
For Peer Review

Best Practices for Describing, Consuming, and Discovering
Web Services: A Comprehensive Toolset

Journal: Software: Practice and Experience

Manuscript ID: SPE-11-0098.R2

Wiley - Manuscript type: Research Article

Date Submitted by the Author: 14-Mar-2012

Complete List of Authors: Rodriguez, Juan; ISISTAN - UNCPBA, Computación y Sistemas
Crasso, Marco; ISISTAN - UNCPBA, Computación y Sistemas
Mateos Diaz, Cristian; ISISTAN - UNCPBA, Computación y Sistemas
Zunino, Alejandro; ISISTAN - UNCPBA, Computación y Sistemas

Keywords:
SERVICE-ORIENTED COMPUTING, SERVICE-ORIENTED DEVELOPMENT
GUIDELINES, WEB SERVICES, WSDL ANTI-PATTERNS, WEB SERVICE
DISCOVERY, WEB SERVICE CONSUMPTION

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2011; 00:1–28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Best Practices for Describing, Consuming, and Discovering Web
Services: A Comprehensive Toolset

Juan Manuel Rodriguez, Marco Crasso, Cristian Mateos⇤, Alejandro Zunino

ISISTAN Research Institute - UNICEN University
Tandil (B7001BBO), Buenos Aires, Argentina.
Tel./Fax: +54 (2293) 43-9682 ext. 35/43-9681

Also Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

SUMMARY

The Service-Oriented Computing (SOC) paradigm has recently gained a lot of attention in the software
industry, since SOC represents a novel and a fresh way of architecting distributed applications. SOC is
usually materialized via Web Services, which allows developers to structure applications exposing a clear,
public interface to their capabilities. Although conceptually and technologically mature, SOC still lacks
adequate development support from a methodological point of view. In this paper, we present the EasySOC
project, a set of guidelines to simplify the development of service-oriented applications and services.
EasySOC is a synthesized catalog of best SOC development practices that arises as a result of several years of
research in fundamental Services Computing topics, i.e. WSDL-based technical specification, Web Service
discovery, and Web Service outsourcing. In addition, we describe a materialization of the guidelines for
the Java language, which has been implemented as a plug-in for the Eclipse IDE. We believe that both the
practical nature of the guidelines and the availability of this software that enforces them may help software
practitioners to rapidly exploit our ideas for building real SOC applications. Copyright c� 2011 John Wiley
& Sons, Ltd.

Received . . .

KEY WORDS: SERVICE-ORIENTED COMPUTING; SERVICE-ORIENTED DEVELOPMENT
GUIDELINES; WEB SERVICES; WSDL ANTI-PATTERNS; WEB SERVICE
DISCOVERY; WEB SERVICE CONSUMPTION

1. INTRODUCTION

Service-Oriented Computing (SOC) [1, 2] is a relatively new computing paradigm that has radically
changed the way applications are architected, designed and implemented. SOC has mainly evolved
from component-based software engineering by introducing a new kind of building block called
service, which represents functionality that is delivered and remotely consumed using standard
protocols. Service-oriented software systems started as a more flexible and cost-effective alternative
for developing distributed applications. Since SOC is platform-independent, it has enforced the
development of software that interacts with third-party software. Furthermore, SOC systems might
interconnect different organization systems. Finally, SOC usage eventually spread to gave birth
to a wave of contemporary infrastructures and notions including Service-Oriented Grids [3] and
Software-As-A-Service [4].

The common technological choice for materializing the SOC paradigm is Web Services, i.e.
programs with well-defined interfaces that can be located, published and consumed by means of
ubiquitous Web protocols [2] (e.g. SOAP [5]). The canonical model underpinning Web Services

⇤Correspondence to: Cristian Mateos, cmateos@conicet.gov.ar

Copyright c� 2011 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

Page 1 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2 RODRIGUEZ ET AL.

encompasses three basic elements: service providers, service consumers and service registries (see
Figure 1). A service provider, such as a business or an organization, provides meta-data for each
service, including an interface in Web Service Description Language (WSDL)†. WSDL is an XML-
based language that allows providers to specify their services’ functionality as a set of abstract
operations with inputs and outputs, and to specify the associated binding information so that
consumers can consume the offered operations. Inputs and outputs have associated data-types that
are specified in XSD (XML Schema Definition) [6], an extensible data-type specification language.
There are two approaches to build WSDL documents. WSDL-last or code-first refers to infer WSDL
documents from services implementations. Contrarily, WSDL-first or contract-first means building
WSDL documents from scratch, and in turn supplying them with implementations thereafter.

Basically, WSDL-last requires no knowledge about WSDL or XSD, since WSDL documents are
not generated by humans and these are automatically extracted from services implementations. Yet,
the developer has no control on the resulting WSDL documents so new different deployments of
the same service might be incompatible [7]. In addition, the resulting WSDL documents might be
difficult to be read and used by third-parties [8]. In contrast, WSDL-first requires developers skilled
in WSDL and spending time to actually write the WSDL document introducing new costs. However,
these WSDL documents tend to be more interoperable and present better quality [9]. Therefore, both
approaches have pros and cons, making impossible to claim that choosing one over the other will
be always a better decision [7].

To make their WSDL documents publicly available, providers originally employed a specification
of service registries called UDDI, whose central purpose is the representation of meta-data about
Web Services [10]. However, practitioners have not massively adopted UDDI because its inherent
limitations. Basically, UDDI registries only allow to search service via keywords, which is not
appropriate when the number of registered services is very high [11]. Therefore, several researchers
have proposed new approaches to facilitate service discovery [12, 13]. These approaches can be
divided into two types: semantic based and information retrieval based.

Semantic based registries promise the ability of allowing consumers to look for a service
according to their functionality, thereby semantic based registries would always retrieve services
that fulfill the consumers’ needs [12]. However, to publish a service in a semantic based registry, the
service must be specified using some semantic annotation language, such as OWL, which implies
an extra development effort. In addition, such specification must be based on a particular ontology,
making even harder to publish the same service in different registries that do not share the ontology.
As a result of these limitations, most of the publicly available services’ providers does not annotate
their service using semantics [14]. In contrast, information retrieval based registries can publish
services without other specification but their WSDL documents. This kind of registries employs
the WSDL documents to gather terms that might describe the associated services, and uses them
to match services with service consumers’ queries. Although information retrieval based registries
might incur in some mismatches, they are effective enough to be a viable alternative to service
discovery [12].

Unfortunately, the popular “there is no such thing as a free lunch” adage also applies in this
context. The promises of Web Services of guaranteeing loose coupling among applications and
services, providing agility to respond to changes in requirements, offering transparent distributed
computing and lowering ongoing investments are still eclipsed by the high costs of outsourcing
Web Services introduced by current approaches for implementing the SOC paradigm. On one hand,
unless appropriately specified by providers, service meta-data can be counterproductive and obscure
the purpose of a service, thus hindering its adoption. For example, a WSDL description without
much comments of its operations can make the associated Web Service difficult to be discovered
and understood. On the other hand, service consumers often have to invest much effort into manually
discovering Web Services (i.e. inspecting a UDDI registry or an information retrieval based one),
and then providing code to consume them. Moreover, the outcome of the second task is software

†WSDL, http://www.w3.org/TR/wsdl

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 2 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 3

(2) discover service(1) p
ublish

 se
rvic

e

(3) consume service

Service
provider

Service WSDL

<?xml ...>

SOAP message over HTTP, SMTP, etc.

Service
consumer

Application

Service
registry

Figure 1. The Web Services model.

containing service-aware code, and therefore it is difficult to test and to modify during the software
maintenance phase.

When a service consumer has selected the Web Service that fulfills their necessities, the Web
Service is integrated into the system using code that it is aware of the service specific interface. This
code is called glue code because it is for making compatible software components that are otherwise
incompatible rather than implementing functionality. The problem of this glue code is that it is
usually scattered across the system, making it difficult to exchange a service for another with the
same functionality, but different logic [15]. This situation impacts negatively on the loose coupling
feature promised by Web Services because it introduces contract-to-functional coupling [16], which
means that service invocations depend on the service contract. As a result of these issues, Web
Services have not been as heavily adopted as it was expected when the paradigm first appeared.

In this paper, we describe the EasySOC project, a set of provider and consumer guidelines for
alleviating these problems. Roughly, these guidelines represent a compilation of best practices for
simplifying the activities required to implement the SOC paradigm with the RPC model, which are
illustrated by the arcs of Figure 1, while improving the quality of the artifacts implementing services
and applications. Here, and throughout the paper, the term “application” refers to software that
consumes one or more third-party services. EasySOC is based on extensive previous research carried
out by the authors in the subareas of WSDL-based technical contract design and specification [17],
Web Service discovery [18], applications development and maintenance [19], and developers’
acceptance of these guidelines [20].

Complementary, this paper contribution is to provide a uniform, conceptualized and synthesized
view of these findings to provide, on one hand, clear and precise hints of how to adequately
exploit the SOC paradigm and its related technologies regardless their usage context, i.e. when
implementing applications or services. At the same time, another contribution is to delineate
potential concrete materializations of these hints into a software tool so as to enforce the promoted
best practices. With respect to the latter, we have built a plug-in for the popular Eclipse IDE and the
Java language, which helps developers to employ the guidelines.

This work is based upon [19, 21, 20], but this work focus is on how service developers can take
advantage of the findings presented on these works. Briefly, this paper presents:

• a comprehensive set of guidelines for service providers and consumers,
• a toolset for enforcing the application of each guideline,
• empirical evidence of the effectiveness of the toolset that enforces the guidelines.

The rest of the paper is structured as follows. Section 2 surveys relevant related efforts. Section 3
focuses on discussing the aforementioned guidelines, emphasizing on clarifying their scope and the
usage scenarios in which these guidelines are applicable. Later, Section 4 presents the EasySOC
Eclipse plug-in, its modules and related experiments. Finally, Section 5 concludes the paper.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 3 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4 RODRIGUEZ ET AL.

2. RELATED WORK

Certainly, SOC is a software engineering paradigm that introduces opportunities as well as
challenges from a methodological perspective. Although traditional development processes
and practices –e.g. XP, RUP– can be partially reused in or adapted for this new scenario,
many researchers agree that novel techniques are needed to address the specifics of SOC
requirements [22]. In this sense, work in this sub-area is quite active and mainly pursues one
common goal, namely providing comprehensive process guidance, recommended practices and tool
sets to do SOC.

The most exhaustive and complete survey on approaches to SOC-based development is the work
by Kohlborn and his colleagues [23], which in turn builds upon similar previous works [22, 24].
The authors have reviewed and compared 30 service engineering methods according to several
dimensions, including SOA (Service-Oriented Architecture) concept, i.e. whether business-level
and IT-level services are supported, life-cycle coverage, or the amount of development phases that
are supported, and accessibility and validity, i.e. whether such efforts are well-documented and
empirically validated, respectively. A business-level service is a set of technology-agnostic actions
that are offered by an organization. A business-level service represents the actual operation of an
organization, while IT-level services represent parts of a software system which can be consumed
separately and support the execution of business services.

Kohlborn et al. [23] identify two main phases to develop Web Services that represent a specific
core business. Firstly, the authors indicate that business-level services must be identified through
documentation, and interviews with the organization’s senior members. This helps to identify,
prioritize, and delimit which are the services that best represent the purpose of the organization.
Secondly, these business-level services are mapped to IT-level services. During this stage, Web
Services are designed, associating one or more Web Service to business-level services. As a result
of these steps, the SOA frontier of an organization can effectively represent the organization actions
and objectives.

Although the reviewed methods are mostly aimed at providing guidelines at the development
process level, and our work does not represent a development methodology per se, the guidelines
proposed in this paper are somehow related to these methods in various respects. With regard to
the SOA concept dimension, Kohlborn et al. conclude that up to 27 approaches provide support for
IT-level or software services, only 8 methods are properly documented or publicly available, and
the common approach to validation is through examples and case studies. Instead, we provide good
practices for implementing loosely-coupled applications and software services. Therefore, unlike
efforts such as [25, 26], we do not address materialization of business services.

With respect to the life-cycle coverage dimension, as our work prescribes well-defined steps for
designing services and applications, it complements the existing methods. Specifically, we offer
some guidelines for deriving understandable and search-effective Web Service descriptions during
the service design phase. In addition, we provide guidelines for not only discovering a suitable
service, but also decoupling the application from the particular service that it is consuming, which
facilitates service replacement. Thus, the guidelines cover the development and maintenance phases
of the applications.

Moreover, with respect to the accessibility dimension, we aim at making our best practices fully
available in order to allow the SOC community and the software industry to exploit the proposed
catalog of best practices, and to provide a tool set for materializing it. The tool set is publicly
available for download at the project’s Web site (http://sites.google.com/site/easysoc).

Regarding the validity dimension, it is worth remarking that the proposed guidelines have
been followed to produce both services and applications, together with a rigorous experimental
evaluation of their benefits. Therefore, the collected empirical evidence supports that the proposed
guidelines are indeed best practices. Note that our guidelines do not cover all the aspects of
Web Services, and thereby other guidelines such as WS-I Basic Profile [27] must be taken into
account by service providers and consumers. WS-I Basic Profile is an industrial effort from
the Web Services Interoperability Organization that comprises guidelines for structuring SOAP

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 4 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 5

messages and WSDL documents according to well-defined rules. This is, WS-I Basic Profile puts
emphasis on interoperability of Web Services and applications at the service specification and
communication levels, while EasySOC guidelines aim at providing interoperability at the business
level by addressing service replacement in a technology-neutral way, yet the tool is implemented
for JAVA platform. In this context, interoperability at the business level means the capability
of being independent of specific service providers contract descriptions. Finally, EasySOC also
focuses on improving discoverability and maintainability. Therefore, our guidelines and WS-I Basic
Profile might be seen as equally important, complementary guidelines for Web Service design and
implementation.

3. THE EASYSOC PROJECT

Even when Web Service technologies are far more mature and reliable than they were years ago, the
definition of guidelines for developing service-oriented software is still an incipient research topic.
Thus, the following paragraphs present a catalog of identified best practices for SOC development,
which are related to the roles and activities that are commonly performed by service and application
developers.

Schematically, according to the model of Figure 1, two distinctive, albeit non mutually exclusive
roles are established: providers and consumers. Providers are responsible for making a piece of
software publicly available as a Web Service, while ensuring that such a service can be discovered
and understood by third-parties. Consumers are responsible for discovering and incorporating
external services into their applications. This application can also be exposed as a service in which
case the service consumer becomes at the same time a service provider.

Sometimes the same developer can play both roles, as occurs when developing services that need
other services to accomplish the functionality that they expose. In this way, depending on the role(s)
played by a developer, we have identified three different scenarios. Table I lists these scenarios by
relating them to the guidelines that developers are encouraged to pay attention to, and in which
development process are this guidelines applicable. The guidelines contemplate the development
scenarios of exposing a service, consuming a service, and exposing a service that consumes other
services.

Table I. SOC usage scenarios and the EasySOC guidelines.

Scenario/Guidelines Guidelines for
service

publication

Guidelines for
service discovery

Guidelines for
service

consumption

Developer only exposes a
functionality as a service

When designing a
service interface

Never Never

Developer only consumes services Never When looking for
a service

When consuming a
service

Developer exposes as a service a
functionality that consumes other
services

When designing a
service interface

When looking for
a service

When consuming a
service

To understand the implications of employing the proposed guidelines, a case study will be
discussed through the rest of the section. The case study is a reference application provided
by Sun to illustrate how developers can apply various Java Enterprise Edition technologies
for implementing Web Services. The reference application consists of a Web-based application
called Adventure Builder‡. The application provides customers with a catalog of adventure

‡Java Adventure Builder Reference application 1.0.1:http://java.sun.com/developer/releases/adventure/

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 5 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

6 RODRIGUEZ ET AL.

packages, accommodations, and transportation options. Customers select these elements to build
a vacation plan, such as mountain biking on Tandil. Building a vacation plan includes selecting
accommodations, transport media and adventure activities. After assembling the vacation package,
the customer builds a purchase order.

At the heart of the Adventure Builder application is the order processing center (OPC), a
central component that coordinates external Web Services for fulfilling customer’s orders. The OPC
functionality for handling a single customer order is offered as a Web Service as well. The external
Web Services consumed by the OPC offer operations for supplying airline tickets, hotels and
adventure activities, and verifying/approving credit cards. Figure 2 depicts the Adventure Builder
application component diagram using the UML 2.0 notation for modeling components.

CreditCardIntf

Lodging
supplier

Transportation
supplier

Financial
Institution

Activity
provider

AirlinePOIntf LodgingPOIntf ActivityPOIntf

order trackingWeb
Browser supplier broker

$

<<proxy>> <<proxy>> <<proxy>> <<proxy>>

Order
processing
center
(OPC)

order submitting

Figure 2. Adventure Builder: Components.

This case study has been intentionally chosen since the development of the OPC and its
Web Service interface requires to play both consumer and provider roles, respectively. Then, the
Adventure Builder development covers all the scenarios of Table I.

3.1. Guidelines for improving service descriptions

A service life-cycle consists of several phases, from which the service design phase comprises
the service interface specification using WSDL. Several important concerns, such as granularity,
cohesion, discoverability, reusability, should influence design decisions to result in an efficient
service interface design [26]. Many of the problems related to the efficiency of standard-compliant
approaches to service discovery stem from the fact that the WSDL is incorrectly or partially
exploited by providers. Despite the intuitive importance of properly describing services, some
practices that negatively impact on services’ discoverability, such as poorly commenting offered
operations or using unintelligible naming conventions, are frequently found in publicly available
WSDL documents [21].

In particular, we have detected eight different issues in real-life WSDL documents that might
affect its discoverability and understandability [21]:

1. XSD definition embedded in WSDL documents.
2. Different port- types with the same set of operations.
3. Different data-types for representing the same object of the problem domain coexist in a

WSDL document.
4. Using flexible data-type to represent any object of the problem domain.
5. Using output messages to notify service errors.
6. Using large, ambiguous or meaningless names for denoting the main elements of a WSDL

document.
7. Port-types with weak semantic cohesion.
8. Having no comments, or comments being inappropriate and not explanatory.

Although no silver bullet can guarantee that potential Web Service consumers will effectively
discover, understand and access it, we have empirically shown that WSDL documents can be
improved to simultaneously address these issues by following a six step guide [17]:

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 6 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 7

1. Separating data-type definitions –i.e. XSD [6] code– from the definitions of the offered
operations (related to Issue 1).

2. Removing repeated WSDL and XSD code (related to Issues 2,3 and 4).
3. Putting error information within Fault messages and only conveying operation result within

Output ones (related to Issue 5).
4. Replacing WSDL element names with short self-explanatory names if they are inappropriate,

or longer than 15 characters as proposed in [28] (related to Issue 6).
5. Moving non-cohesive operations from their port-types to a new port-type (related to Issue 7).
6. Properly commenting the operations (related to Issue 8).

The first step means to move complex data-type definitions into a separate XSD document, and to
add the corresponding import sentence into the WSDL document. However, when data-types are
not going to be reused they can be part of the WSDL document to make this latter “self-contained”.

The second step deals with redundant code in both the WSDL document and the schema.
Repeated WSDL code usually stem from port-types tied to a specific invocation protocol, whereas
redundant XSD is commonly a result from data definitions bound to a particular operation. Yet,
according to the WSDL standard, port-types are abstract elements, and the link between a port-type
and a protocol defines a binding. Therefore, repeated WSDL code can be removed by defining a
protocol-independent port-type, plus as many bindings as invocation protocols are supported by the
service.

Similarly, to eliminate redundant XSD code, repeated data-types should be abstracted into a single
one. This change must be consequently made visible in messages by updating their data-types in
order to reference the newly derived types. Too generic type definitions –definitions that are based
on xsd:any– should be avoided because they only obscure the semantic of the data. This problem is
analogous to using too many generics types in Java, such as Object for defining the return class or
parameters’ classes of a method, to assure extensibility [29]. Besides, as these definitions allow all
the other defined data, they are inherently redundant.

Although xsd:any type has been identified as a versioning and extending mechanism [16], this
technique does not come without cost [30]. In addition to the lack of semantic information, using
generic types increases the complexity of consuming the service. The consumer must know what the
service expects or returns in all the messages that use that type. As a result of being generic, both the
service consumer and the service provider must implement validation logic for messages conveying
xsd:any data-types. Finally, this versioning strategy has no warranty of backward compatibility. For
example, there is a service that retrieves a weather forecast that uses as input a location whose type
is xsd:any. In its first version the service uses as input a city name, but the new version uses as input
geographical coordinates. Although the service interface does not change, both service providers
and consumers must change the interaction logic of their applications.

The third step encourages providers to separate error information from output information or
service invocation results. To do this, error information should be removed from Output messages
and placed in Fault ones, a special construct provided by WSDL. Moreover, as many Fault messages
as different kinds of errors exist should be defined for the operations of the Web Service.

The fourth step aims to improve the expressivity of WSDL element names by renaming non-
explanatory ones. Grammatically, the name of an operation should be in the form <verb> “+”
<noun> because an operation is essentially an action. Furthermore, message, message part or data-
type names should be a noun or a noun phrase because they represent the objects on which the
operation executes. If those names represent actions, it is possible that the information conveyed
in those messages modifies the behavior of the operation [21]. Additionally, the names should be
written according to common notations, and their length should be between 3 and 15 characters
because this facilitates both automatic analysis and human reading, respectively. With respect to the
former hint, the name “theelementname” should be rewritten for example as “theElementName”
(camel casing).

The fifth step is to place operations in different port-types based on their functional cohesion.
To do this, the original port-type should be divided into smaller and more cohesive port-types.
This step should be repeated while the new port-types are not cohesive enough. In this context,

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 7 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

8 RODRIGUEZ ET AL.

functional cohesion means that operation belonging to the different functional domain should be
in different port-types. Having a high functional cohesion has been recognized as a very important
quality factor since structured design appeared [31, 32]. Cohesion metrics are usually taken from the
source code [33], thereby how the cohesion is measure depends on how the service is implemented.

Finally, the step 6 reflects the fact that all operations must be well commented. An operation is
said to be well commented when it has a concise and explanatory comment, which describes the
semantics of the offered functionality. Moreover, as WSDL allows developers to comment each part
of a service description separately, then a very good practice is to place every <documentation> tag
in the most restrictive ambit. For instance, if the comment refers to a specific operation, it should be
placed in that operation.

Notice that except for step 6, the other steps might require to modify a service implementation.
Moreover, as a result of applying these guidelines, there will be two versions of a revised service
description. In some cases, this new service version may be backward compatible with the previous
version, which means that service consumers would not need to change their software because
the new service and the old one are consumed in the same way [16]. For example, separating the
XSD definitions from the WSDL document would not affect how the service is called. However,
other changes, such as renaming operations, might affect the way services are consumed. In this
case, the commonest versioning strategy is to keep the old and the new version of the service
running in parallel for a while, until service consumers can modify their systems. For instance,
different versions of Google Adword WSDL§ documents are placed in different URLs. It seems that
Google’s developers use a part of the URL as version indicator, namely /v201101/ and /v201008/,
hence service consumers can determine which version they are using. These are not the only
two possibilities. However, since WSDL documents were not designed to support versioning [34],
service providers must define it own versioning policy [16].

In order to exemplify how to apply this guideline, we have selected a WSDL document from one
of the services in the Adventure Builder Application. In particular, the selected WSDL document
presents the description of the credit card validation service. The service offers one operation that
validates a credit card. The left side of Figure 3 depicts the selected WSDL document.

Basically, the first step recommends separating the data-type definition from the WSDL
document. In this case, the data-type definition is the WSDL document largest part, being more
than the half of the document. To make the WSDL document conciser, data-type definition should
be taken out from the WSDL document and placed in a separate XSD file.

Regarding the second step, no repeated WSDL code appears because the WSDL document
defines one port-type with one operation that uses two different messages. In contrast, the data-
type definition presents redundant code. For instance, when we analyzed the validateCreditCard
data-type, we found that it defines a sequence –that specifies that the child elements must appear
in a specific order– of only one element, which is of the String type. Instead, using the primitive
String data-type, which is defined as part of the standard XSD, can simplify the data-type definition.
An analogous case is the validateCreditCardResponse data-type, but in this case the primitive
type concerns the boolean data-type. Another option for credit card data-type can be using a
sequence with different elements, such as card holder, credit card number, and security code. This
specification would allow being more specific in which information is required by the service. This
option would also need to modify the service implementation.

Apparently, at least from the WSDL document, no evidence indicates that the offered operation
trigger any error. However, we assume that certain situations might trigger an error, thereby we
have added a fault message to the operation. For the sake of the example, we have considered that
malformed credit card numbers are the only possible fault cause. Yet, in a real life service there
could be more faults caused by other problems, such as when a bank system is off-line.

§Google Adword v201101: https://adwords.google.com/api/adwords/cm/v201101/
AdExtensionOverrideService?wsdl

Google Adword v201008: https://adwords.google.com/api/adwords/cm/v201008/
AdExtensionOverrideService?wsdl

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 8 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 9

Clearly, message part names are related to the function of the message itself but not to
the semantics of the carried information. This is because message parts are named after the
operation and not after the information they convey. Besides, although the rest of the element
names in the document are domain-specific, some of them are too long. That is the case of
CreditCardIntf_validateCreditCard, which is the name of the input message. This makes names
inappropriate (step 4) for the service consumer because such names have not semantic relationship
with what they represent. Besides, too long names usually do not fit on screens and require scrolling
to be read. In our example, a better name for the input message may be creditCardInformation or
simply creditCard.

Since the port-type exposes one operation, all the operations in the port-type are semantically
related (step 5). However, a commonly found example of this bad practice is the inclusion of
operations, such as “isAlive”, “getVersion” and “ping”, within port-types that provide operations of
a particular problem domain, e.g. to give information on commodities. This affects the Web Service
because it not only makes it difficult for service consumers to understand why these operations are
mixed up, but also introduces terms that do not describe the service when populated into a service
registry. Therefore, such operations should be in a separate port-type.

Regarding the comments (step 6), the WSDL document has not comments, which results in
hiding the true purpose of the service. For instance, service consumers might infer that the service
functionality is validating credit cards; however, they are not able to know whether it validates cards
by just checking if the number is suitable or additionally checking that the credit card is actually an
authorized one. Even more, when the service returns false, service consumers are not able to know
whether it means that the card number is not valid or could not be validated instead.

Original (*)

Revised

<!--Input-->
<message name="creditCardInformation">
<part name="creditCardInformation" type="xsd:string"/>
</message>

<!--Redundant inputs-->
<message name="CreditCardIntf_validateCreditCardSOAP">
 <part name="parameters" element="tns:validateCreditCard"/>
</message>
<message name="CreditCardIntf_validateCreditCardHTTP">
 <part name="parameters" element="tns:validateCreditCard"/>
</message>
<!--Redundant outputs-->
<message name="CreditCardIntf_validateCreditCardResponseSOAP">
 <part name="result" element="tns:validateCreditCardResponse"/>
</message>
<message name="CreditCardIntf_validateCreditCardResponseHTTP">
 <part name="result" element="tns:validateCreditCardResponse"/>
</message>

<!--Redundant port-types-->
<portType name="CreditCardIntfSOAP">
 <operation name="validateCreditCard">
 <input message="tns:CreditCardIntf_validateCreditCardSOAP"/>
 <output message="tns:CreditCardIntf_validateCreditCardResponseSOAP"/>
 </operation>
</portType>

<portType name="CreditCardIntfHTTP">
 <operation name="validateCreditCard">
 <input message="tns:CreditCardIntf_validateCreditCardHTTP"/>
 <output message="tns:CreditCardIntf_validateCreditCardResponseHTTP"/>
 </operation>
</portType>

<!--Fault-->
<message name="invalidCreditCardNumber">
 <part name="faultType" type="xsd:string"/>
</message>

<!--Output-->
<message name="valid">
 <part name="valid" type="xsd:boolean"/>
</message>

<!--Abstract port-type, independent of the technology-->
<portType name="CreditCardIntf">
 <operation name="validateCreditCard">
 <documentation>Validate a credit card and return the status.
 Invalid system number, bank number, or check digit are
 anomalous situation that are treated as faults.
 </documentation>
 <input message="tns:creditCardInformation"/>
 <output message="tns:valid"/>
 <fault message="tns:invalidCreditCardNumber"/>
 </operation>
</portType>

(*) The original WSDL document has been adapted for the sake of exemplification

<types>
 <schema ...>
 <complexType name="validateCreditCard">
 <sequence>
 <element name="String_1"
 type="string" nillable="true"/>
 </sequence>
 </complexType>
 <complexType name="validateCreditCardResponse">
 <sequence>
 <element name="result" type="boolean"/>
 </sequence>
 </complexType>
 <element name="validateCreditCard"
 type="tns:validateCreditCard"/>
 <element name="validateCreditCardResponse"
 type="tns:validateCreditCardResponse"/>
 </schema>
</types>

Figure 3. Credit card validation: original and revised WSDL documents.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 9 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

10 RODRIGUEZ ET AL.

The right side of Figure 3 depicts the improved WSDL document that resulted after splitting the
WSDL document into a new XSD file and the document itself, and then removing the redundant
data-types and reference to the primitive data types, which resulted in an empty XSD file. As a
consequence of these actions, the size of the WSDL document has reduced to half of the original
size. Moreover, the first consequence would stand even if the data-types were not redundant because
of the separation of the WSDL document and its XSD definitions.

Regarding names, in the revised WSDL document we have included shorter names that
additionally keep the modeled semantics, and as such are easier to read by service consumers. On
the other hand, we added comments informing that the service is actually a stub for testing purposes.
Therefore, service consumers are now aware that the result returned by the service is always true
independently of the input it has receives.

3.2. Guidelines for making effective queries

During the life-cycle of an application, specifically in the process of service discovery, queries
play an important role since service consumers may greatly benefit from generating clear and
explanatory descriptions of their needs. In general, the more descriptive queries are, the more
accurate discovery results they achieve. Moreover, as the underpinnings of UDDI-based registries
rely upon the descriptiveness of the keywords conveyed in interfaces of publicly available services
and in queries [10, 11, 21], consumers should pay special attention to which keywords they use.
Then, the generation of effective queries presents two issues:

1. There is a correlation between consumers’ search effort and the benefit they may obtain from
a discovery system,

2. The employed keywords are important, thus they should carefully chosen.

The source code artifacts of applications may carry relevant keywords about the functional
descriptions of the potential services that can be discovered and, in turn, consumed from within
these applications. We have empirically proved that those keywords included in the source code
can be automatically gathered and used as queries when some steps upon building applications are
followed [18]. In this line, best practices for constructing an application such that it contains useful
keywords about the external services it needs comprise:

1. Defining the expected interface of every application component that is planned not to be
implemented but outsourced to a Web Service (related to Issue 1).

2. Revising the functional cohesion between the implemented (i.e. internal) components that
directly consume, and hence depend on the interfaces of, the components defined in 1) (related
to Issue 1).

3. Naming and commenting each defined interface, its arguments, and internal component by
using self-explanatory names and comments, respectively (related to Issue 2).

The first step encourages developers to think of a third-party service as any other regular component
providing a clear interface to its operations. The idea of defining a functional interface before
knowing the actual exposed interface of a service that fulfills an expected functionality aligns
with the Query-by-Example approach to create queries [18]. This approach allows a consumer to
search for an entire piece of information based on an example in the form of a selected part of that
information. This concept suggests that because of the structure inherent to applications and Web
Service descriptions in WSDL, the “shape” of the expected interface can be seen as an example of
what a consumer is looking for. This is built on the fact that, via WSDL, publishers can describe
their services as object-oriented interfaces with methods and arguments. Therefore, in the context
of applications, the defined interfaces stand for examples.

The second step bases on an approach for automatically augmenting the quantity of relevant
keywords within queries, called Query Expansion. This approach relies on the expansion of
extracted examples by gathering keywords from the source code representing internal components
that directly interact with the interfaces representing external services [18]. The reasoning that
supports this mechanism is that expanding queries based upon components with strongly-related and

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 10 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 11

Listing 1: Interface Validator
1 public inter face V a l i d a t o r {
2 boolean v a l i d a t e (Object cc) ;
3 }

Listing 2: Interface ICreditCardValidator
1 public inter face I C r e d i t C a r d V a l i d a t o r {
2 /⇤⇤
3 ⇤ Va l ida tes a c r e d i t card

4 ⇤ /

5 boolean va l ida teCard (Credi tCard c red i tCard) ;
6 }

highly-cohesive operations should not only preserve, but also improve the meaning of the original
request or query. Therefore, the second step deals with ensuring that defined interfaces are strongly-
related and highly-cohesive with those components that depend on them.

The above two steps deal with identifying the parts of the source code of an application that
may contain relevant keywords for generating queries and discovering Web Services afterward.
Clearly, these two steps can be performed in many different ways, however not every alternative
would be the best for making effective queries. In order to illustrate this, we will implement the
OPC component of the described reference application. According to step 1, the developer of the
OPC should define interfaces for the external functionalities needed. For the case of the credit card
validation, the developer should define an interface exposing one operation that returns whether a
credit card is valid or not. Following step 2, as the OPC is the only internal component that directly
interacts with the credit card validation functionality, the developer should revise the functional
cohesion between the OPC and the credit card validation component, which in this case is adequate.
Concretely, listings 1 and 2 present two different alternatives for defining such interface.

The first defined interface, which is named Validator, conveys only two relevant keywords to
derive a Web Service query, i.e. “Validator” and “validate”. This is because the Java reserved
words public, interface, and boolean must be discarded, and the term “Object” representing
the data-type of the parameter is too general and also have a low level of usefulness within the
context of credit card validation.

At the same time, the interface named ICreditCardValidator conveys in principle the keywords:
Credit, Card, Validator, Validates, credit, card, validate, Card, Credit,
Card, Credit and Card. After properly cleaning this list, we end up with less nevertheless
descriptive terms to query against service registries.

In the example, two interfaces ranging from a poorly described interface to a good described were
presented. Although the example is rather simple, it allows us to show that the way an interface is
defined directly impacts in the quantity and quality of keywords that can be gathered from it, which
was empirically confirmed in [18]. Thus, the guidelines for performing service queries propose
a third step for checking that a defined interface conveys in its source code as more explanatory
keywords as possible. As such, this third step indirectly encourages developers to follow best
practices for naming and commenting their source code.

3.3. Guidelines for shielding applications from service specifics

As the development of an application moves through its life-cycle, maintenance becomes more
important. Early design decisions can severely impact on the maintenance phase. Maintaining
applications can be a cumbersome task when they are tied to specific providers and WSDL
documents. The common approach to call a Web Service is by interpreting its associated WSDL
document with the help of invocation frameworks such as WSIF [35], CXF [36], or the Windows

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 11 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

12 RODRIGUEZ ET AL.

Communication Foundation¶. These frameworks succeed in hiding some of the details for invoking
services, but they fail at isolating internal components from the interfaces of the services.
Consequently, applications result in a mix of pure logic and sentences for consuming Web Services,
such as service location, operation signatures, and data-types. This approach leads to code that is
subordinated to third-party service interfaces and must be modified and/or re-tested every time a
provider introduces any changes, which hinders service replaceability. To sum up, there are some
issues related to service incorporation:

1. Application designs are tied to specific service interfaces,
2. Business logic code is contaminated with boilerplate code.

We have shown that the maintenance of service-oriented code can be facilitated by following certain
programming practices when outsourcing services [19]:

1. Defining the expected interface of every component that is planned to be outsourced (related
to Issue 1).

2. Adapting the actual interface of a selected service to the interface that was originally expected,
i.e. the one defined in the previous step (related to Issue 1).

3. Injecting adaptation code into each internal component that depends on the expected interface
(related to Issue 2).

Step 1 provides a mean for shielding the internal components of an application from the mentioned
details related to third-party services consumption. To do this, a functionality that is planned to
be implemented by a third-party service, should be programmatically described as an abstract
interface. Note that this is the same requirement as the first step of Section 3.2. Accordingly,
internal application components depending on such an abstractly-described functionality consume
the methods exposed by its associated interface, while adhering to operation names and input/out
data-types declared in it.

The second step takes place after a candidate service has been selected. During this step,
developers should provide the logic to transform the operation signatures of the actual interface of
the selected service to the interface defined previously. For instance, if a service operation returns a
list of integers, but the previously defined interface operation returns an array of floats, the developer
should code a service adapter that performs the type conversion. By properly accomplishing steps 1
and 2, internal components depend on neither specific service implementations nor interfaces.

LodgingInfo
Adapter

AirlineInfo
Adapter

CardValidator
Adapter

ActivityBro-
kerAdapter

Order
processing
center
(OPC)

order tracking

supplier broker

CreditCardIntf

Financial
Institution

Transportation
supplier

AirlinePOIntf

Lodging
supplier

LodgingPOIntf

Activity
provider

ActivityPOIntf

<<proxy>> <<proxy>> <<proxy>> <<proxy>>

<<adapter>> <<adapter>> <<adapter>> <<adapter>>

ICardValidator IAirlineInfo ILodgingInfo IActivityBroker
$

Web
Browser

order submitting

Figure 4. Adventure Builder: Components plus Adapters.

This is graphically shown in Figure 4, where after accommodating the design of the Adventure
Builder application according with steps 1 and 2, the OPC depends on the interfaces ICardValidator,
IAirlineInfo, IActivityBroker, and ILodgingInfo. The bindings between such interfaces and the

¶Windows Communication Foundation, http://msdn.microsoft.com/en-us/netframework/aa663324

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 12 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 13

Listing 3: Method validateCreditCard
1 public boolean va l i da teCred i tCa rd (S t r i n g ccXMLString)
2 throws RemoteException ;

Listing 4: OPC code for calling a Web Service
1 . . .
2 Credi tCardServ ice ccSvc = (Credi tCardServ ice)
3 JNDI_lookup (" java : comp / env / se rv i ce / Cred i tCardServ ice ") ;
4 C r e d i t C a r d I n t f po r t = ccSvc . ge tPor t (C r e d i t C a r d I n t f . class) ;
5 . . .
6 S t r i n g creditCardXML = po . getCred i tCard () . toXML () ;
7 boolean ccStatus = po r t . v e r i f y C r e d i t Ca r d (creditCardXML) ;
8 . . .

actual service interfaces are iteratively materialized at implementation time via service adapters.
Accordingly, changes in the consumed services only require modifying the service adapters, leaving
the OPC unaffected. Therefore, from the perspective of the application logic, services that provide
equivalent functionality can be transparently interchangeable.

Finally, step 3 is for separating the functional code of an application from configuration concerns
related to binding an internal component that depends on an interface, with the component in
charge of adapting it into a selected service. A suitable form of doing this, in terms of source code
quality, involves delegating the administrative task of assembling interfaces, internal components
and services to a software layer or container.

To illustrate these steps, let us consider the implementation of the interaction between the OPC
and the credit card validation service in the Adventure Builder application. As mentioned, this Web
Service implements only one operation, whose signature and implementation are shown in listings 3
and 4 respectively, that returns whether a credit card is valid or not by taking as input a bank-
specific XML representation of a credit card. Moreover, from the OPC component, the Web Service
is accessed as shown in listing 6, where po is the object representing a customer’s purchase order
and provides access to an object containing the credit card information. This latter is implemented in
such a way that it knows how to generate the XML representation of the card information expected
by the validation service.

The source code presented in listing 4, however, presents several drawbacks, which directly affect
flexibility and maintainability. First, it contains statements that explicitly depend on the binding-
specific technology (JNDI) and information (URIs, exception classes) used. Second, it depends on
the interface and hence the operations of this particular validation Web Service. Third, it is highly
coupled not only to the data-types expected by the service –due to the previous drawback– but also
to the data representation that is accepted by the service. In the event of changing the provider for
the validation service, which is a common scenario in SOC development, significant portions of this
source code must be rewritten.

To avoid these problems, as suggested earlier, we should first to define the ICardValidator
interface, which is shown in Section 3.2. The ICardValidator interface stands for the potential but not
the real interface of existing validation services. The ICardValidator interface includes an operation
that receives a CreditCard business object, which not include neither information nor behavior –e.g.
a toXML() method– specific to a particular Web Service. At step 2, such details are precisely hidden
(see listing 5) from the components accessing the Web Service behind a service adapter.

Listing 5: Adapter Class
1 class CardVal idatorAdapter implements ICa rdVa l i da to r {
2 C r e d i t C a r d I n t f po r t = nul l ;
3 public CardVal idatorAdapter () {
4 / / Instance�s p e c i f i c b ind ing in fo rma t i on

5 Credi tCardServ ice ccSvc = (Credi tCardServ ice)

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 13 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

14 RODRIGUEZ ET AL.

Listing 6: Calling the adapter
1 . . .
2 ICa rdVa l i da to r po r t = g e t V a l i d a t o r () ;
3 . . .
4 boolean ccStatus = po r t . ve r i f yCard (po . getCredi tCard ()) ;
5 . . .

6 JNDI_lookup (" java : comp / env / se rv i ce / Cred i tCardServ ice ") ;
7 / / Instance�s p e c i f i c se rv i ce i n t e r f a c e

8 po r t = ccSvc . ge tPor t (C r e d i t C a r d I n t f . class) ;
9 }

10 public boolean va l ida teCard (Credi tCard c red i tCard) {
11 t ry {
12 return po r t . v e r i f yC r e d i t C a r d (toXML (c red i tCard)) ;
13 }
14 catch (RemoteException exe) {
15 System . e r r . p r i n t l n (exe) ;
16 return fa lse ;
17 }
18 }
19 / / Instance�s p e c i f i c se rv i ce data rep resen ta t i on

20 private S t r i n g toXML (Credi tCard c red i tCard) { . . . }
21 }

In short, the adapter concentrates the details of particular instances of validation services under an
umbrella given by a common, clear interface. Lastly, the source code of the OPC component must
be modified to use the adapter as it is shown in listing 6.
Consequently, the logic of OPC is decoupled from the validation service. Moreover, getValidator
is a tool-injected getter that returns an instance of the adapter. Analogously, there is another
injected method to instantiate the adapter at run-time. This can be supported by using existing
component assembling techniques for keeping coupling between business components and
adapters low, such as Dependency Injection [37], which is in fact used in our current software
materialization. Conceptually, this technique promotes separation of business logic from details
associated with external services. In this sense, the same idea is applied to make adapters such
as CardValidatorAdapter to be independent of the binding information of the adapted service. One
might want, for example, to use another URI or even information that results from employing a
different discovery technology.

A drawback of this approach is that the adapter must be reimplemented when selecting a new
service, thereby it is not possible to change the service for a new one dynamically. Although it is
a well-known SOA promise, this is not true even with different version of the same service [34].
Simply changing an operation name might render a service unusable by those service consumers that
were already using the service, making necessary for them to change how the service is invoked.
The advantage of our approach is that it centralizes these changes in the adapter class, thus the
service consumer does not have to exhaustively look in its application code for every call to the
older service. Besides, recent experiments confirm that the additional software layers introduced by
the adapter have a negligible impact on applications performance [15, 38].

4. THE EASYSOC ECLIPSE PLUG-IN

Up to now, we have described our catalog of best practices for SOC. To assist developers at
practicing the proposed guidelines, we have designed a software tool as a plug-in for the Eclipse
IDE, called the EasySOC plug-in. The EasySOC plug-in comprises three modules, each one
facilitate the implementation of the set of guidelines explained before. Moreover, the EasySOC plug-
in has been employed for empirically validating the benefits of adhering to the proposed guidelines.
Sections 4.1 through 4.3 discuss the design and evaluation related to these modules.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 14 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 15

4.1. The WSDL Bad Practices Detector

The WSD Bad Practices Detector, or Detector for short, is a module of the EasySOC plug-in that
is intended to be used by providers during the service interfaces’ specification and whose purpose
is automatically checking whether a WSDL document describing the technical contract of a Web
Service conforms to the guidelines explained in Section 3.1.

4.1.1. WSDL Bad Practices Detector description The module receives this name since its
construction was driven by the catalog of WSDL document discoverability bad practices that we
introduced in the study published in [21]. Besides measuring the impact of each bad practice on
service discovery, the study assessed the implications of bad practices on developers’ ability to
make sense of WSDL documents. The catalog consists of eight bad practices and provides a name,
a problem description, and a sound refactoring procedure for each one. Although the results of the
study motivate bad practices refactoring, manually looking for bad practices in WSDL documents
might be a time consuming and complex task. Thus, the Detector consists of eight heuristics to
automatically detect each bad practices from the aforementioned catalog.

Since those heuristics are based on the different bad practice definitions, they can be classified
according to the type of analysis required to detect the bad practices. Basically, bad practices can be
divided into two categories [21]: those that can be detected by analyzing only the structure of WSDL
documents, and those whose detection requires a semantic analysis of the names and comments
present in WSDL documents.

The heuristics to detect the first kind of bad practices are simple rules based on the commonest
bad practice occurrence form. The bad practices that fall into this category are XSD data-types
embedded in WSDL documents, which difficult the reuse of the data-types (step 1 in Section 3.1),
redundant XML code for defining both data-types and port-types (step 2), and data-types that allow
transferring data of any type (also step 2) –or Whatever types in EasySOC terminology– which
hinders understandability. For example, the rule that detects redundant port-types verifies that a pair
of port-types has the same number of operations and that they are equally named. In this case, the
heuristic does not verify the similarity between the messages of the port-types because they are
likely to change in accord with the underlying binding protocol. Finally, lacking of comments (step
6) is the only problem related with comments that is supported. Therefore, its heuristic belongs to
this type.

As mentioned earlier, detecting the remaining bad practices requires analyzing the semantics
of names and comments. Basically, there are three problems that are detected by the associated
heuristics: fault information within standard Output messages (step 3), ambiguous names (step 4),
and operations of different domains in the same port-type (step 5).

The heuristic for detecting fault information within standard output messages (step 3) warns about
the existence of bad practices in this respect when an operation has no Fault message defined, and
the comment or some name related with the Output contains one of the following words: error,
fault, fail, exception, overflow, mistake and misplay. This verification is made because these words
are commonly related with error conditions when executing a service.

Furthermore, the heuristic related to name ambiguity detection, covers two possible issues. The
first is names being too short or too long, for which a rule to check that each name has a length
between 3 and 30 characters is provided. The other issue concerns name structure, i.e. message
part names should be nouns or noun phrases, while operations should be named with a verb plus
a noun. This is checked by using a probabilistic context free grammar parser [39]. For instance,
Figure 5 depicts the parsing trees of different message part names generated by the parser. The first
and second names do not present problems, whereas the third name does because it starts with a
verb.

Finally, the heuristic to determine whether the operations of a service belong to the same domain
is based on automatically deducing the domain of each operation exposed by the service, and
comparing deduced domains afterward. To do this, the heuristic employs a text classification
technique because the only semantic information of an operation a WSDL document provides
consists of the names and comments of the operation. To this end, the Rocchio’s TF-IDF classifier

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 15 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

16 RODRIGUEZ ET AL.

ROOT

Simple declarative clause
(S)

Verb phrase
(VP)

Verb 3rd ps. sing.
(VBZ)

uses cache

ROOT

Noun phrase
(NP)

Noun
(NN)

name

Adjetive
(JJ)

first name

ROOT

name firstName usesCache

NP

NN NN

NP

Figure 5. Parsing trees of message part names.

has been selected because empirical studies have showed that it outperforms other classifiers when
used in conjunction with Web Services [19]. Rocchio’s TF-IDF represents textual information as
vectors, in which each dimension stands for a term and its magnitude is the weight of the term related
with the text. Having represented all the textual information of a domain as vectors, the average
vector, called centroid, is built for representing the domain. Then, the domain of an operation is
deduced by representing its name and associated comments as a vector and comparing it to each
domain centroid. Finally, the domain associated with the most similar average vector is returned as
the domain of that operation.

4.1.2. WSDL Bad Practices Detector evaluation The methodology followed in the evaluation first
involved manually analyzing each WSDL document to identify the bad practices it has, peer-
reviewing manual results afterward (at least three different people reviewed each WSDL document),
automatically analyzing WSDL documents based on the proposed heuristics, and finally comparing
both manual and automatic results. Results were organized per bad practice, each bad practice
have an associated matrix where the results of both manual and automatic analysis are presented.
“Positive” stands for the number of WSLD documents in which the anti-pattern was detected by the
analysis, while “Negative” is the number of WSDL documents in which the analysis did not find
an anti-pattern occurrence. When the manual classification of a WSDL document is equal to the
automatic one, it means that the heuristic accurately operates for that WSDL document. Achieved
results are shown in Table II by using a confusion matrix. Each row of the matrix represents the
number of WSDL documents that were automatically classified using the heuristic associated with
a particular bad practice. The columns of the matrix show the results obtained manually, i.e. the
number of WSDL documents that actually had each bad practice.

In the experiments, we used a data-set of 392 WSDL documents [21]. Once each heuristic was fed
with and applied on this data-set, we built the confusion matrixes. Then, we assessed the accuracy,
and false positive/negative rates for each matrix. The accuracy of each heuristic was calculated as
the number of classifications matching over the total of analyzed WSDL documents. For instance,
the accuracy of the Redundant data model heuristic was 221+166

221+2+3+166 = 98.7%. The heuristic for
detecting Low cohesive operations within the same port-type bad practice achieved the lowest
accuracy: 77.5%. One hypothesis that could explain this value relates to potential errors introduced
by the classifier, so more experiments are being conducted. Nevertheless, the average accuracy for
all the heuristics was 95.8%.

The false positive rate is the proportion of WSDL documents that an heuristic has wrongly labeled
as having the corresponding bad practice. In opposition, the false negative rate is the percentage
of WSDL documents that an heuristic has wrongly labeled as not having the corresponding bad
practice. A false negative rate equals to 1.0 means that a detection heuristic has missed all bad
practice occurrences. Therefore, the lower the achieved values the better the detection effectiveness.
The average false positive rate was 3.6%, and the average false negative rate was 5.2%, which we
believe are encouraging.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 16 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 17

Table II. Effectiveness of the Bad Practices Detector. More than 77% per bad practice were automatically
detected by this module.

Automatic detection
results per bad practice

Manual
detection

results Accuracy

Negative Positive

Enclosed data model
Negative 116 6

98.46%
Positive 0 270

Redundant port-types
Negative 161 4

98.98%
Positive 0 227

Redundant data models
Negative 221 2

98.72%
Positive 3 166

Whatever types
Negative 339 0

99.23%
Positive 3 50

Lack of comments
Negative 135 0

100.00%
Positive 0 257

Low cohesive operations
in the same port-type

Negative 272 10
77.55%

Positive 78 32

Ambiguous names
Negative 67 0

99.22%
Positive 9 316

Undercover fault
information within
standard messages

Negative 351 3
98.21%

Positive 4 34

Notice that the WSDL Bad Practice detector has some limitation when dealing with bad practices
related to natural language, such as inappropriate comments and cohesion. Thus, we are developing
different algorithms to increase the detector capabilities. For example, we are working on a heuristic
method that uses WordNet to measure how concrete is a comment based on how deep in its
associated hyponym tree the comment terms are. In addition, by using WordNet as a taxonomy,
the heuristic is able to determine whether a comment is related to its operation signature or
not. In general, preliminary results [40] showed that using language corpus combined with sense
disambiguation heuristics might effectively determine whether operation comments are meaningless
or meaningful.

4.2. The Query Builder

Another module is intended to help consumers during the development phase of applications,
specifically during the service discovery process. In this sense, the EasySOC Query Builder module
assists consumers to generate queries, by gathering keywords from the source code of applications.

4.2.1. Query Builder description The module provides a graphical tool (i.e. a wizard) that starts
when a consumer selects “Find services for ...” by clicking on an interface that stands for an
external service to be outsourced (see stage 1 in Figure 6). Here, the selected interface is the result
of employing the first step of the guidelines for making effective queries described.

The wizard uses the Eclipse JDT Search Engine [41] for automatically discovering the internal
components that depend on the interface and presents them to the user. The JDT allows
automatically discovering the components defined according with the second step of the guidelines.

Similarly, the wizard presents a list of argument classes. This list is automatically built by
analyzing the interface to retrieve the class names associated with each argument. If an argument

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 17 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

18 RODRIGUEZ ET AL.

!"#$%&'()*$+,-&.(/-0&

12%/3'%&'#300&4&
(",/3%$(+&+3),0&

12%/3'%'()),+%0&

5,)(6,&0%("7.(/-0&

5,-8',&.(/-0&%(&0%,)0&

9(+08),/
!,#,'%&%:,&;,23)"#,;

&12"3+-&%:,&<8,/=

;9#,3+;&%:,&>,+,/3%,-&<8,/=
?& 0!&%:,&/,>$0%/=

!:(.&%:,&/,08#%0

"

#

$
%

&

Figure 6. EasySOC stages for generating queries.

is neither primitive (e.g., int, long, double, etc.) nor provided within a built-in Java library package
(e.g., Vector, ArrayList, String, etc.), it is included in the list of argument classes. Then, the user
may select or discard the resulting classes (see stage 2 in Figure 6).

The final stage of the query generation process performs a preliminary processing on the
classes and the Java interface. As depicted in the center of Figure 6, the module executes a text-
mining process for dealing with programming language concerns (see activities “Extract classes
& operation names” and “Extract comments”), developers’ conventions (activity “Split combined
words”), and Natural Language Processing (NLP) related issues (activities “Remove stop-words”
and “Reduce words to stems”). All in all, the output of the text-mining process is a list of keywords,
whose quantity and quality directly depend on whether consumers followed the third step of the
associated guidelines or not.

Although the module allows users to customize queries and test the retrieval effectiveness when
using different classes as input, it makes query building interactive or semi-automatic. Alternatively,
by clicking on the “Finish” button, the wizard selects all target classes on behalf of the consumer,
making query expansion fully automatic.

4.2.2. Query Builder evaluation We evaluated the retrieval effectiveness of the Query Builder
by using the previous collection of 392 WSDL documents to feed an information retrieval-based
approach to service registry, which is explained [18]. Moreover, undergraduate students from the
“Service-Oriented Computing”k course of the Systems Engineering BSc. program (Faculty of Exact
Sciences - UNICEN) played the role of service consumers. The students were assigned an exercise
consisting on deriving 30 queries based on some test applications, in which each query comprised a
Java interface describing the functional capabilities of a potential service. Moreover, the interfaces
were designed to be functionally cohesive, and the header and the operations of each interface
were commented. For those operations with non-primitive data-types as arguments, their associated
classes were also commented. Then, for each query, the students implemented and commented
the internal components that depended on the interface. This methodology allowed us to evaluate
five combinations of different sources of terms associated with an example, namely its “Interface”,
“Documentation”⇤⇤, “Arguments” and “Dependants”. Finally, a fifth alternative was used from
combining all these four sources.

khttp://www.exa.unicen.edu.ar/~cmateos/cos
⇤⇤In this context, documentation does not refer to extra software artifacts but to textual comments embedded within the
classes

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 18 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 19

To evaluate the discovery performance resulted from employing the different sources of terms,
we used the Precision-at-n, Recall-at-n, R-precision and Normalized Recall (NR) measures from the
information retrieval area. In general, these measures allow assessing the effectiveness of retrieval
systems when their results are ranked according to their relevancy [42], and have already been
applied in the Web Service discovery area to show how effective different registries are when
looking for a service [12].

Basically, Precision-at-n is the percentage of services relevant for a query among the n first
returned services. Recall-at-n represent how many of the relevant services are returned in the n
first ranked services. R-precision is Precision-at-n when n is the number of relevant services in the
registry (R). Finally, NR is a recall metric that also considers the number of registered services,
and the rank of the relevant services (r). The Normalized Recall (NR) is one of the most popular
measures for evaluating and comparing information retrieval systems because it returns one single
number in contrast to paired recall-precision measure [43].

The goal was to evaluate our Query Builder in terms of the proportion of relevant services in
the retrieved list and their positions relative to non-relevant ones. We calculated each measure
for the 30 queries by individually using each one of the combination of sources (a total of
150 experiments per measure), and then we averaged the results over the 30 queries. As some
of these measures require knowing the set of all services in the collection that are relevant to a
given query, we exhaustively analyzed the data-set to determine the relevant services for each query.
An important characteristic regarding the evaluation is the definition of “hit”, i.e. when a returned
WSDL document is actually relevant to the user. We judged a WSDL document as being a hit or not
depending on whether its operations fulfilled the expectations previously specified in the Java code
or not. For example, if the consumer required a Web Service for converting from Euros to Dollars,
then a retrieved Web Service for converting from Yens to Dollars was not considered relevant, even
though these services were strongly related. In this particular case, only Web Services for converting
from Euros to Dollars were relevant. Note that this definition of hit makes the validation of our query
generation mechanism very strict. Additionally, it is worth noting that for any query there were, at
most, 8 relevant services within the data-set. Besides, there were 10 queries that had associated only
one relevant service.

 65

 70

 75

 80

 85

 90

 95

 100

NR R-Precision Recall-at-10 Precision-at-1

A
ve

ra
g

e
d

 M
e

a
su

re
s

[%
]

(m
o

re
 is

 b
e

tt
e

r)

Interface
Documentation

Arguments
Dependants

All

Figure 7. Retrieval effectiveness of the generated queries.

Each bar in Figure 7 stands for the averaged metric results that were achieved using a particular
query expansion alternative. Achieved results pointed out that by following the conventional Query-
By-Example approach to build queries (the alternative named “Interface”) query-specific results
were ranked first. When using more general, elaborated queries via the Query Expansion approach
(e.g. the “All” alternative), the chance of including a relevant service at the top of the list decreased

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 19 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

20 RODRIGUEZ ET AL.

whereas the possibilities of including it before the 11th positions increased. All in all, for this
experiment our Query Builder alleviated discovery by approaching relevant services within a
window of 10.

4.3. The Service Adapter

The Service Adapter is the third module and it has been created to assimilate the best practices for
applications maintenance. This module goal is to assign service consumers to apply the guideline
presented in Section 3.3. To do this, the service adapter module uses as input the interface that
the service consumer expects from potential services, and the Web Service that the he/she has
selected. Using these inputs, the Service Adapter attempts to automatically write the code needed to
adapt the expected interface and the actual service interface. Finally, this module injects the adapter
into the service consumer’s application, without significant penalties in performance and memory
consumption [38].

4.3.1. Service Adapter description The module automatically performs the steps 2 and 3 for the
guidelines of Section 3.3 provided step 1 is correctly followed. Once a consumer has selected
a candidate service, this module performs three different tasks to adapt service interfaces and
assemble internal components to it. The first task builds a proxy for the service in an automatic
way. Second, the module builds a service adapter to map the interface of the proxy onto the abstract
interface internal components expect. Third, the module indicates a container how to assemble
internal components and service adapters, which is done through Dependency Injection (DI) [37],
a popular pattern for seamlessly wiring software components together that is employed by many
development frameworks. Figure 8 summarizes the stages that are needed to proxy, adapt, and inject
services into applications or another service implementation.

A proxy to
the service

Internal
components

C'

C''

A service
adapter

component

C'

C''

As

Ps

Injected
component

Business
logic layer

Service
adapter
layer

Service
invocation
layer

C'

C''

As

Ps

As

Automatic generation of
 a proxy to the service

Semi-automatic generation of
a service adapter

Automatic generation of
DI container-specific configuration

1
2

3

Ps

Timeline

Figure 8. EasySOC stages for outsourcing services.

The current implementation of the Service Adapter module uses the Axis2 Web Service
library [44] for building service proxies, and Spring [45] as the container supporting DI. Building a
proxy with Axis2 involves giving as input the interface description of the target service (a WSDL
document) to a command line tool. To setup the DI container, the names of dependant components
and services must be written in an XML file. For adapting external service interfaces to the expected
ones, we have designed an algorithm based on the work published in [46].

Our algorithm takes two Java interfaces as input and returns the Java code of a service adapter. To
do this, it starts by detecting to which operations of one interface should be mapped the operations
offered by the other. The algorithm assesses operation similarity by comparing operation names,
comments, data-types and names of arguments. Data-type similarity is based on a pre-defined
similarity table that assigns similarity values to pairs of simple data-types. The similarity between
two complex data-types is calculated in a recursive way. Once a pair of operations has been
determined, service adapter code is generated. To do this, the algorithm adapts simple data-types

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 20 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 21

by taking advantage of type hierarchies and performing explicit conversions, i.e. castings. Complex
data-types are resolved recursively as well. Clearly, not all available mismatches can be covered
by the algorithm. Therefore developers should revise the generated code, which makes this step
semi-automatic.

4.3.2. Service Adapter evaluation In order to quantify the source code quality resulting from
employing our plug-in, we conducted a comparison with the more traditional way of consuming
Web Services, in which coding the application logic comes after discovering and knowing the
description of the external services to be consumed. Basically, we used the two alternatives for
developing a simple, personal agenda by outsourcing services from the above data-set. We made
sure that several services offering similar functionality but exposed by different providers existed
in the data-set. It is worth mentioning that our goal was not to assess the accuracy of our mapping
algorithm, but the impact of the application design that results from employing the guidelines in
maintainability.

After implementing the two variants, we randomly picked one service already included in the
applications and we changed its provider. Then, we took metrics on the resulting source codes
to have an assessment of the benefits of the proposed guidelines with respect to the traditional
approach. We employed the well-known SLOC (Source Lines Of Code), Ce (Efferent Coupling),
CBO (Coupling Between Objects) and RFC (Response For Class) software engineering metrics.

In general, these metrics allow assessing maintainability concerns on source code. In particular,
SLOC counts the total non-commented and non-blank lines across the entire application code††,
including the code implementing the pure application logic, plus the code for interacting with the
various Web Services. The smaller the SLOC value is, the less the amount of source code that is
necessary to maintain once an application has been implemented.

Ce indicates how much the classes and interfaces within a package depend upon classes and
interfaces from other packages [47]. In other words, this metric includes all the object types within
the source code of the target package referring to the object types not in the target package. In
our case, as the proxy code does not depend upon the code implementing the application logic, Ce
will just refer to the number of efferent couplings of the classes/interfaces that depend upon proxy
classes/interfaces. Under this condition, the less the Ce value is, the less the dependency between the
functional code of an application and the interfaces representing server-side service contracts. The
utility of Ce in our evaluation is for determining what the influence of the adapter layer of EasySOC
on this kind of dependency is.

CBO is the amount of classes to which an individual class is coupled [48]. For example, if a class
A is coupled to two more classes B and C, its CBO is two. In this sense, the less a class is coupled
to other classes, the more the chance of reusing it. Since reusability is one of the components of
maintainability [49], CBO can be used as a complementary indicator of how maintainable a software
is.

Finally, RFC counts the number of different methods that can be potentially executed when an
object of a target class receives a message, including methods in the inheritance hierarchy of the
class as well as methods that can be invoked on other objects [48]. Note that if a large number
of methods are invoked in response to receiving a message, testing becomes more difficult since a
greater level of understanding of the code is required. Since testability is also one of the components
of maintainability [49], it is highly desirable to achieve low RFC values for application classes.

Table III shows the resulting metrics values for the four implementations of the personal agenda:
traditional, guidelines-based, and two additional variants in which another provider for a service
was chosen from the Web Service data-set. For convenience, we labeled each implementation with
an identifier (Id column), which will be used through the rest of the paragraphs of this section.
To perform a fair comparison, a uniform formatting standard for all source codes was employed,
Java import statements within compilation units were optimized, and the same tool to generate the
underlying Web Service proxies was used.

††As defined in the COCOMO cost estimation model

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 21 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

22 RODRIGUEZ ET AL.

Table III. Personal agenda: Source code metrics.

Variant Id SLOC Ce CBO RFC

Initial Web
Service
providers

Traditional C1 242 7 4.50 30.00

Guidelines-based E1 309 7 1.70 7.20

Alternative Web
Service
providers

Traditional C2 246 10 4.67 22.67

Guidelines-based E2 327 10 2.00 7.45

From Table III, it can be seen that the variants using the same set of service providers resulted in
equivalent Ce values: 7 for C1 and E1, and 10 for C2 and E2. This means that the variants generated
via the proposed guidelines (Ex), did not incur in extra efferent couplings with respect to the
traditional variants (Cx). Moreover, if we do not consider the corresponding service adapters, Ce for
the variants drops down to zero because following the guidelines of Section 3.3 effectively pushes
the source code that depends on service descriptions out of the application logic. Interestingly, the
lower the Ce value is, the less the dependency between the application code and the Web Service
descriptions is, which helps in simplifying service replacement.

 0

 50

 100

 150

 200

 250

 300

 350

Traditional
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Traditional
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

S
L

O
C

(l
e

ss
 is

 b
e

tt
e

r)

Variant

Service adapter code
Non-adapter code

Figure 9. Source Lines of Code (SLOC) of the different applications.

Figure 9 shows the resulting SLOC. Changing the provider for a random service caused the
modified versions of the application to incur in a little code overhead with respect to the original
versions. Nevertheless, the non-adapter classes implemented by E1 were not altered by E2 at all,
whereas in the case of the traditional approach, the incorporation of the new service provider caused
the modification of 17 lines from C1 (more than 7% of its code).

The variants coded following the guidelines had an SLOC greater than that of the traditional
variants. However, this difference was caused by the code implementing service adapters. In fact,
the non-adapter code was smaller, and had only business logic code because, unlike its traditional
counterpart, it did not include statements for importing and instantiating proxy classes and handling
Web Service-specific exceptions. There is another positive aspect concerning service adapters and
SLOC. Basically, changing the provider for the target service triggered the automatic generation of
a new adapter skeleton, kept the application logic unmodified, and more importantly, allowed the
programmer to focus on supporting the alternative service description only in the newly generated
adapter class. Conversely, replacing the same service in C1 involved the modification of the classes
from which the service was accessed (i.e. statements calling methods or data-types defined in the

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 22 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 23

service interface), thus forcing the programmer to modify more code. In addition, this practice might
have introduced more bugs into the already tested application.

CBO and RFC metrics were also computed (Figure 10 and Figure 11, respectively). Particularly,
high CBO is undesirable because it negatively affects modularity and prevents reuse. The larger
the coupling between classes, the higher the sensitivity of a single change in other parts of the
application, and therefore maintenance is more difficult. Hence, inter-class coupling, and specially
couplings to classes representing service descriptions, should be kept to a minimum. Low RFC
implies better testability and debuggability. In concordance with Ce, which resulted in greater values
for the modified variants of the application, CBO for both the guidelines-based and the traditional
approach exhibited increased values when changing the provider for a Web Service. RFC, on the
other hand, presented a less uniform behavior.

 0

 1

 2

 3

 4

 5

Traditional
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Traditional
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

C
B

O
(l
e

ss
 is

 b
e

tt
e

r)

Variant

Figure 10. Coupling Between Objects (CBO) of the different applications. The lower values achieved by
guidelines-compliant versions imply that they will be easier to maintain.

As quantified by Ce, following the guidelines did not reduce the amount of efferent couplings
from the package implementing the application logic. Naturally, the reason for this is that the service
descriptions adhered by Ex are the same as Cx. However, the guidelines-based applications reduced
the CBO with respect to the traditional implementations because the access to the various services
utilized by the application, and therefore their associated data-types, is performed within several
cohesive compilation units (i.e. service adapters) rather than within few, more generic classes. This
in turn improves reusability and testability since application logic classes do not directly depend on
services.

As depicted in Figure 11, this separation also helped in achieving better average RFC. Moreover,
although the plain sum of the RFC values of the applications when following the guidelines -Ex-
were greater compared to Cx, the total RFC of the classes implementing application logic (i.e.
without taking into account service adapter classes) were both smaller. This suggests that the pure
application logic of E1 and E2 is easier to understand than C1 and C2. Arguably, in large projects,
much of the source code of guidelines-based applications will be application logic instead of service
adapters. Hence, preserving the understandability of this kind of code is crucial.

Finally, implementing service adapters (see Section 3.3) is at present the Achille’s heel of
our EasySOC supporting tool, as the task of building service adapters is not trivial and requires
to recompile the system to change the service. We will investigate heuristics to automatically
match service consumer interfaces onto actual service contracts. We aim at generating adapter
code that solves ambiguities in signatures by comparing for example operation names and data-
type structures of input/output parameters. Our goal is similar to that of efforts like , but we
aim at performing adaptations at the consumer application side. Fourth, we plan to develop
guidelines for consuming and providing semantically annotated services. Regarding consumption,

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 23 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

24 RODRIGUEZ ET AL.

 0

 5

 10

 15

 20

 25

 30

 35

Traditional
(Initial Web Service

providers)

EasySOC
(Initial Web Service

providers)

Traditional
(Alternative Web

Service providers)

EasySOC
(Alternative Web

Service providers)

R
F

C
(l
e

ss
 is

 b
e

tt
e

r)

Variant

Figure 11. Response For Class (RFC) of each application variant. The lower the achieved values the easier
the maintenance. Variants resulting from following our guidelines achieved the lowest values.

we have designed a programming model for developing semantic Web Services-aware applications.
This model facilitates the management of semantic annotations when developers follow classic
Java Beans programming conventions. Currently, we are gathering preliminary results related to
developers’ acceptance of the model and best practices for adopting it. At the same time, we
are in the process of conceptualizing lessons learned from employing the approach to annotate
Web Services with semantic data described in [50]. Last but not least, we are planning to develop
EasySOC supporting tools for other widely used platforms (e.g. .NET) and IDEs in order to bring
our ideas to a broader development community.

5. CONCLUSIONS

The software industry is embracing the Service-Oriented Computing (SOC) paradigm as the premier
approach for building reusable services and applications in heterogeneous, distributed computing
environments. However, SOC presents many intrinsic challenges that both Web Service providers
and consumers must face.

Historically, catalogs of best practices have been widely recognized as a very valuable and helpful
mean to software practitioners for dealing with common problems in many different contexts. In
this sense, this paper presented a catalog of concrete, accessible, validated guidelines for avoiding
recurrent problems [19, 21, 20] when designing and implementing Web Services and applications.

The practical implications of our guidelines have been corroborated experimentally, which
suggests that our work can be conceived as being best practices to be readily employed in the
software industry. In particular, we have assessed the impact of our guidelines for improving Web
Service descriptions by employing three registries simultaneously supporting service discovery and
human consumers, who have the final word on which service is more appropriate. Results showed
that improved descriptions are easier to understand than their “raw” counterpart [21]. Similarly,
the positive effect on service discovery of the guidelines for generating and expanding queries has
been also evidenced [18]. Also, the implications of the guidelines for consuming services on Web
Service and application maintenance have been formally and experimentally corroborated in [38]
and [19] respectively. It is worth mentioning that a step towards experimentally assessing the effects
of simultaneously following our guidelines can be found in [15], in which we described the results
of combining both the guidelines to generate effective queries and shield applications from specific
services.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 24 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 25

In addition, the guidelines for defining easily understandable have been applied in a real-life
development [8]. This development consisted in migrating a COBOL legacy system to a SOC
system. Actually, this work presents a case study in which developers did not take into account
the WSDL document quality. As a result of this, the development of service consumer applications
was too complex and error prone. Hence, the migration had to be re-done for improving the system
WSDL documents proving the importance of good quality WSDL document.

Clearly, building loose coupled applications using the corresponding guidelines, imposes a radical
shift in the way applications are developed by the software industry. This means that a company
willing to employ the proposed guidelines to start producing applications would have to invest
much time in training its development team, which results in a costly start-up curve. Recently,
the impact of the proposed guidelines and its supporting tool-box on the software development
process itself from an engineering point of view has been partially assessed in [20]. Concretely,
we performed further experiments to test the following hypothesis: understanding common design
patterns (i.e. Adapter and DI) and the “first build your application and then servify it” philosophy
are the only required intellectual activities to start developing applications in accordance with the
proposed guidelines, which should sharpen the learning curve needed to develop loose coupled
service-oriented applications. Results showed that they perceived that the proposed approach is
convenient and thus may be easily adopted. In the near future, we will conduct experiments with
other students and real development teams to further validate our claims in this respect.

Furthermore, our work will be extended in several directions. First, the common way
of generating service contracts in the industry is by deriving them from the corresponding
implementation code. This approach is called code-first because contracts are obtained after a
developer implements a functionality that is to be exposed as a service. Although the guidelines
for improving service descriptions have proved to be effective for building well-defined contracts,
revising an already generated WSDL impacts on the associated implementation. Therefore, we will
investigate and elaborate a set of early indicators to help developers avoiding WSDL anti-patterns
during coding time.

Finally, since REST services are a current trend to develop some SOA systems [51], we are
working on identifying good practices when using REST services. This represents in itself a very
interesting research opportunity but at the same time potentially requires rethinking or adapting
some of our guidelines. Furthermore, we are studying the benefits of consuming REST services
versus traditional Web Services on mobile devices. Our analysis is focused on reducing not only
battery consumption, but also network usage, which might impose important cost on final users.
As a case study, we will employ some REST Web Services from a real Internet-based agricultural
system. We are at present implementing client applications for calling these services that target
Android-based devices, from which we perform the measurements.

ACKNOWLEDGMENTS

We acknowledge the financial support provided by ANPCyT through grant PAE-PICT 2007-02311.

REFERENCES

[1] Bichler M, Lin KJ. Service-Oriented Computing. Computer 2006; 39(3):99–101.

[2] Erickson J, Siau K. Web Service, Service-Oriented Computing, and Service-Oriented
Architecture: Separating hype from reality. Journal of Database Management 2008; 19(3):42–
54.

[3] Atkinson M, DeRoure D, Dunlop A, Fox G, Henderson P, Hey T, Paton N, Newhouse S,
Parastatidis S, Trefethen A, et al.. Web Service Grids: An evolutionary approach. Concurrency
and Computation: Practice and Experience 2005; 17(2-4):377–389.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 25 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

26 RODRIGUEZ ET AL.

[4] Campbell-Kelly M. The rise, fall, and resurrection of software as a service. Communications
of the ACM 2009; 52(5):28–30, doi:http://doi.acm.org/10.1145/1506409.1506419.

[5] W3C Consortium. SOAP version 1.2 part 1: Messaging framework. W3C Recommendation,
http://www.w3.org/TR/soap12-part1 Jun 2007.

[6] W3C Consortium. XML Schema Definition Language (XSD) 1.1 part 1: Structures. W3C
Working Draft, http://www.w3.org/TR/xmlschema11-1 2009.

[7] Loughran S, Smith E. Rethinking the java soap stack. IEEE International Conference on Web
Services, 2005.

[8] Rodriguez J, Crasso M, Mateos C, Zunino A, Campo M. Bottom-up and top-down cobol
system migration to web services: An experience report. Internet Computing, IEEE 2011;
PP(99):1, doi:10.1109/MIC.2011.162.

[9] Peiris C, Mulder D, Cicoria S, Bahree A, Pathak N. Introducing service-oriented architecture.
Pro WCF. Apress, 2007; 3–24. URL http://dx.doi.org/10.1007/978-1-4302-0324-7_
1.

[10] OASIS Consortium. UDDI version 3.0.2. UDDI Spec Technical Committee Draft, http:
//uddi.org/pubs/uddi_v3.htm Oct 2004.

[11] Garofalakis J, Panagis Y, Sakkopoulos E, Tsakalidis A. Contemporary Web Service Discovery
Mechanisms. Journal of Web Engineering 2006; 5(3):265–290.

[12] Crasso M, Zunino A, Campo M. A survey of approaches to Web Service discovery in Service-
Oriented Architectures. Journal of Database Management 2011; 22:103–134.

[13] Kousiouris G, Kyriazis D, Varvarigou T, Oliveros E, Mandic P. Achieving Real-Time in
Distributed Computing: From Grids to Clouds, chap. Taxonomy and State of the Art of Service
Discovery Mechanisms and Their Relation to the Cloud Computing Stack. IGI Global, 2012;
75–93.

[14] McCool R. Rethinking the Semantic Web, part II. IEEE Internet Computing 2006; 10(1):96,
93–95, doi:10.1109/MIC.2006.18.

[15] Crasso M, Mateos C, Zunino A, Campo M. Empirically assessing the impact of dependency
injection on the development of Web Service applications. Journal of Web Engineering 2010;
9(1):66–94. URL http://www.rintonpress.com/journals/jweonline.html#v9n1.

[16] Erl T, Karmarkar A, Walmsley P, Haas H, Yalcinalp LU, Liu K, Orchard D, Tost A, Pasley
J. Web Service Contract Design and Versioning for SOA. 1 edn., Prentice Hall PTR: Upper
Saddle River, NJ, USA, 2009.

[17] Crasso M, Rodriguez JM, Zunino A, Campo M. Revising WSDL documents: Why and how.
IEEE Internet Computing 2010; 14(5):30–38, doi:http://doi.ieeecomputersociety.org/10.1109/
MIC.2010.81.

[18] Crasso M, Zunino A, Campo M. Combining query-by-example and query expansion for
simplifying Web Service discovery. Information Systems Frontiers 2011; 13:407–428. URL
http://dx.doi.org/10.1007/s10796-009-9221-9.

[19] Crasso M, Mateos C, Zunino A, Campo M. EasySOC: Making Web Service outsourcing
easier. Information Sciences 2010; URL http://dx.doi.org/10.1016/j.ins.2010.01.
013, to appear.

[20] Mateos C, Crasso M, Zunino A, Campo M. A software support to initiate systems engineering
students in Service-Oriented Computing. Computer Applications in Engineering Education
2011; To appear.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 26 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

BEST PRACTICES FOR WEB SERVICES: A TOOLSET 27

[21] Rodriguez JM, Crasso M, Zunino A, Campo M. Improving Web Service descriptions for
effective service discovery. Science of Computer Programming 2010; 75(11):1001–1021, doi:
http://dx.doi.org/10.1016/j.scico.2010.01.002.

[22] Ramollari E, Dranidis D, Simons A. A survey of service oriented development methodologies.
2nd European Young Researchers Workshop on Service Oriented Computing (YR-SOC 2007),
2007.

[23] Kohlborn T, Korthaus A, Chan T, Rosemann M. Identification and analysis of business and
software services - a consolidated approach. IEEE Transactions on Services Computing 2009;
2(1):50–64, doi:http://dx.doi.org/10.1109/TSC.2009.6.

[24] Kohlmann F, Alt R. Business-driven service modelling - a methodological approach from
the finance industry. 1st International Working Conference on Business Process and Services
Computing (BPSC’07), Lecture Notes in Informatics, vol. 116, Abramowicz W, Maciaszek L
(eds.), GI, 2007; 180–193.

[25] Flaxer D, Nigam A. Realizing business components, business operations and business
services. IEEE International Conference on E-Commerce Technology for Dynamic E-Business
(CEC-EAST’04), IEEE Computer Society, 2004; 328–332, doi:http://dx.doi.org/10.1109/
CEC-EAST.2004.55.

[26] Papazoglou M, van den Heuvel WJ. Service-oriented design and development methodology.
International Journal of Web Engineering and Technology 2006; 2(4):412–442, doi:http:
//dx.doi.org/10.1504/IJWET.2006.010423.

[27] Chumbley R, Durand J, Pilz G, Rutt T. Basic profile version 2.0. http://ws-i.org/
profiles/BasicProfile-2.0-WGD.html Mar 2010.

[28] Blake MB, Nowlan MF. Taming Web Services from the wild. IEEE Internet Computing 2008;
12(5):62–69, doi:http://doi.ieeecomputersociety.org/10.1109/MIC.2008.112.

[29] Allen EE, Cartwright R. Safe instantiation in generic java. Science of Computer Programming
2006; 59(1-2):26 – 37, doi:DOI:10.1016/j.scico.2005.07.003. Special Issue on Principles and
Practices of Programming in Java (PPPJ 2004).

[30] Pasley J. Avoid XML schema wildcards for Web Service interfaces. Internet Computing, IEEE
May-June 2006; 10(3):72–79, doi:10.1109/MIC.2006.45.

[31] Yourdon E, Constantine LL. Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1979.

[32] Bieman J, Ott L. Measuring functional cohesion. Software Engineering, IEEE Transactions on
aug 1994; 20(8):644 –657, doi:10.1109/32.310673.

[33] Basili V, Briand L, Melo W. A validation of object-oriented design metrics as quality
indicators. Software Engineering, IEEE Transactions on oct 1996; 22(10):751 –761, doi:
10.1109/32.544352.

[34] Juric MB, Sasa A, Brumen B, Rozman I. WSDL and UDDI extensions for version support
in web services. Journal of Systems and Software 2009; 82(8):1326–1343. SI: Architectural
Decisions and Rationale.

[35] Duftler M, Mukhi N, Slominski A, Weerawarana S. Web Services Invocation Framework
(WSIF). ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’01), ACM Press, 2001.

[36] Apache Software Foundation. Apache CXF: An Open Source Service Framework. http:
//cxf.apache.org 2009.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 27 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

28 RODRIGUEZ ET AL.

[37] Johnson R. J2EE development frameworks. Computer 2005; 38(1):107–110.

[38] Mateos C, Crasso M, Zunino A, Campo M. Separation of concerns in service-oriented
applications based on pervasive design patterns. Web Technology Track (WT) - 25th ACM
Symposium on Applied Computing (SAC ’10), ACM Press, 2010; 2509–2513. URL http:
//doi.acm.org/10.1145/1774088.1774263.

[39] Klein D, Manning C. Accurate unlexicalized parsing. 41st Annual Meeting on Association for
Computational Linguistics (ACL’03), Association for Computational Linguistics, 2003; 423–
430, doi:http://dx.doi.org/10.3115/1075096.1075150.

[40] Rodriguez J, Crasso M, Zunino A, Campo M. Automatically detecting opportunities for
web service descriptions improvement. Software Services for e-World, IFIP Advances in
Information and Communication Technology, vol. 341, Cellary W, Estevez E (eds.), Springer
Boston, 2010; 139–150.

[41] The Eclipse Foundation. Eclipse Java development tools (JDT). http://www.eclipse.org/
jdt 2010.

[42] Korfhage RR. Information Storage and Retrieval. John Wiley & Sons, Inc.: New York, NY,
USA, 1997.

[43] Bollmann P. The normalized recall and related measures. Proceedings of the 6th annual
international ACM SIGIR conference on Research and development in information retrieval,
1983; 122–128.

[44] Perera S, Herath C, Ekanayake J, Chinthaka E, Ranabahu A, Jayasinghe D, Weerawarana
S, Daniels G. Axis2, middleware for next generation Web Services. IEEE International
Conference on Web Services (ICWS’06), IEEE Computer Society, 2006; 833–840, doi:http:
//doi.ieeecomputersociety.org/10.1109/ICWS.2006.36.

[45] Walls C, Breidenbach R. Spring in Action. Manning, 2005.

[46] Stroulia E, Wang Y. Structural and semantic matching for assessing Web Service similarity.
International Journal of Cooperative Information Systems 2005; 14(4):407–438.

[47] Martin RC. Object-Oriented Design Quality Metrics: An Analysis of Dependencies. Report
on Object Analysis and Design 1995; 2(3).

[48] Chidamber SR, Kemerer CF. A Metrics Suite for Object Oriented Design. IEEE Transactions
on Software Engineering 1994; 20(6):476–493.

[49] International Organization for Standardization. Software engineering - product quality - part
1: Quality model. ISO 9126 2001; .

[50] Crasso M, Zunino A, Campo M. Combining document classification and ontology alignment
for semantically enriching Web Services. New Generation Computing 2010; 28:371–403.
URL http://www.ohmsha.co.jp/ngc/abstract/28-4-3.htm.

[51] Pautasso C, Zimmermann O, Leymann F. RESTful Web Services vs. "big" Web Services:
making the right architectural decision. Proceeding of the 17th international conference on
World Wide Web, WWW ’08, 2008; 805–814.

Copyright c� 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
Prepared using speauth.cls DOI: 10.1002/spe

Page 28 of 28

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

