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Abstract. We give simple proofs of the fact that for certain parameters
the roots of the generalized Rogers-Ramanujan function are irrational num-

bers and, for example, that at least one of the following two numbers is ir-

rational:

{∑∞
n=1

Fn

mn
∏n−1

i=0 φ(k+i)
,
∑∞
n=1

Fn

mn
∏n−1

i=0 φ(k+i+1)

}
where Fn+2 =

Fn+1 + Fn, F0 = 0, F1 = 1 (the Fibonacci sequence), m is a natural num-

ber > 1+
√

5
2

and φ(k) is any function taking positive integer values such that

lim supk→∞ φ(k) = ∞.

1. Introduction and results.

The irrationality of π was first proved by J. H. Lambert in 1761 using the con-
tinued fraction for the function tanx. Nowadays proofs avoid the use of continued
fractions and use a variant of Hermite’s ideas; a proof of this type was given by
I. Niven [3]. M. Laczkovich’s proof of the irrationality of π presented in [5] is
particularly simple and contains ideas from J. Popken’s paper [6].

The aim of this note is to give short proofs of two irrationality theorems, both
inspired by M. Laczkovich’s proof. In fact, we use ideas that are of elementary
nature. One may say that the crux of Laczkovich’s proof is based on the existence
of a one-parameter family satisfying a certain recursion. To prove our theorems we
follow the same path using three one-parameter families, namely (1), (3) and (4).

Our first and most important result is a general theorem which implies that,
for certain parameters, the roots of the generalized Rogers-Ramanujan function are
irrational numbers.

We write Q := a1a
2
2 · · · arr for short and define fk = fk(x, a1, . . . , ar) by

(1) fk :=

∞∑
n=0

1

a
nk+

n(n−1)
2

1 · · · arnk+
rn2

2 +n(1− 3r
2 )

r

xn∏n
i=1(1−Qi)

,

where if n = 0 it is understood that
∏n

i=1(1−Qi) = 1.
The following theorem holds.

Theorem 1. Assume ai ∈ Z and |a1 · · · ar| ≥ 2. If x 6= 0 is a rational number and

k = 0, 1, 2, . . . then fk 6= 0 and fk+1

fk
is irrational.
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Corollary. Assume that 1/q = ±2,±3, . . . and k = 0, 1, 2, . . .. If a real number x0
satisfies

(2) 1 +

∞∑
n=1

xn0 q
n2+kn

(1− q) · · · (1− qn)
= 0,

then x0 is irrational.

The function appearing in (2) is the generalized Rogers-Ramanujan function (see
[1], [2] and [4]). Observe that (2) can be written as fk(−x0, 1/q) = 0 and therefore
the conclusion follows from the theorem.

Note that

f0(−1, 1/q) = 1 +

∞∑
n=1

qn
2

(1− q) · · · (1− qn)
=

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
,

and

f1(−1, 1/q) = 1 +

∞∑
n=1

qn
2+n

(1− q) · · · (1− qn)
=

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
,

are the Rogers-Ramanujan functions, see [2] or [4] pp. 78.
To state the next theorem we need to define the functions hk and gk.

Definition. (i) If A,B are real numbers, let Fn be defined recursively by

Fn = A(Fn−1 −BFn−2),

for 2 ≤ n with initial values F0 = 0, F1 = 1.
Let φ(k) be a function taking non-zero real values and whose domain is N

⋃
{0}.

If k = 0, 1, 2, . . . we set

(3) hk := hk(x) =

∞∑
n=1

Fnx
n∏n−1

i=0 φ(k + i)
.

(ii) Let η(k), φ(k) be two functions taking non-zero real values and whose domain
is N

⋃
{0}. If k = 0, 1, 2, . . . we set

(4)

gk := gk(x) =

∞∑
n=1

xn
{φ(k) + φ(k)φ(k + 1) + · · ·+ φ(k)φ(k + 1) · · ·φ(k + n− 1)}∏n−1

i=0 η(k + i)
.

By looking at the coefficient of xn of hk one observes that formally the following
recursion holds

(5)
B

φ(k + 1)
x2hk+2 = xhk+1 −

φ(k)

A
hk +

x

A
.

Similarly, gk formally satifies

(6)
η(k)

φ(k)
gk −

{
1 +

1

φ(k + 1)

}
xgk+1 +

1

η(k + 1)
x2gk+2 = x.

The following theorem holds.
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Theorem 2. (i) In the definition of hk let A,B, x be rational non-zero numbers
such that 1

xB , 1
x2AB are integers. Assume also that φ(k) takes positive integer

values, 0 < x, 0 ≤ Fn for all n and at least one of the two following conditions
holds: (i1) limk→∞ φ(k) = ∞ (i2) lim supk→∞ φ(k) = ∞ and there exists x0 > x
such that

∑∞
1 Fnx

n
0 converges.

Then for any k = 1, 2, . . . at least one of {hk(x), hk+1(x)} is an irrational num-
ber.

(ii) In the definition of gk assume that η(k) = PkQk, φ(k) = Pk−1

Rk
where

Pk, Qk, Rk are positive integers for all k and limi→∞Qi = ∞. Furthermore as-

sume that supk
Pk−1

RkPk
≤M for some 1 ≤M .

Then at least one of {gk(1/m), gk+1(1/m)} is irrational for any m = 1, 2, 3, . . . ; k =
0, 1, 2, . . ..

Remarks. a) As we shall see, gk is entire function and in case that condition
(i1) holds the same is true for hk.

b) The result of the abstract follows taking A = 1, B = −1, x = 1/m in (i2)

observing that
∑∞

1 Fnx
n
0 converges if 1+

√
5

2 < 1/x0.
c) The following example follows from (ii): let Pk, Rk be two sequences of

positive integers such that Pk−1/Pk is bounded (this is satisfied, for example, if Pk

is non-decreasing) and Q0 = 2, Q1 = 3, Q2 = 5, Q3 = 7, . . . (that is, Qk is the k+ 1
prime). Then at least one of {g0(1), g1(1)} is irrational.

2. Proof of Theorem 1.

Claim 1: If fk is defined by (1) then the following recursion holds

(7) fk+1 − fk = xfk+2
1

ak+1
1 · · · ark+1

r

.

In fact, the coefficient of xn in the expression fk+1 − fk is

1

Qnka
n(n−1)

2
1 · · · a

rn2

2 +n(1− r3
2 )

r
∏n

i=1(1−Qi)

(
1

Qn
− 1

)
=

1

Qnk+na
n(n−1)

2
1 · · · a

rn2

2 +n(1− r3
2 )

r
∏n−1

i=1 (1−Qi)
,

which is the coefficient of xn of xfk+2
1

ak+1
1 ···ark+1

r
= xfk+2

1
Qka1···ar

.

Claim 2: One has that fk → 1 if k → ∞. In fact, by hypothesis ai ∈ Z and
|a1 · · · ar| ≥ 2. For simplicity assume that 2 ≤ |a1|, the other cases are similar.
Then,

|fk − 1| ≤ |x|
2k

+ · · ·+ |x|n

2nk+
n(n−1)

2

+ · · · = O

(
1

2k

)
,

and the claim follows.
Claim 3: Let C 6= 0 be a natural number such that C

x is a non-zero integer.

Recall that |Q| ≥ 2. Take a fixed natural number i ≥ 1 such that | C
ai
1···ari

r
= C

Qi | < 1

and set

Gn := fk+n
Cn

Qin
.
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We have Gn → 0 if n → ∞ and Gn 6= 0 if n is large enough; these facts follow
from Claim 2.

Claim 4: As C,C/x, ai are all integers, the recursion (7) can be written in terms
of Gn more simply as

Gn+2 = SnQ
n−iGn+1 + TnQ

n−2iGn,

if 0 ≤ n, where Sn and Tn are integers: in fact, using (7) one obtains

Gn+2 = fk+n+2
Cn+2

Qi(n+2)
= Qk+n a1 · · · ar

x
(fk+n+1 − fk+n)

Cn+2

Qi(n+2)
={

Qka1 · · · ar
C

x

}
Qn−iGn+1 +

{
−Qka1 · · · ar

C2

x

}
Qn−2iGn.

Now the proof of the theorem goes as follows. Assume that the conclusion of
the theorem is false: then one may write fk = Ay and fk+1 = By for some real
non-zero number y and integers A,B. Notice that we allow A,B to be zero.

This gives G0 = Ay and G1 = CBy/Qi. The last recursion yields that G2i, G2i+1

are integer multiples of y/Qj0 for some j0 ≥ 0. But for n ≥ 2i the above recursion
has integer coeficients and therefore Gn is an integer multiple of y/Qj0 . This is in
contradiction with Claim 3.

3. Proof of Theorem 2.

(i) Claim 1: One has that hk > 0 for all k. In case that condition (i1) holds
then hk → 0 if k → ∞. This follows from the fact that there exists some fixed
α > 0 such that 0 ≤ Fnx

n ≤ αn for all n and that φ(k)→∞ as k →∞. This also
yields that hk is an entire function.

If condition (i2) holds then hki → 0 for some subsequence ki →∞.
Claim 2: Set

Gn :=
hk+n

φ(k + n− 1)
.

In any case one has from Claim 1 that Gnj
→ 0 for some subsequence nj →∞

and Gn 6= 0 for all n.
Claim 3: The recursion (5) can be written in terms of Gn more simply as

Gn+2 =
φ(k + n)

xB
Gn+1 −

φ(k + n)φ(k + n− 1)

x2AB
Gn +

1

xAB
,

if 0 ≤ n.
Assume that the conclusion of the theorem is false, that is, both hk and hk+1

(1 ≤ k) are rational numbers. Then Gn and Gn+1 are both rational numbers, say,
they are integer multiples of 1/D with D ∈ N. Recall that 1/xB and 1/x2AB are
integers and 1/xAB is a rational number, say, with denominator K ∈ N. Then the
last recursion yields that Gn is an integer multiple of 1/KD for all n.

This is in contradiction with Claim 2.
(ii) Claim 1: We show that gk, which is a series of positive terms, is an entire

function. It is enough to prove that the series (4) converges for any 0 < x.
Next observe that if 1 ≤ i ≤ n then

0 <

∏i−1
j=0 φ(k + j)∏n−1
j=0 η(k + j)

=

i−1∏
j=0

Pk−1+j

Rk+jPk+jQk+j

 1∏n−1
j=i η(k + j)

≤ Mn∏n−1
j=0 Qk+j

.
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Therefore, if 0 < x then 0 < gk(x) ≤ Mx
Qk

+ · · · + n(Mx)n∏n−1
j=0 Qk+j

+ · · · , where this last

function converges because limi→∞Qi =∞. Thus gk is an entire function.
In other words: if 0 < x then 0 6= gk(x)→ 0 when k →∞.
Claim 2: Set

Gn :=
gk+n

η(k + n− 1)
=

gk+n

Pk+n−1Qk+n−1
.

From Claim 1 one gets that Gn → 0 if n→∞ and Gn 6= 0 for all n.
Claim 3: Dividing by x2 and putting k + n instead of k, the recursion (6) can

be written in terms of Gn as

η(k + n)η(k + n− 1)

x2φ(k + n)
Gn −

{
1 +

1

φ(k + n+ 1)

}
η(k + n)

x
Gn+1 +Gn+2 =

1

x
,

or putting x = 1/m and using the hypothesis the last can be written as

m2Pk+nQk+nQk+n−1Rk+nGn −m(Pk+nQk+n +Qk+nRk+n+1)Gn+1 +Gn+2 = m,

which is a recursion of the form

Gn+2 = Gn+1An +GnBn + Cn,

if 0 ≤ n, where An, Bn, Cn are integers.
To prove the theorem, assume that both gk(1/m) and gk+1(1/m) are rational

numbers. ThenG0 andG1 are both rational numbers, say, they are integer multiples
of 1/D with D ∈ N. Then the last recursion yields that Gn is an integer multiple
of 1/D for all n.

This is in contradiction with Claim 2.
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