2
y (y − Ty). Let∆d be the set of d × d diagonal matrices. Then, a

standardized CCA functional (Ao, Bo,Λo) : Do → Or,p × Or,q × (∆r ∩ Sr), with Do ⊂ Dp+q, is defined to be the solution to
an optimization problem, that is,

(Ao, Bo) = arg min
D∈Or,p,E∈Or,q

γ


D


Dx̄
Eȳ


Λo = γo


D


Aox̄
Boȳ


,

for some functions γ : D̃ → R and γo : D̃ → ∆r ∩ Sr , with D̃ ⊂ D2r , and a CCA functional is taken as

A(D(x, y)),

B(D(x, y)),Λ(D(x, y))


= (AoS
−1/2
x , BoS

−1/2
y ,Λo). This general concept of CCA functionals includes the functionals

associated to the proposals for CCAmentioned in Section 1 aswell as the SM-estimation. The functional (T, S) for the location
and dispersion parameters at MLDM is said to be Fisher consistent if T(Fµ,6) = µ and S(Fµ,6) = Σ . If z is elliptically
contoured with finite second moments, then the covariance matrixΣ andΣ0 are equal up to a constant, that is,Σ = cΣ0
for some positive constant c. If z = (xt , yt)t is elliptically distributed, then x and y are also elliptical, with the location
parameter partitioned as µ0 =


µt

x,µ
t
y
t and the dispersion parameter Σ0 as in (4). Then, if the target model is elliptical

with finite second moments, we say that a CCA functional (A, B,Λ) is Fisher consistent if (A, B,Λ) solves
Σ−1

xx ΣxyΣ
−1
yy Σyx


At(Fµ,6)


= At(Fµ,6)Λ(Fµ,6)

Σ−1
yy ΣyxΣ

−1
xx Σxy


Bt(Fµ,6)


= Bt(Fµ,6)Λ(Fµ,6).

Then, let us take dispersion functionals Sx = S(D(x)) and Sy = S(D(y)) which are Fisher consistent for Σxx and Σyy.
Then, we takex = S−1/2

x x andy = S−1/2
y y andwe look for the solutions σ for (18). Let us take the spectral decomposition for

M in (17) given by M =
p+q

i=1 γitit
t
i , with γ1 > γ2 > · · · > γr ≥ · · · ≥ γp+q−r+1 > · · · > γp+q, tti tj = δij, 1 ≤ i, j ≤ p + q,

with δij the Kronecker delta. Since ti = (vti ,w
t
i )

t , vi ∈ Rp,wi ∈ Rq, i = 1, . . . , p + q, let us call

Ao =


vp+q−r+1vp+q−r+1

 , . . . , vp+qvp+q

t

∈ Rr×p,

Bo =


wp+q−r+1wp+q−r+1

 , . . . , wp+qwp+q

t

∈ Rr×q,

ao = AoΣ
−1/2
xx µx − BoΣ

−1/2
yy µy.

In the next theorem we state the Fisher consistency of the SM-estimator defined in (19) for elliptical families.

Theorem 1. Let z be a random vector with elliptical density given by (21). Then, the SM-estimator defined in (19) is a Fisher
consistent estimating functional, that is,

(Ao, Bo, ao) = arg min
a∈Rr ,AAt=Ir=BBt

σ (A, B, a) .

Corollary 1. Let z be a random vector with elliptical distribution F and density given by (21). If ρ is differentiable, with ρ ′
= ψ ,

withΣ given in (4), then, we have for some constant c > 0,

EFψ


AoΣ

−1/2
xx x − BoΣ

−1/2
yy y − ao

2
σ (Ao, Bo, ao)

 (z − µ)(z − µ)t = cΣ .

One measure to quantify the robustness of an statistical procedure is given by its breakdown point. Roughly speaking,
the breakdown point quantifies the minimum amount of contamination for which there are outlying observations which
make the estimator move away from the natural parameter space within it is supposed to belong to. Let us formalize this
concept for our problem. Given 0 ≤ ε < 0.5, we assume that the random vector z = (xt , yt)t ∈ Rm has a distribution which
belongs to an ε-contamination neighborhood, that is,

Vε(Fµ,Σ ) =

F = (1 − ϵ)Fµ,Σ + ϵG : G an arbitrary distribution function in Rm .
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Given a standardized CCA functional (Ao(.), Bo(.),Λ(.)) : Vε(Fµ,Σ ) → Or,p × Or,q × (∆r ∩ Sr) such that (A0
o, B

0
o,Λ

0) =

(Ao(Fµ,Σ ), Bo(Fµ,Σ ),Λ(Fµ,Σ )) and Λ0
= diag(


ρ0
1

2
, . . . ,


ρ0
r

2
) under the target model Fµ,Σ then, the bias of the jth

canonical vector Aj,o (respectively Bj,o) at F ∈ Vε(Fµ,Σ ), j = 1, . . . , r is defined as b1,j(ε, F , Ao) = 1 −
Aj,o(F)tA0

o


(respectively b2,j(ε, F , Bo) = 1 −

Bj,o(F)tB0
o

). The bias for the jth squared canonical correlation ρ2
j at F ∈ Vε(Fµ,Σ ), j =

1, . . . , r is defined as bc,j(ε, F ,Λo) =

ρ2
j (F)−


ρ0
j

2. Then, the maximum asymptotic biases are defined as

B1,j(ε, Ao) = sup
F∈Vε(Fµ,Σ )

b1,j(ε, F , Ao), B2,j(ε, Bo) = sup
F∈Vε(Fµ,Σ )

b2,j(ε, F , Bo), (22)

Bc,j(ε,Λo) = sup
F∈Vε(Fµ,Σ )

bc,j(ε, F ,Λo), j = 1, . . . , r. (23)

The asymptotic breakdown points for these functionals are given by

ε∗

1,j(Ao) = inf

ε > 0 : B1,j(ε, Ao) = 1


, ε∗

2,j(Bo) = inf

ε > 0 : B2,j(ε, Bo) = 1


, (24)

ε∗

1,j(Λo) = inf

ε > 0 : Bc,j(ε,Λ) = max


1 −


ρ0
j

2
,

ρ0
j

2
, j = 1, . . . , r.

In the case of SM-estimates it is quite straightforward to verify that the M-scale has a breakdown point ε∗
= min(δ, 1− δ).

On the other hand, dealing with the computation of maximum bias and breakdown point as in (22) and (24) seems to be
quite intractable. This fact had been also noticed in Maronna [12] for SM-estimation in PCA. Only a few papers can be found
in the literature treating this kind of derivation. Zamar [21] treatedmaximumbias and breakdown point forM-estimators in
orthogonal regression. Berrendero [1] and Boente and Orellana [2] dealt withmaximum bias and breakdown point of robust
projection pursuit estimators for PCA and Common PCA respectively in the case of two-dimensional random vectors.

4. Computing algorithm

The canonical vectors given by Eqs. (14) and (15) have a robust version through (19). Given the sample zi =

xti , y

t
i

t
, i =

1, . . . , n, we firstly take robust initial location estimators for x and y, µ̂
(0)
x and µ̂

(0)
y respectively, and we get initial robust

estimated dispersion matrices Σ̂ (R)
xx and Σ̂ (R)

yy for the random vectors x and y respectively. Thus, let us take the standardized

random vectors (x̃, ỹ) =


Σ̂
(R)
xx

−1/2
x,

Σ̂
(R)
yy

−1/2
y

. Then, according to (19) we have to solve

min
(A,B,a)∈Br,m

σ(A, B, a),

with σ implicitly defined through the equation

g(A, B, a, σ ) =
1
n

n
i=1

ρ

Ax̃i − Bỹi − a
2

σ


= δ. (25)

After a few calculations we get that
Ax̃ − Bỹ − a

2 turns out to beAx̃ − Bỹ − a
2 = tr(Ax̃x̃tAt)+ tr(BỹỹtBt)− 2 tr(Bỹx̃tAt)− 2 tr


ax̃tAt

+ 2 tr

aỹtBt

+ tr

aat

.

Given the multipliers matricesΘ = (θij) ∈ Rr×r andΞ = (ξij) ∈ Rr×r , and the canonical basis {ei} , i = 1, . . . , r in Rr , the
side restrictions of the minimization problem are given by

i,j

ξijeti (AA
t
− I)ej = tr(AAtΞ t)− tr(Ξ t),

i,j

θijeti (BB
t
− I)ej = tr(BBtΘ t)− tr(Θ t).

We then get the critical points of the augmented function

h(A, B, a,Θ,Ξ) = σ(A, B, a)+ tr(AAtΞ t)+ tr(BBtΘ t)− tr(Θ t)− tr(Ξ t). (26)

After differentiating h with respect to a, A, B,Θ and Ξ (see Theorem A.95, p. 386, [13] for differentiation rules of the trace
function), if ψ = ρ ′ (the derivative of ρ), we get that

a = Aµ̃x − Bµ̃y, (27)
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with

µ̃x =

n
i=1
ψix̃i

n
i=1
ψi

and µ̃y =

n
i=1
ψiỹi

n
i=1
ψi

,

ψi = ψ

Ax̃i − Bỹi − a
2

σ


, i = 1, . . . , n,

and the linear system,

AM̃11 − BM̃21 = −σ [t(A, B, σ )]

Ξ + Ξ t

2


A (28)

BM̃22 − AM̃12 = −σ [t(A, B, σ )]

Θ +Θ t

2


B,

with

t(A, B, σ ) =
1
σ 2


1
n

n
i=1

ψ

Ax̃i − Bỹi − a
2

σ

Ax̃i − Bỹi − a
2 ,

where the matrices M̃11, M̃21, M̃12 and M̃22 are defined as

M̃11 =
1
n

n
i=1

ψi

x̃i − µ̃x

 
x̃i − µ̃x

t
, M̃21 =

1
n

n
i=1

ψi

ỹi − µ̃y

 
x̃i − µ̃x

t
, (29)

M̃12 =
1
n

n
i=1

ψi

x̃i − µ̃x

 
ỹi − µ̃y

t
, M̃22 =

1
n

n
i=1

ψi

ỹi − µ̃y

 
ỹi − µ̃y

t
.

To ease the computation it seems reasonable to make the approximation M̃11 ≈ Ip and M̃22 ≈ Iq since we started with a
standardized data set. Then, the system of equations in (28) turns out to be

A − BM̃21 = −σ [t(A, B, σ )]

Ξ + Ξ t

2


A (30)

B − AM̃12 = −σ [t(A, B, σ )]

Θ +Θ t

2


B,

and, after some algebraic manipulation, we get the eigensystem, with the diagonal matrixΛ ∈ Rr×r ,
Ip M̃12

M̃21 Iq


At

−Bt


=


At

−Bt


Λ. (31)

If (Âo, B̂o, Λ̂o) solves the eigensystem (31), we can set

µ̂x =

n
i=1
ψix̃i

n
i=1
ψi

and µ̂y =

n
i=1
ψiỹi

n
i=1
ψi

,

with σ̂ = σ(Âo, B̂o, Âoµ̂x − B̂0µ̂y), and the r first robust estimated canonical vectors and squared canonical correlations are
given by

ÂSM = Âo


Σ̂ (R)

xx

−1/2
, B̂SM = B̂o


Σ̂ (R)

yy

−1/2
and Λ̂2

SM =


Λ̂o − Ir

2
. (32)

The reasonability for the estimator Λ̂2
SM derives from a fact noticed previously in ten Berge [18] as a byproduct to the

equivalence of two oblique congruence rotationmethods. More precisely, it is observed that every principal vector (vt ,wt)t

for the matrix M with eigenvalue λ ∈ (0, 2) − {1} induces canonical vectors Σ−1/2
xx v and Σ−1/2

yy w with squared canonical
correlation (λ− 1)2. For the sake of clarity, we have included Lemma 3 in the Appendix, to make this relationship between
PCA and CCA more evident.

An iterative algorithm can be easily derived, following the numerical proposal given by Maronna [12]. To search for the
global minimum of σ(A, B, a), the iterative procedure generates a set of candidates from different random initial points
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and the minimum is chosen within this finite set. Let us take an initial matrix D(0) =

A(0)o −B(0)o


∈ Rr×(p+q) such that

A(0)o


A(0)o

t
= Ir = B(0)o


B(0)o

t
and parameters N1 ∈ N,N2 ∈ N, δ > 0 and tol > 0. The superscript (s) will stand for the

sth step in the iterative procedure. Put D(s) =

A(s)o −B(s)o


∈ Rr×(p+q)as the updated matrix and the iterative procedure is

next introduced.
Step 1

a0. Take preliminary robust covariance estimators Σ̂ (R)
xx and Σ̂ (R)

yy , set

z̃j = (x̃tj , ỹ
t
j )

t
=


xtj

Σ̂ (R)

xx

−1/2
, ytj


Σ̂ (R)

xx

−1/2
t

, j = 1, . . . , n.

b0. Compute initial location and scale estimates as

a(0) = med

D(0)z̃1, . . . ,D(0)z̃n


= med


A(0)x̃1 − B(0)ỹ1, . . . , A(0)x̃n − B(0)ỹn


.

σ (0) = MAD
D(0)z̃1 − a(0)

2 , . . . , D(0)z̃n − a(0)
2 .

c0. Put∆ = 0.

Step 2 (local search for the minimum). For s = 1 to N1 + N2, while∆ ≤ tol,

a1. Compute the residuals r2i

D(s−1), a(s−1)


=
D(s−1)z̃i − a(s−1)

2 , i = 1, . . . , n.
b1. Compute the M-scale σ (s) = σ(A(s−1), B(s−1), a(s−1)) defined as in (25) and the standardized residuals

r (s)i


D(s−1), a(s−1)

=

r2i

D(s−1), a(s−1) /σ (s), i = 1, . . . , n.

c1. Compute the weights ψ (s)
i = ψ


r (s)i


D(s−1), a(s−1)


, i = 1, . . . , n.

d1. Calculate the vectors µ
(s)
x =

n
i=1 ψ

(s)
i xi


/
n

i=1 ψ
(s)
i


, µ

(s)
y =

n
i=1 ψ

(s)
i yi


/

∼

n
i=1 ψ

(s)
i


, µ(s) =

µ(s)x
t 

µ(s)y
tt and µ̃(s) =


µ(s)x

t 
Σ̂ (R)

xx

−1/2 
µ(s)y

t 
Σ̂ (R)

yy

−1/2t
. Take a(s) = D(s−1)µ̃(s).

e1. Calculate∆ = 1 −

σ (s)/σ (s−1)


.

f1. If s > N1 then
a2. Calculate the matrices

M(s)
21 =

1
n

n
i=1

ψi

yi − µ(s)y

 
xi − µ(s)x

t
, M(s)

12 =


M(s)

21

t
. (33)

Given M̃(s)
12 =


Σ̂
(R)
xx

−1/2
M(s)

12


Σ̂
(R)
yy

−1/2
and M̃(s)

21 =


M̃(s)

12

t
, solve the eigenvalues and eigenvectors for the linear

system,

M(s)

v(s)k
w(s)

k


=


Ip M̃(s)

12
M̃(s)

21 Iq


v(s)k
w(s)

k


= λ

(s)
k


v(s)k
w(s)

k


, (34)

with v(s)k ∈ Rp and w(s)
k ∈ Rq associated to the kth least eigenvalues λ(s)k , with k = 1, . . . , r .

b2. Define D(s) =

A(s)o −B(s)o


∈ Rr×(p+q) by putting


v(s)k

t
/

v(s)k

 and

w(s)

k

t
/

w(s)
k

 obtained in (34) as the kth row

of A(s)o and B(s)o respectively, andΛ(s)o = diag(λ(s)1 , . . . , λ
(s)
r ) ∈ Rr×r .

c2. Set A(s) = A(s)o


Σ̂
(R)
xx

−1/2
and B(s) = B(s)o


Σ̂
(R)
yy

−1/2
.

Step 3 (global search for the minimum)

a3. For N initial matrices D(0) =

A(0)o −B(0)o


∈ Rr×(p+q) whose entries are random variables uniformly distributed on

(0, 1), a Gram–Schmidt procedure is performed to ensure that A(0)o


A(0)o

t
= Ir = B(0)o


B(0)o

t
.

b3. The iterative algorithm given in Step 1 and Step 2 is conducted for each D(0) as input yielding the N outputs
Ao,h, Bo,h,Λo,h, ah

N
h=1

and the corresponding scales

σ(Ao,h, Bo,h, ah)

N
h=1.
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c3. After sorting the N scales we keep the K smallest scales

σ(Ao,(h1), Bo,(h1), a(h1)) ≤ · · · ≤ σ(Ao,(hK ), Bo,(hK ), a(hK ))

and the estimatesAo,(h1), Bo,(h1), . . . , Ao,(hK ), Bo,(hK ) associatedwith them. TheseK estimates are used as initial estimators
to run the iterative procedure again.

d3. We get K candidates,

J =


A(out)o(hj)

, B(out)o(hj)
,Λ

(out)
o(hj)

, a(out)(hj)

K
j=1

and the final output is singled out as

(Âo, B̂o, â) = arg min
j∈{1,...,K}

σ(A(out)o(hj)
, B(out)o(hj)

, a(out)(hj)
),

Λ̂o = diag(λ̂1, . . . , λ̂r)

with Λ̂o the matrix whose diagonal elements correspond to the eigenvalues associated with Âo and B̂o in increasing

order. Then, the SM-estimates for canonical vectors and squared correlations are given by ÂSM = Âo


Σ̂
(R)
xx

−1/2
, B̂SM =

B̂o


Σ̂
(R)
yy

−1/2
and

Λ̂2
SM = diag(ρ2

1 , . . . ,ρ2
r ) =


Λ̂o − Ir

2
. (35)

We also include a proposal given in Branco et al. [3] to estimate robustly the canonical correlations based on the
SM-estimates for canonical variates (v̂tkx, ŵ

t
ky), where v̂k and ŵk are the kth rows of ÂSM and B̂SM respectively. In general,

given a robust estimator for bivariate dispersion, Σ̂ (R), a robust correlation RC is defined by replacing the covariance and
the standard deviations in the classical sample correlation by their robust counterparts σ̂12, σ̂11 and σ̂22 respectively,
that is, RC = σ12/(σ11σ22). Therefore, a robust estimator for the squared canonical correlations is provided by computing
Σ̂ (R) using an MCD or S-estimate based on


v̂tkxi, ŵ

t
kyi
n

i=1,

ρ2
k = RC2 v̂tkx, ŵt

ky


=
σ̂ 2
12

σ̂ 2
11σ̂

2
22
. (36)

Since the ρ function used to define the M-scale is redescending, the iterative algorithm yields only a local minimum of
σ , and hence the starting values are essential. That is why the iterative procedure is initialized with a bunch of random
candidates for the canonical vectors and then the problem of minimizing σ is replaced by the finite problem of minimizing
σ(A, B, a) overJ. Regarding the convergence properties of the computing algorithm, it can be proved that the scale descends
at each iteration of the algorithm described in Step 2 along with a sequence of estimators whose accumulation points are
local minimum for the scale function.

Lemma 1. Let ρ be a nondecreasing, differentiable and concave function in (18). Then σ decreases at each iteration of the
algorithm in Step 2.

Lemma 2. Assume that ρ is a nondecreasing, twice differentiable and concave function in (18). Then, any accumulation point of
the sequence


D(k), a(k)

∞

k=1 obtained by applying the iterative algorithm is a local minimum of σ(D, a).

5. Simulation study

To assess the performance of different proposals for CCA some measures have been considered. Given x1, . . . , xn ∈ Rp

and y1, . . . , yn ∈ Rq identically distributed random vectors, we take X = (x1, . . . , xn)t ∈ Rn×p and Y = (y1, . . . , yn)t ∈

Rn×q. Let k ≤ rank(Σxy) ≤ min(p, q), take Âk ∈ Rk×p and B̂k ∈ Rk×q as the estimators of the k first canonical vectors based
on the sample (XY ). We assume that zi = (xti , y

t
i )

t
∼ (1 − ε)F0 + εG0, i = 1, . . . , n, 0 < ε < 0.5, G0 a distribution

function on Rp+q, F0 the core distribution such that EF0z1 = 0p+q and its covariance matrix is given in (4).

5.1. Relative prediction error

Maronna [12] defines a prediction measure to evaluate the performance of PCA estimators. The concept can be easily
adapted to the context of CCA. Let us take another randomvector z =


xt , yt

t
∈ Rp+q independent of (XY ) such that z ∼ F0,

A0
k ∈ Rk×p and B0

k ∈ Rk×q are the matrices with the population canonical vectors associated with the largest k squared
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canonical correlations based on the distribution F0. Then the Relative Prediction Error (RPE) is defined to be

RPE

Âk, B̂k


=

E
Âkx − B̂ky

2 |X, Y


E
A0

kx − B0
ky
2 |X, Y

 − 1 =

E
Âkx − B̂ky

2
E
A0

kx − B0
ky
2 − 1 (37)

=

tr

ÂkΣxxÂt

k


+ tr


B̂kΣyyB̂t

k


− 2 tr


ÂkΣxyB̂t

k


tr

A0
kΣxx


A0
k

t
+ tr


B0
kΣyy


B0
k

t
− 2 tr


A0
kΣxy


B0
k

t − 1. (38)

Since the true A0
k and B0

k minimize the mean squared error E

∥Ax − By∥2, the formula (37) compares the fit yielded by the

estimators Âk and B̂k with the fit which gives the smallest expected error. Consequently, E
Âkx − B̂ky

2 ≥ E
A0

kx

− B0
ky
2 and RPE


Âk, B̂k


≥ 0. The smaller the value of RPE, the better the estimation provided, since the mean squared

error is closer to the minimum attainable.
In the simulation study, RPE is calculated for each replicated sample and then a mean prediction error is computed.

Therefore, we can take the Mean Relative Prediction Error (MRPE) as

MRPE

Âk, B̂k


=

1
nr

nr
j=1

RPE(j)

Â(j)k , B̂

(j)
k


, (39)

where nr stands for the number of replications in the simulation study, and the superscript (j) denotes the replication we
are using to compute the performance measures RPE(j), j = 1, . . . , nr .

5.2. Mean squared error for the estimated canonical vectors

Given k ∈ {1, . . . , r}, let us take αk and βk the population canonical vectors solving (11) and (12) respectively, with the
subscript k referring to the kth largest canonical correlation andα(j)k and β(j)k estimated vectors corresponding to the jth
replication, j = 1, . . . , nr , based on the sample


X (j) Y (j)


. Branco et al. [3] dealt with the Mean Squared Error (MSE) in the

following invariant manner

MSE (αk) =
1
nr

nr
j=1

cos−1


αt

kα(j)k 
∥αk∥

α(j)k 
 , (40)

(similarly forβk), where cos−1
: [0, 1] → [0, π/2]. The measure does not depend on the norm of the canonical vectors,

either the population or the estimated ones.

5.3. Mean squared error for the estimated canonical correlations

Given k ∈ {1, . . . , r} , r = rank(Σxy), let ρk be the kth population canonical correlation in decreasing order andρ(j)k the
estimated value based on the sample


X (j) Y (j)


corresponding to the jth replication, j = 1, . . . , nr . Branco et al. [3] take

the Mean Squared Error for canonical correlation as

MSE (ρk) =
1
nr

nr
j=1


φ
ρ(j)k − φ (ρk)

2
, (41)

where φ (.) = tanh−1 (.) is the Fisher transformation to make the classical canonical correlation estimator asymptotically
normal.

To evaluate the performance of several estimators for CCA, we have conducted a simulation study which follows closely
the analysis considered in Branco et al. [3] to make a fair comparison. Three possible structures for the covariance between
x and y are considered,

Σl =


Σ (l)

xx Σ (l)
xy

Σ (l)
yx Σ (l)

yy


∈ R(p+q)×(p+q), l = 1, 2, 3,

withΣ (l)
xx = Ip,Σ

(l)
yy = Iq, andΣ

(l)
xy displayed in Table 1. The population canonical vectors and correlations for these matrices

are introduced in Table 2.
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Table 1
Three covariance structures for the core model in (42).

Configurations

1 2 3
p = 2 q = 2 p = 2 q = 4 p = 4 q = 4

Σ
(1)
xy =


0.9 0
0 0.5


Σ
(2)
xy =


0.9 0 0 0
0 0.5 0 0


Σ
(3)
xy =

0.9 0 0 0
0 0.5 0 0
0 0 1/3 0
0 0 0 1/4



Table 2
Canonical correlations and vectors for the population covariance matrices given in Table 1.

Covariance matrix Canonical vectors
associated with x

Canonical vectors
associated with y

Canonical correlations

Σ1 α1 = (1, 0)t β1 = (1, 0)t ρ1 = 0.90
α2 = (0, 1)t β2 = (0, 1)t ρ2 = 0.50

Σ2 α1 = (1, 0)t β1 = (1, 0, 0, 0)t ρ1 = 0.90
α2 = (0, 1)t β2 = (0, 1, 0, 0)t ρ2 = 0.50

Σ3 α1 = (1, 0, 0, 0)t β1 = (1, 0, 0, 0)t ρ1 = 0.90
α2 = (0, 1, 0, 0)t β2 = (0, 1, 0, 0)t ρ2 = 0.50
α3 = (0, 0, 1, 0)t β3 = (0, 0, 1, 0)t ρ3 = 1/3
α4 = (0, 0, 0, 1)t β4 = (0, 0, 0, 1)t ρ4 = 1/4

Then, a data set

xti , y

t
i

t
∈ Rp+q, i = 1, . . . , n is generated from a mixture model,

(1 − ε)Np+q (0,Σl)+ εNp+q

m1, ν2Σl


, (42)

where ε ∈ [0, 0.5] stands for the level of contamination, 1 = (1, . . . , 1)t ∈ Rp+q, ν is a ‘‘small’’ positive scalar, and m is
a positive scalar which moves along a grid to render asymmetric cases which likely yield the most unfavorable cases for
the estimation. More precisely, the level of contamination ε takes the values 0, 0.1 and 0.2, ν is equal to 0.5, and the point
mass m moves on the grid G = {1, 2, 3, 5, 10, 12, 15, 20}. Then, the performance of several estimators for CCA is assessed
by using the measures (39)–(41). We describe briefly the candidates included in the list of estimators considered in the
analysis. The classical estimator (Class) is defined by (11) and (12), replacing the population covariances by their sample
counterparts. Three robust multivariate scatter and location estimators were considered as candidates to Σ (R) to calculate
the eigensystem (13). The M-estimators


µ̂, Σ̂ (M)


are defined as the solutions to the system

n
i=1

W1(di) (zi −µ) = 0

1
n

n
i=1

W2(di) (zi −µ) (zi −µ)t = Σ̂ (M),

(43)

where di = d2

zi,µ, Σ̂ (M)


are the squared Mahalanobis distances defined in (20) and W1 and W2 are weight functions.

These weight functions correspond to a Huber’s M-estimator, obtained by taking W1(d2) = min(1, τ/d) with τ = χ2
m,0.95

and W2(d2) = c min(1, (τ/d)2), with c a constant to obtain a consistent estimator of the covariance matrix at normal
distributions. The MCD estimator is defined as follows. Given zi ∈ Rm, i = 1, . . . , n, random vectors, and m + 1 ≤ h < n,
then one takes d(1) ≤ d(2) ≤ · · · ≤ d(n) the sorted values in increasing order of the squared Mahalanobis distances
di = d2 (zi,µ,Σ) defined in (20). Hence, a trimming mean is computed by including the h = [0.75n] smallest squared
Mahalanobis distances, σ(µ,Σ) =

h
i=1 d(i), and the MCD estimator for multivariate location and shape

µ, Σ̂ (MCD)

is

computed asµ, Σ̃ (MCD)
= argmin

µ∈Rm,Σ∈Sm,det(Σ)=1
σ (µ,Σ) . (44)

Finally, the estimator for the covariance matrix is given by

Σ̂ (MCD)
=
σ µ, Σ̃ (MCD)1/m Σ̃ (MCD).

S-estimators for multivariate location and scatter (Davies [6]) are defined as

(µ, Σ̂ (S)) = arg min
{µ,6}∈C

det(Σ), (45)
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with

C =


µ ∈ Rm,Σ ∈ Sm :

1
n

n
i=1

ρ

(zi − µ)t Σ−1 (zi − µ)1/2


= δ


, δ ∈ (0, 1). (46)

ρ is taken as the biweight Tukey function ρ(u) =


1 −


1 − (u/c)2

3
1[0,c](|u|) with c = 1.547 and δ = 0.5 to obtain an

S-estimate with high breakdown point.
M-, MCD or S-estimators can be used in (13) to compute Σ (R) (they will be denoted by M, MCD and S respectively in

the Tables and Figures). The MCD (or -M) projection pursuit estimators for CCA (denoted as pp-MCD and pp-M) are defined
by using a robust index projection IR


at x̃, bt ỹ


= σ̂12/(σ̂11σ̂22), with the coefficients σ̂ij coming from a 2 × 2 MCD or

M-dispersion matrix based on

at x̃, bt ỹ


and standardized observations x̃ =


Σ̂
(MCD)
xx

−1/2
x and ỹ =


Σ̂
(MCD)
yy

−1/2
y, with

Σ̂ (MCD) an MCD estimator based on z =

xt , yt

t . The projection pursuit estimators for CCA are defined to be
α̂1,o, β̂1,o


= arg max

∥a∥=1=∥b∥

IR

at x̃, bt ỹ


,

α̂l,o, β̂l,o


= arg max

∥a∥=1=∥b∥,

a∈⟨α̂1,o,...,α̂l−1,o⟩
⊥
,b∈⟨β̂1,o,...,β̂l−1,o⟩

⊥

IR

at x̃, bt ỹ


, l > 1,


α̂l, β̂l


=


Σ̂ (MCD)

xx

−1/2
α̂l,o,


Σ̂ (MCD)

yy

−1/2
β̂l,o


, l = 1, . . . , r.

ρ̂l = IR

α̂
t
l x, β̂

t
l y

, l = 1, . . . , r.

The Robust Alternating Regression method (RAR) is carefully described in Branco et al. [3]. Let us include a very brief
description to understand the procedure. The data matrices X ∈ Rn×p and Y ∈ Rn×q are centered by using the columnwise
median mx ∈ Rp and my ∈ Rq as location centers, then one takes the residual matrices X0 = X − 1mt

x and Y0 = Y − 1mt
y.

Therefore, onemust estimate the first principal component z(0)1 ∈ Rn based on X0. Next, onemust regress z(0)1 on Y0 by using

weighted L1-regression to get the regression estimate b(0)1 and the canonical variates v(0)1 = Y0β
(0)
1 , with β

(0)
1 = b(0)1 /

b(0)1

.
Soon after, one regresses v(0)1 on X0 to get the regression estimate a(0)1 and the canonical variates u(0)1 = X0α

(0)
1 with

α
(0)
1 = a(0)1 /

a(0)1

, and u(0)1 on Y0 to yield v(1)1 = Y0β
(1)
1 with β

(1)
1 = b(1)1 /

b(1)1

, and so on. Onemust go back and forth with

this procedure until convergence. After running some iterations, callu∗

1 = X0α̂1 and v∗

1 = Y0β̂1 the final estimates for the first
canonical variates. To get the upper canonical variates one proceeds recursively: If l > 1, and Xl−2 and Yl−2 are the current
residual matrices, one constructs the residual matrices Xl−1 = Xl−2 − u∗

l−1ĉ
t , Yl−1 = Yl−2 − v∗

l−1d̂
t , with ĉ ∈ Rp, d̂ ∈ Rq

obtained by using a robust regression procedure. Then, the former alternating procedure used to obtain the first canonical
variates is used to render final estimates for the lth canonical variates u∗

l = Xl−1α
∗

l ∈ Rn and v∗

l = Yl−1β
∗

l ∈ Rn. Call
u1 = u∗

1 and v1 = v∗

1 the final estimates for the first canonical variates. The final estimates for the lth canonical variates,
l > 1, are obtained in the following way. Regress the current canonical variates u∗

l and v∗

l on the final estimated l − 1
canonical variates u1, . . . ,ul−1 and v1, . . . , vl−1 respectively by using the robust LTS (Least Trimmed of Squares) regression.
Call Ul−1 ∈ Rn×(l−1) and Vl−1 ∈ Rn×(l−1) the matrices whose columns are u1, . . . ,ul−1 and v1, . . . , vl−1 respectively. Hence,
one gets the regression vectors ê ∈ Rl−1 and f̂ ∈ Rl−1 such that the residuals u∗

l − Ul−1ê and v∗

l − Vl−1 f̂ are regressed
on X0 and Y0 respectively, rendering robust regression estimates α̂l and β̂l, and the final canonical variates ûl = X0α̂l and
v̂l = Y0β̂l, l ≥ 1. To perform the simulation study, we used the R-package ‘‘rrcov’’ for the S-estimator and the R-codes
available at http://www.statistik.tuwien.ac.at/public/filz/programs.html for the procedures M, MCD, pp-M, pp-MCD and
RAR.

To implement the SM-estimator for robust CCA, we have chosen the function

ρ(t) = min(1, 1 − (1 − |t|)3), (47)
considered by Maronna [12] to perform robust estimation in PCA. This function allows for a decreasing sequence of scales
as the iterative procedure moves forward as we have seen in Lemma 1. The computing algorithm introduced in Section 4
to calculate canonical vectors and correlations needs to define a bunch of parameters. One of the most important issues to
define is the initial robust dispersion matrix to standardize x and y respectively at the beginning of the iterative procedure.
Maronna [12] proposed S-estimators in the context of PCA. More precisely, he takes a scale σ to evaluate the largeness of
the ‘‘residuals’’ r = ∥z − µ − PV (z − µ)∥2, with PV an orthogonal projection on a subspace V ⊂ Rm, dim(V ) = l < m, and
µ ∈ Rm. Then, the residuals become r = r(B, a) = ∥Bz − a∥2 with B ∈ Rk×m, k = m − l and BBt

= Ik. Then, he takes the
S-estimators for the principal directions and location as

(B̂, â) = arg min
B:BBt=Ik
a∈Rk

σ(B, a).

http://www.statistik.tuwien.ac.at/public/filz/programs.html


368 J.G. Adrover, S.M. Donato / Journal of Multivariate Analysis 133 (2015) 356–376

Table 3
MRPE for the covariance structureΣ3 under contamination, k = 1 and sample size n = 500.

ε m Class MCD M S pp-MCD pp-M RAR SM

0.1 1 0.017 0.022 0.017 0.024 1.179 0.020 0.036 0.023
2 0.063 0.065 0.064 0.079 1.255 0.062 0.094 0.016
3 0.143 0.016 0.145 0.145 0.666 0.099 0.071 0.015
5 0.263 0.016 0.265 0.015 1.035 0.474 0.055 0.014

10 0.353 0.016 0.354 0.015 0.830 0.267 0.035 0.014
12 0.364 0.016 0.365 0.015 0.733 0.287 0.033 0.014
15 0.374 0.016 0.374 0.015 0.660 0.241 0.030 0.014
20 0.381 0.016 0.382 0.015 0.725 0.153 0.028 0.014

0.2 1 0.030 0.044 0.032 0.048 1.126 0.035 0.060 0.046
2 0.129 0.155 0.132 0.176 1.175 0.132 0.216 0.050
3 0.227 0.252 0.230 0.268 0.777 0.229 0.207 0.018
5 0.321 0.023 0.323 0.343 0.912 0.324 0.152 0.018

10 0.375 0.018 0.375 0.018 0.440 0.385 0.093 0.018
12 0.381 0.018 0.381 0.018 0.387 0.391 0.080 0.018
15 0.386 0.018 0.386 0.018 0.260 0.406 0.068 0.018
20 0.390 0.018 0.390 0.018 0.139 0.399 0.056 0.018

If one considers an M-scale σ(B, a) based on r(B, a), that is,

1
n

n
i=1

ρ


∥Bzi − a∥2

σ(B, a)


= δ, 0 < δ < 1,

then, Maronna [12] shows that at local extrema, the rows b1, . . . , bk of B are obtained by applying an iterative scheme to
solve the eigensystem

n
i=1

wi(zi − µ)(zi − µ)tb = λb, (48)

where

wi = ρ ′


∥Bzi − a∥2

σ


, µ =

n
i=1
wizi

n
i=1
wi

and a = Bµ.

If λ1, . . . , λp, v1, . . . , vp (respectively γ1, . . . , γq,w1, . . . ,wq) solve (48) based on the sample x1, . . . , xn (respectively based
on the sample y1, . . . , yn), then we take initial estimators forΣxx andΣyy as

Σ̂ (SM)
xx =

p
i=1

λivivti and Σ̂ (SM)
yy =

q
i=1

γiwiwt
i .

We have chosen Nran, kran,N1,N2, δ and tol as 50, 10, 5, 5, 0.5 and 0.01.
SM-1 and SM-2 will refer to estimated canonical correlations (35) and (36). All the cases considered used n = 500 and

n = 50 as sample sizes, with nr = 300 replications.
We have included only the case ofΣ3, since the conclusions for the other cases are totally similar. Tables 3 and 4 display

the MRPE for k = 1 in the case of having sample sizes n = 500 and n = 50. In both cases the tables show a similar behavior,
with larger values in the case n = 50 as it is expected but the relative behavior amongst the estimates is maintained.

SM shows an outstanding global performance, since it has an efficiency close to Class in the normal case (see Tables 5 and
6), and a remarkable prediction performance in the presence of contamination. When MSE is used to assess the goodness
of the estimation, SM also seems to outperform other competitors. MCD also displays a very reasonable performance. The
MCD, S and SM show the typical redescending behavior in which the worst performance is produced by contaminations
not exceedingly far away from the bulk of the core data set. Rather, monotone estimators like classical and M-, increase
their errors as the contamination mean increases. The projection pursuit estimates show a poor performance. RAR seems
to provide a weaker performance compared to that of the SM and MCD procedures but better than that of the projection
pursuit devices. The simulation study supports the fact that SM-estimation for CCA works more accurately than (13) with
multivariate S-estimators.

The computing algorithm for the SM-estimator proceeds with some initial scatter matrices for x and y respectively to
perform the iterative procedure without updating the standardization. We tried with M- or MCD scatter matrices as initial
scatter estimators but the results were discouraging and we do not report them. Large and small sample sizes (n = 500 and
n = 50 respectively) were used and the conclusions are quite similar.
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Table 4
MRPE for the covariance structureΣ3 under contamination, k = 1 and sample size n = 50.

ε m Class MCD M S pp-MCD pp-M RAR SM

0.1 1 0.166 0.398 0.166 0.207 0.956 0.182 0.356 0.191
2 0.200 0.421 0.203 0.250 0.827 0.206 0.451 0.197
3 0.278 0.318 0.282 0.271 0.906 0.330 0.391 0.205
5 0.396 0.303 0.399 0.212 0.833 0.514 0.359 0.205

10 0.486 0.301 0.488 0.212 0.603 0.428 0.353 0.205
12 0.497 0.301 0.499 0.212 0.530 0.379 0.352 0.205
15 0.506 0.301 0.508 0.212 0.499 0.434 0.347 0.205
20 0.514 0.301 0.516 0.212 0.519 0.533 0.361 0.205

0.2 1 0.195 0.480 0.194 0.255 0.948 0.230 0.447 0.221
2 0.298 0.603 0.300 0.387 1.269 0.330 0.664 0.228
3 0.403 0.685 0.404 0.484 1.212 0.424 0.619 0.227
5 0.501 0.541 0.501 0.562 1.284 0.519 0.523 0.227

10 0.557 0.244 0.557 0.253 0.656 0.587 0.522 0.227
12 0.563 0.244 0.563 0.235 0.580 0.592 0.536 0.227
15 0.569 0.244 0.568 0.235 0.541 0.592 0.529 0.227
20 0.573 0.244 0.573 0.235 0.516 0.600 0.452 0.227

Table 5
Efficiency for the canonical vectorsα1, . . . ,α4 associated with x andβ1, . . . ,

β4 associated with y corresponding to Σ3 in
the case of normal samples (ε = 0).

Sample size Class MCD M S pp-MCD pp-M RAR SM

500 MRPE 0.014 0.017 0.014 0.016 0.821 0.015 0.023 0.016
MSE(α̂1) 0.040 0.044 0.041 0.043 0.221 0.042 0.054 0.043
MSE(α̂2) 0.184 0.206 0.185 0.201 0.453 0.196 0.283 0.200
MSE(α̂3) 0.397 0.442 0.404 0.434 0.543 0.406 0.540 0.432
MSE(α̂4) 0.369 0.415 0.377 0.403 0.484 0.374 0.522 0.401
MSE(β̂1) 0.039 0.044 0.039 0.043 0.224 0.041 0.053 0.042
MSE(β̂2) 0.188 0.209 0.190 0.205 0.451 0.200 0.278 0.203
MSE(β̂3) 0.399 0.442 0.407 0.433 0.529 0.404 0.543 0.429
MSE(β̂4) 0.373 0.411 0.380 0.402 0.470 0.375 0.504 0.398

50 MRPE 0.163 0.369 0.165 0.209 0.735 0.178 0.322 0.184
MSE(α̂1) 0.135 0.205 0.136 0.154 0.247 0.141 0.195 0.144
MSE(α̂2) 0.636 0.780 0.641 0.676 0.626 0.649 0.807 0.664
MSE(α̂3) 0.919 0.964 0.921 0.931 0.797 0.899 0.989 0.918
MSE(α̂4) 0.789 0.883 0.790 0.821 0.759 0.780 0.902 0.797
MSE(β̂1) 0.139 0.203 0.139 0.154 0.261 0.144 0.199 0.146
MSE(β̂2) 0.629 0.810 0.637 0.661 0.620 0.641 0.803 0.655
MSE(β̂3) 0.916 0.973 0.917 0.929 0.763 0.894 1.015 0.926
MSE(β̂4) 0.794 0.878 0.800 0.832 0.749 0.789 0.908 0.821

Table 6
Efficiency for the canonical correlationsρ1, . . . ,ρ4 corresponding toΣ3 in the case of normal samples (ε = 0).

Sample size Class MCD M S pp-MCD pp-M RAR SM-1 SM-2

500 MSE(ρ̂1) 0.002 0.003 0.002 0.003 0.167 0.003 0.003 0.016 0.003
MSE(ρ̂2) 0.002 0.003 0.002 0.002 0.044 0.003 0.004 0.005 0.003
MSE(ρ̂3) 0.002 0.002 0.002 0.002 0.022 0.003 0.003 0.003 0.003
MSE(ρ̂4) 0.002 0.002 0.002 0.002 0.008 0.003 0.004 0.004 0.003

50 MSE(ρ̂1) 0.026 0.069 0.026 0.035 0.127 0.054 0.057 0.023 0.044
MSE(ρ̂2) 0.034 0.083 0.034 0.045 0.114 0.071 0.067 0.018 0.061
MSE(ρ̂3) 0.016 0.028 0.016 0.019 0.085 0.037 0.043 0.012 0.032
MSE(ρ̂4) 0.019 0.021 0.019 0.020 0.032 0.023 0.034 0.021 0.024

10%-upper trimmedMSEwas also recorded but it was not included in the paper since it allows for conclusions which are
totally equivalent to our studywithMSE. Figs. 1 and 2 depict the behavior of theMSE for the four canonical vectors associated
with the vector x when the sample sizes are n = 500 and n = 50 respectively. The plots for the MSE corresponding to
the estimated canonical vectors associated with the vector y were omitted since the visual inspection does not provide
additional discernment and a similar performance to that of Figs. 1 and 2 is observed, showing that SM outperforms the
other competitors in most of the cases, while pp-MCD improves its behavior in Fig. 2(c) and (d). We have not included the
case with M-estimation since it was barely different from that of the classical correlation.
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Fig. 1. MSE for the estimated canonical vectors associated with vector x, corresponding to thematrixΣ3 in the case of Classical (◦), MCD (△), pp-MCD (×),
RAR (▽) and SM (∗) estimators. The underlying distribution is given by formula (42) with the mean m moving from 1 to 10 and the contamination level ε
is equal to 0.2. The sample size is n = 500. M-, S-, and pp-M estimators were omitted because of their poor behavior.

Fig. 2. MSE for the estimated canonical vectors associated with vector x, corresponding to thematrixΣ3 in the case of Classical (◦), MCD (△), pp-MCD (×),
RAR (▽) and SM (∗) estimators. The underlying distribution is given by formula (42) with the mean m moving from 1 to 10 and the contamination level ε
is equal to 0.2. The sample size is n = 50. M-, S-, and pp-M estimators were omitted because of their poor behavior.

Figs. 3 and 4 depict the estimated canonical correlations related to the different proposals when the sample sizes are
n = 500 and n = 50 respectively. The measures (35) and (36) for squared canonical correlation are included denoted by
SM-1 and SM-2 respectively. SM-1 has a remarkable performance while SM-2 worsens its behavior as the correlation order
increases. The redescending behavior displayed for MCD and SM is also noticeable in the MSE analysis while the MSE for
the monotone estimators worsens as the contamination mean increases. The profile for each estimator allows for a clearer
comparison amongst them showing the outstanding performance of SM-estimators.
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Fig. 3. MSE for the estimated canonical correlations corresponding to the matrixΣ3 in the case of Classical (◦), MCD (△), pp-MCD (×), pp-M (♦), RAR (▽),
SM-1 (+), SM-2 (∗) estimators. The underlying distribution is given by formula (42), with the mean m moving from 1 to 10 and the contamination level ε
is equal to 0.2. The sample size is n = 500. M- and S- estimators were omitted because of their poor behavior. The classical estimator was not included for
the first canonical correlation since its MSE greatly exceeds to that of the other estimates.

Fig. 4. MSE for the estimated canonical correlations corresponding to the matrixΣ3 in the case of Classical (◦), MCD (△), pp-MCD (×), pp-M (♦), RAR (▽),
SM-1 (+), SM-2 (∗) estimators. The underlying distribution is given by formula (42), with the mean m moving from 1 to 10 and the contamination level ε
is equal to 0.2. The sample size is n = 50. M- and S-estimators were omitted because of their poor behavior. The classical estimator was not included for
the first canonical correlation since its MSE greatly exceeds to that of the other estimates.

6. Concluding remarks

If we take into account the predictive aspect of CCA and we consider a robust M-scale to evaluate the squared difference
between two lower dimensional linear combinations of the original vectors x and y, we come up with SM-estimators for
canonical vectors and correlations. The new proposal turns out to be Fisher-consistent. We also propose a computing
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algorithm following a similar approach dealt with by Maronna [12]. By taking a sufficiently large number of different
starting points as it is described in Step 3 of the algorithm, one generates a number of candidates which are close enough
to the global minimum. The simulation study seems to support that the global optimum is well approximated. As to
computation time, the SM-procedure looks rather slow compared to the other competitors, in spite of its excellent statistical
performance. However, any issue on running time will become easily out of fashion due to the persistent improvement
in processors technology. The performance of the new proposal and some other robust estimators for CCA was analyzed
through a simulation study, by using a predictive measure and the mean squared error, to evaluate the efficiency under the
normal multivariate distribution and the robustness under contamination. In both cases, the SM-estimator for CCA behaves
remarkably well compared with other candidates. Therefore, we can conclude that the S-estimation, tailored in the PCA and
CCA contexts, seems to be appropriate as robust methodology.
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Appendix

A technical lemma before the main result about consistency is needed.

Proposition A.1. If C ∈ Rr×m, r ≤ m, is a matrix with orthonormal rows, then C tC is an orthogonal projection onto the rows
of C.

Proof. If ct is a row of C , then C tCc = c. If c is orthogonal with respect to the rows of C , then C tCc = 0m×m. Therefore the
proposition holds.

Proof of Theorem 1. Let us consider

∥Ax − By − a∥2
= 2 (z − a0)t

C t

√
2

C
√
2
(z − a0) ,

with

C =

Ar×p −Br×q


, C tC =


AtA −AtB

−BtA BtB


, Ca0 = a.

Recall that Σ0 = cΣ, Σ given in (4) for some constant c > 0. Then (xt ,yt)t is elliptically contoured with densityf (z) = det(M−1/2
0 )f0


ztM−1

0 z

, with M0 = cM, M given by (17). Then,

δ = Eρ


∥Ax − By − a∥2

σ



= Eρ

(z − a0)t C tC (z − a0)

σ


= det(M−1/2

0 )


ρ


(z − a0)t C tC (z − a0)

σ


f0

ztM−1

0 z

dz.

If we make a change of variables u = M−1/2
0 z and call b0 = M−1/2

0 a0 we get that

δ =


ρ


(u − b0)

t M1/2
0


C tC


M1/2

0 (u − b0)

σ


f0

utu


du.

Since f0 is decreasing, if we proceed by successive steps, starting with an indicator function as a ρ function, afterwards,
taking simple functions and the Monotone Convergence Theorem in the end, we can finally assure that,

ρ


(u − b0)

t M1/2
0


C tC


M1/2

0 (u − b0)

σ


f0

utu


du ≥


ρ


utM1/2

0


C tC


M1/2

0 u
σ


f0

utu


du.
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If M0 = PΓ P t with Γ a diagonal matrix with the elements in decreasing order and P an orthogonal matrix, then
ρ


utM1/2

0


C tC


M1/2

0 u
σ


f0

utu


du =


ρ


utPΓ 1/2P t


C tC


PΓ 1/2


P tu


σ


f0

utu


du

=


ρ


(P tu)tΓ 1/2(CP)t(CP)Γ 1/2


P tu


σ


f0

utu


du

=


ρ


ztΓ 1/2(CP)t(CP)Γ 1/2z

σ


f0

ztz

dz. (49)

CP is another matrix with orthonormal rows since

cjP

(ciP)t = δij, 1 ≤ i, j ≤ r . Therefore, (CP)t(CP) is a projectionmatrix

by Proposition A.1. Then, PV = P tC tCP , with V an r dimensional subspace in Rm. Hence
ρ


ztΓ 1/2(CP)t(CP)Γ 1/2z

σ


f0

ztz

dz =


ρ


ztΓ 1/2PVΓ 1/2z

σ


f0

ztz

dz.

Let us call R = Γ 1/2PVΓ 1/2. R is a symmetric nonnegative definite matrix and its spectral decomposition is given by
R = VΛV t , VV t

= V tV = Im, Λ = diag(λ1, . . . , λm). Since the dimKer R = m − r , we can suppose without loss of
generality that λr+1 = · · · = λm = 0. Then, takingw = V tzwe get,

ρ


ztΓ 1/2PVΓ 1/2z

σ


f0

ztz

dz =


ρ


wtΛw
σ


f0

wtw


dw,

since |det(V )| = 1. Put D = Γ 1/2 and take v ≠ 0 an eigenvector associated with the eigenvalue λ ≠ 0, then

DPVDv = λv,
PVDv = λD−1v.

This means that D−1v ∈ V . Then D−1v is orthogonal to Dv − λD−1v, that is,

0 = vtD−1(Dv − λD−1v) = vt

I − λD−2 v

λ =
1

vtD−2v
=

1
m
i=1

d−2
i v

2
i

1

d−2
m

m
i=1
v2i

= d2m = γm ≤ λ ≤
1

d−2
1

m
i=1
v2i

= d21 = γ1.

If {v1, . . . , vr} denotes the set of eigenvectors related to the nonnull eigenvalues of R, then Λ = diag((vt1D
−2v1)−1, . . . ,

vtrD
−2vr

−1
, 0, . . . , 0)with V = [v1, . . . , vr ] ∈ R(p+q)×r , V tV = Ir . Let us consider the function

f2(V ) = ztΛz =

r
k=1


etkV

tD−2Vek
−1

z2k ,

with {e1, . . . , er} the canonical basis in Rr . Observe that

∂

etkV

tD−2Vek


∂V
= 2D−2Veketk.

Since we are looking for restricted minimum, we consider the Lagrangian function for f2(V ) given by

h2(V ) = ztΛz +


1≤j, k≤r

λkj

etjV

tVek − δkj


=

r
k=1


etkV

tD−2Vek
−1

z2k +


1≤j, k≤r

λkj

etjV

tVek − δkj

.

∂h2

∂V
= −2

r
k=1


etkV

tD−2Vek
−2

D−2Veketkz
2
k + 2V

r
1≤j, k≤r

λkjeketj = 0m×r .
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If we premultiply ∂h2
∂V by (Vel)t and postmultiply by el, l ∈ {1, . . . , r}, we get

0 = −

etlV

tD−2Vel
−2 etlV

tD−2Velz2l + λll,

λll =

etlV

tD−2Vel
−1

z2l .

If we premultiply ∂h2
∂V by (Vek)t and postmultiply by ej, 1 ≤ k ≠ j ≤ r , we obtain

λkj =

etjV

tD−2Vej
−2 etkV

tD−2Vejz2j , k ≠ j.

Therefore, the partial derivative of h2 with respect to V is

∂h2

∂V
= −

r
k=1

D−2vk
vtkD−2vk

2 etkz2k +

r
l=1

vl
vtlD−2vl

etl z
2
l +


1≤j≠k≤r

vtkD
−2vj

vtjD−2vj
2 vkz2j etj

0m×r =

r
j=1


D−2vjz2j
vtjD−2vj

2 −


vtjD

−2vj

vjz2j

vtjD−2vj
2 −


k≠j

vtkD
−2vjz2j

vtjD−2vj
2 vk


etj

0m =
D−2vjz2j
vtjD−2vj

2 −


vtjD

−2vj

vjz2j

vtjD−2vj
2 −


k≠j

vtkD
−2vjz2j

vtjD−2vj
2 vk, for all j = 1, . . . , r

D−2vj =

r
k=1


vtkD

−2vj

vk.

Then, we can conclude that the subspace V generated by {v1, . . . , vr} is D−2-invariant and therefore, by using a well known
result from linear algebra (see Hoffman and Kunze [9, p. 263]), V must be a direct sum of the subspaces V ∩ Vi, where
Vi, i = 1, . . . ,m stands for the ith eigenspace of D−2, that is, Vi = ⟨fi⟩ , i = 1, . . . ,m, with {f1, . . . , fm} the canonical
basis in Rm. Then to minimize f2(V ) we should take V0 = ⟨fm−r+1, . . . , fm⟩ , λj = γm−r+j, j = 1, . . . , r , and consequently
f2(V0) =

r
i=1 γm−r+iz2i . Therefore,

ρ


ztΓ 1/2PVΓ 1/2z

σ


f0

ztz

dz =


ρ


wtΛw
σ


f0

wtw


dw

>


ρ


wtΛ0w
σ


f0

wtw


dw,

with Λ0 = diag(γm−r+1, . . . , γm, 0, . . . , 0) and PV0 =
r

i=1 fm−r+iftm−r+i. This entails that if σ(PV ) and σ(PV0) solve
respectively the equations

δ =


ρ


ztΓ 1/2PVΓ 1/2z

σ(PV )


f0

ztz

dz

δ =


ρ


ztΓ 1/2PV0Γ

1/2z
σ(PV0)


f0

ztz

dz,

then σ(PV0) < σ(PV ). Recall thatM0 = PΓ P t . From (49), PV0 = (CP)tCP = P tC tCP =
r

i=1 fm−r+iftm−r+i. Then,

C tC =

r
i=1

(Pfm−r+i)(Pfm−r+i)
t ,

and the Fisher consistency follows.
Proof of Corollary 1. If we take (xt ,yt)t as in Theorem 1, then we obtain that the location parameter and the s smallest
eigenvalues and eigenvectors of the matrix M in (17) minimize the robust scale σ of the residuals, with s = min(p, q). If
we look for the critical points of h(C, a,Λ) = σ(C, a) + tr(CC tΛt) − tr(Λt), with C ∈ Rs×(p+q), Λ ∈ Rs×s, we get the
eigensystem

M̃C t
= C t∆,

with∆ ∈ Rs×s a diagonal positive definitematrix and M̃ = EF̃ψ(z−µ)(z−µ)t , if z ∼ F̃ denotes the distribution of (xt ,yt)t .
Therefore M̃ andM0 share the same eigenvectors and eigenvalues, which would say that they must coincide. Therefore, if F
stands for the elliptical distribution, then

EFψ(z − µ)(z − µ)t =


Σ1/2

xx 0p×q

0q×p Σ1/2
yy


M0


Σ1/2

xx 0p×q

0q×p Σ1/2
yy


= cΣ .
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Proof of Lemma 1. Let D0
o =


A0
o −B0

o


and a0o = A0

oµ̃x − B0
oµ̃y be the current values, with µ̃x =


ψi x̃i
ψi
, µ̃y =


ψi ỹi
ψi

,

and let D1
o =


A1
o −B1

o


and a1o be the values corresponding to the next iteration. Recall that Aj = Aj

o


Σ̂

(R)
xx

−1/2
and

Bj = Bj
o


Σ̂

(R)
yy

−1/2
, with Aj

o

Ao
j

t
= Ir = Bj

o (Bo)
t , j = 0, 1. Then Dj =


Aj
o


Σ̂

(R)

xx

−1/2
−Bj

o


Σ̂

(R)

yy

−1/2
= Dj

oŜ, j = 0, 1,

with Dj =

Aj −Bj


and Ŝ =

Σ̂(R)xx

−1/2
0p×q

0q×p


Σ̂
(R)
yy

−1/2

. For j = 0, 1 put rji =
Ajxi − Bjyi − aj

2 , i = 1, . . . , n and

define σj, as the solution to

1
n

n
i=1

ρ


rji
σj


= δ.

σ1 ≤ σ0 is equivalent to the inequality

n
i=1

ρ


r1i
σ0


≤

n
i=1

ρ


r0i
σ0


. (50)

Then, let us prove (50). Given a, b ∈ (0,∞), the concavity of ρ implies that ρ(b)− ρ(a) ≤ ψ(a)(b− a), withψ = ρ ′. Then,

n
i=1

ρ


r1i
σ0


−

n
i=1

ρ


r0i
σ0


≤

n
i=1

ψi


r1i
σ0

−
r0i
σ0


. (51)

Let us analyze that
n

i=1 ψir1i ≤
n

i=1 ψir0i. IfM0 is the current matrix given in (34), then it can be easily derived that,

n
i=1

ψirji = tr

Dj
oM0


Dj
o

t
, j = 0, 1.

If j = 1 then
n

i=1 ψirji = tr

D1
oM0


D1
o

t
=
r

k=1 λ
(1)
k , with λ(1)1 ≤ · · · ≤ λ

(1)
r the first r smallest eigenvalues of (34). It

is well known from the linear algebra that tr

D1
oM0


D1
o

t
≤ tr


D0
oM0


D0
o

t. Thenn
i=1 ψir1i −

n
i=1 ψir0i ≤ 0 and (51)

entail (50).

Proof of Lemma 2. According to Lemma 1 the sequence σ (k) is decreasing and nonnegative, therefore limk→∞ σ
(k)

= σ0.
Consider


D̃, ã


any accumulation point of


D(k), a(k)

∞

k=1. Let us observe that σ(D̃, ã) = σ0 and that if (D̃1, ã1) is the

result of applying the iteration step to

D̃, ã


then σ(D̃1, ã1) = σ0. To see this, take any subsequence


D(kj), a(kj)

∞

j=1

converging to

D̃, ã


. Call T : Rr×(p+q)

× Rr
→ Rr×(p+q)

× Rr the transformation such that T (D, a) is the result of applying
Step 2 to (D, a). By assumption, this transformation is continuous and (D, a) → σ(D, a) is also a continuous function. Since
D(kj+1), a(kj+1)


= T


D(kj), a(kj)


then we have

lim
j→∞


D(kj+1), a(kj+1)

= T

D̃, ã


= (D̃1, ã1),

lim
j→∞

σ

D(kj), a(kj)


= σ(D̃, ã), and

σ(D̃1, ã1) = lim
j→∞

σ

D(kj+1), a(kj+1)

= σ0 = lim
j→∞

σ

D(kj), a(kj)


= σ(D̃, ã).

Thus, if z̃ =

Σ̂(R)xx

−1/2
x

Σ̂
(R)
yy

−1/2
y

, we have that

n
i=1

ρ


D̃z̃i − ã

2
σ0

 = δ =

n
i=1

ρ


D̃1z̃i − ã1

2
σ0

 .
On the other hand, if M0(D(kj), a(kj)) stands for the current matrix at the kjth step then tr(D(kj)M0(D(kj), a(kj))


D(kj)

t
) −

tr(DM0(D(kj), a(kj))Dt) ≤ 0 for any D = (D1,D2) ∈ Rr×(p+q), D1Dt
1 = Ir = D2Dt

2. Then, by taking a subsequence if
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necessary and the continuity of the trace function, it also holds that tr(D̃M̃(D̃, ã)D̃t) − tr(DM̃(D̃, ã)Dt) ≤ 0 if M̃(D̃, ã) =

limj→∞ M0(D(kj), a(kj)). Then, if ψi = ρ ′


∥D̃z̃i−ã∥

2

σ0


, we get that

n
i=1

ρ


D̃z̃i − ã

2
σ0

−

n
i=1

ρ

Dz̃i − a
2

σ0


≤

n
i=1

ψi


D̃z̃i − ã

2
σ0

−

Dz̃i − a
2

σ0


= tr(D̃M̃(D̃, ã)D̃t)− tr(DM̃(D̃, ã)Dt) ≤ 0.

Then,

D̃, ã


is a local minimum of the function h(D, a) =

n
i=1 ρ


∥Dz̃i−a∥2

σ0


. Let us call N(D̃, ã) a neighborhood of


D̃, ã


in which h(D̃, ã) ≤ h(D, a) for any (D, a) ∈ N(D̃, ã). This entails that σ0 = σ(D̃, ã) ≤ σ(D, a) for any (D, a) ∈ N(D̃, ã) since
δ = h(D̃, ã) ≤ h(D, a) for any (D, a) ∈ N(D̃, ã).

ten Berge [18] found the relationship between CCA and PCA which was used to define the SM-estimators for canonical
correlations. Next, Lemma 3 rephrases the result to make it clearer.

Lemma 3. Let

xt , yt

t
∈ Rp+q be a random vector with finite second moments. Let E be the set of eigenvalues of M in (17).

(a) Let λ ∈ E, with λ ≠ 1, and

vt ,wt

t
∈ Rp+q, with v ∈ Rp andw ∈ Rq such that M


vt ,wt

t
= λ


vt ,wt

t . Then (i)Σ−1/2
xx v

andΣ−1/2
yy w are canonical vectors verifying (11) and (12) associated to the squared canonical correlation (λ− 1)2. Further-

more, λ ∈ (0, 2). (ii) If λj ∈ E, j = 1, 2, λ1 ≠ λ2, 2 − λ1 − λ2 ≠ 0,

vtj ,w

t
j

t
∈ Rp+q, with vj ∈ Rp and wj ∈ Rq such

that they verify that M

vtj ,w

t
j

t
= λj


vtj ,w

t
j

t , then vt1v2 = 0 = wt
1w2.

(b) Let 1 ≤ j ≤ r and vj be an eigenvector of (11) with eigenvalue γj. Then, (i) Σ−1
yy Σyxvj is an eigenvector of (12) associated

with the same eigenvalue γj, that is,

Σ−1
yy ΣyxΣ

−1
xx Σxy


Σ−1

yy Σyxvj


= γj

Σ−1

yy Σyxvj

.

(ii) If γj > 0, then

vtjΣ

1/2
xx , γ

−1/2
j vtjΣxyΣ

−1/2
yy

t
and


vtjΣ

1/2
xx ,−γ

−1/2
j vtjΣxyΣ

−1/2
yy

t
are eigenvectors for M, that is,

M


Σ1/2
xx vj

γ
−1/2
j Σ−1/2

yy Σyxvj


=


1 + γ

1/2
j


Σ1/2

xx vj
γ

−1/2
j Σ−1/2

yy Σyxvj


M


Σ1/2
xx vj

−γ
−1/2
j Σ−1/2

yy Σyxvj


=


1 − γ

1/2
j


Σ1/2

xx vj
−γ

−1/2
j Σ−1/2

yy Σyxvj


.

Furthermore, the eigenvalues of M are symmetrically located around 1.
(c) 1 ∈ E if and only if either p ≠ q or rank(Σxy) < min {p, q}.
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