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Abstract. In this paper we shall discuss properties of saturation in monotonic neigh-

bourhood models and study some applications, like a characterization of compact and

modally saturated monotonic models and a characterization of the maximal Hennessy-

Milner classes. We shall also show that our notion of modal saturation for monotonic

models naturally extends the notion of modal saturation for Kripke models.
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1. Introduction

Monotonic neighbourhood semantics is a generalization of Kripke semantics,
and it is the standard tool for reasoning about monotonic modal logics. A
neighbourhood model, is a structure M = 〈X,R, V 〉 where R ⊆ X × P(X),
and V is a valuation defined on X. The elements of R(x) are called the
neighbourhoods of x. A neighbourhood model M is monotonic if the set
R(x) is closed under supersets for each x ∈ X. Neighbourhood semantics
is used for the classical modal logics that are strictly weaker than the nor-
mal modal logic K. For example, the neighbourhood semantics is used in
[4] to study monotonic modal logics related to the Von Wright’s logic of
place. Also in [15] and [14] is used a neighbourhood semantic to study fused
modal logics. On the other hand, in [17] a neighbourhood semantic is used
to prove completeness for a monotonic modal logic called the modal Logic of
Deductive Closure. The principal reference on neighbourhood semantics are
Segerberg’s monograph [18], Chellas’s textbook [6], and Hansen’s Master’s
thesis [10].
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The notion of bisimulation between Kripke models plays a very important
role in the model theory of normal modal logics. Bisimulation is intended to
characterize states in Kripke models with “the same behaviour”. It is well-
known that modal formulas about Kripke models (frames with valuations)
can be understood as first-order formulas. However, not every first-order
formula (in the relevant language) is equivalent to a modal formula. The
question is which first-order formulas are equivalent to modal formulas. The
answer is the ones invariant under bisimulation, i.e., normal modal logic is
the fragment of first-order logic invariant under bisimulation [2]. This is a
remarkable result given by Van Benthem (see also Theorem 18 in [8]).

Given M a class of Kripke models, it is said that it is a Hennessy-Milner
class if for every M,N ∈ M, the relation of modal equivalence ≈ is a bisim-
ulation between M and N . An interesting problem is to identify classes of
models where the relation of modal equivalence ≈ be a bisimulation. A first
example is the class of all image-finite Kripke models [2]. Other important
example, that afore mentioned, is the class of modally saturated models,
or m-saturated models. The notion of m-saturation is a kind of compact-
ness property. A construction on models that returns m-saturated models
is the ultrafilter extension of a model (see [2] or Theorem 2.10 in [13]).
Since each point in a Kripke model is modally equivalent to the correspond-
ing principal ultrafilter in the ultrafilter extension, and using the fact the
ultrafilter extension is m-saturated, we have that two points in a model are
modally equivalent if and only if their associated principal ultrafilters in the
ultrafilter extension are bisimilar (see Section 2.5 of [2]). Others results and
applications of the notion of bisimulation can be found in [2,8,9], and [13].

For monotonic neighbourhood models the notion of bisimulation was
studied in detail in [10] (see also [11]), and independently in [1]. For arbitrary
neighbourhood models different kinds of bisimulations have been studied
in [12].

In [10], Hansen introduces a notion of modal saturation in monotonic
models and proves that over the class of modally saturated monotonic mod-
els, modal equivalence implies bisimilarity. But Hansen’s definition of modal
saturation has, among others, the disadvantage that the ultrafilter extension
of a monotonic model fails to meet one of the conditions of modal saturation
given by Hansen. In [3] a different notion of modal saturation was defined
(see Definition 5 of [3]). This new notion enables us to extended several theo-
rems from Kripke semantics to neighbourhood semantics. For example, now
it is possible to prove that the ultrafilter extension of a monotonic model is
modally saturated (Theorem 18 in [3]). This notion also enables a characteri-
zation of the class compact and modally saturated models (see Theorem 23),
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and allows us to show that the class of all modally saturated models is a
maximal Hennessy-Milner class (Theorem 29).

On the other hand, in [5] it was introduced the class of normal monotonic
frames, or monotonic neighbourhood frames. As it is shown in Lemma 11
of [5], there is a bijective correspondence between normal monotonic frames
and Kripke frames. For Kripke models, it is easy to check that we have
a similar situation. For each normal monotonic model M, there exists a
Kripke model Mkrp. Conversely, for each Kripke model K there exists a
normal monotonic model Mn, and these correspondences are bijective. Thus,
we get that the normal monotonic models are interdefinable with Kripke
models. In Theorem 17, we will prove that our notion of monotonic modal
saturation extends, in a natural way, the usual notion of m-saturation in
Kripke models. We note that the notions of monotonic modal saturation
and neighbourhood defined in [10] and [12], respectively, are not entirely
satisfactory (see Remarks 4.8 and 4.9 in [12]). These observations could be
interpreted as arguments to support that, the definition of modal saturation
for monotonic neighbourhood models given in [3], is the right one.

The approach taken in [3] is mainly topological. For each monotonic
model M = 〈X,R, V 〉 the family DV = {V (ϕ) | ϕ ∈ Fm} is a Boolean alge-
bra closed under the monotonic operator ♦R(V (ϕ)) =

{
x ∈ X | ∃Y ∈ R (x)

such that Y ⊆ V (ϕ)
}
. So, 〈DV ,♦R〉 is a monotonic modal algebra. We can

also consider the topological space 〈X, TDV
〉 where the topology TDV

is gen-
erated by taking DV as the basis of open sets. On the other hand, we can
define the lower topology LDV

on KR = {Y ⊆ X | ∃x ∈ X (Y ∈ R(x))} by
taking as sub-basis of LDV

the collection of all sets of the form LV (ϕ) =
{Y ∈ KR | Y ∩ V (ϕ) 	= ∅}. The topological space 〈KR,LDV

〉 is called the
lower hyperspace of 〈X, TDV

〉 relative to KR (see [16]). In [3] the notions of
image-compact, point-compact, point-closed and modally saturated
monotonic models are defined using these spaces. As it is shown in [3], this
approach seems more suitable to extend the classical notions of modal satu-
ration for monotonic neighbourhood models. Following this line of research,
the main objective of this paper is to discuss and generalize some results
of the model theory of normal modal logic to monotonic modal logics. Par-
ticularly, we are interested in investigating some properties of saturation in
monotonic neighbourhood models, together with some important applica-
tions, like a characterization of the class of compact and modally saturated
models, and a characterization of the maximal Hennessy-Milner classes.

The paper is organized in the following fashion. In Section 2, we will recall
the principal results on the relational and algebraic semantics for monotonic
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modal logic. In Section 3, we will review some special classes of monotonic
models, like image-compact, point-closed, and modally saturated monotonic
models. We will use the notion of modal saturation defined in [3]. We shall
prove that the canonical model MΛ of a monotonic logic Λ is compact and
modally saturated. We will prove that the class of all modally saturated
models is a Hennessy-Milner class. A similar statement was proved in [10]
but a different notion of saturation is used. Finally, we will prove that a
normal monotonic model M is modally saturated iff the Kripke model Mkrp

is m-saturated.
In [3] it was proved that the concepts of compact and point-compact

models are preserved by surjective bounded morphisms between monotonic
models. In Section 4 we will extend these results proving that the notions of
compact and point-compact are preserved by total bisimulations. Also, we
prove that if f : M1 → M2 is a surjective bounded morphism and M2 is
image-compact, then M1 is also image-compact. These results are needed in
the next sections. In Section 5, we shall give a characterization of the class
CMSAT of all compact and modally saturated models. A class of Kripke
models M has the Hennessy-Milner property if modal equivalence between
models in M implies (and hence is equivalent to) bisimulation equivalence.
For instance, the class of all finite Kripke models has the Hennessy-Milner
property. A more general result shows that the class of modally saturated
Kripke models has the Hennessy–Milner property (see [8] and [13]). In Sec-
tion 6, we will prove that the class MSAT of all modally saturated monotonic
models is a Hennessy-Milner class not properly included in any Hennessy-
Milner class, i.e. MSAT is a maximal Hennessy-Milner class.

2. Preliminaries

2.1. Spaces

Given a set X, we denote by P(X) the powerset of X, and for a subset Y
of X, we write Y c for the complement X − Y of Y in X. Let us recall that
a topological basis is a collection D ⊆ P(X) of subsets of a set X such that
(1) ∅ ∈ D, (2)

⋃
D = X, and (3) for all U, V ∈ D and x ∈ U ∩ V , there

exists W ∈ D such that x ∈ W and W ⊆ U ∩ V . A topological basis D
generates a topology on X that we will denote by TD. In all this paper a
space will be a topological space 〈X, TD〉, where the topological basis D is a
subalgebra of the Boolean algebra of P(X). In this case the elements of D
are clopen (closed and open) subsets of X, because D is a Boolean algebra,
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but an arbitrary clopen set does not need to be an element of D. Given a
space 〈X, TD〉 and Y ⊆ X, we will use the notation cl(Y ) to express the
closure of Y . The set of all closed subsets (compact subsets) of 〈X, TD〉 will
be denoted by C(X) (K(X)). We note that C(X) and K(X) are posets under
the inclusion relation.

Let A be a Boolean algebra. The lattice of filters of A will be denoted by
Fi(A). The set of all prime filters or ultrafilters of A is denoted by Ul(A). To
each Boolean algebra A we can associate a Stone space 〈Ul(A), TA〉 whose
points are the elements of Ul(A) with the topology TA = Tβ[A] determined
by the basis β [A] = {β (a) | a ∈ A}, where β (a) = {x ∈ Ul(A) | a ∈ x}.

Some topological properties of a space 〈X, TD〉 can be characterized in
terms of the map εD : X → Ul(D) defined by εD (x) = {U ∈ D | x ∈ U}.
For instance, 〈X, TD〉 is Hausdorff iff εD is injective, and 〈X, TD〉 is compact
iff εD is surjective. A space 〈X, TD〉 is called a Stone space if it is compact,
Hausdorff, and zero dimensional (i.e. the sets which are both open and
closed form a basis for the open sets).

If 〈X, TD〉 is a Stone space, then the map εD is an homeomorphism
between 〈X, TD〉 and

〈
Ul(D), Tβ[D]

〉
. If A is a Boolean algebra, then A ∼=

β [A], by means of the map β. Moreover, it is known that the map F −→
F̂ = {x ∈ Ul(A) | F ⊆ x} establishes a bijective correspondence between
the lattice of all filters of A and the lattice C(Ul (A)) of all closed subsets of
〈Ul(A), TA〉.

Definition 1. Let 〈X, TD〉 be a space. Let K ⊆ P(X). The lower topology
LD on K is the topology defined on K taking as sub-basis the collection of
all sets of the form

LU = {Y ∈ K | Y ∩ U 	= ∅} ,
for U ∈ D. The pair K = 〈K,LD〉 is called the lower hyperspace of 〈X, TD〉
relative to K.

Let DU = {Y ∈ K | Y ⊆ U}, for U ∈ D. We note that (LUc)c = DU .
Recall that if 〈X, TD〉 is a Stone space, then 〈C(X),LD〉 is a Stone space
(see [16] for the details).

The following technical result is needed in the next section. For a set
Y ⊆ X, let εD [Y ] = {εD(x) | x ∈ Y }.

Lemma 2. Let 〈X, TD〉 be a space. Then

(1) For all Y,Z ∈ P(X), if εD [Z] ⊆ εD [Y ], then Z ⊆ cl(Y ).

(2) If Y ∈ K(X), and Z ⊆ cl(Y ), then εD [Z] ⊆ εD [Y ].
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Proof. (1) Let Y,Z ∈ P(X). Let x ∈ Z and suppose that x /∈ cl(Y ). Then
there exists U ∈ D such that x /∈ U and Y ⊆ U . Then U c ∈ εD(x) ∈
εD [Z] ⊆ εD [Y ]. So there exists y ∈ Y such that εD(x) = εD(y). It follows
y /∈ U , which is a contradiction.

(2) Let Z ∈ P(X) and Y ∈ K(X). Suppose that εD [Z] � εD[Y ]. Then
there exists z ∈ Z such that εD(z) 	= εD(yi), for all yi ∈ Y . So, for
each yi ∈ Y there exists Ui ∈ D such that z /∈ Ui and yi ∈ Ui. As Y ⊆⋃

{Ui ∈ D | z /∈ Ui and yi ∈ Ui} and Y is compact, there exists U1, . . . , Un

such that Y ⊆ U1 ∪ . . . ∪ Un = U and z /∈ U . Then,
Z � cl(Y ).

2.2. Monotonic Modal Logic and Monotonic Frames

Let us consider a propositional language L defined by using a denumerable
set of propositional variables V ar, the connectives ∨ and ∧, the negation ¬,
the modal connective ♦, and the propositional constant �. We shall denote
by � the operator defined as �p = ¬♦¬p, for p ∈ V ar. The set of formulas
as well as the formula algebra are denoted by Fm.

A monotonic modal logic is a set of formulas Λ in the propositional
language L which contains the Classical Propositional Calculus and is closed
under the following inference rules:

R1. If ϕ,ϕ → ψ ∈ Λ, then ψ ∈ Λ (Modus Ponens).

R2. If ϕ → ψ ∈ Λ, then �ϕ → �ψ ∈ Λ.

The smallest monotonic modal logic will be denoted by MON.
The algebraic semantics for monotonic modal logics is given by the class

of Boolean algebras with a monotonic operator [10]. Recall that a monotonic
algebra is a pair A = 〈A,♦〉, where A is a Boolean algebra, and ♦ : A → A
is a monotonic function, i.e. if a ≤ b then ♦a ≤ ♦b, for all a, b ∈ A.

Definition 3. A monotonic neighbourhood frame, or monotonic frame, is
a structure F = 〈X,R〉 where R ⊆ X × P(X), and R (x) =

{
Z ∈ P(X) |

(x, Z) ∈ R
}

is an increasing subset of P(X), for each x ∈ X, i.e. is closed
under supersets for each x ∈ X.

Every monotonic frame F gives rise to a monotonic algebra of sets in the
following way.

Definition 4. The monotonic algebra, or complex algebra, of a monotonic
frame F = 〈X,R〉 is the pair

A(F) = 〈P(X),♦R〉 ,

Author's personal copy



Properties of Saturation in Monotonic Neighbourhood Models...

where the monotonic map ♦R : P(X) → P(X) is defined by:

♦R(U) = {x ∈ X | ∃Y ∈ R(x) (Y ⊆ U)} = {x ∈ X | R (x) ∩DU 	= ∅} ,
for each U ∈ P(X), where (LUc)c = DU .

Let F be a monotonic frame. The dual map �R : P(X) → P(X) of ♦R

is defined by:

�R(U) = {x ∈ X | ∀Y ∈ R(x)(Y ∩ U 	= ∅)} = {x ∈ X | R (x) ⊆ LU} ,
(2.1)

for each U ∈ P(X).

Definition 5. The ultrafilter frame of a monotonic algebra A is a pair

F(A) = 〈Ul(A), R♦〉 ,
where the relation R♦ ⊆ Ul(A) × P(Ul(A)) is defined by:

(x, Y ) ∈ R♦ ⇔ ∃F ∈ Fi(A) (F̂ ⊆ Y and F ⊆ ♦−1(x)). (2.2)

with F̂ = {y ∈ Ul(A) | F ⊆ y}.

Let A be a monotonic algebra. We note that for any F ∈ Fi(A), and for
each x ∈ Ul(A),

(x, F̂ ) ∈ R♦ iff F ⊆ ♦−1(x).

We note also that ♦R♦(β(a)) = β(♦(a)), for all a ∈ A. Thus the map
β : A → P(Ul(A)) is a monomorphism of monotonic algebras (see [3,5]
or [10]).

A valuation V based on a monotonic frame F is homomorphism from Fm
intoA(F). A monotonic model is a pair M = 〈F , V 〉, where F is a monotonic
frame and V is a valuation defined on it. We note that V (♦ϕ) = ♦RV (ϕ),
for any ϕ ∈ Fm. The notions of truth at a point, validity in a model and
validity in a frame for formulas are defined as usual.

If M = 〈X,R, V 〉 is a monotonic model, then DV = {V (ϕ) | ϕ ∈ Fm}
is a Boolean algebra closed under the monotonic operator ♦R. So, we can
consider the topological space 〈X, TDV

〉 where the topology TDV
is generated

by taking DV as basis of open sets.
Let Λ be a monotonic modal logic over a language L with a fixed set of

variables V ar. A theory of Λ, or a Λ-theory, is a set of formulas T such that
for any formulas ϕ and ψ, if ϕ ∈ T , ϕ → ψ ∈ T , then ψ ∈ T . A Λ-theory T
is consistent if T 	= Fm. A consistent theory T of Λ is maximal if for any
formula ϕ, we get ϕ ∈ T or ¬ϕ ∈ T .
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Let us define the canonical frame of a monotonic modal logic Λ as the
structure FΛ = 〈XΛ, RΛ〉 where XΛ is the set of all maximal theories of Λ,
and RΛ is a subset of XΛ × P (XΛ) defined by:

(P, Y ) ∈ RΛ iff there exists a Λ-theory T (T̂ ⊆ Y and T ⊆ ♦−1 (P )),
(2.3)

where T̂ = {Q ∈ XΛ | T ⊆ Q} (see [10]).
The canonical model of Λ is the structure

MΛ = 〈FΛ, VΛ〉 ,
where VΛ (p) = {P ∈ XΛ | p ∈ P}. It is simple to verify that the valu-
ation VΛ can be extended to Fm, i.e. VΛ (ϕ) = {P ∈ XΛ | ϕ ∈ P}, for
all formula ϕ. We note that 〈XΛ, TDΛ〉 is a topological space where DΛ

= {VΛ (ϕ) : ϕ ∈ Fm}.
It is well known that if LΛ is the Lindenbaum-Tarski algebra of Λ over

the set V ar, then the canonical frame FΛ is isomorphic to the frame of LΛ

(for more details see [10]).
Let Λ be a monotonic modal logic and let M = 〈X,R, V 〉 be a monotonic

model. Since 〈X, TDV
〉 is a space, we can consider the map εDV

: X →
Ul(DV ) defined by εDV

(x) = {V (ϕ) | x ∈ V (ϕ)}. By simplicity we write εV

instead of εDV
.

In addition to the function εV , we shall also consider the function

FM : X → XΛ,

defined by

FM (x) = {ϕ ∈ Fm | x ∈ V (ϕ)} .
We note that ϕ ∈ FM (x) iff V (ϕ) ∈ εV (x), for any ϕ ∈ Fm.

2.3. Monotonic Bisimulations

Consider two monotonic models M1 and M2 and elements x ∈ X1 and
y ∈ X2. We say that x and y are modally equivalent, in symbols x ≈ y, if
FM1 (x) = FM2 (y). For to define the notion of bisimulation we shall use
the following notation. Let M1 and M2 two models. Let B be a relation
between X1 and X2. We define a relation �B ⊆ P(X1) × P(X2) by:

Y �B Z iff ∀y ∈ Y ∃z ∈ Z such that (y, z) ∈ B.

If B = ≈ we will write � instead of �≈. In this case the relation � can
be defined in terms of the maps FM1 : X1 → XΛ and FM2 : X2 → XΛ as
follows:
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Y � Z iff FM1 [Y ] ⊆ FM2 [Z] .

Definition 6. [11] Let M1 and M2 two monotonic models. A relation
B ⊆ X1×X2 is a bisimulation if whenever (a, b) ∈ B the following conditions
hold:

B0. a ∈ V1(p) iff b ∈ V2(p), for any p ∈ V ar,

B1. ∀Y ∈ R1(a) ∃Z ∈ R2 (b) such that and Z �B−1 Y ,

B2. ∀Z ∈ R2(b) ∃Y ∈ R1 (a) such that Y �B Z.

Let M1 and M2 be two models and let x ∈ X1 and let y ∈ X2. We say
that x and y are bisimilar if there exists a bisimulation B between M1 and
M2 such that (x, y) ∈ B.

One of the reasons why bisimilarity is such an important notion in modal
logic is that the truth of modal formulas is invariant under bisimilarity as is
shown in Lemma 7, while for some important classes of models the converse
inclusion holds as well (see Theorem 12). Given M a class of monotonic
models, it is said that it is a Hennessy-Milner class if for every M,N ∈ M,
the relation ≈ is a bisimulation between M and N . We shall say that M
has the Hennessy-Milner Property (HMP) if it is logically bisimilar to itself,
i.e. if ≈ is a bisimulation on M. A bisimulation B is total if the domain of B
is X1 and the image is X2. The proof of the following result is given in [10].

Lemma 7. Let M1 and M2 be two models. For all states x in M1 and y in
M2, if x and y are bisimilar, then x ≈ y.

A bounded morphism f between the monotonic frames F1 = 〈X1, R1〉
to F2 = 〈X2, R2〉 can be defined as a function f : X1 → X2 whose graph
{(x, f(x)) | x ∈ X1} is a bisimulation. This is equivalent to the following
definition:

BM1. ∀x ∈ X∀Y ⊆ X ((x, Y ) ∈ R1, then (f(x), f [Y ]) ∈ R2),

BM2. If (f(x), Z) ∈ R2, then there exists Y ⊆ X such that (x, Y ) ∈ R1 and
f [Y ] ⊆ Z.

If f is surjective, then it is called a bounded epimorphism. A bounded
morphism from the model M1 =〈X1, R1, V1〉 to the model M2 =〈X2, R2, V2〉
is a bounded morphism between the frames F1 and F2 such that V1(p) =
f−1(V2(p)), for any p ∈ V ar.

We say that the model M1 is a generated submodel of the model M2, in
symbols M1 ⊆gs M2, if X1 ⊆ X2 and the inclusion function X1 ↪→ X2 is a
bounded morphism from M1 to M2.
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3. Modally Saturated Monotonic Models

Let us recall that a Kripke model M is called modally saturated, or m-
saturated, if for every state x ∈ X, and for every set Γ of formulas which
is finitely satisfiable in the set of successors of x, is itself satisfiable in the
set of successors of x. Then a result, originally due to A. Visser, states that
the class of m-saturated models is a Hennessy-Milner class (see [13], or [2]).
Now we attempt to generalize the notion of saturation along the lines of
what has been accomplished in the classical normal modal setting.

A notion of modal saturation was introduced by Pauly (unpublished, see
[10] for the details) for monotonic models. In this section we use the notion
of modal saturation defined in [3]. Every modally saturated model according
to Hansen’s definition is modally saturated in our sense, but the converse is
not true.

Let M be a monotonic model. Then we can consider the hyperspace
〈KR,LDV

〉 of 〈X, TDV
〉 relative to KR = {Y ⊆ X | ∃x ∈ X ((x, Y ) ∈ R)}

(see definition 1).

Definition 8. Let M = 〈X,R, V 〉 be a monotonic model. We shall say
that:

(1) M is compact if the topological space 〈X, TDV
〉 is compact.

(2) M is image-compact if for all x ∈ X and for all Y ∈ R(x), there exists
a compact subset Z of 〈X, TDV

〉 such that Z ⊆ Y and Z ∈ R(x).

(3) M is point-compact if R(x) is a compact subset in the topological space
KR = 〈KR,LDV

〉, for each x ∈ X.

(4) M is modally saturated if it is image-compact and point-compact.

Now, we will recall the following result shown in [3], Lemma 13.

Lemma 9. Let M be a model. Then the following conditions are equivalent:

(1) The topological space 〈X, TDV
〉 is compact.

(2) The map εV : X → Ul(DV ) is onto.

Now we prove that the canonical model MΛ of a monotonic logic Λ is
compact and modally saturated. This result is needed in Section 6.

Theorem 10. Let Λ be a monotonic modal logic. The canonical model
MΛ = 〈FΛ, VΛ〉 is compact and modally saturated.

Proof. We prove that the space
〈
XΛ, TDVΛ

〉
is compact. From Lemma 9

it is enough to prove that the map εVΛ : XΛ → Ul (DVΛ) given by εVΛ(T ) =
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{VΛ(φ) | T ∈ VΛ(φ)} is surjective. Let P ∈ Ul (DVΛ). Consider the set T =
{φ ∈ Fm | VΛ(φ) ∈ P}. As P is an ultrafilter of DVΛ , we get that T ∈ XΛ.
Now, it is easy to see that εVΛ(T ) = P . Thus εVΛ is surjective.

Now we prove that
〈
XΛ, TDVΛ

〉
is point-compact. Let P ∈ XΛ and let Y

be a subset of XΛ such that (P, Y ) ∈ RΛ.Then there exists a theory T such
that T̂ ⊆ Y and T ⊆ ♦−1 (P ), where we recall that T̂ = {Q ∈ XΛ | T ⊆ Q}.
Assume that

RΛ(P ) ⊆
⋃{

LVΛ(α) : α ∈ Γ ⊆ Fm
}

. (3.1)

Suppose that RΛ(P ) �
⋃ {

LVΛ(α) : α ∈ Γj

}
, for any finite subset Γj of

Γ. Consider the theory F generated by the set {¬α : α ∈ ϕ}. we prove that
F ⊆ ♦−1 (P ). Let ϕ ∈ F . Then there exists a finite subset {α1, · · · ., αn} of Γ
such that (¬α1∧· · ·∧¬αn) → ϕ ∈ Λ ⊂ F . Thus, VΛ(¬α1∧· · ·∧¬αn) ⊆ VΛ(ϕ).
By hypothesis,

RΛ(P ) � LVΛ(¬α1) ∪ · · · ∪ LVΛ(¬αn) = LVΛ(¬α1∨···∨¬αn).

So, there exists Z ∈ RΛ(P ) such that Z ∩ VΛ(¬α1 ∨ · · · ∨ ¬αn) = ∅, i.e.,
Z ⊆ VΛ(¬α1 ∧ · · ·∧¬αn). Then, Z ⊆ VΛ(ϕ), and as Z ∈ RΛ(P ), we get that
♦ϕ ∈ P . Therefore F ⊆ ♦−1 (P ). Then F̂ ∈ RΛ(P ). By (3.1), there exists
α0 ∈ Γ such that F̂ ∩VΛ(α0) 	= ∅. So, there is Q ∈ XΛ such that F ⊆ Q and
α0 ∈ Q. But as VΛ(¬α0) ⊆ F̂ , we have that α0 ∈ Q, which is impossible
because Q is a maximal theory. Thus, there exists a finite subset Γj of Γ
such that RΛ(P ) ⊆

⋃{
LVΛ(α) : α ∈ Γj

}
.

By definition of the relation RΛ we have that MΛ is image-compact.
Thus, MΛ is modally saturated.

The proof of the following Theorem 12 is essentially the same as is given
in [10, Theorem 4.31] for locally core-finite monotonic models using Hansen’s
definition of modal saturation. Here we include a proof using our new notion
of models modally saturated. First we needed the following auxiliary result.

Lemma 11. Let M1 and M2 be two models. Let Z ∈ P(X2) and K ∈ P(X1).
If K is a compact subset of

〈
X1, TDV1

〉
, then

Z � K iff ∀ϕ ∈ Fm (K ⊆ V1(ϕ), implies Z ⊆ V2(ϕ)).

Proof. Suppose that Z 	� K. Then there exists an element z ∈ Z such that
FM2(z) 	= FM1(ki), for all ki ∈ K. So, for each ki ∈ K there exists a formula
ϕi such that z ∈ V2(ϕi) and ki ∈ V1(¬ϕi). Then K ⊆

⋃
{V1(¬ϕi) | ki ∈ K}.

By compactness there exists a finite subset {¬ϕ1, . . . ,¬ϕn} such that

K ⊆ V1(¬ϕ1) ∪ · · · ∪ V1(¬ϕn) = V1(¬ϕ1 ∨ · · · ∨ ¬ϕn) = V1(¬ϕ).

Author's personal copy



S. A. Celani

Then Z ∩ V2 (ϕ) 	= ∅ and K ∩ V1 (ϕ) = ∅. The other direction is easy and
left to the reader.

Theorem 12. Let M1 and M2 be two modally saturated models. Then the
relation ≈ is a bisimulation.

Proof. We prove the condition B1. Let a ∈ X1 and b ∈ X2. Assume that
a ≈ b. Let (a, Y ) ∈ R1. As M1 is image-compact, there exists a compact
subset K of

〈
X1, TDV1

〉
such that K ⊆ Y and (a,K) ∈ R1.

Now we suppose that Zi 	� K, for any Zi ∈ R2 (b). Then by Lemma 11,
for each Zi ∈ R2 (b) there exists a formula ϕi such that Zi ∩V2 (ϕi) 	= ∅ and
K ∩ V1 (ϕi) = ∅. Then

R2 (b) ⊆
⋃ {

LV2(ϕi) | Zi ∈ R2 (b)
}
.

Since M2 is point-compact, there exists a finite set {ϕ1, . . . , ϕn} such that

R2 (b) ⊆ LV2(ϕ1) ∪ · · · ∪ LV2(ϕn) = LV2(ϕ1∨···∨ϕn) = LV2(ϕ),

i.e. for every Zi ∈ R2 (b), we have that Zi ∩ V2 (ϕ) 	= ∅. So, b ∈ V2 (�ϕ) =
V2 (¬♦¬ϕ). As a ≈ b, we have a ∈ V1 (�ϕ). But as (a,K) ∈ R1 and K ∩
(V1 (ϕ1) ∪ · · · ∪ V1 (ϕn)) = K ∩ V1 (ϕ) = ∅, we get a ∈ V1 (¬�ϕ), which is a
contradiction. Thus, there exists Z ∈ R2 (b) such that Z � K. Since K ⊆ Y ,
we get Z � Y .

The proof of condition B2 is similar and left to the reader.

Corollary 13. The class of all modally saturated models is a Hennessy-
Milner class.

3.1. Normal Monotonic Saturated Models

We recall that there exists a bijective correspondence between normal
monotonic models and Kripke models, and we see that the notions of modally
saturated in normal monotonic models and Kripke models are equivalent.
This is another argument to say that the definition of modal saturation for
monotonic neighbourhood models given in [3], is the right one.

Definition 14. A monotonic frame 〈X,R〉 is called normal if for any x ∈ X
and for any Y ∈ R (x) there exists y ∈ Y , such that {y} ∈ R (x).

Given a Kripke model K = 〈X,S, V 〉, we obtain a normal monotonic
model

Kn = 〈X,RS, V 〉
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where the relation RS ⊆ X × P(X) is defined as

(x, Y ) ∈ RS ⇔ S (x) ∩ Y 	= ∅.
It is easy to prove that

♦RS
(V (ϕ)) = {x ∈ X | S (x) ∩ V (ϕ) 	= ∅} .

Conversely, given a normal monotonic model M = 〈X,R, V 〉, we define the
Kripke model

Mkrp = 〈X,SR, V 〉
by taking

SR(x) = {y ∈ X : (x, {y}) ∈ R} .
It is easy to prove that V (♦ϕ) =

{
x ∈ X | R(x) ∩ LV (ϕ)

}
=

{
x ∈ X | SR(x)

∩ V (ϕ) 	= ∅
}
. These transformations are mutually inverse of each other

(see Lemma 11 in [5]). Thus, the semantic definition (2.1) of the diamond
operator ♦R is an adequate extension of the usual interpretation of the
diamond operator in Kripke frames. Similar considerations can be given for
the box operator �R.

We recall that a Kripke model K = 〈X,S, V 〉 is Kripke modally saturated,
if for all x ∈ X and all set Ψ of formulas the following condition is verified:

KMS: If Ψ is finitely satisfiable in S(x), then Ψ is satisfiable in S(x).

It is well known that over the class of modally saturated Kripke models,
modal equivalence implies Kripke bisimilarity (see e.g. [2]).

Remark 15. We note that a Kripke model K = 〈X,S, V 〉 is Kripke modally
saturated iff S(x) = {y ∈ X : (x, y) ∈ S} is a compact subset in the topo-
logical space 〈X, TDV

〉, for each x ∈ X.

Lemma 16. Every normal monotonic model is image-compact.

Proof. Let M = 〈X,R, V 〉 be a normal monotonic model. Let Y ∈ R(x).
As M is normal, there exists y ∈ Y such that {y} ∈ R(x). As {y} ⊆ Y and
{y} is a compact subset of 〈X, TDV

〉, we have that M is image-compact.

Theorem 17. Let M = 〈X,R, V 〉 be a normal monotonic model. Then
M is modally saturated iff the Kripke model Mkrp = 〈X,SR, V 〉 is Kripke
modally saturated.

Proof. We prove that for any set of formulas Ψ,

R(x) ⊆
⋃ {

LV (ϕ) : ϕ ∈ Ψ
}

iff SR(x) ⊆
⋃

{V (ϕ) : ϕ ∈ Ψ} .
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Assume that R(x) ⊆
⋃ {

LV (ϕ) : ϕ ∈ Ψ
}
. Let y ∈ SR(x). Then {y} ∈ R(x).

Thus there exists ϕ ∈ Ψ such that {y} ∩ V (ϕ) 	= ∅, i.e., y ∈ V (ϕ). Assume
that SR(x) ⊆

⋃
{V (ϕ) : ϕ ∈ Ψ}, and let Y ∈ R(x). As M is normal, there

exists y ∈ Y such that {y} ∈ R(x). So, y ∈ SR(x), and consequently we get
that y ∈ V (ϕ), for some ϕ ∈ Ψ. Thus, R(x) ⊆

⋃ {
LV (ϕ) : ϕ ∈ Ψ

}
.

Now, it is easy to see that R(x) is a compact subset in the topological
space KR = 〈KR,LDV

〉 iff SR(x) is a compact subset in the topological space
〈X, TDV

〉, for each x ∈ X. Therefore, M is modally saturated iff the Kripke
model Mkrp = 〈X,SR, V 〉 is Kripke modally saturated.

4. Preservation Properties of Models

We will now prove certain properties that are preserved by total bisimula-
tions and bounded morphisms of monotonic models.

Proposition 18. Let B be a total bisimulation between the models M1 and
M2. Then,

(1) M1 is compact iff M2 is compact.

(2) M1 is point-compact iff M2 is point-compact.

Proof. We prove only the implications from left to right. The other impli-
cation follow by the first ones because the inverse of a total bisimulation is
a total bisimulation.

(1) Assume that M1 is compact. By Lemma 9 it is suffices to prove that
the map εV2 : X2 → Ul(DV2) is onto. Let P ∈ Ul(DV2). Consider the subset
Q = {V1(ϕ) : V2(ϕ) ∈ P}. Since P is an ultrafilter of DV2 , it is easy to see
that Q is an ultrafilter of DV1 . Since M1 is compact, there exists x ∈ X1

such that εV1(x) = Q. As B is total there exists y ∈ X2 such that (x, y) ∈ B.
Then, V2(ϕ) ∈ εV2(y) iff y ∈ V2 (ϕ) iff x ∈ V1 (ϕ) iff V1(ϕ) ∈ εV1(x) = Q iff
V2(ϕ) ∈ P . Thus, εV2(y) = P and we can conclude that M2 is compact.

(2) Let b ∈ X2 and let Γ ⊆ Fm. We prove that R2(b) is a compact subset
of the hyperspace

〈
KR2 , TDV2

〉
. Suppose that for any finite subset Γj of Γ

we get

R2 (b) ∩
⋂ {

Lc
V2(ϕ) | ϕ ∈ Γj

}
	= ∅.

We prove that R2 (b)∩
⋂{

Lc
V2(ϕ) | ϕ ∈ Γ

}
	= ∅. Since B is total there exists

a ∈ X1 such that (a, b) ∈ B. As a and b are modally equivalent we have that

R1 (a) ∩
⋂ {

Lc
V1(ϕ) | ϕ ∈ Γj

}
	= ∅,
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for any finite subset Γj of Γ. Then there exists Y ∈ R1 (a) and Y ∩V1 (ϕ) = ∅,
for all ϕ ∈ Γ. As B is a bisimulation, there exists Z ⊆ X2 such that
(b, Z) ∈ R2 and Z �B−1 Y . We note that if there exists ϕ ∈ Γ such
that Z ∩ V2(ϕ) 	= ∅, as Z �B−1 Y , Y ∩ V1(ϕ) 	= ∅, which is impos-
sible. Thus, Z ∈ R2 (b) ∩

⋂ {
Lc

V2(ϕ) | ϕ ∈ Γ
}

, and consequently M2 is
point-compact.

Proposition 19. Let f : M1 → M2 be a bounded morphism between the
monotonic models M1 and M2. If f is surjective and M2 is image-compact,
then M1 is image-compact.

Proof. Let a ∈ X1 and let Y ∈ R1(a). Then f [Y ] ∈ R2(f(a)). As M2

is image-compact, then there exists a compact subset H of X2 such that
H ⊆ f [Y ] and H ∈ R2(f(a)). As f is a bounded morphism, there exists
Z ⊆ X1 such that (a, Z) ∈ R1 and f [Z] ⊆ H. So, Z ⊆ f−1 [H], and as
M1 is monotonic, (a, f−1 [H]) ∈ R1. We prove that f−1 [H] is compact.
Let W ⊆ Fm such that f−1 [H] ⊆

⋃
{V1(ϕ) : ϕ ∈ W}. As f is a bounded

morphism, V1(ϕ) = f−1 [V2(ϕ)], for each ϕ ∈ W . We prove that

H ⊆
⋃

{V2(ϕ) : ϕ ∈ W} .

Let y ∈ H. As f is surjective, there exists x ∈ X1 such that f(x) = y. So,
x ∈ f−1 [H], and consequently there exists ϕ ∈ W such that x ∈ V1(ϕ) =
f−1 [V2(ϕ)], i.e., f(x) = y ∈

⋃
{V2(ϕ) : ϕ ∈ W}. As H is compact, there

exist ϕ1, . . . , ϕn ∈ W such that H ⊆ V2(ϕ1) ∪ . . . ∪ V2(ϕ2). So, f−1 [H] ⊆
V1(ϕ1) ∪ . . . ∪ V1(ϕ2), and thus f−1 [H] is compact. So, f−1 [H] ⊆ Y , and
we get that M1 is image-compact.

Proposition 20. Let M1 be a generated submodel of M2. If M2 is image-
compact, then M1 is image-compact.

Proof. Assume that M2 is image-compact. Let x ∈ X1 and (x, Y ) ∈ R1.
Then, (x, Y ) ∈ R2. As M2 is image-compact, there exists a compact subset
H of

〈
X2, TDV2

〉
such that H ⊆ Y and (x,H) ∈ R2. As H ⊆ Y ⊆ X1,

it is easy to see that H is also a compact subset of
〈
X1, TDV1

〉
. So, M1 is

image-compact.

We define the following operations on a class of monotonic models M:

S(M) = {M | ∃M′ ∈ M such that M ⊆gs M′},
B(M) = {M | ∃M′ ∈ M such that M and M′ are bisimilar}.
H−1

p (M)={M|∃M′ ∈ M and a surjective bounded morphism f : M→M′}
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We note that H−1
p (M) ⊆ B(M), because every surjective bounded mor-

phism is also a total bisimulation.
Let MSAT and CMSAT be the class of all modally saturated and the

class of compact and modally saturated, respectively.

Corollary 21. H−1
p S(MSAT) ⊆ MSAT and H−1

p S(CMSAT) ⊆
CMSAT.

Proof. It follows by Proposition 19 and Proposition 20.

5. Characterization of CMSAT

In this section we give a characterization of the class CMSAT in terms of
the operators H−1

p and S.
The following result was proved in [3] and we will used in Theorem 23.

Proposition 22. Let M be a compact model. Then M is point-compact iff
for all x ∈ X, for all Y ∈ P(X), if

⋂
{εV (y) | y ∈ Y } ⊆ ♦−1

R (εV (x)), then
there exists a subset Z ⊆ X such that Z ∈ R(x) and Z ⊆ cl(Y ),

where cl(Y ) is the closure of Y in the space 〈X, TDV
〉.

Theorem 23. Let MΛ be the canonical model of MON. Then, H−1
p S(MΛ)

= CMSAT.

Proof. By Theorem 10 we get that MΛ = 〈XΛ, RΛ, VΛ〉 ∈ CMSAT. From
Corollary 21 we have that H−1

p S(MΛ) ⊆ CMSAT.
Let N = 〈X,R, V 〉 ∈ CMSAT. Let us consider the map f : X → XΛ

defined by

f(x) = {ϕ ∈ Fm | x ∈ V (ϕ)} .
It is readily checked that f(x) is a maximal theory. We note that f is a
continuous function between the spaces 〈X, TDV

〉 and
〈
XΛ, TDVΛ

〉
, because

f−1(VΛ(ϕ)) = V (ϕ),

for each formula ϕ. Thus, if C is a closed subset of
〈
XΛ, TDVΛ

〉
, then f−1 [C]

is a closed subset of 〈X, TDV
〉, and therefore it is compact, because 〈X, TDV

〉
is compact.

We prove that f is a surjective bounded morphism between N and MΛ.
Let P ∈ XΛ. Let us consider the set

Γ = {V (ϕ) | ϕ ∈ P} .
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It is easy to see that Γ is an ultrafilter of DV = {V (ϕ) | ϕ ∈ Fm}. As N is
compact, we have by Lemma 9 that the map εV : X → XΛ is surjective. So,
εV (x) = Γ, for some x ∈ X. Then,

V (ϕ) ∈ f(x) iff x ∈ V (ϕ) iff V (ϕ) ∈ εV (x)
iff V (ϕ) ∈ Γ iff ϕ ∈ P.

Thus, f(x) = P , and consequently f is surjective.

Now we prove that f satisfies the conditions BM1 and BM2 given on
page 7.

Let x ∈ X and let H ⊆ Y . Assume that (x,H) ∈ R. We prove that
(f(x), f [H]) ∈ RΛ. We analyzed two cases.

(a) Suppose that H is a compact subset of X. As f is a continuous
function, f [H] is a compact subset of

〈
XΛ, TDVΛ

〉
. So,

ϕ ∈
⋂

{f(h) | h ∈ H} ⇔ ∀h ∈ H (h ∈ V (ϕ))
⇔ H ⊆ V (ϕ).

As (x,H) ∈ R, we get that x ∈ V (♦ϕ). Thus, ϕ ∈ ♦−1(f(y)). This completes
the proof that (f(x), f(H)) ∈ RΛ.

(b) If H is not a compact subset of X, then as N is image-compact, there
exists a compact subset H ′ of 〈X, TDV

〉 such that H ′ ⊆ H and (x,H ′) ∈ R.
As in the point (a), f [H ′] is a compact subset of

〈
XΛ, TDVΛ

〉
such that

(f(y), f [H ′]) ∈ RΛ. As f [H ′] ⊆ f [H], we deduce that (f(x), f [H]) ∈ RΛ.

Let x ∈ X and Y ⊆ XΛ such that (x, Y ) ∈ RΛ. Then there exists a
Λ-theory F such that F̂ ⊆ Y and F ⊆ ♦−1(f(x)). Since F̂ is a closed subset
of

〈
XΛ, TDVΛ

〉
and f is continuous, f−1(F̂ ) = Z is a closed subset

and thus it is a compact subset of 〈X, TDV
〉. We prove that

⋂
{εV (z) | z ∈ Z} ⊆ ♦−1

R (εV (x)).

Take a formula ϕ such that V (ϕ) ∈
⋂

{εV (z) | z ∈ Z}. Then ϕ ∈ f(z),
for all z ∈ Z. So, ϕ ∈ F ⊆ ♦−1(f(x)). It follows x ∈ V (♦ϕ)). As N is
point-compact and compact, from Proposition 22 there exists a subset H of
X such that (x,H) ∈ R and H ⊆ cl(Z) = Z. So, f [H] ⊆ f [Z] ⊆ F̂ ⊆ Y .
Therefore, (x,H) ∈ R, and f [H] ⊆ Y . Therefore f is a surjective bounded
morphism.
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6. Maximal Hennessy-Milner Classes

In this section we will prove that the class of all modally saturated models
MSAT is a Hennessy-Milner class not properly included in any Hennessy-
Milner class, i.e. MSAT is a maximal Hennessy-Milner class. The proof fol-
lows a similar argument to the proof of the fact that the class of m-saturated
Kripke models is a Hennessy-Milner maximal class, as is expounded in [13].

Let 〈XΛ, RΛ, VΛ〉 be the canonical model of the monotonic logic MON.
This model is also called the Henkin model of MON.

Definition 24. A Henkin-like model is a structure M = 〈XΛ, R
M, VΛ〉

with universe and valuation the same as in the canonical model of MON
and a relation RM ⊆ RΛ such that for every formula φ and every P ∈ XΛ

M |=P φ iff φ ∈ P.

We note that a Henkin-like model is compact, because the space〈
XΛ, TDVΛ

〉
is compact. Now we will prove that, each Henkin-like model

produces a maximal Hennessy-Milner class. This result will be used to prove
that any Hennessy-Milner class is contained in a maximal Hennessy-Milner
class (see Theorem 28). The analogue of this result for the normal modal
logic case is due to A. Visser; see [13] for its proof.

Lemma 25. If M is a Henkin-like model, then BS(M) is a maximal
Hennessy-Milner class.

Proof. Let M be a Henkin-like model. In M, P ≈ P ′ iff P = P ′. So,
≈ is a bisimulation in M, and thus M has the Hennessy-Milner property.
First of all we see that the class BS(M) is a Hennessy-Milner class. In
S(M) the relation ≈ between two models is the identity, because this holds
in M, and therefore is a bisimulation. Hence S(M) is a Hennessy-Milner
class. Moreover, as the composition of total bisimulations is again a total
bisimulation, we get if M is a Hennessy-Milner class, then B(M) is too. We
conclude that BS(M) is a Hennessy-Milner class as desired.

Let us see that BS(M) is maximal among the Hennessy-Milner classes.
Assume that M is a Hennessy-Milner class that includes BS(M). We prove
that M ⊆ BS(M). Let N = 〈X,R, V 〉 ∈ M. We prove that there exists a
generated submodel N ′ of M and a surjective bounded morphism f : N →
N ′.

Consider the model

N ′ = 〈{FN (x) | x ∈ X}, R′, V ′〉,
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where R′ is defined by

(FN (x) , FN [Y ]) ∈ R′ iff
⋂{

FN (y) | y ∈ Y ⊆ X
}

⊆ ♦−1(FN (x)),

and V ′ is defined by

V ′(p) = {FN (x) | p ∈ FN (x)},
for each propositional variable p. Clearly

{FN (x) | x ∈ X} ⊆ XΛ,

because for each x ∈ X the set FN (x) is a maximal and consistent theory.
It is clear that if (x, Y ) ∈ R, then (FN (x) , FN [Y ]) ∈ R′.

Let us see that N ′ ∈ S(M). Also it is clear that V (p) = (FN )−1(V ′(p)),
for each propositional variable p.

Assume that x ∈ X, T ⊆ XΛ and (FN (x) , T ) ∈ RM. Since, M is a
Hennessy-Milner class and M,N ∈ M,we have that ≈ is a bisimulation
between N and M. Therefore, there is Z ∈ R (x) such that FN [Z] ⊆ T .
Thus FN is a surjective bounded morphism, and thus N ′ is a generated
submodel of M.

Since N ∈ M, N ′ ∈ H−1
p S(M) ⊆ BS(M) ⊆ M and M is a Hennessy-

Milner class, we obtain that the relation x ≈ FN (x) is an bisimulation
between N and N ′. Therefore, N ∈ BS(M).

Let M be any class of models. Our next task is to define a Henkin-like
model associated with M. We will define a relation RM ⊆ XΛ × P(XΛ) such
that the map FN : N → 〈XΛ, RM〉 be a bounded morphism for all N ∈ M.

We denote by MM the monotonic model whose accessibility relation RM

is defined by:

(P, Y ) ∈ RM iff (1) (P, Y ) ∈ RΛ and P 	= FN (x) for all N ∈ M, or
(2) there exists a model N = 〈X,R, V 〉 ∈ M,
an element x ∈ X, and a subset Z ⊆ X such that
P = FN (x), (x, Z) ∈ R, and FN [Z] ⊆ Y.

Lemma 26. MM = 〈XΛ, RM, VΛ〉 is a Henkin-like model.

Proof. We need to prove that

P ∈ VΛ(ϕ) iff ϕ ∈ P,

for any formula ϕ, and for all P ∈ XΛ. The proof is by induction on the
complexity of the formulas. We prove only the case of formulas ♦ϕ.
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⇒) Assume that P ∈ VΛ(♦ϕ) = {Q ∈ XΛ | ∃Y ∈ RM(Q) (Y ⊆ VΛ(ϕ))}.
Then there exists Y ∈ RM(P ) such that Y ⊆ VΛ(ϕ). By induction hypothe-
sis, ϕ ∈ Q, for all Q ∈ Y . By definition of RM we have two cases:

(a) If (P, Y ) ∈ RΛ and P 	= FN (x) for all N ∈ M. As Y ⊆ VΛ(ϕ), we
have by induction hypothesis that ϕ ∈

⋂
{Q ∈ XΛ | Q ∈ Y } = FY , and

since FY ⊆ ♦−1 (P ), we get ♦ϕ ∈ P .
(b) Suppose that there exists a model N = 〈X,R, V 〉 ∈ M, there exists

an element x ∈ X, and there exist a subset Z ⊆ X such that

P = FN (x) , (x, Z) ∈ R and FN [Z] ⊆ Y.

Since FN [Z] ⊆ Y ⊆ VΛ(ϕ), we have FN (z) ∈ VΛ(ϕ), for all z ∈ Z, i.e., z ∈
V (ϕ). So, Z ⊆ V (ϕ). Since (x, Z) ∈ R, x ∈ V (♦ϕ). Thus, ♦ϕ ∈ FM(x) = P .

⇐) Suppose that ♦ϕ ∈ P . We have two cases:
(a) If (P, Y ) ∈ RΛ and P 	= FN (x) for all N ∈ M. Take the set Yϕ =
{Q ∈ XΛ | ϕ ∈ Q}. Then it is easy to see that FYϕ

⊆ ♦−1(P ), i.e., (P, Yϕ) ∈
RΛ.
(b) Suppose that there exists a model N = 〈X,R, V 〉 ∈ M, and there exists
an element x ∈ X such that P = FN (x). As ♦ϕ ∈ P = FN (x), there exists
Z ⊆ X such that (x, Z) ∈ R and Z ⊆ V (ϕ). Thus, FN [Z] ⊆ VΛ(ϕ). If we
take Y = FN [Z], then (P, Y ) ∈ RM.

The next result is needed in the proof of Theorem 28.

Lemma 27. Let M be a Hennessy-Milner class of models. Then for all models
N = 〈X,R, V 〉 ∈ M, the map FN : X → MM is a bounded morphism.

Proof. Let x ∈ X and Z ⊆ X such that (x, Z) ∈ R. We need to prove that
(FN (x), FN [Z]) ∈ RM, but this is immediate by the definition of relation
RM.

Let Y ⊆ XΛ. Assume that (FN (x), Y ) ∈ RM. By the definition of RM,
we have a model N ′ = 〈X ′, R′, V ′〉 ∈ M, an element x′ ∈ X ′ and Z ∈ R′(x)
such that FN (x) = FN ′

(x′), and FN ′
[Z] ⊆ Y . So, x ≈ x′. Since M is a

Hennessy-Milner class, ≈ is a bisimulation between N and N ′. So, given
(x′, Z) ∈ R′, there exists Z ∈ R (x) such that FN [Z] ⊆ FN ′

[Z ′] ⊆ Y . Thus
FN is a bounded morphism.

The next Theorem and its proof are a monotonic version of an analogous
results for arbitrary Hennessy-Milner classes of Kripke models due to A.
Visser (see [13] for a proof), which states that every Hennessy-Milner class
can be extended to a maximal one.

Theorem 28. Let M be a Hennessy-Milner class. Then M ⊆ BS(MM).
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Proof. Let M = 〈X,R, V 〉 ∈ M. By Lemma 27 FM : M → MM is a
bounded morphism. So, the model FM [M] = M′ is a generated submodel
of MM, and the graph of FM is total bisimulation between M and M′.
Hence, M ∈ BS(MM).

Corollary 29. A Hennessy-Milner class M is maximal iff there exists a
Henkin-like model M such that M = BS(M).

Proof. Let M be a maximal Hennessy-Milner class. Consider the Henkin-
like model MM. From Theorem 28, M ⊆ BS(MM), and as M is maximal,
we have that M = BS(MM). The converse is immediate.

7. Conclusions

In this paper we study a notion of modal saturation that enables us to
extended several theorems from Kripke semantics to neighbourhood seman-
tics. The main idea is to replace the notion of finiteness involved in the
Kripke version of modal saturation with the compactness in the hyper-
space associated together with the new notion of image-compactness. We
prove that some of these properties are preserved by total bisimulations and
bounded morphisms of monotonic models, and we prove also that the gen-
erated submodels of image-compact models are image-compact. We show
that the class of compact and modally saturated is generated by the canon-
ical model of the minimal monotonic modal logic MON by means of the
operators H−1

p and S. Finally, we prove that the class of modally saturated
models MSAT is a maximal Hennessy-Milner class.

Every modally saturated model, according to Hansen’s definition,
is modally saturated in our sense, but the converse is not true. On the other
hand, in [12, Definition 4.4], other notion of m-saturation for neighbour-
hood models, called neighbourhood modal saturation, is defined. However, it
is not clear whether monotonic modal saturation and neighbourhood modal
saturation coincides in all monotonic models (see Remark 4.8 in [12, Def-
inition 4.4]). Neither is it clear whether Definition 8 and neighbourhood
modal saturation coincides in all monotonic models. Therefore, it is inter-
esting to make a comprehensive comparative analysis of all these notions
of saturation. On the other hand, we prove that the notion of monotonic
modal saturation defined in [3] extended the usual notion of m-saturation in
Kripke models. This fact is important because the notions of neighbourhood
modal saturation defined in [12, Definition 4.4], and the notion monotonic
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and the Hansen’s definition of monotonic saturation defined in [10] are not
accurate generalizations of the Kripke modal saturation.
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