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Abstract: Pediatric HIV is scarce in developed countries; 90% of pediatric HIV patients are in developing countries. In 

contrast, children represent 15% of the new infections in poor countries. Approximately 90% of the HIV-positive children 

do not have access to antiretrovirals (ARVs). Without treatment, 50% of the patients die before the 2 years of age. 

Efavirenz (EFV, aqueous solubility ~4 μg/mL, 40-45% bioavailability), a non-nucleoside reverse transcriptase inhibitor 

(NNRTI), is a first-choice pediatric ARV. To assure therapeutic plasma concentrations, the low oral bioavailability 

demands the administration of relatively high EFV doses. Aqueous EFV irritates the oral mucosa, causing a Burning 

Mouth Syndrome (BMS). A triglyceride-based liquid formulation of EFV (30 mg/mL) is not commercially available 

worldwide, making the appropiate dose adjustment and the swallowing difficult. More importantly, clinical trials 

indicated that the oral bioavailability of this oily solution is lower than that of the solid one. Moreover, a relatively high 

inter-subject variability has been found. The present work reports the development and full characterization of a 

concentrated (20 mg/mL, 2%) and taste-masked aqueous formulation of EFV for a more appropriate management of the 

pediatric anti-HIV therapy. Formulations displayed high physicochemical stability over time under regular storage 

conditions. Release assays in vitro showed a burst effect (2 h) and zero-order kinetics later on (between 2 and 24 h), 

compatible with the oral administration route and release. Finally, taste tests performed by adult healthy volunteers 

indicated that the unique combination of flavors and sweeteners employed (i) reduced the intensity of the BMS and (ii) 

shortened its duration significantly. Overall results indicate that the cost-effective and scalable nanotechnological strategy 

proposed could enable the more covenient and compliant administration of lower EFV doses. Due to a better 

pharmacokinetic profile, this would result in similar plasma levels than higher doses administered in solid or triglyceride-

soluble form. In this context, some reduction of the treatment cost can be envisioned. This could improve the access of 

less affluent pediatric patients to medication in poor countries. 
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1. INTRODUCTION 

 The last update on the global situation of the Human 
Immunodeficiency Virus (HIV)/Acquired Immunodeficiency 
Syndrome (AIDS) shows that approximately 2.5 million 
children (<15 years) are among the more than 40 million 
HIV-infected patients [1]. A substantial progress was made 
since the implementation of the High Activity Antiretroviral 
Therapy (HAART) in 1996 [2, 3]. However, high doses and 
complex administration schedules affect patients´ lifestyle 
[4]. Epidemiology indicates that adherence levels lower than 
95% dramatically constrain the therapeutic success to less 
than 50% [5]. 

 Pediatric HIV is scarce in the developed world due to the 
effective prevention of mother-to-child-transmission 
(MTCT) [6]; 90% of pediatric HIV patients are in 
developing countries and represent approximately 15% of 
the new cases. More crucially, approximately 90% of the  
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HIV-positive children do not have access to antiretrovirals 
(ARVs); without treatment, 50% of the patients die before 
the 2 years of age [7]. Only twelve ARVs have been 
approved by the regulatory agencies of U.S. and Europe for 
administration in children [8]. The number of liquid 
formulations commercially available is even more reduced 
[9]. In this context, the manipulation and the processing of 
original solid forms [10] to produce unlicensed medicines is 
the only alternative to treat HIV-infected neonates and 
infants [11]. Due to a serious lack of resources, the quality, 
safety and effectiveness of these extemporaneous 
formulations in countries with limited infrastructure and 
fragile health systems is highly doubtful [12-14]. In 2007, 
the World Health Assembly (WHA) proclaimed the right of 
children to access safe, effective and proven medicines [15]. 

 Efavirenz (EFV, Sustiva
®

, Scheme 1) is the first-choice 
non-nucleoside reverse transcriptase inhibitor (NNRTI) [16] 
recommended by the World Health Organization (WHO) for 
the initial treatment of children above the age of 3 [17, 18]. 

 The extremely low aqueous solubility of the drug (4 
μg/mL) leads to a limited oral absorption and low 
bioavailability (40-45%) [19, 20]. The inter- and intra-
individual variability found are relatively high, these values 
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being approximately 55-58% and 19-24%, respectively [21, 
22]. It should be stressed that these variability levels are 
significantly lower than those shown  by  protease  inhibitors,  
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Scheme 1. Chemical structure of the antiretroviral efavirenz (EFV). 

though they are still a matter of concern. To adjust the dose 
to body weight and prevent adverse effects and 
discontinuation, EFV usually would require Therapeutic 
Drug Monitoring (TDM) [23-25]. For example, the benefit 
of reducing the dose from 600 to 400 mg in adults has been 
recently reported [25]. Recommended daily doses in children 
are between 200 and 600 mg [26]. Regardless of the 
advantages of monitoring EFV plasma levels on patient 
compliance and adherence [27], TDM is not implemented 
everywhere as a routine. Another drawback is that soluble 
EFV may irritate the oral mucosa. The Burning Mouth 
Syndrome (BMS) [28] is a main cause of unplanned 
interruption of the ARV pharmacotherapy [29]. A 
concentrated EFV solution (30 mg/mL) of acceptable taste 
was developed using water-inmiscible triglyceride vehicles 
[30, 31]. However, this medicine is not commercially 
available worldwide. For example, liquid EFV is not 
registered by the regulatory agency in Argentina; this 
formulation is available only to a limited number of patients 
under a compassionate status (source: Program of Immuno-
compromissed Patients, “Ramos Mejia” Hospital, Buenos 
Aires, Argentina). Noteworthy drawbacks of this formulation 
are significantly lower oral bioavailability than the capsules 
and high inter-subject variability. Also, administration of 
relatively large volumes of oily vehicles could produce 
profuse diarrhea in children and affect compliance and 
adherence seriously [32]. 

 In general, a good correlation between solubility 
improvement and higher bioavailability has been found for 
most of the drugs classified into Class II of the 
Biopharmaceutic Classification System (BCS) (e.g., EFV). A 
few attempts to water-solubilize EFV using different carriers 
have been reported in the literature. Dutta et al. investigated 
the aqueous solubilization and cellular targeting of EFV by 
means of complexation with surface-modified polypropylene 
imine (PPI) dendrimers [33, 34]. Regardless the technological 
potential of this approach, the implementation of non-
approved polymers is of relatively limited clinical relevance. 
Others investigated the solubilization of EFV in different 
types of cyclodextrins (CDs) and cyclodextrin-containing 
polymers [35, 36]; CDs are cyclic oligosaccharides that due to 
the combination of a hydrophobic cavity and a hydrophilic  
 

surface are capable of forming inclusion complexes with 
lipophilic drugs, enhancing their solubility in water [37]. 
Dissolution extents were increased 6- to 20-fold; apparent 
solubility in these carriers was about 100 μg/mL. However, to 
administer a 200 mg standard dose, large formulation volumes 
(approximately 2 L) might be demanded. 

 Prevalecence of the disease is extremely higher in 
resource-constrained countries [38]. Thus, there exists an 
urgent need to develop innovative, though cost-effective and 
scalable, antiretroviral medicines [39]; nanotechnologies can 
provide unique means to improve the effectiveness of the 
anti-HIV pharmacotherapy, also in constrained-setting 
countries [40]. 

 Encapsulation of poorly water-soluble drugs within the 
hydrophobic core of polymeric micelles constitutes one of 
the most attractive nanotechnological strategies to improve 
their aqueous solubility of drugs [41]. Thermo-responsive 
poly(ethylene oxide)–poly(propylene oxide) (PEO–PPO) 
block copolymers are the most extensively investigated 
family of micelle-forming amphiphiles [42]. 

 With the aim of improving the aqueous solubility and the 
oral bioavailability of EFV, our research group has recently 
investigated the encapsulation of EFV within polymeric 
micelles of linear and branched poly(ethylene oxide)-
poly(propylene oxide) block copolymers [43-45]. These 
copolymers have proven good cell and biocompatibility and 
some of them were approved by the US FDA and EMEA as 
pharmaceuticals excipients [46]. The solubility of EFV was 
increased from 4 μg/mL to 33 mg/mL, representing up to 
8250-fold [43]. Also, EFV-loaded nanocarriers remained 
physicochemically stable for more than two weeks after 
dilution in gastric-mimicking conditions [44]. Finally, EFV-
loaded micellar systems (20 mg/mL) were administered by 
gavage to male rats (80 mg/kg) and the pharmacokinetics 
was compared to that of (i) a magistral suspension prepared 
by dispersing the content of a capsule in a 1.5% 
carboxymethylcellulose aqueous solution and (ii) a 
triglyceride solution, of identical concentration (20 mg/mL). 
Encapsulation into polymeric micelles leads to three 
outstanding findings: (i) significantly higher maximum 
plasma concentration (Cmax), (ii) significantly higher oral 
bioavailability measured as the area-under-the-curve (AUC) 
and (iii) sharp decrease in the Cmax and the AUC inter-
individual variability [44]. However, the organoleptic 
properties of EFV represent a remarkable drawback. 
Moreover, the addition of pharmaceutical excipients could 
strongly affect the physicochemical stability of the 
formulation. The present study reports on the development 
and full characterization of a concentrated (2%) and taste-
masked aqueous formulation of EFV for a more appropriate 
pediatric management of the anti-HIV therapy. Overall 
results indicate that the cost-effective and scalable 
nanotechnology strategy proposed could enable the more 
covenient and compliant administration of lower EFV doses. 
Due to a better pharmacokinetic profile, this would result in 
similar plasma levels than higher doses administered in solid 
form. Also, some reduction of treatment costs can be 
envisioned. This could improve the access of less affluent 
pediatric patients to medication in poor countries. 
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2. MATERIALS AND METHODS 

2.1. Materials 

 Poloxamer Pluronic
®

 F127 (F127, molecular weight 12.6 
kDa) and poloxamines Tetronic

®
 904 (T904, molecular 

weight 6.7 kDa) and 1307 (T1307, molecular weight 18 
kDa) were a gift of BASF (NJ, USA). Efavirenz (EFV) was 
donated by Richmond Pharmaceutical Laboratories (Buenos 
Aires, Argentina). All the other reagents and solvents were 
of pharmaceutical and analytical grade and they were used as 
received. 

2.2. Preparation of Polymeric Micelles 

 Polymeric micelles (11% w/v) were produced by 
dissolving 10 g copolymer in buffer phosphate-citrate (90 
mL, pH 5.0) at 4

o
C and equilibrating the system at 23

o
C at 

least 24 hours before use. 

2.3. Preparation of the Formulation 

 Efavirenz (2 g, 20 mg/mL copolymer solution, 2% w/v 
final drug concentration) was added to 90 mL of the 
corresponding copolymer solution and shaken (48 h) in a 
temperature-controlled horizontal shaker at 23

o
C (Minitherm-

Shaker; Adolf Kuhner AG, Switzerland) until total dissolution. 
Then, the different excipients (sweeteners, sorbitol, sodium 
ciclamate and potassium acesulfame; flavor, cherry; 
preservatives, sodium benzoate) were added and solubilized. 
Finally, menthol was dissolved in ethanol (1 mL) and added to 
the solution. Buffer was added to complete 100 mL. 

2.4. Physicochemical Stability of the Formulations 

 To study the physicochemical stability of the formulation, 
samples were stored at 4ºC (refrigerator) and 24ºC (room 
temperature) and monitored over time (n = 3). The 
concentration of EFV in the different formulations and the 
appearance of degradation products were determined by liquid 
chromatography (HPLC) using a Phenomenex Luna 5 μm, C18, 
150 mm x 4.60 mm column (Phenomenex, Torrance, CA, 
USA) with a UV detector (248 nm, UVIS 204, Linear 
Instruments, Reno, NV, USA) [44]. The mobile phase 
composed of distilled water:acetonitrile:triethylamine 
(60:40:0.2; pH 3) was pumped at a flow rate of 1.4 mL/min. 
The analytical method for quantification was validated in the 
range between 20 and 5000 ng/mL. Results of percentage of 
remaining EFV (%EFV) are expressed as mean ± S.D. (n = 3). 
To characterize precipitation products, crystals were isolated, 
thoroughly washed with distilled water, dried under vacuum at 
room temperature and analyzed by HPLC, differential scanning 
calorimetry (see below) and optical microscopy. 

2.5. Physicochemical Stability of the Formulations Under 

Dilution 

 The systems under investigation are intended for the 
development of EFV oral formulations. In order to determine 
their ability to withstand dilution in the gastric environment, 
EFV-containing systems were diluted (1:10, 1:50 and 1:75)  
 

 

in a stomach-mimicking medium (HCl 0.1N, pH 1.5) [47], 
incubated at 37

o
C and the drug concentration monitored over 

time by HPLC (see above). The appearance of degradation 
products was also studied. 

2.6. Thermal Analysis 

 To establish the meltin temperature (Tm) and enthalpy of 
melting of EFV ( Hm), a sample of drug (~5 mg) was 
analyzed by Differential Scanning Calorimetry (DSC, 
Mettler TA-400 differential scanning calorimeter) in a single 
heating ramp (25 to 200

o
C, 10

o
C/min.). A similar analysis 

was performed with precipitation products isolated from 
stability assays. 

2.7. In Vitro Release Studies 

 To evaluate the EFV release profiles from the different 
drug-loaded micelles, original and diluted (1:10 in HCl 
0.1N) F127, T904 and T1307-based formulations (10 mL) 
were placed within dialysis membranes (regenerated 
cellulose tubing, MWCO = 3500), immersed into an 
intestine-mimicking buffer (pH 6.8, 900 mL, 37

o
C) [48] and 

the drug concentration in the internal solution monitored 
over 24 hours by HPLC (see above). The medium was 
replaced every 6 hours [44]. The time point for medium 
release exchange was established in preliminary tests where 
the medium was exchanged every 3, 6 and 12 h. Differences 
in the results between time points 3 and 6 h were not 
statistically significant. Assays were carried out by triplicate 
and the results are expressed as the Mean ± S.D. To mimick 
intake conditions, an additional assay was conducted as 
follows: samples were primarily immersed in gastric-like 
medium (HCl 0.1N, pH 1.5, 900 mL) [47] and the release 
evaluated over 2 h, at 37

o
C. Then, the release assay was 

continued under intestine-like conditions for 22 h [48]. 

2.8. Taste Masking Tests 

 Taste masking properties were evaluated in blind 
randomized sensory experiments by ten healthy adult 
volunteers. Formulations (0.5 mL) were held in the center of 
the tongue (30 seconds) and then spat out. Flavor- and 
sweetener-free formulations were used as the control. The 
following parameters were measured: (i) time to the 
appearance of the BMS, (ii) intensity of the BMS and (iii) 
duration of the BMS. Volunteers let the irritation vanish 
before testing the next sample. The intensity of the BMS was 
scored using a numerical scale between 0 and 4, where 0, 1, 
2, 3 and 4 were undetectable, threshold of detection, slight, 
moderated and strong BMS, respectively. A medium-chain 
triglyceride solution (20 mg/mL in Miglyol

®
 812) was also 

tested. Statistical differences (p<0.05) between the different 
samples and the original 2% EFV-loaded micelle sample 
(control), were analyzed using the Dunnett's Multiple 
Comparison Test. 

 The assay was performed following the Declaration of 
Helsinki guidelines and the local ethical regulations for 
human studies. Participants were previously informed and 
they expressed their consent prior to the test. 
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3. RESULTS AND DISCUSSION 

3.1. Development of the Formulation 

 The limited commercial availability of the licensed liquid 
formulation of EFV (Sustiva

®
 Oral Solution) still remains a 

hurdle towards a convenient pediatric anti-HIV 
pharmacotherapy in several countries. Moreover, its lipidic 
nature and non-miscibility with the gastrointestinal fluids 
constrains the oral absorption of the drug. In a previous work, 
we thoroughly investigated the encapsulation of EFV within 
PEO-PPO polymeric micelles as a nanotechnology strategy to 
increase the aqueous solubility of the drug and its oral 
bioavailability [44]. However, the unbearable taste of EFV in 
water remains a remarkable disadvantage that may affect patient 
compliance and adherence. Also, the addition of different 
pharmaceutical excipients that modify the properties of the 
medium (e.g., ionic strength) could affect the physicochemical 
stability of the drug-loaded polymeric micelles; dissociation of 
the micelles would lead to the irreversible precipitation of the 
drug. 

 The goal of the present work was to develop and fully 
characterize a highly concentrated EFV aqueous formulation 
with enhanced taste. A previous work evaluated the 
combination of a broad spectrum of flavors and sweeteners to 
improve the taste of EFV [49]. The strategy relied on the 
addition of FLAVORx, a brand name flavoring system 
(FLAVORx Co., Bethesda, MD), commercially available only 
in the US. Menthol and cherry flavors have been previously 
described as effective masking excipients [50]; the colling effect 
of menthol relieves local irritations in the oral mucosa [51]. 
Similar beneficial properties have been ascribed to sorbitol and 
acesulfame [52]. Once developed, formulations were 
thoroughly evaluated to state the physicochemical stability and 
the organoleptic properties. Three PEO-PPO copolymers were 
used. Poloxamer F127 has been approved by the US FDA for 
pharmaceuticals and it is probably the most extensively 
investigated poloxamer [42, 46]. Also, previous results showed 
that EFV-loaded F127 micelles are physicochemically stable 
[44]. On the other hand, poloxamines present a unique structural 
feature (a central ethylenediamine group) that makes them pH-
responsive and enable N-alkylation to modulate the drug 
delivery rate [45]; micelles are less stable under acid conditions 
and tend to disassemble releasing the drug faster. A goal of the 
present work was to comparatively investigate formulations 
based on both poloxamers and poloxamines. The selection of 
poloxamines T1307 and T904 relied on their structural 
properties. T1307 generates efavirenz-loaded micelles of similar 
size to F127 ones and displays a similar solubilization capacity 
[44], while T904 is more a hydrophobic amphiphile and 
solubilizes the drug much better; e.g., the maximum solubility 
attainable in 10% T904 solution is 33 mg/mL as opposed to 
about 20 mg/mL for 10% F127 and T1307 systems. This 
behaviour indicates a greater drug/micelle affinity. 

3.2. Physicochemical Stability of the Formulations 

 Two mechanisms could affect the concentration of EFV in 
the formulation over time: (i) physical instability due to the 
disassembly of the micelles and irreversible drug precipitation 
and (ii) EFV hydrolysis. Both poloxamers and poloxamines 
display a reverse thermo-responsive behaviour: the lower the 
temperature, the higher the critical micellar concentration 

(CMC) found. Cooling can result in micellar disassembly and 
drug release and precipitation. At 4

o
C, a F127-based 

formulation displayed high stability, the %EFV  
being 92% of the initial drug concentration at day 28 (Fig. 1A). 
Poloxamine-based systems were less stable. T1307 systems 
remained almost unchanged during the first week of the assay 
(%EFV 93.5%) and lost about 17% of the initial drug load after 
two weeks. Then, a gradual decrease to a 25% was found, at day 
28. Contrary to this, T904 systems showed a much more 
pronounced decrease to levels below 30 and 20% at days 7 and 
28, respectively. These findings were supported by the 
appearance of a crystalline precipitate (Fig. 2A,a) that showed a 
thermal behavior identical to that of pure EFV (Fig. 2B). This 
phenomenon stemmed from the higher CMC of T904. At 24

o
C, 

all the formulations showed high physicochemical stability, 
%EFV values being greater than 90-95% (Fig. 1B). In addition, 
precipitates were not found (Fig. 2A,b). HPLC analysis of both 
the formulation and the precipitates confirmed the chemical 
stability of EFV (and the absence of degradation products) 
under the working conditions, as opposed to previous reports 
indicating the hydrolysis under low pH and high T conditions 
[53] (Fig. 2D, E). In addition, the gradual decrease in the area of 
the HPLC peak of EFV in a T904-based formulation due to 
precipitation was an additional evidence of the physical 
instability of poloxamine-based formulations stored in the 
refrigerator (Fig. 2E,c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Remaining percentage of efavirenz (% EFV) in solution in 

different formulations at A) 4°C and B) 24°C. 
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Fig. (2). Physicochemical stability of EFV formulations. (A) Aspect of different formulations after 28 days at (a) 4°C and (b) 24°C. (B) 

Thermogram of pristine EFV and the needle-like precipitate isolated from the EFV/T1307 formulation at day 28. (C) Optical micrographs of 

(a) pristine and (b) precipitated EFV. (D) Liquid chromatograms of the F127 formulation. (a) Day 0, (b) 24°C at day 28 and (c) 4°C at day 

28. (E) Liquid chromatograms of the T904 formulation. (a) Day 0, (b) 24°C at day 28 and (c) 4°C at day 28. 
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3.3. Physicochemical Stability of the Formulations Under 

Dilution 

 EFV-containing formulations are planned for oral 
administration. Thus, evaluating their behaviour under 
dilution in gastric-like conditions was of interest. The fast 
disassembly of the micelles and drug precipitation in the 
stomach would preclude the effective drug release in the 
intestine. In general, drugs undergo dilution in the total 
gastric volume (~600 mL) [54]. Considering that the volume 
of a single dose of EFV is between 10 and 30 mL, 10% 
F127, T904 and T1307-based formulations were diluted 
(1/10, 1/50 and 1/75) and the drug concentration monitored 
over two weeks, at 37

o
C. Previous results indicated the high 

physicochemical stability of the EFV-containing micelles 
upon dilution, the poloxamer-based system being more 
physically stable than the poloxamine-based ones [44]. 
Neverthelss, incorporation of pharmaceutical excipients 
could strongly affect the performance of the formulations as 
compared to excipient-free solutions. The results are 
exemplified for F127 and T904 in Fig. (3). All the 
formulations showed high stability, regardless the dilution 
extent; %EFV values were approximately 100% at day 28. 
Diprotonation of the central ethylenediamine group of 
poloxamines under low pH-values (e.g., pH 1.5) and the 
resulting electrostatic repulsion of positively-charged 
copolymer molecules favour the gradual dissociation of the  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Percentage of EFV remaining in solution of T904 and 

F127 formulations diluted in HCl 0.1N and incubated at 37°C over 

2 weeks. 

micelles and the drug precipitation [55]. Remarkably, also a 
1/75 dilution of a T904 formulation remained stable. EFV 
did not undergo hydrolysis under low pH conditions. 
Accordingly, formulations will remain physicochemically 
stable in the stomach and, due to a longer residence time in 
the intestine, they will release the drug and enable the 
absorption. The high stability of the diluted formulations 
would allow the dilution in water or soft beverages without 
affecting the stability of the system. 

3.4. In Vitro Release Studies 

 A key parameter governing the encapsulation process is 
the drug/core affinity. Conversely, an extremely strong 
drug/micelle interaction would hamper the release and the 
absorption of the drug in the intestine. The in vitro release is 
exemplified for F127 and T904 formulations in Fig. (4). 
First, original and diluted (1/10 and 1/50) specimens were 
exposed to an intestine-like release medium (24 h) (Fig. 4A, 
B). Undiluted samples showed similar burst effects (34-37%, 
at 2h). Then, a zero-order-kinetics was observed, the total 
released being 52.7 (R

2
 = 0.9858) and 48.5% (R

2 
= 0.9641) 

for the poloxamer and the poloxamine, respectively. The 
lower release rate of T904 stemmed from the higher 
hydrophobicity of the nanocarriers and the stronger 
drug/micelle affinity. Dilution of the samples reduced the 
concentration gradient between the formulation and the 
release medium. Thus, a gradual decrease in the burst effect 
was apparent as the dilution increased; i.e., 1/10 and 1/50 
dilutions of a T904 formulation showed bursts of 17 and 
12%, respectively. Then, zero-order profiles were observed, 
the total released amounts being approximately 30%. To 
mimick the in vivo intake conditions, a similar assay was 
carried out, though the primary release (2 h) was evaluated in 
stomach-like medium (Fig. 4C). Burst releases remained 
almost unchanged around 35 and 15% for undiluted and 
diluted samples, respectively. In contrast, a slight increase in 
the total amount released from 28-30 to 35-39% was 
apparent. 

3.5.  Taste Masking Tests 

 A central goal of the present study was to improve the 
organoleptic properties of the aqueous formulation and to 
minimize the BMS caused by the ingestion of water soluble 
EFV; this phenomenon is more noticeable in the last portion 
of tongue and the throat. The syndrome is intimately 
associated with treatment interruption. In addition, vomiting 
and spitting might result in EFV underdosing and erratic 
plasma concentrations, owing to the partial intake of the 
administered dose. Pluronic

®
 F127 has been approved by the 

FDA and it is available in National Formulary grade. In 
addition, the F127-based formulation showed the highest 
physicochemical stability among the investigated systems. In 
this context, a 2% EFV/10% F127 formulation and a similar 
drug-loaded system deprived of flavors and sweeteners were 
evaluated by ten healthy adult volunteers. Results are 
presented in Table 1. In general, the addition of flavors and 
sweeteners had remarkable beneficial effects by significantly 
reducing the intensity of the BMS and also its duration. Even 
though a delay in the appearance of the phenomenon was 
observed, differences were not statistically significant. For 
example, the addition of excipients delayed the appearance 
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from 35 sec to 2.13 min and reduced the intensity from 
strong (score 3.9 for original EFV-loaded micellar systems) 
to slight-moderate (score 2.8 for the original formulation). 
The duration was shortened from 60.0 to 36.4 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). (A, B) In vitro EFV release profile in intestine-mimicking 

(PBS, pH 6.8) at 37°C from different formulations: (A) Original 

and diluted (1/10 and 1/50) Pluronic
®

 F127 formulation. (B) 

Original and diluted (1/10 and 1/50) Tetronic
®

 T904 formulation. 

(C) In vitro EFV release profile in gastric-mimicking conditions 

(HCl 0.1N, pH 1.5) the first two hours and then in PBS (pH 6.8) 

from original and diluted (1/10) Pluronic
®

 F127 and Tetronic® 

T904 formulations. Each point represents mean ± SD (n = 3). 

 To evaluate the effect of sweet food and beverages on the 
BMS, grape jelly and chocolate milkshake were ingested 

immediately after the test. This a common practice to 
improve the taste of antiretrovirals and other chronic 
medicines in pediatric pharmacotherapy [49, 56]. Findings 
indicated the additional improvement of the taste profile; the 
intensity decreased to 2.20 and 1.00 with chocolate 
milkshake and grape jelly, respectively, while the duration 
was shortened to about 15 minutes. It could be correctly 
argued though, that these foods are most probably 
unavailable in extremely constrained settings. The goal of 
testing them was to show the potential of combinig the 
formulation with food ingestion to further assure compliance 
and adherence. According to the test results, the formulation 
displays an intrinsically acceptable taste. In this context, 
dilutions in tap water were also evaluated with even better 
results; the intensity of the BMS decreased from moderate to 
slight and from slight to threshold levels for 1/5 and 1/10 
dilutions, respectively. In all the cases, the formulation 
performed better than the system without flavors and 
sweeteners 

 Moreover, the BMS lasted 7.4 min as opposed to 36.4 
min. Finally, a triglyceride EFV solution (20 mg/mL) was 
also tested. Even though this formulation does not cause 
BMS, the oily nature of the formulation caused nausea 
sensation in more than 50% of the volunteers. Having 
expressed this, the taste of the formulation appears as a less 
concerning feature than the lower oral bioavailability and 
higher inter-individual variability found for this formulation 
[44]. Considering these facts, the developed formulation 
appears as more advantageous alternative for the pediatric 
therapy than the available ones. It is worth remarking that 
there are not previous reports describing the impact of (i) the 
time to the appearance of the BMS and (ii) the duration of 
the BMS on patient compliance. However, it is expected that 
a shorter duration of any adverse effect in a chronic 
pharmacotherapy would result in better patient compliance 
and adherence to the regimens. Thus, we decided to also 
report on these parameters and probably instate this more 
comprehensive approach for future taste tests conducted in 
volunteers. In this context, the implications of the 
combination of any formulation with food in the oral 
bioavailability need to be thoroughly investigated. 

4. CONCLUSIONS 

 Nanotechnolgy has become a key player in the design of 
more effective medicines [41]. However, as opposed to 
cancer that does not recognize physical and socioeconomic 
boundaries, epidemic infectious diseases such as 
tuberculosis, HIV/AIDS and malaria are significantly more 
incidential among poor populations. This fact disencourages 
pharmaceutical companies to dedicate efforts to improve, at 
least minimally, the properties of the formulations. Even 
though nanotechnology appears as less affordable in 
developing countries owing to higher production costs, the 
ethical and scientific challenges are to apply them at 
reasonable costs [40]. Contributions can range from the 
improvement of simple organoleptic and technological (e.g., 
solubility and stability) properties to the design of 
sophisticated delivery systems that target specific cellular 
and anatomical reservoirs. Pediatric patients constitute a 
high-risk group. More than 90% of the children are in sub-
Saharan Africa. In this global context, it is surprising that a 



230    Current HIV Research, 2010, Vol. 8, No. 3 Chiappetta et al. 

licensed aqueous formulation of efavirenz, a first-choice 
antiretroviral with low documented bioavailability, is not yet 
available worlwide. The only choice in many countries is to 
prepare extemporaneous magistral formulations of unproven 
efficacy; i.e., adsorption of drugs to excipients in the 
formulation may reduce the bioavailability with respect to 
the solid form. Previous preclinical investigations conducted 
in our laboratory showed a dramatic improvement in the oral 
bioavailability and the decrease of the inter-subject 
variability by means of EFV encapsulation into PEO-PPO 
polymeric micelles [44]. In this context, the present work 
reported for the first time on the development of an aqueous 
liquid formulation of EFV. To assure a better access 
worldwide, the formulation was developed to (i) enable easy 
and cost-effective preparation and (ii) fit the pediatric patient 
needs of dose adjustment and easy swallowing in a broad age 
range. The copolymers used for the generation of the 
nanocarriers are (i) commercial available, (ii) biocompatible, 
(iii) US FDA- and EMEA-approved and (iv) relatively 
cheap. In pediatric regimens, EFV doses are often in the 100-
300 mg range. Remarkably, the formulation developed 
would demand the intake of an acceptable volume between 5 
and 15 mL. 

 Ongoing investigations are being dedicated to (i) 
preclinically evaluate the formulations in at least two animal 
models and under a variety of conditions (e.g., concentrated 
vs diluted formulations, food, etc), (ii) conduct clinical trials 
in adult healthy volunteers and infected children and (iii) 
estimate the costs for the production of a pilot-scale batch. 
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