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Partial preservation of chiral symmetry and colossal magnetoresistance in adatom doped graphene
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We analyze the electronic properties of adatom doped graphene in the low impurity concentration regime. We
focus on the Anderson localized regime and calculate the localization length (ξ) as a function of the electron
doping and an external magnetic field. The impurity states hybridize with carbon’spz states and form a partially
filled band close to the Dirac point. Near the impurity band center, the chiral symmetry of the system’s effective
Hamiltonian is partially preserved which leads to a large enhancement ofξ. The sensitivity of transport proper-
ties, namely Mott’s variable range hopping scaleT0, to an external magnetic field perpendicular to the graphene
sheet leads to a colossal magnetoresistance effect, as observed in recent experiments.

PACS numbers: 73.22.Pr, 72.80.Vp, 71.23.An, 72.20.Ee

The peculiar electronic structure of graphene, with chiral
quasiparticles behaving as massless Dirac fermions, givesrise
to a number of remarkable and counterintuitive phenomena1

that manifest both in pristine and disordered graphene.2

In disordered systems, electron localization depends on di-
mensionality and on the nature of disorder.2,3 Due to the par-
ticular symmetries of graphene and the way different types of
disorder break these symmetries, the problem of electron lo-
calization requires revisiting some of the basic and conceptual
issues.4,5 Much has been done during the last years in this di-
rection and it is now clear that in the absence of short range
disorder Dirac fermions elude Anderson localization as in that
case the system belongs to the symplectic universality class.
Short range disorder due to defects at the atomic scale gener-
ates inter-valley mixing and breaks the symplectic symmetry.
Within this scenario, the symmetry of functionalized graphene
belongs to the orthogonal universality class and, like in other
more conventional two-dimensional (2D) systems, Anderson
localization might occur. However, properties at zero energy,
the Dirac point (DP), are peculiar with adatoms and vacancies
leading to different behaviour.5–7

It is well known that the localization properties of 2D mate-
rials can be studied by applying a perpendicular (out of plane)
magnetic field that suppress the quantum interference effects
responsible for the electron localization.8 The magnetic field
can also introduce orbital effects for large fields.9–11 In the
case of graphene, one might then expect an anomalous be-
haviour of the localization12–15 or the transport properties16

since the Landau levels (LLs) present an unusual spectrum
with the zeroth LL (0-LL) pinned to the DP and a large en-
ergy splitting between LLs.

In practice short range disorder can be controlled by chem-
ical functionalization, hydrogenation17,18 and fluorination16

being among the most studied cases although adsorption of
transition metal atoms, oxygen and molecules have also been
considered.19,20 Most of these defects, either adatoms or va-
cancies, generate resonant states close to the DP21 and, with
the appropriate concentration, may lead to strong localization
regimes at low energies.14,22

Here, we analyse the problem of electron localization in
graphene with diluted impurities, both in the absence and
in the presence of a magnetic field, using a model suit-

able for the description of adatoms, which are represented
by a single level of energyε0 hybridized to the carbon’spz
states.21,23,24Our results show that: (i) the localization length
presents a maximum near, but not at, the DP which is rem-
iniscent of the anomalous behaviour expected at the DP for
ε0 = 0 impurities;5,6,14,22 (ii ) the magnetic field leads to a
large increase of the localization length in a magnitude that
is consistent with the magnetoresistance found in fluorinated
graphene.16

The Hamiltonian of the system is given byH = H0 +
HF + Hhyb. The first term describes the graphene sheet
H0 = −

∑

〈i,j〉(tij c
†
icj + h.c.) wherec†i creates an electron

on sitei of the honeycomb lattice—we here neglect the Zee-
man coupling and drop the spin index in what follows. The
orbital effect is included through the Peierls substitution for
the hoping matrix elementtij = te−iϕijwith t = 2.8 eV and

ϕij a gauge dependent phaseϕij = 2π
φ0

∫

Ri

Rj
A · dℓ whereφ0

is the flux quantum,A the vector potential andRi is the coor-
dinate of sitei. We consider impurities which are adsorbed on
top of carbon atoms and are described byHF =

∑′
l ε0 f

†
l fl

wheref †
l creates an electron on the impurity orbital of the

atom at sitel, and the primed sum runs over the indices of
carbon atoms having an impurity on top. The last term of the
Hamiltonian describes the hybridization of the impurity and
the graphene orbitalsHhyb = V

∑′
l f

†
l cl + h.c. We consider

systems with a low concentrationni of impurities, typically
ni . 10−3, and takeV = 2t.

We define the impurity,Gr
ij = 〈〈fi, f

†
j 〉〉, and the graphe-

ne,Gr
ij = 〈〈ci, c

†
j〉〉, retarded propagators. The average local

density of states (LDOS) at a carbon site is then given by

ρc(ω) = −
1

π
〈ImGr

ii〉avg , (1)

where〈. . . 〉avg indicates the configurational average over the
impurities. A similar expression gives the impurity LDOS
ρf (ω). The total average DOS per atom is given byρ(ω) =
[ρc(ω) + ni ρ

f (ω)]/(1 + ni). To calculateρ(ω) we use the
Chebyshev polynomials method which is very well suited to
deal with realistic impurity concentrations.25–27 Figure 1(a)
shows the LDOS in the absence of a magnetic field,B = 0,
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FIG. 1. (color online) (a) Average local density of states near
the DP for increasing values of the impurity level energy,ε0/t =
0, 0.025, 0.05, 0.1 (the inset shows a zoom out forε0 = 0.05). A
peak in the density of states forms near the renormalized energy ε̄0.
The impurity concentration isni = 1/1800 (b) Spatial dependence
of 〈ln |Gr

ij(ω)|
2〉avg inside the impurity band forε0 = 0. The solid

lines are fittings to Eq. (2) (takingα = 1) for two cases,ω = 0.002t
and0.012t. The localization length extracted from all these curves is
shown in (c) forε0/t = 0 (•), 0.025 (△), 0.05 (N), 0.1 (�). Lines
are guides to the eye. The arrows shown the position ofε̄0. (d) Same
as before but including the cases ofε0/t = 0.005 (×), 0.01 (∗) and
using a log-scale forω.

for a system of∼ 3 × 107 C atoms withni ∼ 5 × 10−4

and for different values ofε0. A new peak emerges in the
LDOS21,23,27,28which is located near the renormalized energy
ε̄0 = ε0 + ℜΣ(ε̄0), whereΣ(ω) is the single impurity self-
energy.29,30For the impurity parameters used in this work, the
renormalized energy is an order of magnitude lower than the
bare energy (̄ε0 ≪ ε0). For ε0 = 0, the peak lies at the DP
(ω = 0) as the electron-hole symmetry is preserved. In what
follows we will refer to the states associated to the peak in
the LDOS as the ‘impurity band’, although it is important to
emphasize that the corresponding eigenstates involve bothim-
purity and C atoms, being in general a superposition of many
single impurity states21,24,30As we now show, these states are
localized and, consequently, when the chemical potential lies
within this band the system is insulating. Assuming that each
adatom has originally a single electron in the relevant atomic
level, the chemical potential for ungated graphene satisfies
this condition for the impurity parameters considered below.

To estimate the localization lengthξ(ω) we evaluate the
two-point correlation function|Gr

ij(ω)|
2, whereGr

ij is the re-
tarded propagator from sitei to sitej. In the localized regime
this quantity decreases exponentially when the distanceRij

between sites increases. For largeRij (Rij & ξ), the con-
figurational average of its logarithm is well described by the
following expression10

〈ln |Gr
ij(ω)|

2〉avg = β − 2Rij/ξ(ω)− α lnRij . (2)

We define the impurity propagator matrixG with matrix el-
ementsGr

ij(ω). In this notation, the equation of motion (or

Dyson equation) reads

[

(ω + i0+ − ε0)I − V 2g̃
]

G = I , (3)

whereI is the unit matrix and̃g is a matrix whose elements
are the propagators of pristine graphene,grij , between impu-
rity sites—theñtij = V 2grij represents an effective coupling
between impurities. Forni ≪ 1, the average distance be-
tween impurities is much larger than the lattice parameter and
the propagatorsgrij can be approximated by the correspond-
ing analytical expressions in the continuum limit.31 We define
a cluster ofN impurities, typicallyN ∼7000, located at ran-
dom positions inside a disc of radius∼ (a0/2)

√

N/niπ, a0 is
the C-C distance, and invert the matrix(ω+i0+−ε0)I−V 2g̃

to obtainG. In terms of these quantities,G—in matrix nota-
tion, with elementsGr

ij(ω)—is given by

G = g + V 2gGg . (4)

Note thatG is not restricted to the impurity sites, so Eq. (4)
involves the pristine matrix propagatorg that connects arbi-
trary C sites. We use a realistic concentrationni = 1/1800,16

which leads to an average inter-impurity distanceℓi ∼ 50a0.
Figure 1(b) shows〈ln |Gr

ij(ω)|
2〉avg vs Rij for ε0 = 0 and

different values ofω. The solid lines are fits using Eq. (2) (for
fixedα = 1) from where the localization length is obtained.
As expected, identical results forξ(ω) are obtained usingGr

ij .
Figure 1(c) showsξ(ω) for different values of the impu-

rity energy (ε0). In the special particle-hole symmetric case
(ε0 = 0, circles) the localization length increases away from
the DP roughly asω2. For the very low impurity concen-
tration considered it is necessary to reach energies smaller
than∼ 10−3t to observe the expected increase ofξ(ω) near
the DP due to the chiral symmetry of the problem.5,6,14,22In
fact, Fig. 1(d) suggest thatξ(ω) increases logarithmically as
ω→ 0.32 Near the edge of the impurity band (ω ∼ 0.02t, see
Fig. 1(a)), and above, we do not obtain a clear exponential be-
haviour suggesting that at these energies a weak localization
regime sets in as observed in Ref. [16].

For ε0 6= 0, we find that strong localization only exist
inside the impurity band—so again, outside it (i.e. for an
empty or a completely filled impurity band), only weak lo-
calization effects are expected. Our results show thatξ(ω)
presents a strong non-monotonic behaviour inside the impu-
rity band: it shows a local maximum close tōε0 (indicated
by an arrow in Fig. 1(c)) and a minimum slightly above the
energy whereρ(ω) has its maximum—notice that the latter
occurs forω > ε̄0. We interpret this effect as governed by
the same physics which leads to a reduced localization in
the presence of chiral symmetry (as occurs in theε0 = 0
case).5,6 This is so because the effective Hamiltonian defined
by [G(ω ∼ ε̄0)]

−1 has the chiral symmetry partially pre-
served. To see this it is important to notice that|t̃AB| ≫ |t̃AA|
since|grAB(R ∼ ℓi)| ≫ |grAA(R ∼ ℓi)| at low energies which
leads to an off-diagonal block structure of[G(ω ∼ ε̄0)]

−1 in
the ‘A-B’ basis for the impurities. Figure 1(d) shows that the
peak ofξ(ω) continuously evolves towards the DP asε0 is
reduced, supporting this view.
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FIG. 2. (color online) Activation temperatureT0 as a function of the
Fermi energyεF for B = 0 and the same parameters as in Fig. 1(c).

In the strong localization regime, the resistanceR(T ) is
expected to show the Motts variable range hopping behaviour
of a 2D system,i.e. R(T ) ∝ exp[(T0/T )

1

3 ], whereT0 is a
characteristic activation temperature given by

T0 =
γ

kBTρ(εF)ξ2(εF)
, (5)

with γ a numerical constant from percolation theory (γ ≈ 14)
and εF the Fermi energy. We emphasize that the states in-
volved in the variable range hopping processes correspond
to the localized eigenstates of the full Hamiltonian described
above and not to the power-law decaying single impurity
states as assumed in [33]. Fig. 2 showsT0 as a function of
energy for different values ofε0. In all cases the maximum
value ofT0 is slightly shifted from the minimum value ofξ.
Notice that, with this parameters,T0 attains a maximum value
of ∼ 300K which is close to the one observed in Ref. [16].

Let us now discuss the effect of a perpendicular magnetic
fieldB. In this case, the resistance is expected first to decrease,
as a result of an increase of the localization length,8 and show
a crossover to a different regime whenB is large enough so
that the magnetic lengthℓB =

√

~c/eB gets of the order ofℓi
and the shrinking of the wave function precludes the coupling
between impurities,|grij(Rij > ℓB)| ∼ 0. We analyze the
regimeℓB & ℓi using the same methods as above to calculate
bothρ andξ in the presence ofB 6= 0.

Figures 3(a) and 3(b) presentρ(ω) for two cases,ε0 = 0
andε0 = 0.05t, respectively, and three values of the magnetic
field: B = 0, 6 and12 T. In both cases the emergence of LLs
is apparent in the figure as expected. Note, however, the di-
fference in the broadening of the LLs at the two sides of the
impurity band in the caseε0 6= 0—this asymmetry increases
with increasing|ε0|. More interestingly, the 0-LL is split by
the impurities,13,15manifested by the ‘shoulders’ thatρ(ω) de-
velops near the edge of the impurity band with increasing va-
lues ofB. This results from the coupling of the impurity’s
orbitals and the0-LL states located near each impurity site.

Figures 3(c) and 3(d) show the energy dependence of the
localization length at different external magnetic fields for the
parameters of figures 3(a) and 3(b), respectively. The inset
to Fig. 3(c) shows the spatial decay of〈ln |Gr

ij |
2〉avg for in-

creasing values ofB from where the increase of the localiza-
tion length is clear.15 This increment is quantified in Fig. 3(c)
where we show a comparison ofξ(ω) for different values of
B. The values ofξ(ω) where obtained by fitting the numerical
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FIG. 3. (color online) (a),(b) Average density of states forε0 = 0
[(a)] andε0 = 0.05t [(b)] andB = 0, 6 and12T (dotted, dashed
and solid lines, respectively). Note the splitting of the zeroth Landau
level. (c) ξ(ω) for the values ofB shown in (a); the inset shows
the spatial dependence of〈ln |Gr

ij |
2〉avg for ω/t = 5 × 10−3 and

increasing values ofB. The solid lines are fittings to Eq. (2) for
B = 0 and20T. (d) ξ(ω) for two of the cases (B = 0 and6T) shown
in (b).

data with Eq. (2)—leaving nowα as a free parameter. Our
results show thatξ increases withB in the whole range of en-
ergies inside the impurity band. We notice that the increase
in ξ can be rather dramatic, in particular close toε̄0, whereξ
reaches its maximum value inside the impurity band.

The increase of the localization length with magnetic field
for ω/t = 2, 5, 8× 10−3 is shown in Fig. 4(a) for fields up to
15T (ℓB ∼ ℓi). ξ(B) increases by a factor∼ 3 in this range
of B. As mentioned above, this increment is expected on gen-
eral grounds due to the breaking of time reversal symmetry,
and the consequent suppression of the interference effectsthat
lead to localization—the magnitude of the increment on 2D
systems is not universal unlike the 1D case.8

In the graphene case in particular, there is also a rather
peculiar orbital effect that, as we numerically verified, con-
tributes to the delocalization effect but that it is difficult to
disentangle from the previous ‘phase factor’ effect. Namely,
the impurity states are always very close in energy to the0-
LL, which is pinned to the DP. Therefore, at low impurity
densities, a rather modest magnetic field is sufficient to have
~ωc larger than the impurity bandwidth. In such a case, the
properties of the system are mostly determinated by the pris-
tine Green’s function corresponding to the0-LL states, that
has the particular property of not mixing different sublattices.
Consequently, the network of effectively coupled impurities is
changed withB ast̃ij is substantially different for sites on the
same or different sublattices.

The increment ofξ(B) leads to a decrease ofT0 as shown
in Fig. 4(b). It is important to point out that our results corre-
spond to afixedvalue ofω while the experimentally relevant
scenario requires to tuneεF in order to keep the electron den-
sity constant. For the parameters of Fig. 4, this corresponds to
an interpolation between the curves of, say,ω/t = 5 × 10−3
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FIG. 4. (color online) (a) Localization length as a functionof the
magnetic field for the electron-hole symmetric case (ε0 = 0) for
ω/t = 2×10−3(◦), 5×10−3(•) and8×10−3(N). (b) Characteristic
activation temperatureT0 for the same energies.

and8 × 10−3 as we increase the field form0 to 8-10T—the
fact theεF slightly increases withB is related to the splitting
of the0-LL that transfers some spectral weight from the DP to
higher energies. Once this correction is taken into account, the

change ofT0 with magnetic field is in quantitative agreement
with the experimental data of Ref. [16].

In summary, we have shown that the peculiar localization
properties induced by adatoms on graphene not only manifest
in electron-hole symmetric systems (ε0 = 0) but also in the
general case ‘near’ the center of the impurity band (ω ∼ ε̄0).
In addition, we found that these properties change in the pres-
ence of a magnetic field in a manner that is in quantitative
agreement with existent experimental data. Since our model
does not include any spin related effect (adatom induced mag-
netism or spin-orbit coupling), we conclude that the magne-
toresistance data alone (in the strongly localized regime)does
not provide enough evidence to support that spin-flip pro-
cesses play a mayor role16,34,35 and further studies are nec-
essary to settle this issue.
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