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Evolution of Impatience: 
The Example of the Farmer-Sheriff Game†

By David K. Levine, Salvatore Modica,  
Federico Weinschelbaum, and Felipe Zurita*

The literature on the evolution of impatience, focusing on  
one-person decision problems, often finds that evolutionary forces 
favor the more patient individuals. This paper shows that in games 
where equilibrium involves threat of punishment there are forces 
generating an evolutionary advantage to the impatient. In particular, 
it offers a two-population example where evolutionary forces favor 
impatience in one group while favoring patience in the other. 
Moreover, efficiency may also favor impatient individuals. In our 
example, it is efficient for one population to evolve impatience and 
for the other to develop patience. Yet, evolutionary forces move the 
opposite direction. (JEL C73, C78)

Why are we often more impulsive than we might like to be? To take one of many 
examples: although the “cost” of getting a copy of a new book or the last 

model of a computer decreases substantially with time, few people choose to wait—
and in some cases there are even people that spend the night in line to be the first 
buyers. From the perspective of evolution this might pose a puzzle. Whenever evo-
lution favors the very long run, given the great variation in patience and self-control 
in the population, will not evolutionary forces favor those more willing to wait? 
Should we not evolve towards ever-greater patience and absence of impulsivity in 
such environments? Indeed, Rogers (1994) argues that evolution would select sub-
jective discount factors that are equal to 1 in decisions that affect the decision maker 
alone and not his descendants. Moreover, Blume and Easley (1992, 2006) and more 
recently Bottazzi and Dindo (2011) show in the context of a wealth accumulation 
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problem that evolution favors the patient so strongly that it favors the patient over 
the smart.1 In different settings, other authors (see, for example, Hansson and Stuart 
1990 and Robson and Wooders 1997) have also argued that evolution would favor 
a discount factor of 1.

One explanation, see for example Chowdhry (2011), is that we are impatient 
because we may not live to see tomorrow. However, this does not in itself explain 
why we should evolve to impatience: even a very patient individual will behave 
impatiently in the face of uncertain life. Robson and Samuelson (2009) find that 
aggregate uncertainty concerning survival rates leads to more impatience. Moreover, 
they find that when aggregate uncertainty differs across ages, the discount rate does 
not need to be constant.2

Here we explore an alternative explanation of the evolution of impatience. In 
particular, we present a game in which evolution and impatience are compatible. 
In an investment problem short-sightedness is dysfunctional, but the same is not 
necessarily true in a game: preferences can act as a form of commitment device. 
For example, in a repeated game a player who is patient can be coerced into taking 
actions that are disadvantageous by threats of future retaliation. This is why some 
repeated games admit equilibria that are Pareto inferior to static Nash equilibria. 
More concretely, imagine a player has a choice whether to give a costly gift to his 
opponent who must simultaneously choose whether to drown him in burning oil. A 
patient player can be coerced into giving the gift if a credible threat of future burning 
in oil is available. An impatient player is immune to this threat since he does not care 
about the possibility of future punishment. Hence, there is an equilibrium in which a 
patient player does badly—giving the expensive gift—while there is no equilibrium 
in which the impatient player does so. In effect, the impatient player commits to not 
giving the gift, so the opponent does not retaliate.

We explore the issue in the context of a simple game designed to illustrate both 
how impatience can emerge as an evolutionary outcome and also to understand how 
different social roles may result in different degrees of patience. Indeed, despite 
anecdotal evidence that the rich may be as impulsive as the poor, there is statistical 
evidence, for example in Cunha and Heckman (2009), that there is a strong con-
nection between economically unsuccessful families and impatience and lack of 
self-control.

This paper is designed to further advance the literature on the evolution of prefer-
ences, in the path set out by Hirshleifer (1977). The evolution of altruism has been 
studied, for example, in Bowles (2001), and in the context of cultural evolution by 
Bisin, Topa, and Verdier (2004); Bisin and Verdier (2001) investigates the broader 
issue of cultural versus other forms of transmission. The relation between selec-
tion and kinship has been examined by Alger and Weibull (2010). Authors such as 
Ely and Yilankaya (2001) and Dekel, Ely, and Yilankaya (2007) have developed 
the theoretical underpinnings of evolutionary equilibrium when preferences evolve, 

1 Specifically, Blume and Easley (2006) show that under complete markets, the rates of learning are irrelevant to 
survival when the discount factors differ: the consumption of the more impatient individual almost-surely vanishes. 
See their Theorem 8 and discussion therein. 

2 Robson and Samuelson (2010) is an excellent survey of this literature. 
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relating evolutionary outcomes to equilibria of the fitness game. In particular, the 
possibility that preferences that do not maximize fitness survive has been analyzed 
in Güth and Peleg (2001); Heifetz, Shannon, and Spiegel (2007); and Dekel, Ely, 
and Yilankaya (2007) as well. Robson (2001) surveys research on the evolution of 
preferences, including that of time preferences. However the evolution of impa-
tience in interactive context has not been much studied.

There are a variety of subtle issues about impulsive behavior and self-control 
that have been explored in the behavioral economics literature—see for example 
Fudenberg and Levine (2006). However, the present paper is not focused on com-
mitment, present bias, or time consistency—rather we focus on the simpler ques-
tion of why intertemporal preferences with a low geometric discount factor might 
emerge in an evolutionary setting.

We also look at the inefficiency of equilibrium. In all of the above mentioned 
cases, the gains from impatience are private. However, there are also cases in which 
there are social gains from impatience. An example of this is provided in the litera-
ture on conflict.3 In this literature people can satisfy their desires either by produc-
ing or by appropriating others’ production (that is, through conflict). In general, 
resources spent in conflict are a social waste. Thus, it is best for society that people 
do not engage in appropriation by conflict; as a second best, it is best that those 
who do it be more impatient, so that they do not invest much in technologies that 
are detrimental to social welfare. This is an extreme case that can be explained in 
our model. An alternative, less extreme case, for example, is the case of speculators. 
They could have a social function, namely helping the alignment of prices, yet they 
do appropriate part of the gains from investments.

The rest of the paper is organized as follows. In Section I we develop the model. 
In Section II we analyze the equilibrium of the evolutionary process. In Section III 
we discuss efficiency issues. In Section IV we study the robustness of the results. 
Finally, we conclude in Section V.

I.  The Matching Model

There is a continuum of players divided into two populations, Farmers who 
constitute a fraction ​ϕ​ of the population and Sheriffs who are the other ​1 − ϕ​ of 
the population. Each round Farmers and Sheriffs are randomly matched, so that 
the probability of a meeting between a Farmer and a Sheriff is ​2ϕ(1 − ϕ)​. The 
remaining Farmers and Sheriffs are said to be unmatched. All players have an initial 
endowment of one bushel of wheat.

Players’ preferences in rounds are characterized by discount factors ​​δ​F​​, ​δ​S​​​. In 
contrast, fitness—which is independent of preferences—will be assumed to be lin-
ear in wheat; put another way, its implicit discount factor is equal to 1.

3 See Hirshleifer (1991). Rent seeking is a particularly interesting special case of conflict that has received much 
attention at least since Tullock (1967) and Krueger (1974). 
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A round consists of either a one-person or two-person game that has three peri-
ods: in the first there is investment, in the second production, and in the third punish-
ment may be imposed. Depending on matching, the following cases occur:

Unmatched Farmer [Investment Game].—

•	 Period 1: invest ​​k​ I​​  ∈  [0, 1]​ , consume ​1 − ​k​ I​​​.
•	 Period 2: produce and consume output ​ ​y​ I​​  =  A​k​ I​ α​​ , where ​αA  ≤  1​ and ​

0  <  α  <  1, A  >  0​.
•	 Period 3: nothing.

Unmatched Sheriff.—

•	 Period 1: consume endowment of 1.
•	 Period 2: nothing.
•	 Period 3: nothing.

Farmer-Sheriff Game.—

•	 Period 1a: Sheriff observes ​​δ​F​​​ , invests ​​k​ S​​  ∈  [0, 1]​ , consumes ​1 − ​k​ S​​​ , and states 
a demand ​​d​ S​​  ≥  0​.

•	 Period 1b: Farmer observes ​ ​d​ S​​​ , invests ​​k​ F​​  ∈  [0, 1]​ , consumes ​1 − ​k​ F​​​ , and 
agrees to pay the Sheriff ​​d​ F​​  ≥  0​.

•	 Period 2: Farmer produces output ​​y​ F​​  =  A​k​ F​ α​ + G​ , consumes ​​y​ F​​ − ​d​ F​​​ , and the 
Sheriff consumes ​​d​ F​​​, where ​G  ≥  0​ is the “gain to trade” from the match.

•	 Period 3: if ​​d​ F​​  ≥ ​ d​ S​​​, nothing; if ​​d​ F​​  < ​ d​ S​​​, the Sheriff issues a punishment that 
costs the Farmer ​AB​k​ S​ α​​, where ​B  >  1​. This latter assumption implies that it is 
easier to destroy output than to produce it.

Discounting takes place between periods. In the Investment game the objective 
function of the Farmer is ​1 − ​k​ I​​ + ​δ​F​​ ​y​ I​​​. In the Unmatched Sheriff game the objec-
tive function of the Sheriff is 1. In the Farmer-Sheriff game the objective function 
of the Farmer is

	​ 1  − ​ k​ F​​  + ​ δ​F​​ ( ​y​ F​​ − ​d​ F​​)  − ​ δ​ F​ 2 ​ ​1​​d​ F​​  <​d​ S​​​​ AB ​k​ S​ α​​,

where ​​1​​d​ F  ​​<​d​ S​​​​​ is the indicator function equal to 1 when ​​d​ F​​  < ​ d​ S​​​ and 0 otherwise; and 
the Sheriff’s payoff is

	​ 1  − ​ k​ S​​  + ​ δ​S​​ ​d​ F​​​ .

Finally, notice the assumption that the Sheriff can observe the discount factor of 
the Farmer prior to investing and making a demand. It is this that makes impatience 
a possible device for commitment. Successful commitment requires two elements: 
credibility and publicity. Evolutionary forces, by building impatience into prefer-
ences, make impatient behavior credible. Publicity is guaranteed in this game by the 
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assumption of observability of preferences. On the other hand, if preferences were 
not directly observable, still there could be a form of “approximate” observability: 
if patience were hereditary, we could imagine that the Sheriff infers the Farmer’s 
patience from the Farmer’s parent’s past behavior. How noisy a signal is would 
depend on how frequent mutation is.

A. Comments and Interpretations

The most visible aspect of the Farmer-Sheriff game is the presence of the delayed 
punishment. The resulting threat, as the reader will have guessed, is decreasing in 
the Farmer’s impatience. But this is not the end of the story, for, as we will see, the 
more impatient Farmer will also produce less in each round, hence will be poten-
tially less fit in the long run—it is by no means a foregone conclusion that evolution-
ary forces will favor the less patient Farmer. The tradeoff may be seen as the familiar 
one between the short-run share of the cake and the long-run size of it.

To see the economics captured by this game consider first the case ​G  =  0​. In this 
case, the Sheriffs do not contribute to social welfare beyond their own endowment: 
only Farmers are socially productive in the sense that they can make investments 
resulting in an increase in wheat. However, Sheriffs can appropriate some of the 
output of Farmers. In this sense, the model has a predator-prey flavor. However, 
the model is formulated so that there is no intrinsic distortion in the predation: the 
amount that the Sheriffs can appropriate is independent of how much is produced 
by Farmers. The predation takes place through threat of punishment: Farmers must 
choose whether or not to comply with the Sheriffs’ demands. If Farmers fail to com-
ply with the demand of the Sheriff then they are punished. The level of punishment 
depends on the investment made by the Sheriff. Notice that there is no commitment 
issue for the Sheriff; the more patient they are the more they will invest in punish-
ment—and as we will see, Sheriffs will evolve towards a high degree of patience.

This game is unlike the Peasant-Dictator game4 where the Dictator faces a com-
mitment problem—but one that is not sensitive to patience. Here it is Farmers who 
face a commitment problem: punishment takes place with a delay. Because of the 
delay a less patient Farmer is less willing to give in to demands by the Sheriff, and 
if the Sheriff knows this, she will demand less.

In the case ​G  =  0​, Sheriffs have no social function and are merely predators or 
parasites. But if we think of the Sheriffs as landlords and the Farmers as peasants, 
generally landlords provide some services, ranging from protection to improve-
ments to the capital stock. This we capture—somewhat crudely—through ​G  >  0​. 
This means that there is a positive surplus accruing to a match with a Sheriff. Notice 
that the output from the match accrues to the Farmer, not the Sheriff. Here the model 
becomes one of potentially beneficial trade—but the only mechanism the Sheriff 
has for appropriating some of the gains to trade is by threatening the Farmer. This 
mechanism is not related to the gain to trade: the amount the Sheriff can appropriate 
does not depend on how good the match is. This captures a situation that sometimes 

4 See, for example, Van Huyck, Battalio, and Walters (1995). 
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occurs in practice: if one party owns the enforcement mechanism, why not appro-
priate the most that can be appropriated rather than some sort of amount determined 
by efficiency considerations? Why should a large politically connected monopolist 
merely appropriate what the market is willing to pay, when they can have a nice 
piece of tax revenue to go with it?

II.  Equilibrium and Evolution

In this section, after spelling out the subgame perfect equilibria in each round, 
we compute fitness, define evolution as given by standard replicator dynamics, and 
then state the main result (Theorem 2) on existence of a stable steady state with a 
nonzero fraction of farmers with a discount factor less than 1. Some comparative 
statics results are given at the end of the section.

A. Equilibrium of a Match

We first study subgame perfect equilibria of the different matches.
In the investment game the objective function for the Farmer is ​1 − ​k​ I​​ + ​δ​F​​ A​k​ I​ α​​ , 

and the solution is characterized by the first order condition ​α​δ​F​​ A​k​ I​ α−1​ − 1  =  0​; 
hence the optimum is ​​k​ I​​  = ​ (αA)​​1/(1−α)​ × ​δ​ F​ 1/(1−α)​​.

In the Farmer-Sheriff game the objective function of the Farmer is ​1 − ​k​ F​​ + ​
δ​F​​ × ​(A​k​ F​ α​ − ​d​ F​​ + G)​​ if ​​d​ F​​  ≥ ​ d​ S​​​ or

	​ 1 − ​k​ F​​  + ​ δ​F​​​(A​k​ F​ α​ − ​d​ F​​ + G)​ − ​δ​ F​ 2 ​ AB​k​ S​ α​​

if ​​d​ F​​  < ​ d​ S​​​ . Notice that this is rigged so that the optimal investment choice of the 
Farmer is independent of ​​d​ F​​​ , whether or not there is punishment, and is the same 
as when the Farmer is unmatched: ​​k​ F​​  = ​ k​ I​​  = ​ (αA)​​1/(1−α)​​δ​ F​ 1/(1−α)​​. Notice that, as 
anticipated, more impatient Farmers produce less so are potentially less fit than 
more patient Farmers.

In choosing how much to pay, clearly the Farmer should choose either ​​
d​ F​​  =  0​ and get ​1 − ​k​ F​​ + ​δ​F​​ ​(A​k​ F​ α​ + G)​ − ​δ​ F​ 2 ​ AB​k​ S​ α​​ or ​​d​ F​​  = ​ d​ S​​​ and get ​1 − ​k​ F​​  
+ ​δ​F​​​(A​k​ F​ α​ − ​d​ S​​ + G)​​ , whichever is larger.

The optimal play of the Sheriff is to choose the largest demand consistent with 
payment: ​​d​ S​​  = ​ δ​F​​ AB​k​ S​ α​​. The utility of the Sheriff is then ​1 − ​k​ S​​ + ​δ​S​​ ​δ​F​​ AB​k​ S​ α​​. 
Finally, ​​k​ S​​​ is chosen by the Sheriff to maximize his utility, so that ​​k​ S​​  = ​ (αAB)​​1/(1−α)​​
× (​δ​F​​​δ​S​​)​​1/(1−α)​​. The corresponding demand is 

	​​ d​ S​​  = ​ δ​F​​ AB​​((αAB​)​​1/(1−α)​ (​δ​F​​ ​δ​S​​​)​​1/(1−α)​)​​​
α
​

	 = ​ α​​α/(1−α)​ (AB​)​​1/(1−α)​ ​δ​ F​ 1/(1−α)​ ​δ​ S​ 
α/(1−α)​​ .

The amount demanded by the Sheriff is an increasing function of both the discount 
factor of the Sheriff—since a patient Sheriff will invest more—and the discount fac-
tor of the Farmer, since a patient Farmer is more susceptible to a threat. In contrast to 
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the Rubinstein (1982) bargaining setup where the patient player is stronger because 
he is happy enough receiving a reward later in time, here the patient player is weaker 
because he feels more strongly the bite of a punishment coming later in time.

B. The Evolutionary Process: Two Types

We now consider the coevolution of preferences as measured by the discount 
factors and the number of Farmers and Sheriffs. In the analysis, overall fitness of a 
particular population does not depend on preferences, and it is defined as the total, 
undiscounted expected utility over the life of the individual.5

For simplicity we consider first the case where there are two possible prefer-
ences: either patient preferences with discount factor equal to 1—corresponding 
to maximizing the same total fitness objective function as evolutionary fitness—or 
impatient preferences with some ​0  <  δ  <  1​. Thus ​​δ​F​​, ​δ​S​​  ∈  {δ, 1}​.

Recall that ​ϕ​ is the fraction of the population who are Farmers; let ​ψ​ denote 
the fraction of Farmers who are impatient;6 and let ​​ψ​S​​​ denote the fraction of the 
Sheriffs who are impatient. Let ​​V​ F​​(​δ​F​​, ​δ​S​​), ​V​ S​​(​δ​F​​, ​δ​S​​)​ denote the evolutionary fitness 
of Farmers and Sheriffs as a function of preferences. We compute fitness in the dif-
ferent matches. The fitness of an unmatched Farmer is

	​ ​V​ F​ U​(​δ​F​​)  =  1  + ​ α​​α/(1−α)​ ​A​​ 1/(1−α)​ ​δ​ F​ α/(1−α)​ − ​(αA)​​1/(1−α)​ ​δ​ F​ 1/(1−α)​​ ,

while in the Farmer-Sheriff game her fitness is 

	​​ V​ F​ FS​ (​δ​F​​ , ​δ​S​​)  = ​ V​ F​ U​ (​δ​F​​) − ​d​ S​​  + G

	 = ​ V​ F​ U​ (​δ​F​​) − ​α​​α/(1−α)​ (AB​)​​1/(1−α)​ ​δ​ F​ 1/(1−α)​ ​δ​ S​ 
α/(1−α)​  +  G​.

The fitness of an unmatched Sheriff is equal to 1, while in the Farmer-Sheriff game 
it is 

	​​ V​ F​ FS​ (​δ​F​​ , ​δ​S​​)  =  1 − ​k​ S​​  +  ​d​ S​​

	 =  1  +  ​α​​α/(1−α)​ (AB​)​​1/(1−α)​ ​δ​ F​ 1/(1−α)​ ​(​δ​ S​ 
α/(1−α)​ − α ​δ​ S​ 

1/(1−α)​)​​.

Our model of evolution is the standard replicator dynamics based on evolutionary 
fitness. If ​​θ​ j​​​ is the population fraction of group ​j​ , ​​V​ j​​​ is the fitness of the group and ​​ 

_
 V ​​ 

is the average fitness of the population, then

	​​ ​θ ̇ ​​ j​​  = ​ θ​ j​​ ​(​V​ j​​ − ​ 
_

 V ​)​​.

5 Fitness is meant to be what evolution favors, an objective measure independent of preferences. It is in general 
an elusive concept, but in our case preferences only enter as discount factors, hence removing them yields the 
desired measure of fitness. 

6 Anticipating, we omit the subscript ​F​ for the Farmers on ​ψ​. 
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Our analysis is greatly aided by the observation that Sheriffs evolve strictly 
towards greater patience:

Proposition 1: ​​​ψ ̇ ​​S​​  <  0​.

Proof: 
It suffices to show that ​​V​ S​ FS​(​δ​F​​, ​δ​S​​)​ is increasing in ​​δ​S​​​. We compute

  ​​    ∂ ___ ∂ ​δ​S​​
 ​ ​V​ S​ FS​(​δ​F​​, ​δ​S​​) ​

    ​    = ​ α​​α/(1−α)​​(AB)​​1/(1−α)​​δ​ F​ 1/(1−α)​ ​  α _____ 
1 − α ​ ​δ​ S​ −1​​(​δ​ S​ α/(1−α)​ − ​δ​ S​ 1/(1−α)​)​  >  0​. ∎

The interesting case in the long run, therefore, has only three types: patient 
Sheriffs, and both patient and impatient Farmers. In this case, on which we now 
focus, we can compute the overall fitness of a (patient) Sheriff to be

	​ ​V​ S​​  =  1 + ​α​​α/(1−α)​​(AB)​​1/(1−α)​(1 − α)​{(1 − ψ)ϕ + ψϕ​δ​​1/(1−α)​}​​

and that of a Farmer to be 

	​​ V​ F​​ (​δ​F​​)  =  1  +  ​α​​α/(1−α)​ ​A​​ 1/(1−α)​ ​δ​ F​ α/(1−α)​ (1 − α ​δ​F​​)

	 − (1 − ϕ)​α​​α/(1−α)​ (AB​)​​1/(1−α)​ ​δ​ F​ 1/(1−α)​  +  (1 − ϕ)G​.

Notice that this depends on the Farmer’s own type and on how many Farmers there 
are in total, but not, of course, in how many of each type there are. The replicator 
dynamics can now be summarized by two equations:

	​​ ψ ̇ ​  =  ψ(1 − ψ)​[​V​ F​​(δ) − ​V​ F​​(1)]​​

	​​ ϕ ̇ ​  =  ϕ(1 − ϕ)​{​[​V​ F​​(δ) − ​V​ S​​]​ − (1 − ψ)​[​V​ F​​(δ) − ​V​ F​​(1)]​}​​.

Theorem 1: Suppose ​​B​​ 1/(1−α)​α  <  (1 − α)(​B​​ 1/(1−α)​ − 1)​. Then for any ​
0  <  δ  <  1​ there exists an open set of Gs such that there is a unique interior steady 
state and it is dynamically stable. At the steady state

	​ ϕ  = ​ ϕ​​∗​  ≡  1 − ​ 1 − α − ​δ​​α/(1−α)​(1 − αδ)   ___________________   
​B​​ 1/(1−α)​(1 − ​δ​​1/(1−α)​)

 ​ ​ .

Proof: 
In Appendix A.
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Notice that ​​ϕ​​∗​​ does not depend on ​G​. Notice also that the hypothesis ​​B​​ 1/(1−α)​α  <  
(1 − α)(​B​​ 1/(1−α)​ − 1)​ is not vacuous since for any ​B  >  1​ it is satisfied for suffi-
ciently small ​α​. We can also compute 

	​​ 
∂ ​ϕ​​∗​

 ____ ∂ δ ​​  ≡ ​ ​  α _____ 
1 − α ​​ ​​δ​​α/(1−α)​​ ​​  ​δ​​−1​ − 1  ___________________  

​B​​ 1/(1−α)​​(1 − ​δ​​1/(1−α)​)​
 ​​ 

	 + ​​   ​ϕ​​∗​  ________________  
(1 − α)​(1 − ​δ​​1/(1−α)​)​

 ​​ ​​δ​​α/(1−α)​​  >  0

so that if the impatient Farmers are less impatient there will be more of them at the 
steady state.

The key result here is that at a stable interior steady state in the long run there 
is a positive fraction of Farmers who are impatient: evolution leads to impatience. 
Furthermore, Appendix A shows that if the fraction of the population who are 
Farmers falls below ​​ϕ​​∗​​, the fraction of Farmers who are impatient grows; and if 
the fraction of the population of Farmers rises above ​​ϕ​​∗​​, the fraction of Farmers 
who are patient grows. That is: Many Sheriffs favor the impatient since impa-
tience reduces the demands of the Sheriffs, while few Sheriffs favor the patient 
since patience leads to more productive investment. The problematic aspect of this 
analysis is that with only two possible discount factors the level of impatience ​δ​ 
is specified exogenously. A more satisfactory analysis would allow many different 
possible levels of impatience and ask which level emerges endogenously. We turn 
to this next.

C. The Evolutionary Process: Many Types

We now relax the assumption that the only possible preferences are given by two 
discount factors ​δ, 1​. Suppose then that there are individuals with every discount 
factor in the interval ​δ  ∈  [0, 1]​. Since the general case is intractable we use the 
mean field approximation widely used in the physical sciences, and introduced into 
game theory by Jovanovic and Rosenthal (1988). This enables us to determine a 
steady state value of ​δ​.

First observe that as with the case with two types, Sheriffs with ​δ  =  1​ always 
have higher fitness than those with lower discount factors, so in the long run the 
Sheriffs will evolve towards patience. As before, the interesting case is where 
there is a single group of patient Sheriffs, and we will focus on this case. The mean 
field approach is to notice that near an interior steady state the density function 
over discount factors ​​ψ​δ​​​ can be approximated by a spike in which every type of 
Farmer evolves towards the optimal discount factor. The replicator dynamic is 
given by

	​ ​​ψ ̇ ​​δ​​  = ​ ψ​δ​​ ​(​V​ F​​(δ) − ​​ 
_

 V ​​ F​​)​​,

where ​​​ 
_

 V ​​ F​​​ is the mean fitness of farmers. Since the distribution of types is very con-
centrated near the mean value, which we denote by ​​δ​F​​​ , we approximate the mean 



304	 American Economic Journal: microeconomics�a ugust 2015

fitness ​​​ 
_

 V ​​ F​​​ by the fitness evaluated at the mean discount factor ​​δ​F​​​ , which we denote 
by ​​V​ F​​​: 

	​​​ ψ ̇ ​​δ​​  =  ​ψ​δ​​ ​(​V​ F​​(δ) − ​​ 
_

 V ​​ F​​)​

	 ≈  ​ψ​δ​​ ​(​V​ F​​ + D​V​ F​​[δ − ​δ​F​​] − ​V​ F​​)​

	 =  ​ψ​δ​​ D​V​ F​​[δ − ​δ​F​​]​,

where ​D​V​ F​​  ≡ ​ V​F​ ′ ​(​δ​F​​)​. After a short interval of time ​τ​ the system will evolve  
according to 

	​​ ψ​δ​​ (t + τ)  ≈  ​ψ​δ​​ (t)  + ​​ ψ ̇ ​​δ​​ (t)τ

	 ≈  ​ψ​δ​​ (t)  +  ​ψ​δ​​ (t)D​V​ F​​ [δ − ​δ​F​​]τ​.

We then compute the mean discount factor by integrating: 

​	​ δ​F​​ (t + τ)  = ​ ∫ 
 
​ 
 
​  ​ δ​ψ​δ​​ (t + τ) dδ

	 ≈ ​ ∫ 
 
​ 

 

​  ​ δ ​[​ψ​δ​​ (t) + ​ψ​δ​​ (t)D​V​ F​​ [δ − ​δ​F​​]τ]​ dδ

	 = ​ ∫ 
 
​ 

 

​  ​ δ ​ψ​δ​​ (t) dδ  + ​ ∫ 
 
​ 
 
​  ​ δ​ψ​δ​​ (t)D​V​ F​​ [δ − ​δ​F​​]τ dδ

	 = ​ δ​F​​ (t)  +  D​V​ ​F​ ​ 
τ​​​ ​∫ 

 
​ 

 

​  ​ δ ​ψ​δ​​ (t)[δ − ​δ​F​​] dδ

	 = ​ δ​F​​ (t)  + ​ σ ​​2​ (t)D​V​ ​F​ ​ 
τ​​​​ .

This then gives the mean field dynamic for discount factor of the Farmers as

	​ ​​δ ̇ ​​F​​  ≈ ​ σ ​​2​(t)D​V​ F​​ ​.

The fact that the variance ​​σ ​​2​​ is time varying does not matter for our stability analy-
sis, so we hold it fixed, and study the dynamic equation

	​ ​​δ ̇ ​​F​​  = ​ σ ​​2​ D​V​ F​​​ ,

which is simply the continuous time best response dynamic—that is the mean 
moves in the direction of increasing fitness. The dynamics of ​ϕ​ is again the replica-
tor dynamics, now based on the mean discount factor, so

	​ ​ϕ ̇ ​  =  ϕ(1 − ϕ)(​V​ F​​ − ​V​ S​​)​.
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Theorem 2: Assume ​G  > ​ (α AB)​​1/(1−α)​​. Then there is a unique interior steady 
state and it is dynamically stable.

Proof: 
In Appendix B.
Notice that like Theorem 1, for stability Theorem 2 requires that ​G​ not be too 

small. However, unlike Theorem 1 it does not place an upper bound on ​G​. From the 
proof of Theorem 1 in Appendix A it transpires that the reason for the upper bound 
on ​G​ does not involve stability, but rather is needed to insure the existence of an 
interior steady state. To understand what is going on, recall that by Proposition 1 the 
value ​​ϕ​​∗​​ does not depend on ​G​. As we increase ​G​ holding fixed the other parameters 
this increases the utility of the Farmers, while not changing the utility of the Sheriffs. 
Hence, once ​G​ is big enough at ​​ϕ​​∗​​ , regardless of the value of ​ψ​ Farmers of both 
types will do better than Sheriffs, and so the number of Farmers will be increasing. 
This implies that there is no interior steady state: to the right of ​​ϕ​​∗​​ patient Farmers 
are favored over impatient ones. However, this is an artifact of the fact that there are 
only two types. If the impatient Farmers were less impatient—that is to say, if ​δ​ were 
larger, we saw that this would shift ​​ϕ​​∗​​ to the right, and so for this higher value of ​δ​ 
there could be a steady state. Once we endogenize ​​δ​F​​​ , Theorem 2 shows that this is 
the right intuition: regardless of how large ​G​ is there is always a steady state.

We now establish some comparative statics results concerning the steady state.

Theorem 3: 

�	 (i )	 The steady state value of ​ϕ​ is larger than ​1/2​ , and larger the larger is ​G​. 

�	 (ii )	 The comparative statics with respect to ​G​ and ​B​ are the following: ​​D​ G​​​δ​F​​  >  0, ​
D​ G​​ϕ  >  0​ , ​​D​ B​​​δ​F​​  <  0​ , and for sufficiently large ​G​ , ​​D​ B​​ϕ  <  0​.

Proof: 
In Appendix B.

III.  Efficiency

We now turn to the issue of welfare, measured by the average fitness of the whole 
population. Our goal is to show how an inefficient steady state arises in which the 
wrong population is impatient.

To compute the average fitness of the entire population, observe that: there is 
a fraction ​​ϕ​​2​​ of unmatched Farmers with fitness ​V​ ​ F​ U​​(​δ​F​​)​​, a fraction ​​(1 − ϕ)​​2​​ of 
unmatched Sheriffs with fitness 1, and a fraction ​2ϕ(1 − ϕ)​ of matched Farmers and 
Sheriffs who share a total fitness of ​​V​ F​ FS​​(​δ​F​​, ​δ​S​​)​ + ​V​ S​ FS​​(​δ​F​​, ​δ​S​​)​​. Therefore expected 
average fitness is 

(1) ​ V  = ​ ϕ​​2​ ​∫ 
0
​ 
1
​  ​ ​V​ F​ U​ (​δ​F​​) ​f​ F​​ (​δ​F​​) d​δ​F​​  +  (1 − ϕ​)​​ 2​1

	 +  ϕ(1 − ϕ) ​∫ 
0
​ 
1
​  ​ ​∫ 

0
​ 
1
​  ​ ​(​V​ F​ FS​ (​δ​F​​, ​δ​S​​) + ​V​ S​ 

FS​ (​δ​F​​, ​δ​S​​))​ ​f​ F​​ (​δ​F​​) ​f​ S​​ (​δ​S​​) d​δ​F​​ d​δ​S​​​ .
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We think of the social planner as choosing a distribution over discount factors for 
Farmers and Sheriffs, ​​f​ F​​ ​(​δ​F​​)​, ​f​ S​​​(​δ​S​​)​​ respectively (which may and in fact will be Dirac 
delta functions), and the fraction ​ϕ​ of the population that is assigned the role of a 
Farmer, in order to maximize fitness. In turn, each individual chooses his optimal 
level of investment. Since the planner is constrained to choose discount factors, we 
refer to this as the second best.7

Theorem 4: The second best distribution is given by

	​ ϕ  =  min​{1, ​ 1 _ 
2
 ​ + ​ 1 _ 

2
 ​ ​ 
​A​​ ​ 

1 ___ 1−α ​​​(​α​​​ 
α ___ 1−α ​​ − ​α​​​ 

1 ___ 1−α ​​)​  ______________ 
G

 ​ }​,​

�and ​​f​ F​​​ and ​​f​ S​​​ assign point mass at ​​δ​F​​  =  1​ and ​​δ​S​​  =  0​ , respectively.

Proof: 
The social planner chooses the investment levels ​​k​ F​​​ and ​​k​ S​​​ indirectly, by choosing 

the discount factors. The implemented investment satisfies: 

	​​ k​ F​​  = ​ k​ I​​  =  (αA​)​​1/(1−α)​ ​δ​ F​ 1/(1−α)​

	​ k​ S​​  =  (αAB​)​​1/(1−α)​ (​δ​F​​ ​δ​S​​​)​​1/(1−α)​​ .

In terms of investments, fitness is given by: 

	​​ V​ F​ U​ (​δ​F​​)  =  1  +  A​k​ F​ α​ − ​k​ F​​

	​ V​ F​ FS​ (​δ​F​​, ​δ​S​​)  + ​ V​ S​ 
FS​ (​δ​F​​, ​δ​S​​)  =  2  +  A​k​ F​ α​  +  G − ​k​ F​​ − ​k​ S​​​ .

Given that fitness is strictly decreasing in ​​k​ S​​​ , the optimal distribution assigns point 
mass to the value of ​​δ​S​​​, which implements ​​k​ S​​  =  0​ , namely ​​δ​S​​  =  0​. Similarly, fit-
ness is maximized when Farmers choose to maximize net output, which they do if ​​
δ​F​​  =  1​. Both conclusions hold irrespective of ​ϕ​. Hence, we may find the optimal 
value of this latter parameter by maximizing equation (1) when ​​f​ F​​​ and ​​f​ S​​​ are evalu-
ated at their optimal values, that is, they assign point mass at ​​δ​F​​  =  1​ and ​​δ​S​​  =  0​ , 
respectively. Thus, the objective becomes

	​ V  = ​ ϕ​​2​(1 + A​k​ F​ α​ − ​k​ F​​) + ​(1 − ϕ)​​2​ + ϕ(1 − ϕ)(2 + A​k​ F​ α​ − ​k​ F​​ + G − ​k​ S​​)​,

which is maximized as asserted. ∎

The intuition for the optimal discount factors is simple: Sheriffs’ investments are 
a social waste, which they would not generate if they become extremely impatient. 
On the other hand, Farmers are productive, and they would choose the optimal 

7 We refer to this as second best because of the constraint on the planner. However, the constraint does not bind, 
so the second best plan is in fact first best. 
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investment if they were extremely patient. In fact, in the language of Hirshleifer 
(1991) Sheriffs obtain their wealth through conflict; in the language of Tullock 
(1967) and Krueger (1974), Sheriffs are rent-seekers. In contrast, Farmers obtain 
their wealth through production.

As for the optimal fraction of Farmers, it is less than 1 whenever a meeting 
between a Farmer and a Sheriff produces a high enough social gain ​G​. The fraction 
of the matched population is maximized at

	​ ϕ  = ​  1 _ 
2
 ​​ .

In the spirit of the rent-seeking literature this is saying that societies would opti-
mally have rent seekers only if when matched to productive agents they were to 
increase “social output” (that is, ​G​ sufficiently high). Otherwise, if ​G​ is too small, it 
would be optimal not to have rent seekers.

A related question has to do with the optimal mix of Farmers and Sheriffs when 
the social planner does not choose their discount factors, but instead when they are 
at their equilibrium values. The first order condition for this constrained maximiza-
tion problem gives

	​ ϕ  =  min ​{1, ​ 1 _ 
2
 ​ + ​ 1 _ 

2
 ​ ​ 
A​k​ F​ α​ − ​k​ F​​ _______ 
G − ​k​ S​​

 ​ }​​,

which is sufficient provided ​G − ​k​ S​​  >  0​.8 The value of ϕ is less than 1 for ​G​ large 
enough, and tends to ​1/2​ as ​G​ grows.

The fact that steady state ​ϕ >  1/2​ (see Theorem 3) implies that if ​G​ is large 
enough, in the steady state there are inefficiently many Farmers, and too few Sheriffs. 
The intuition is that this arises because the Sheriff’s have to pay to collect a share of ​G​.

IV.  Robustness and Scope

One of the striking features of the Farmer-Sheriff game is the survival of the 
impatient, in spite of the fact that patient players effectively maximize fitness (see 
Theorem 1). In this subsection we show that observability of types is a necessary 
condition for this result to hold. This argument is in line with the literature on the 
necessity of the observability of preferences for nonfitness maximizing preferences 
to evolve (e.g., Ely and Yilankaya 2001; and Dekel, Ely, and Yilankaya 2007).

Let ​a​(x, y)​​ be the optimal action of a player of type ​x​ in a match with another of 
type ​y​; ​v​(x, y)​​ the payoff of a player of type ​x​ in a match with a player of type ​y​; and, 
as before, ​V ​(x)​​ the expected payoff of a player of type ​x​.

Consider first the two-type case and two player roles, the patient and the impa-
tient, where the first role is filled by a patient player and the second by an impatient 
player. Replicator dynamics implies that if one type has a higher fitness than the 
other for all population compositions, the latter type will eventually become extinct. 

8 When the second order condition does not hold (that is ​G − ​k​ S​​  <  0​), the optimal solution is ​ϕ  =  1​. 
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A necessary condition for the (nontrivial) survival of the impatient is that for some 
interior composition of the population, ​​V​ I​​  > ​ V​ P​​​. Computing the expected fitness 
difference we get:

	​​ V​ I​​ − ​V​ P​​  =  μ​(v ​(I, P)​ − v ​(P, P)​)​ + ​(1 − μ)​​(v ​(I, I)​ − v ​(P, I)​)​​,
where ​μ​ is the fraction of type-P players. Hence, if ​​V​ I​​  > ​ V​ P​​​ for some ​m​ it is neces-
sary and sufficient that either ​v ​(I, P)​  >  v​(P, P)​​ or ​v ​(I, I)​  >  v ​(P, I)​​ , that is,

	​ v ​(a​(I, P)​, a​(P, I)​)​  >  v ​(a​(P, P)​, a​(P, I)​)​​
or

	​ v ​(a​(I, I)​, a​(I, I)​)​  >  v ​(a​(P, I)​, a​(I, P)​)​​ .

If ​a​(P, P)​  =  a​(P, I)​​ then ​v ​(a​(I, P)​, a​(P, I)​)​  >  v ​(a​(P, P)​, a​(P, I)​)​​ implies 
that ​a​(P, P)​​ is not a best reply to itself—a contradiction. It follows that ​a​(P, P)​  
≠  a​(P, I)​​ , that is, the patient player must act differently against a patient than 
against an impatient player. Similarly, if ​a​(I, I)​  =  a​(I, P)​​ , then ​v ​(a​(I, I)​, a​(I, I)​)​  
>  v ​(a​(P, I)​, a​(I, P)​)​​ implies that ​a​(P, I)​​ is not a best reply against ​a​(I, P)​​ , for  
​a​(I, I)​​ is better against it. Then ​a​(I, I)​  ≠  a​(I, P)​​: the impatient must behave differ-
ently against an impatient opponent than against a patient opponent.

For either ​a​(P, P)​  ≠  a​(P, I)​​ or ​a​(I, I)​  ≠  a​(I, P)​​ to hold, the opponent’s type 
must be observable, as asserted. It is readily seen that the same argument applies to 
an arbitrary finite number of types. The intuition is simple. Since the patient player 
maximizes his utility, and given that for a patient player utility is equal to fitness, 
the only way that the impatient can have a higher fitness than the patient is if the 
opponent’s action depends on the patience of the rival. Thus, the opponent’s type 
must be observable.

The second feature of the Farmer-Sheriff example we want to highlight is that 
within the group of Farmers, not only the impatient players survive, but also their 
survival acts against efficiency. In contrast, Dekel, Ely, and Yilankaya (2007) find 
that “When preferences are observable—as in our case—, a stable outcome must be 
efficient.” Indeed, at first glance their result would appear to contradict ours in this 
respect. However, their result does not apply to our model. A crucial assumption in 
their analysis is that all subjective payoffs (namely, all possible preferences over 
action profiles) are represented in the population. In particular, there is a type for 
which each action is a dominant strategy. This assumption is not satisfied in our 
model. Even if we were to allow for a continuum of types, we would still be restrict-
ing attention to payoffs that are linear combinations of the flow-objective payoffs. 
Since the set of preferences we consider is not as rich as that of Dekel, Ely, and 
Yilankaya (2007), we can and indeed do get inefficiency.

V.  Conclusion

We have shown that impatience survives evolutionary forces when it keeps down 
punishment by the opponents. There are alternative characterizations, and real world 
situations, where in games less patient people do better than patient people, in contrast 
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to the single-person investment context where (as in Blume and Easley 1992, 2006) 
the patient beats the informed. In Blaydes (2004) a version of Fearon’s (1998) model 
is used to explain the division of cartel profits within the Organization of Petruleum 
Exporting Countries (OPEC). In that model there is a first step in which bargain-
ing determines the payoffs of a static game that is infinitely repeated. To enforce  
the “efficient” outcome in the infinitely repeated game, more impatient players need 
a higher “static” payment. Here impatience is a source of bargaining strength.

The general theme of the paper is that although more impatient agents invest 
less and hence are potentially less fit in the long run in contexts or games where 
enforcing a norm may involve the threat of punishment impatient players have the 
advantage of being less prone to retaliation. Thus, in this game evolution and impa-
tience are compatible.

In our environment patient Farmers/producers are more susceptible to threats. 
Hence, more impatient Farmers do better than patient Farmers. On the one hand, this 
has the socially beneficial effect that Sheriffs do not waste resources by investing 
in retaliation. On the other hand the equilibrium fraction of Farmers is inefficiently 
high, because in a more balanced population there would be more Farmer-Sheriff 
matches generating more gains from trade.

Although the point is made in a specific example, the principle (which to our 
knowledge is new in the literature) seems robust and susceptible to analysis in more 
general contexts.

Appendix A: Proof of Theorem 2

From the text, the dynamical system is given by 

	​​ ψ ̇ ​  =  ψ(1 − ψ)[​V​ F​​ (δ) − ​V​ F​​ (1)]

	​ ϕ ̇ ​  =  ϕ(1 − ϕ)​{[​V​ F​​ (δ) − ​V​ S​​] − (1 − ψ)[​V​ F​​ (δ) − ​V​ F​​ (1)]}​​.

From the fitnesses in the text, we can compute the fitness differences 

	​​ V​ F​​​ (δ) − ​​V​ S​​​  =  (1 − ϕ)G  + ​​ α​​α/(1−α)​​ ​​A​​ 1/(1−α)​​

	 × ​​{​δ​​ α/(1−α)​(1 − αδ) − ​B​​ 1/(1−α)​ ​δ​​1/(1−α)​

	 +  ϕ​B​​ 1/(1−α)​ ​[​δ​​1/(1−α)​ − (1 − α)​(1 − ψ + ψ ​δ​​1/(1−α)​)​]​}​​

 ​​ V​ F​​​ (δ) − ​​V​ F​​​ (1)  = ​​ α​​α/(1−α)​​ ​​A​​ 1/(1−α)​​ × ​​{​(​δ​​α/(1−α)​ (1 − αδ) − 1 + α)​

	 +  (1 − ϕ)​B​​ 1/(1−α)​​(1 − ​δ​​1/(1−α)​)​}​​.

Lemma A.1: For ​1  >  ψ  >  0​ we have ​​ψ ̇ ​  >=<  0​ as ​ϕ  <=> ​ ϕ​​∗​​ where

	​ ​ϕ​​∗​  =  1 − ​ 1 − α − ​δ​​α/(1−α)​(1 − αδ)   ___________________   
​B​​ 1/(1−α)​(1 − ​δ​​1/(1−α)​)

 ​ ​

�lies between 0 and 1.
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Proof: 
The computation of ​​ϕ​​∗​​ comes from solving ​​V​ F​​(δ) − ​V​ F​​(1)  =  0​ , and we may 

also compute

	​​  ∂ ___ ∂ ϕ ​ ​[​V​ F​​(δ) − ​V​ F​​(1)]​ ∝  −  ϕ​B​​ 1/(1−α)​​(1 − ​δ​​1/(1−α)​)​  <  0​

from which the signs follow.
Rewriting

    ​    1 − ​ϕ​​∗​  = ​ 
1 − ​δ​​1/(1−α)​ − ​[​δ​​α/(1−α)​(1 − δ) + α​(1 − ​δ​​1/(1−α)​)​]​     _____________________________________    

​B​​ 1/(1−α)​ ​(1 − ​δ​​1/(1−α)​)​
 ​ ​,

we can see that since ​B  ≥  1​, the numerator of the right-hand side is smaller than 
the denominator implying ​1 − ​ϕ​​∗​  <  1​ , so that ​​ϕ​​∗​​ cannot be negative. We may also 
write the numerator of ​1 − ​ϕ​​∗​​ as

	​ f (δ)  ≡  1 − α − ​(​δ​​α/(1−α)​ − α​δ​​1/(1−α)​)​​.

We then compute 

	​ f (0)  ≡  1 − α

	 f (1)  ≡  0

	 f  ′ (δ)  ≡  −​  α ______ 
1 − α ​ ​δ​​−1​ ​δ​​α/(1−α)​ (1 − δ)  <  0​

from which it follows that ​f (δ)  ≥  0​ , and so ​​ϕ​​∗​  ≤  1​. ∎

Lemma A.2: ​​ϕ ̇ ​  ∝  a + bϕ + cψ + dϕψ​ where the factor of proportionality is ​​
A​​ 1/(1−α)​ ​α​​α/(1−α)​​ and 

	​ a  = ​G  ̃ ​ − α − ​(​B​​ 1/(1−α)​ − 1)​

	 b  =​(​B​​ 1/(1−α)​ α − ​G ̃ ​)​

	 c  =  ​δ  ​​α/(1−α)​(1 − αδ) − 1 + α + ​B​​ 1/(1−α)​​(1 − ​δ​​1/(1−α)​)​

	 d  =  −​B​​ 1/(1−α)​ α​(1 − ​δ​​1/(1−α)​)​​

�with ​​G ̃ ​  =  G/​A​​ 1/(1−α)​ ​α​​α/(1−α)​​.
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Proof: 
Direct computation using the fitness differences. ∎

Corollary A.1: ​d  <  0, c + d  ≥  0​.

Proof: 
​d  <  0​ is immediate. For ​c + d​ we compute 

	​ c + d  =  f  (δ)

	 ≡  ​δ  ​​α/(1−α)​(1 − αδ) + (1 − α) ​[​B​​ 1/(1−α)​​(1 − ​δ​​1/(1−α)​)​ − 1]​

	 f (0)  =  (1 − α) ​[​B​​ 1/(1−α)​ − 1]​  >  0

	 f (1)  =  0​

and the derivative 

	​ f  ′ (δ)  = ​ δ  ​​α/(1−α)​ × ​{​  α ______ 
1 − α ​ ​(​δ​​−1​ − 1)​ − (1 − α)​B​​ 1/(1−α)​ δ}​​ .

The part in brackets is decreasing, and this implies that ​f (δ)​ is single peaked. Hence, 
it follows from the boundary conditions that ​f (δ)  ≥  0​. ∎

Lemma A.3: An interior steady state exists if and only if 

	 X  ≡  (1 − ​​ϕ​​∗​​)​​G ̃ ​​ + (1 − α) ​− ​B​​ 1/(1−α)​​​​[1 − α​ϕ​​∗​]​​  <  0 

	 Y  ≡  (1 − ​​ϕ​​∗​​)​​G ̃ ​​ + (1 − α) ​− ​B​​ 1/(1−α)​​​​[1 − ​ϕ​​∗​ + (1 − α)​ϕ​​∗​ ​δ  ​​α/(1−α)​]​​  >  0 

�and if it exists, it is unique.

Proof: 
If there is an interior steady state by Lemma A.1, it must occur for ​ϕ  = ​ ϕ​​∗​​. This 

implies that the fitness of both types of farmers is equal, so that the sign of ​​ϕ ̇ ​​ is  
determined by

  ​  ​V​ F​​ (1) − ​V​ S​​  ∝  f (ψ)  ≡  (1 − ϕ)​G ̃ ​ + (1 − α) − (1 − ϕ)​B​​ 1/(1−α)​​

	​ − ​B​​ 1/(1−α)​(1 − α)​{​ϕ​​∗​ + ψ ​ϕ​​∗​​(​δ​​1/(1−α)​ − 1)​}​​ .

This is linear and increasing in ​ψ​. Hence, there is an interior steady state if and only 
if ​f (0)  <  0​ , ​f (1)  >  0​ , and in that case because ​f (ψ)​ is linear, it is unique. The 
conditions in the Lemma follow from the expression for ​f (ψ)​. ∎
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Lemma A.4: A sufficient condition for an interior steady state ​​ϕ​​∗​,  ​ψ​​∗​​ to be stable 
is ​b  <  0​.

Proof: 
It is sufficient that in the system linearized at the steady state the trace be nega-

tive and the determinant positive. Disregarding irrelevant factors, the matrix of the 
linearized system is

	​ M  = ​ [​ 
0
​ 

e
​  

c + d ​ϕ​​∗​
​ 

b + d ​ψ​​∗​
​]​​,

where

	​ e  =  −​B​​ 1/(1−α)​​(1 − ​δ​​1/(1−α)​)​  <  0​.

Hence, the sufficient condition is ​c + d ​ϕ​​∗​  >  0​ and ​b + d ​ψ​​∗​  <  0​. By Corol
lary A.1 ​d  <  0, c + d  ≥  0​, and ​​ϕ​​∗​  <  1​ implies ​c + d ​ϕ​​∗​  >  0​ , so the remaining 
condition is sufficient. Since ​d  <  0​, it is in turn sufficient that ​f (0)  =  −Γ  <  0​. ∎

Theorem 2: Suppose ​​B​​ 1/(1−α)​α  <  (1 − α)​(​B​​ 1/(1−α)​ − 1)​​. Then for any ​
0  <  δ  <  1​ there exists an open set of G’s such that there is a unique interior 
steady state and it is dynamically stable. At the steady state

	​ ϕ  = ​ ϕ​​∗​  ≡  1 − ​ 1 − α − ​δ  ​​α/(1−α)​(1 − αδ)   ___________________   
​B​​ 1/(1−α)​​(1 − ​δ​​1/(1−α)​)​

 ​ ​ .

Proof: 
The characterization of ​​ϕ​​∗​​ is in Lemma A.1. For sufficiently small ​ε  >  0​ we can 

choose

	​ ​G ̃ ​  = ​  ​B​​ 1/(1−α)​[1 − α​ϕ​​∗​] − (1 − α) − ε    ________________________  (1 − ​ϕ​​∗​) ​   >  0​.

The first condition from Lemma A.3 for an interior steady state is

	​ X  ≡  −ε  <  0​.

Moreover, 

	​ Y  =  X + ​B​​ 1/(1−α)​(1 − α)​ϕ​​∗​​(1 − ​δ  ​​1/(1−α)​)​

	 =  −ε + ​B​​ 1/(1−α)​(1 − α)​ϕ​​∗​​(1 − ​δ  ​​1/(1−α)​)​​,

which is positive for ​ε​ sufficiently small. Hence, for such choices of ​​G ̃ ​​, an interior 
steady state exists.
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Turning to stability, by Lemma A.4, we require ​b  <  0​ , by Lemma A.2 this con-
dition is

	​ ​B​​ 1/(1−α)​ α  < ​ G ̃ ​​.

Notice that 

	​ ​G ̃ ​  = ​  ​B​​ 1/(1−α)​[1 − α​ϕ​​∗​] − (1 − α) − ε    ________________________  (1 − ​ϕ​​∗​) ​ ​

	 >  (1 − α)​​(​B​​ 1/(1−α)​ − 1)​​ − ε.

By the assumption that ​​B​​ 1/(1−α)​α  <  (1 − α)​(​B​​ 1/(1−α)​ − 1)​​ this implies that  
​​G ̃ ​  > ​ B​​ 1/(1−α)​α − ε​ , so that ​b  <  0​ for ​ε​ sufficiently small. ∎

Appendix B: Proof of Theorems 3 and 4

As in the model with two types we can compute the fitnesses 

  ​​ V​ S​​  =  1 + (AB​)​​1/(1−α)​(1 − α)​α​​α/(1−α)​ϕ ​δ​ F​ 1/(1−α)​

 ​ V​ F​​  =  1 + (1 − ϕ)G + ​α​​α/(1−α)​​A​​ 1/(1−α)​​δ​ F​ α/(1−α)​​{1 − α​δ​F​​ − (1 − ϕ)​B​​ 1/(1−α)​​δ​F​​}​​.

Define ​​α ̃ ​  =  α/(1 − α)​ , ​​B ̃ ​  = ​ B ​​​α ̃ ​+1​​ and as in Appendix A, ​​G ̃ ​  = ​ α ̃ ​G/​(αA)​​​α ̃ ​+1​​.  
Note since ​B  >  0, α  >  0​ that ​​B ̃ ​  >  1​. Normalizing ​​σ  ​​2​  =  1​9 this enables us to 
write the dynamical system as 

	​​​ δ ̇ ​​F​​  = ​ 
(αA​)​​​α ̃ ​+1​

 ______ 
1 − α ​  ​δ​ F​ ​α ̃ ​−1​​[(1 − ​δ​F​​) − ​α​​−1​(1 − ϕ)​B ̃ ​ ​δ​F​​]​

	​ ϕ ̇ ​  =  ϕ(1 − ϕ)h(ϕ, ​δ​F​​)

	 h(ϕ, ​δ​F​​)  ≡  (αA​)​​​α ̃ ​+1​ ​δ​ F​ ​α ̃ ​​​[​α​​−1​ − ​δ​F​​ − α ​B ̃ ​​ δ​F​​ + ϕ​B ̃ ​​ δ​F​​]​  +  (1 − ϕ)G​.

Lemma B.1: There is a unique interior steady state.

Proof: 
Combining ​​ϕ ̇ ​/(ϕ(1 − ϕ))  =  0​ and ​​​δ ̇ ​​F​​  =  0​ yields

	​ f (​δ​F​​)  ≡ ​ B ̃ ​​(1 + ​α​​−1​​B ̃ ​)​​δ​ F​ ​α ̃ ​+2​ − ​(1 + ​α​​−1​)​​B ̃ ​ ​δ​ F​ ​α ̃ ​+1​ + ​G ̃ ​​δ​F​​ − ​G ̃ ​  =  0​

9 This is relevant only to the stability analysis, and since that is based on a sign argument, the magnitude does 
not matter. 
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and letting ​ξ  =  1 − ϕ​

	​ g(ξ)  ≡  ξ​[​(1 + ​α​​−1​)​​B ̃ ​ + ​G ̃ ​​​(1 + ​α​​−1​​B ̃ ​ ξ)​​​​α ̃ ​+1
​]​ − ​(​B ̃ ​ − 1)​  =  0​.

We show that each has a unique zero in ​(0, 1)​. Examining ​g​ first, we have  

​g(0)  =  −​(​B ̃ ​ − 1)​  <  0​ and ​g(1)  = ​ α​​−1​​B ̃ ​ + ​G ̃ ​​​(1 + α​B ̃ ​)​​​​α ̃ ​+1
​ + 1  >  0​. Moreover ​

g​ is the sum of a constant and two increasing functions, so it is increasing, and hence 
has a unique zero in ​(0, 1)​.

Turning to ​f​ , we see that ​f (0)  =  −​G ̃ ​  <  0​ and ​f (1)  = ​ α​​−1​​B ̃ ​​(​B ̃ ​ − 1)​  >  0​ , so 
that there is at least one solution by continuity. To prove uniqueness, observe that

	​ f ′ (​δ​F​​)  =  (​α ̃ ​ + 2)​B ̃ ​​(1 + ​α​​−1​​B ̃ ​)​​δ​ F​ ​α ̃ ​+1​ − (​α ̃ ​ + 1)​(1 + ​α​​−1​)​​B ̃ ​ ​δ​ F​ ​α ̃ ​​ + ​G ̃ ​​.

Hence, ​f ′ (0)  = ​ G ̃ ​  >  0​ , 

	​ f ′ (1)  =  (​α ̃ ​ + 2)​B ̃ ​​(1 + ​α​​−1​​B ̃ ​)​ − (​α ̃ ​ + 1)​(1 + ​α​​−1​)​​B ̃ ​ + ​G ̃ ​

	 = ​ (1 + ​α​​−1​)​​B ̃ ​ + ​α​​−1​(​α ̃ ​ + 2)​B ̃ ​ ​(​B ̃ ​ − 1)​ + ​G ̃ ​  > ​ G ̃ ​​.

The second derivative is

	​ f ″ (​δ​F​​)  = ​ B ̃ ​ ​δ​ F​ ​α ̃ ​−1​​[(​α ̃ ​ + 2)(​α ̃ ​ + 1)​(1 + ​α​​−1​​B ̃ ​)​​δ​F​​ − (​α ̃ ​ + 1)​α ̃ ​​(1 + ​α​​−1​)​]​​.

This is negative below ​​δ  ​​0​  ≡ ​ α ̃ ​​(1 + ​α​​−1​)​/(​α ̃ ​ + 2)​(1 + ​α​​−1​​B ̃ ​)​  <  1​ and positive 
above. So ​f​ ′ decreases to its minimum at ​​δ   ​​0​​ then increases. There are two pos-
sibilities: ​f ′ ​(​δ  ​​0​)​  ≥  0​ or ​f ′ ​(​δ  ​​0​)​  <  0​. In the first case ​f​ increases from ​f (0)  <  0 
to f (1)  >  0​ so has a unique zero. In the second case it increases to a local max-
imum at ​​δ​​1​  ∈ ​ (0, ​δ  ​​0​)​​ , then decreases; then, since ​f ′ (1)  >  0​ increases again to ​
f (1)  >  0​. A unique zero follows provided that ​f ​(​δ​​1​)​  <  0​. Since from 0 to ​​δ  ​​0​​ , 
and in particular from 0 to ​​δ​​1​​ , ​f​ is concave, it follows that ​f ​(​δ​​1​)​  <  f (0) + f ′ (0)​δ​​1​  
=  −​G ̃ ​ + ​G ̃ ​​δ​​1​  =  −​G ̃ ​​(1 − ​δ​​1​)​  <  0​. ∎

Lemma B.2: If ​G  > ​ (α AB)​​1/(1−α)​​ then the interior steady state is stable.

Proof: 
As in the proof of Lemma A.4 it is sufficient that in the system linearized at the 

steady state the trace be negative and the determinant positive. Disregarding irrele-
vant factors, the matrix of the linearized system is

	​ M  = ​
(

​
∂ ​​δ ̇ ​​F​​/∂ ​δ​F​​​ 

∂ ​​δ ̇ ​​F​​/∂ ϕ
​  

∂ h/∂ ​δ​F​​
​ 

∂ h/∂ ϕ
 ​
)

​​ .



Vol. 7 No. 3� 315levine et al.: evolution of impatience

Consequently, it is sufficient that ​∂  ​​δ ̇ ​​F​​/∂  ​δ​F​​​ , ​∂ h/∂ ϕ  <  0​, and ​∂  ​​δ ̇ ​​F​​/∂ ϕ  >  0​ ,  
​∂ h/∂ ​δ​F​​  <  0​. We compute

	​​ 
∂ ​​δ ̇ ​​F​​ ___ ∂ ​δ​F​​

 ​  = ​  ​(α A)​​​α ̃ ​+1​
 _______ 

1 − α ​ ​ [(​α ̃ ​ − 1)​δ​ F​ ​α ̃ ​−2​(1 − ​δ​F​​) − ​δ​ F​ ​α ̃ ​−1​ − ​α ̃ ​​α​​−1​(1 − ϕ)​B ̃ ​ ​δ​ F​ ​α ̃ ​−1​]​​.

Using the fact that when ​​δ ̇ ​  =  0​ we have ​​α​​−1​(1 − ϕ)​B ̃ ​  =  (1 − δ)/δ​ , from which 
one obtains

	​​ 
∂ ​​δ ̇ ​​F​​ ___ ∂ ​δ​F​​

 ​  =  − ​ ​(αA)​​​α ̃ ​+1​
 _______ 

1 − α ​ ​ δ​ F​ ​α ̃ ​−2​  <  0​.

Next,

	​​ 
∂ ​​δ ̇ ​​F​​ ___ ∂ ϕ ​  = ​  ​(αA)​​​α ̃ ​+1​

 _______ 
1 − α ​ ​ α​​−1​ ​B ̃ ​ ​δ​ F​ ​α ̃ ​​  >  0​.

Using the definition of ​h​ we have

	​​  ∂ h ___ ∂ ​δ​F​​
 ​  = ​ α​​​α ̃ ​​​A​​​α ̃ ​+1​ ​α ̃ ​​δ​​​α ̃ ​−1​​{1 − ​(1 + ​(​α​​−1​ − ϕ)​​B ̃ ​)​​δ​F​​}​​ .

Using the steady state condition

	​ ​δ​F​​  = ​   1 _____________  
1 + ​α​​−1​​B ̃ ​(1 − ϕ)

 ​​ ,

the expression in brackets becomes ​−δϕ​B ̃ ​ ​​α ̃ ​​​−1​​ , so that

	​​  ∂ h ___ ∂ ​δ​F​​
 ​  =  −​α​​​α ̃ ​​​A​​ ​α ̃ ​+1​ ​B ̃ ​ ​δ​​​α ̃ ​​  <  0​.

Finally, compute

	​​  ∂ h ___ ∂ ϕ ​  = ​ (αA)​​​α ̃ ​+1​ ​B ̃ ​ ​δ​ F​ ​α ̃ ​+1​ − G​.

Since ​δ  <  1​ , ​​(αA)​​​α ̃ ​+1​ ​B ̃ ​ ​δ​ F​ ​α ̃ ​+1​ − G  < ​ (αA)​​​α ̃ ​+1​ ​B ̃ ​ − G​ , which is negative for  
​G  > ​ (αA)​​​α ̃ ​+1​ ​B ̃ ​​ , that is to say for the condition of the Lemma ​G  > ​ (α AB)​​1/(1−α)​​.

Theorem 3 follows directly from Lemmas B.1 and B.2. ∎

Lemma B.3: The steady state ​ϕ  >  1/2​.

Proof: 
Using ​​​(1 + ​α​​−1​ ​B ̃ ​ ξ)​​​​α ̃ ​+1

​  >  1 + ​α​​−1​​B ̃ ​ ξ​, it is easily checked that ​g(1/2)  >  0​ and 
g is increasing in ​ξ​, which implies that if ​ξ  ≥  1/2,​ then ​g(ξ)  >  0​. It follows that the 
steady state value of ​ξ​ is less than ​1/2​, so that the steady state value of ​ϕ  =  1 − ξ​ 
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is greater than ​1/2​. The last assertion follows from the fact that ​g​ is larger for all  
​ξ​ the larger is ​G​. ∎

Lemma B.4: ​​D​ G​​ ​δ​F​​  >  0, ​D​ G​​ ϕ  >  0​.

Proof: 
It suffices to show this for ​​G ̃ ​​ as given the other parameters ​​G ̃ ​​ is an increasing lin-

ear function of ​G​. From the definitions of ​f, g​ the former is decreasing and the latter 
increasing in ​​G ̃ ​​. In the proof of Lemma B.1 we showed that both ​f, g​ cross the hori-
zontal axis from below. The implicit function theorem then gives the desired result. ∎

Lemma B.5: ​​D​ B​​ ​δ​F​​  <  0​ , for sufficiently large ​G​ , ​​D​ B​​ ϕ  <  0​.

Proof: 
It suffices to show the result with respect to ​​B ̃ ​​ as this is an increasing function of ​

B​. By inspection ​​D​ ​δ​F​​​​ f  >  0​ and ​​∂​ξ​​ g  >  0​ , so ​​D​ ϕ​​ g  <  0​. We compute

	​ ​D​ ​B ̃ ​​​ f  = ​ δ​ F​ ​α ̃ ​+1​​(2​α​​−1​ ​δ​F​​ ​B ̃ ​ + ​δ​F​​ − ​(1 + ​α​​−1​)​)​ 

	 >  2​α​​−1​  + ​ δ​F​​ − ​(1 + ​α​​−1​)​  > ​ δ​F​​  >  0​.

It is also the case that ​​δ​F​​ ​B ̃ ​  >  1​ in the steady state. This follows from the fact that

	​ f ​(1/​B ̃ ​)​  = ​​ B ̃ ​​​−(​α ̃ ​+1)​​(1 − ​B ̃ ​)​​(1 + ​G ̃ ​​​B ̃ ​ ​​​α ̃ ​​)​  <  0​.

Hence, ​​D​ ​B ̃ ​​​ ​δ​F​​  <  0​.
Finally

	​ ​D​ ​B ̃ ​​​ g  =  ξ​[​(1 + ​α​​−1​)​ + ​G ̃ ​ ξ​α​​−1​(​α ̃ ​ + 1)​​(1 + ​α​​−1​​B ̃ ​ ξ)​​​​α ̃ ​
​]​ − 1​.

We can write ​g(ξ)  =  0​ as

	​ ξ​[​ 
​(1 + ​α​​−1​)​​B ̃ ​

  __________ 
​G ̃ ​

 ​  + ​​(1 + ​α​​−1​​B ̃ ​ ξ)​​​​α ̃ ​+1
​]​  = ​  ​B ̃ ​ − 1 _____ 

​G ̃ ​
 ​ ​ .

The expression in brackets is bounded below by 1, so that as ​​G ̃ ​​  →  ∞ it must be 
that one ξ  →  0. Rewriting the expression as

	​ ​G ̃ ​ξ  = ​   ​B  ̃​ − 1  _____________________   
​ 
​(1 + ​α​​−1​)​​B ̃ ​

  __________ 
​G ̃ ​

 ​  + ​(1 + ​α​​−1​ ​B ̃ ​ ξ)​
 ​​ ,

we see that as ​​G ̃ ​​  →  ∞, ξ  →  0, the RHS approaches ​​B ̃ ​ − 1​ , and so Γξ  → ​ ​B ̃ ​​ − 1. 
Hence, as ​​G ̃ ​​  →  ∞, we have ​​D​ ​B ̃ ​​​​ g  →  −1. The implicit function theorem then gives 
the second result. ∎

Theorem 4 now follows directly from Lemmas B.3, B.4, and B.5.
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