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 Background and aims Single-stranded DNA oligodeoxynucleotides (ssODNs) have been 

shown to elicit immune responses in mammals. In plants, RNA and genomic DNA can 

activate immunity, although the exact mechanism through which they are sensed is not clear. 

The aim of this work was to study the possible effect of ssODNs on plant immunity.  

 Key results ssODNs IMT504 and 2006 increased protection against the pathogens 

Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea but not against 

Tobacco Mosaic Virus - Cg when infiltrated in Arabidopsis thaliana. In addition, 

ssODNs inhibited root growth and promoted stomatal closure in a dose dependent 

manner, with half maximal effective concentrations between 0.79 and 2.06 µM. 

Promotion of stomatal closure by ssODNs was reduced by DNase I treatment. It was 

also diminished by the NADPH oxidase inhibitor diphenyleneiodonium and by 

coronatine, a bacterial toxin that inhibits NADPH oxidase-dependent reactive oxygen 

species (ROS) synthesis in guard cells. In addition it was found that ssODN-mediated 

stomatal closure was impaired in bak1-5, bak1-5/bkk1, mpk3 and npr1-3 mutants. 

ssODNs also induced early expression of MPK3, WRKY33, PROPEP1 and FRK1 

genes involved in plant defence, an effect that was reduced in bak1-5 and bak1-5/bkk1 

mutants.  

 Conclusions ssODNs are capable of inducing protection against pathogens through 

the activation of defence genes and promotion of stomatal closure through a 

mechanism similar to that of other elicitors of plant immunity, which involves the 

BAK1 co-receptor, and ROS synthesis.  

 

Key words: IMT504, 2006, DNA, plant immune system, Arabidopsis thaliana, elicitor, 

BAK1, stomatal immunity. 
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INTRODUCTION 

Nucleic acids trigger defence against pathogens in all kingdoms of life Given that they are 

present in both the pathogen and the host during an infective process, these molecules have 

been proposed to act either as Microbe-Associated Molecular Patterns (MAMPs), or as 

Damage-Associated Molecular Patterns (DAMPs) (Gallucci and Maffei, 2017, Heil, 2009). In 

bacteria recognition of foreign DNA by both restriction enzymes and Clustered Regularly 

Interspaced Short Palindromic Repeats/CRISPR associated endonuclease 9 (CRISPR-Cas) 

are involved in defence against bacteriophages (Garneau et al., 2010). The mechanisms of 

DNA recognition have been best characterized in mammals, where their perception promotes 

immunity against bacteria and viruses. The Toll-like receptor 9 (TLR9) is located in the 

endoplasmic reticulum and was shown to recognize DNA present in endosomes, which 

activates the production of pro-inflammatory cytokines (Latz et al., 2004b, Latz et al., 

2004a). This receptor preferentially recognizes single stranded unmethylated CpG-rich DNA, 

although methylated single-stranded CpG DNA and double-stranded DNA can also activate it 

less effectively (Hartmann and Krieg, 2000, Hartmann, 2017, Krieg, 2002, Ohto et al., 2015, 

Ohto et al., 2018). The CpG rich single-stranded DNA oligodeoxynucleotide (ssODN) 2006 

is a potent activator of TLR9 (Hartmann et al., 1999), while mammalian self-DNA bound to 

antibodies can be endocytosed and subsequently activates TLR9 (Ohto et al., 2015). It was 

also demonstrated that RNase 7, a 14.5-kDa antimicrobial ribonuclease constitutively 

expressed in the human epidermis, promotes self-DNA recognition in keratinocytes and 

activates antiviral immune responses in the skin (Kopfnagel et al., 2018). In addition, 

association mapping studies have linked mutations in the TLR9 promoter to inflammatory 

diseases (Demirci et al., 2007). DNA can also activate inflammatory and local anti-viral 

responses in the cytoplasm of mammalian cells, where it can be present as a result of viral 

infection or upon extensive extracellular endocytosis, through the activation of different DNA 
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receptors such as cyclic GMP-AMP synthase-Stimulator of Interferon Genes (sGAS-STING), 

Z-DNA-binding protein, the Receptor for Advanced Glycation End-products (RAGE), and 

several receptors belonging to the PYHIN family (Sun et al., 2013, Collins et al., 2015, Li 

and Chen, 2018, Sirois et al., 2013). Non-CpG oligonucleotides containing a PyNTTTTGT 

motif, such as IMT504, have also been shown to stimulate B lymphocytes and plasmacytoid 

dendritic cells of the human immune system (Elias et al., 2003, Rodriguez et al., 2006). Both 

CpG and non-CpG containing oligonucleotides have been shown to improve the activity of 

vaccines targeting infectious diseases and cancer (Elias et al., 2005, Montaner et al., 2012, 

Bode et al., 2011, Adamus and Kortylewski, 2018, Jahrsdörfer and Weiner, 2008).  

 Double-stranded RNA (dsRNA) can also activate antiviral responses in the cytosol 

upon recognition by RIG1 and MDA5 proteins (Takeuchi and Akira, 2008b, Takeuchi and 

Akira, 2008a, Ablasser et al., 2009). RNA can also be recognized in the endolysosomal 

compartment by other members of the Toll-like family, TLR3, TLR7 and TLR8 (Gasser et 

al., 2017), and based on genomic structure and sequence similarity, it has been proposed that 

TLR9 forms a subfamily with TLR7 and TLR8 (Chuang and Ulevitch, 2000, Du et al., 2000). 

It was demonstrated that single stranded RNAs (ssRNA) derived from Human 

Immunodeficiency Virus-1 (HIV-1) are able to activate TLR7 and TLR8, stimulating 

dendritic cells and macrophages to secrete interferon α and cytokines as part of the defence 

response (Heil et al., 2004).  

 Like in animals, plant immunity is also activated by both DNA and RNA. Bacterial 

DNA was demonstrated to act as an effective elicitor in Arabidopsis thaliana plants, 

triggering reactive oxygen species (ROS) generation and callose deposition, an effect that 

was reduced by DNA CpG methylation (Yakushiji et al., 2009). It was also shown that the 

extracellular DNA present on pea root cap slime is required for defence against a 

necrotrophic fungus (Wen et al., 2009). In agreement with this observation, the absence of a 
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single gene encoding a candidate extracellular DNase from the fungal phytopathogen 

Cochliobolus heterostrophus results in reduced virulence (Park et al., 2019). Huang et al., 

2019 have also reported a salivary DNase II from the insect Laodelphax striatellus that acts 

as an effector that suppresses plant defence.  

 Several works have found evidence that self-DNA, or that of related species, is more 

active in triggering immunity than foreign DNA. Autotoxicity of aged litter has been linked 

to its content of fragmented DNA, since inhibition of root growth by self-DNA was stronger 

than by DNA from unrelated species (Mazzoleni et al., 2015a). Inhibition of growth by self 

but not by foreign DNA was also observed in bacteria, fungi, algae, protozoa and insects 

(Mazzoleni et al., 2015a, Mazzoleni et al., 2015b). Similarly, it was found that leaf 

homogenates from common bean protected this species from the bacterial pathogen 

Pseudomonas syringae and induced H2O2 and extrafloral nectar production. Non-self 

homogenates also elicited common bean defences, but to a lesser extent (Duran-Flores and 

Heil, 2014). Similar results were obtained when fragmented self-DNA was used instead of 

leaf homogenates (Duran-Flores and Heil, 2018) or DNA. In lettuce it was also observed that 

self-DNA induced plant defences, induced changes in CpG methylation and inhibited seed 

germination and root growth to a higher extent that non-self DNA (Vega-Muñoz et al., 2018). 

By contrast, non-self DNA from plant species phylogenetically distant did not exhibit a 

protective role on lettuce. It was also shown that self-DNA was more effective than 

heterologous plant or insect DNA at inducing plasma membrane depolarization and calcium 

signalling in lima bean and maize (Barbero et al., 2016). RNA has also been shown to 

activate plant defences, since pre-infiltration of total RNAs from Pseudomonas syringae pv. 

tomato DC3000 (Pst DC3000), but not from A. thaliana, activated innate immunity in this 

plant, reducing susceptibility to both bacterial and fungal pathogens (Lee et al., 2016). 
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Unlike in mammals, the molecular basis of DNA perception in plants is not clear. It was 

found that nucleotide-binding leucine-rich repeat (NB-LRR) receptors I2 from tomato (Fenyk 

et al., 2016) and Rx1 from potato (Fenyk et al., 2015) can bind both double- and single-

stranded DNA as well as single-stranded RNA in vitro. Rx1 was shown to regulate the DNA-

binding activity of a Golden2-like transcription factor (Townsend et al., 2018) and triggered 

immune responses leading to cell death after activation by a PVX virus capsid (Knip et al., 

2019). However, neither I2, nor Rx1 have been linked to nucleic acid sensing in vivo.  

 Pattern-triggered immunity (PTI) allow plants to recognize MAMPs or DAMPs 

through pattern recognition receptors (PRRs), which leads to activation of basal resistance. 

PRRs are all cell surface-localized receptors, receptor-like kinases (RLKs) or receptor-like 

proteins (RLPs). RLKs and RLPs differ in that the former possess a cytoplasmic kinase 

domain, while the latter don´t (Saijo et al., 2018). BAK1 (for BRASSINOSTEROID 

INSENSITIVE1 (BRI1)-ASSOCIATED RECEPTOR KINASE1) is a RLK belonging to the 

family of leucine-rich repeat like kinase (LRR-RLKs) receptors and act as co-receptor, or 

adaptor, of several LRR-RLK receptors involved in MAMP and DAMP perception, such as 

FLAGELLIN SENSING2 (FLS2) flagellin receptor (Chinchilla et al., 2007a, Chinchilla et 

al., 2007b) or PEP RECEPTOR1 (PEPR1), which recognizes endogenous PROPEP peptide-

derived DAMPs including PEP1 (Huffaker et al., 2006). BAK1 belongs to a subfamily of 

LRR-RLKs that includes BAK1-LIKE1 (BKK1), which can also heterodimerize with FLS2 

or PROPEP1 (Roux et al., 2011). BAK1 is shared by several signalling pathways controlling 

developmental as well as defence responses (reviewed in Chinchilla et al., 2009). Consistent 

with a role in plant immunity, plants depleted for BAK1 showed reduced responses to flg22 

and exhibited more symptoms to virulent bacteria (Heese et al., 2007, Chinchilla et al., 

2007b). BAK1 might be involved in sensing of double-stranded RNA, since this nucleic acid 
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has been shown to activate plant defence against Oilseed Rape Mosaic Virus (ORMV) in a 

BAK1-dependent manner (Niehl et al., 2016).  

 While the immunostimulatory effect of single-stranded DNA (ssDNA) has been well 

characterized in mammals, it has not been investigated in plants. In this work we found that 

ssODNs IMT504 and 2006, previously shown to activate immunity in mammalian cells, can 

protect A. thaliana from Botrytis cinerea and from Pst DC3000, but not from Crucifer 

infecting Tobacco Mosaic Virus (TMV-Cg). Both IMT504 and 2006 promoted stomatal 

closure, activated expression of defence genes and inhibited root growth, in a BAK1-

dependent manner.  

 

MATERIALS AND METHODS 

Plant material and growth conditions 

Plants were grown in petri dishes containing half-strength Murashige and Skoog (MS) 

medium with 1% sucrose under a 12h:12h light/dark cycle (photon flux density of 90 μE) at 

22°C to 23°C. The relative humidity was maintained at 60% to 70%. After a week plants 

were transferred to a mixture of vermiculite, peat moss and perlite (1:1:1). Experiments were 

performed using Arabidopsis thaliana ecotype Columbia-0 (Col-0) or the following mutants: 

npr1-3 (Cao et al., 1997), mpk3 (SALK_151594), bak1-5 (Schwessinger et al., 2011, 

Nekrasov et al., 2009) and bak1-5/bkk1 (Schwessinger et al., 2011). 

Bacterial strain  

 Pst DC3000 strain (Ma et al., 1991) was grown overnight at 28°C in Luria-Bertani 

medium supplemented with kanamycin
 
50 μg/ml and rifampicin 50 μg/ml.  
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Bacterial infection assays 

 Oligonucleotides (4 μM), flg22 (1 μM) or sterile water (mock) were infiltrated into 

leaves from 4-week-old A. thaliana plants using a needleless syringe. 24 h after pre-

treatment, Pst DC3000 suspensions were sprayed on A. thaliana leaves as previously 

described (Macho et al., 2012). Briefly, cells were harvested by centrifugation, and pellets 

were resuspended in 10 mM MgCl2 at an OD600 of 0.1. Immediately prior to spraying, Silwet 

L-77 0.02% (v/v) was added to the bacterial suspension. Bacteria were sprayed onto leaf 

surfaces, and plants were not covered. 4 h and 4 days post inoculation, six 0.6-cm
2
 leaf discs 

(3 discs per plant) per treatment were harvested and surface sterilized (30 s in 70% ethanol, 

followed by 30 s in sterile distilled water). Leaf discs from two different plants were ground 

in 10 mM MgCl2 in a tube using a plastic pestle. After grinding, samples were serially diluted 

1:10 and plated on PYM solid medium (Cadmus et al., 1976) supplemented with the 

appropriate antibiotics. Plates were placed at 28°C for 2 days, after which the colony-forming 

units were counted. 

Botrytis cinerea infection assay 

 Oligonucleotides (4 μM) or sterile water were infiltrated into 4-week-old A. thaliana 

leaves with a needleless syringe. 24 h after pre-treatment, leaves were detached, placed on 

MS agar plates (without sucrose), and inoculated with conidial suspensions of B. cinerea 

isolate B05.10 (Rossi et al., 2011). The inoculum consisted of 5-µl droplets of a conidial 

suspension (5 × 10
5
 conidia/ml) or medium alone (for Mock treatment) prepared as 

previously described (Flors et al., 2007, Real et al., 2004). The adaxial surface of three fully 

expanded leaves per plant from four plants was inoculated with one droplet on right side of 

the central vein and incubated in MS agar (without sucrose) petri dishes. Plates were sealed to 

maintain humidity. Symptoms were recorded and measured 48 h post inoculation and the 

lesion area was measured using Image J software (Analyze tool). 
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Virus infection assays 

 The third oldest expanded leaf of each plant (1.08 stage) was dusted with 

carborundum. Subsequently, 5 μl of semipurified TMV-Cg virus (Asurmendi et al., 2004) 

diluted in 20 mM phosphate buffer (pH 7) was added and the surface of the leaf and was 

gently abraded. Mock-inoculated plants were buffer-rubbed. Samples of systemic leaves (half 

of rosette upper third oldest expanded leaf) were taken at 5 and 7 dpi. Leaves were frozen in 

individual tubes in liquid nitrogen and stored at −80°C until RNA extraction. The TMV-Cg 

infection level was determined as TMVCg-CP transcript relative accumulation by RT-qPCR. 

The following primers were used for qRT-PCR: TMVCg-CP FW´ 5´ 

TGTCGCAATCGTATCAAAC 3´; TMVCg-CP RV´ 5´ CTGTATCTGGAAACCGCTG 3´. 

Plants were infiltrated with distilled water or ssODN IMT504 (4 μM) 24 h prior virus 

infection with TMVCg. Total RNA was isolated from frozen A. thaliana leaf tissues using 

Trizol Reagent (Thermo Fisher, USA) and subsequently treated with DNAse I (Thermo 

Fisher, USA). For messenger-RNA detection, the first-strand cDNA was synthesized using 

MMLV reverse transcriptase (Thermo Fisher, USA) according to manufacturer’s instructions. 

All qRT-PCR experiments were carried out using an ABI Prism 7500 Real Time PCR System 

(Applied Biosystems, USA), following MIQE requirements (Minimun information for 

publication of quantitative real time PCR experiments requirements). Ubiquitin5 (UBQ5, 

NM-116090) was used as an internal reference gene (FW 5´ 

CGGACCAGCAGCGATTGATT 3´, RV 5´ ACGGAGGACGAGATGAAGCG 3’).  

Chemicals 

 Oligonucleotides (IMT 504: CATCATTTTGTCATTTTGTCATT and 2006: 

TCGTCGTTTTGTCGTTTTGT) were synthesized by IDT (Integrated DNA Technologies, 

USA) in both phosphodiester and phosphorothioate versions. In the latter case, all bonds 

between nucleotides were phosphorothioate. All ssODNs were solubilized in water. Abscisic 
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acid (ABA, mixed isomers), coronatine and Diphenyleneiodonium (DPI) were purchased 

from Sigma (USA), while flg22 was synthesized by GL Biochem (China) and PEP1 by 

Abbiotec (USA). PEP1 and ABA were dissolved in ethanol, coronatine in methanol and DPI 

in dimethylsulfoxide (DMSO), taking care to maintain the final concentration of all solvents 

below 1 % (v/v). For root length and qRT-PCR experiments, phosphorothioate ssODNs were 

used, while phosphodiester ssODNs were used for the rest of the experiments.  

RNA Isolation and qRT-PCR 

 Gene expression assays were performed on RNA extracted from five seven-day-old 

seedlings grown in 1X MS liquid medium supplemented with 0.5% sucrose (w/v) (Millet et 

al., 2010) (four biological replicates per treatment). Seedlings were incubated with H2O 

(control), 100 nM flg22 or phosphorothioate versions of the oligonucleotides (4µM) for 4h. 

Plant material was frozen in liquid nitrogen, and total RNA was extracted using Trizol 

reagent (Thermo Fisher, USA) according to the manufacturer’s instructions. RNA samples 

were treated with RQ-1 DNA-free DNase I (Promega, USA) and quantified with a Nanodrop 

spectrophotometer (Biophotometer Plus, Eppendorf). Complementary DNA synthesis was 

performed using M-MLV reverse transcriptase (Promega, USA) according to the 

manufacter´s instructions. qRT-PCR experiments were carried out in an StepOne Plus Real 

Time PCR System (Applied Biosystems, USA) equipment. Elongation factor 1 (EF1) was 

used as an internal reference gene. Primers used for qRT-PCR are as follows: EF1c 

(At1g18070) FW 5´ AGCACGCTCTTCTTGCTTTC 3´, EF1c RV 5´ 

GGGTTGTATCCGACCTTCTTC 3´, MPK3 (At3g45640) FW 5´ 

TCCCTGGTAAAGACCATGTTCA 3’, RV 5´ TCGGTGTGCCAAGCAACTC 3´, 

WRKY33 (At2g38470) FW 5´ TTCGTATGGCTGCTTCTTTTC 3´, RV 5´ 

TGAGGTTTAGGATGGTTGTGG 3’, PROPEP 1 (At5g64900) FW 5´ 

TGGCTCTACTCGTCACAACG 3´, PROPEP 1 RV 
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5´CAATGTAACTTAAAGTGCCTAATTATG 3´ and FRK1 (At2g19190) FW 5´ 

CAGAAACAGCGCGAAACGA 3´, FRK1 RV 5´ GGTCGGGCGGTCTGAAA 3´. qRT-

PCR data analysis and primer efficiencies were obtained using LinReg PCR software 

(Ramakers et al., 2003). EF1c gene was used to standardize the expression of a given target 

gene; then a ratio between treatments was calculated using the algorithm developed by 

(Pfaffl, 2001). Relative expression ratios and statistical analysis were performed using 

fgStatistics software interface (J. A. Di Rienzo, personal communication). The cut-off for 

statistically significant differences was set at P < 0.05. 

Stomatal aperture bioassays  

Stomatal bioassays were performed as previously described (Gudesblat et al., 2009). 

Epidermal peels from Col-0 or mutant leaves of 4-week-old plants were floated on 10:10 

buffer under light (10 mM KCl and 10 mM MES-KOH, pH 6.15) for 2.5 h, then ABA (20 

µM), flg22 (5 µM), PEP1 (100nM) or ssODNs IMT504 and 2006 at indicated concentrations 

were added to the incubation medium and peels were incubated for a further 1.5 h. DPI (20 

µM) or coronatine (1.56 µM) were applied 30 minutes prior to addition of flg22, IMT504 or 

2006. For the DNase I experiment, IMT504 (1µg) was incubated with or without 1µl (1U) of 

RQ-DNase I (Promega, USA) in the reaction buffer supplied by the manufacturer for 30 min 

at 37°C. Aliquots of the reactions were diluted in 10:10 buffer with the epidermal peels so 

that the final concentration of the initial input of IMT504 was 4 µM. Peels were also 

incubated with an identical volume of reaction buffer with DNase I as a control. EC50 values 

from dose-response curves were calculated using GraphPad Prism software (v5.01).  

Root length measurements 

Seedlings were grown on MS agar plates for 2 days and subsequently transferred to 1X MS 

liquid medium supplemented with 0.5% sucrose (w/v) for a further 5 days in the presence of 
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phosphorothioate versions of the ssODNs. Root length was measured with Image J software. 

EC50 values from dose-response curves were calculated using GraphPad Prism software 

(v5.01). 

 

RESULTS 

ssODNs elicit plant innate immunity in A. thaliana  

To investigate whether ssODNs are able to trigger plant defence, we performed a bacterial 

infection assay with Pst DC3000. Leaves from four-week-old A. thaliana were infiltrated 

with the ssODNs, IMT504 and 2006, the flagellin-derived peptide flg22 (Felix et al., 1999), 

or water as control. Plants were sprayed with Pst DC3000 24 h later. We observed that pre-

treatment with IMT504 or 2006 reduced pathogen growth to a similar extent as flg22 (Fig. 

1A). A similar 24 h pretreatment with IMT504 or 2006 also conferred some protection 

against the necrotrophic fungus B. cinerea (Fig. 1B), thus showing that the assayed ssODNs 

elicit a defence response against these pathogens. Next, we studied if IMT504 protects 

against TMV-Cg infection, by monitoring TMV-Cg coat protein (CgCP) mRNA 

accumulation through qPCR. Pretreatment with the ssODN failed to protect the plant against 

TMV-CG (Fig. 1C). Thus, the tested ssODNs confer protection against bacterial and fungal 

infections, but not against TMV-Cg.  

SSODNs inhibit root growth and promote stomatal closure in a BAK1-dependent manner 

 Elicitors capable of triggering pattern-triggered immunity (PTI) such as flg22 (Zipfel 

et al., 2006, Bartels and Boller, 2015) as well as dsRNA (Niehl et al., 2016) and exogenous 

DNA (Vega-Muñoz et al., 2018, Mazzoleni et al., 2015b, Duran-Flores and Heil, 2018) have 

been shown to inhibit root growth. Therefore, we tested the effect of IMT504 and 2006 on 

root growth in A. thaliana seedlings. We found no effect on root growth with regular 
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ssODNs, however when IMT504 and 2006 with phosphorothioate instead of phosphodiester 

bonds were used we found that both inhibit root growth in a dose-dependent manner with half 

maximal effective concentrations (EC50s) of 1.037 µM and 2.06 µM respectively (Fig.2A). 

Phosphorothioate bonds render ssODNs resistant to nucleases (Wickstrom, 1986) Lack of 

effect of regular ssODNs with phosphodiester bonds might be due nuclease degradation after 

prolonged incubation in culture medium. Promotion of stomatal closure is another common 

response triggered by different elicitors of plant defence such as flg22 (Melotto et al., 2006, 

Zhang et al., 2008), chitin, chitosan (Gust et al., 2007, Lee et al., 1999, Amborabe et al., 

2008) and PEP1(Zheng et al., 2018). For this reason, we tested the effect of ssODNs on 

stomata, and found that IMT504 and 2006 promoted stomatal closure in a dose-dependent 

manner with EC50s of 1.05 µM and 0.79 µM respectively (Fig. 2B). Promotion of closure by 

IMT504 was strongly reduced by treatment with DNase I but not by the enzyme buffer alone 

(Fig. 2C), showing that ssODN integrity is required to elicit stomatal immunity. Next, we 

tested whether BAK1, a LRR-RLK protein which has been shown to act as co-receptor of 

multiple proteins involved in MAMP perception (Yasuda et al., 2017), is required for the 

effect of ssODNs. For this purpose we measured inhibition of root growth and promotion of 

stomatal closure in bak1-5 and bak1-5/bkk1, since BKK1 is a receptor similar to BAK1 and 

with partially redundant function (Roux et al., 2011). We found a partial reduction in 

inhibition of root growth by IMT504 in both mutants (Fig. 3A), and a strong reduction in 

promotion of stomatal closure (Fig. 3B). These results indicate that ssODNs activate 

responses similar to those of other MAMPs and require BAK1 to activate immune responses.  

Signalling elements involved in induction of defence by ssODNs 

 ROS produced by NADPH oxidase RBOHD are required for stomatal closure 

triggered by MAMPs (Torres and Dangl, 2005, Toum et al., 2016, Kadota et al., 2014). To 

find out if NADPH oxidases are also involved in signalling downstream of ssODNs, we 
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conducted stomatal assays in the presence of the NADPH oxidase inhibitor DPI. As shown in 

Fig. 4A, we found that DPI significantly reduced closure induced by IMT504 and 2006, 

consistent with an involvement of ROS in ssODN signalling. This possibility was further 

strengthened by the observation that coronatine, a bacterial toxin previously shown to inhibit 

ROS synthesis in guard cells (Toum et al., 2016), significantly inhibited ssODNs-induced 

stomatal closure (Fig.4B). We next investigated sensitivity to ssODNs of npr1-3 and mpk3 

mutants, previously shown to be affected in promotion of stomatal closure by MAMPs such 

as flg22 (Macho et al., 2012), and found that both mutants were only partially insensitive to 

ssODNs. By contrast, they were completely insensitive to flg22, as previously reported. 

Altogether these results indicate that ssODNs share signalling components with other 

MAMPs such as flg22; however, the fact that npr1-3 and mpk3 mutants retain some 

sensitivity suggest that signalling cascades downstream of ssODNs and flg22 in guard cells 

are not identical.  

 

Early defence-related genes were upregulated by ssODNs  

 Since ssODNs protected A. thaliana plants from pathogen attack, we investigated the 

induction of some genes involved in early plant defence. For this purpose, we treated 7-day-

old WT, bak1 and bak1/bkk1 seedlings with ssODNs and measured expression of the 

pathogen-inducible genes MPK3 (Beckers et al., 2009), PROPEP1 (Huffaker et al., 2006), 

WRKY33 (Birkenbihl et al., 2012) and FRK1 (Boudsocq et al., 2010) by qRT-PCR 4h post 

incubation. All four genes were induced in response to IMT504 and 2006 in WT, and to a 

lesser extent in bak1 and bak1/bkk1 mutants, albeit not in all cases with statistically 

significant difference, consistent with a possible role of BAK1 in ssODN signalling (Fig. 5).  
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DISCUSSION 

Previously it was demonstrated that DNA extracted from plants (Wen et al., 2009, Mazzoleni 

et al., 2015a, Mazzoleni et al., 2015b, Duran-Flores and Heil, 2014, Duran-Flores and Heil, 

2018, Vega-Muñoz et al., 2018, Barbero et al., 2016) or bacteria (Yakushiji et al., 2009) can 

activate plant defence against bacterial or fungal pathogens. In this work we showed that two 

ssODNs, CpG rich 2006 and CpG poor IMT504, can also activate plant immunity at 

concentrations in the low micromolar range, similar to those reported for other activators of 

plant immunity such as several MAMPs and DAMPs. To our knowledge, this is the first 

report showing that synthetic ssDNA can activate plant immunity against bacterial and fungal 

pathogens. However, we failed to observe protection by the tested ssODNs against TMV-Cg, 

a single-stranded RNA virus.  

 Induction of immunity in A. thaliana by IMT504 and 2006 has similarities with that 

elicited by other MAMPs such as flagellin (Chinchilla et al., 2007a, Chinchilla et al., 2007b, 

Melotto et al., 2006), since both ssODNs promoted stomatal closure, inhibited root 

elongation, and induced the transcription of defence genes. The three responses were reduced 

in bak1-5 and bak1-5/bkk1 mutants, affected in co-receptors involved in the perception of 
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various elicitors of plant defence (Yasuda et al., 2017). The effect of these mutants was more 

marked in promotion of stomatal closure and inhibition of root elongation, and was not 

apparent in all cases in induction of gene expression. While the mechanism of DNA 

perception in plants is not clear, our results suggest that ssODNs are perceived by a LRR-

RLK receptor that requires association with BAK1 co-receptor in order to activate a 

downstream signalling cascade. Consistent with this possibility, similar EC50s were observed 

for inhibition of root elongation and promotion of stomatal closure for both ssODNs, ranging 

from 0.791 to 2.06 µM. While flg22, a BAK1 dependent elicitor of plant immunity, has been 

shown to induce extracellular alkalinization with an EC50 close to 1 nM (Chinchilla et al., 

2006), the same ligand only promoted stomatal closure at concentrations of 1 µM and higher 

(Melotto et al., 2006) and inhibited seedling growth with an EC50 close to 0.1 µM (Gomez-

Gomez et al., 1999). As a reference, an EC50 close to 1 µM has been observed for NF-κB 

activation by 2006 in HEK293 cells expressing TLR9 (Latz et al., 2004a), although different 

reports describing activation of different immune responses in mammalian cells by single or 

double stranded DNA report concentrations from low nM to over 100 µM (reviewed in Heil 

and Vega-Muñoz, 2019). In plants, the potato NB domain of the NLR R1 receptor was shown 

to bind to ssDNA, dsDNA and ssRNA in vitro, with dissociation constants (Kd) of 3.34, 2.75 

and 12.45 µM respectively (Fenyk et al., 2015), however this receptor has not been linked to 

DNA perception in vivo. Like ssODNs, dsRNA also stimulates immunity against ORMV, a 

dsRNA virus, in a BAK1 dependent manner (Niehl et al., 2016), indicating that like ssODNs, 

dsRNAs could also be perceived by a LRR that requires BAK1 as co-receptor. The integrity 

of ssODNs is required for their effect, since DNase treatment abolished most of its activity.  

 Previously it has been shown that A. thaliana sonicated genomic self-DNA almost 

completely stopped root growth, while Lepidium sativum heterologous DNA only reduced it 

by around 10% in the same plant (Mazzoleni et al., 2015b). In our experiments both ssODNs 
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reduced growth by around 50% at the highest concentration used, but only when when 

phosphorothioate versions were used. No inhibition of growth was observed with 

phosphodiester ssODNs, suggesting that they could be degraded during incubation. It is 

difficult to make comparisons between both experiments, since the mechanism of perception 

of genomic DNA and ssODNs could not be identical. Nevertheless, it would be interesting in 

the future to study the effect of synthetic double and single DNAs of diverse sequence to 

better understand the molecular mechanism underlying the differential perception of self and 

heterologous DNA.  

 It has been proposed that dsDNA acts as a DAMP in plants (Yakushiji et al., 2009, 

Gallucci and Maffei, 2017, Vega-Muñoz et al., 2018). ssDNA is not normally found inside 

plants, however given that TLR9 mammalian receptor can be activated by both single and 

double-stranded DNA (Gasser et al., 2017, Rigby et al., 2014), it could be possible that a 

similar receptor is responsible for the perception of both kind of molecules in plants. 

Alternatively, ssDNA perception could have evolved as a mechanism of defence against 

ssDNA viruses such as Geminiviruses, members of Geminiviridae family. 

 Signalling downstream of MAMPs whose perception depends on LRR receptors that 

associate with BAK1, such as flg22 and elf18 (Chinchilla et al., 2007b, Nekrasov et al., 

2009), is completely dependent on ROS production by RBOHD (Kadota et al., 2014). 

Promotion of stomatal closure by ssODNs was only partially reduced by DPI, a NADPH 

oxidase inhibitor, or in mpk3 and npr1-3 , two mutants completely insensitive to flg22 that 

presumably act downstream of ROS in the signalling cascade (Toum et al., 2016). Further 

evidence that ROS are involved in ssODN signalling arises from the fact that promotion of 

closure by these molecules is reduced by coronatine, a bacterial toxin that affects ROS 

production in guard cells (Toum et al., 2016). Therefore, it seems likely that signalling 

cascades for flg22 and ssODNs share some elements, but do not overlap completely. More 
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research is needed to find out which are the ROS-independent signalling events triggered by 

ssODNs. 

 In this work, we reported that two ssODNs previously shown to stimulate immunity in 

mammals, CpG rich 2006 and CpG poor (IMT504), could also elicit plant defence. Further 

research using ssODNs with different sequences should reveal if there is any specificity in 

sequence recognition, as suggested by previous findings showing that plants and other 

organisms preferentially activates their defences in response to foreign DNA (Vega-Muñoz et 

al., 2018). The use of synthetic oligonucleotides could shed light on the mechanism of 

stimulation of immunity by DNA, which might be a promising tool for crop protection and 

plant disease management.  

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa061/5817573 by guest on 09 April 2020



Acc
ep

ted
 M

an
us

cri
pt

 

19 
 

ACKNOWLEDGEMENTS 

AAV, GEG, GC and SA are Career Investigators of CONICET. LT, FCG and VPC were 

supported by doctoral and postdoctoral scholarships from CONICET. LT designed and 

performed the experiments, compiled the data and designed figures; GC and SA designed and 

performed virus experiment. FCG, VC and FAG collaborated with manuscript writing; AV 

and GEG supervised the experiments; LT and GEG wrote the article and conceived the 

project. All authors read and approved the manuscript. 

 

FUNDING INFORMATION 

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica 

(ANPCyT) [grants PICT 2013 N°1045, PICT 2015 N° 3286, PICT 2017 N° 2320 and PICT 

2017 N°2075] and by Consejo Nacional de Investigaciones Científicas y Técnicas 

(CONICET) [grants PIP 2012 N° 00677 and PIP 2015 N° 00903]. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa061/5817573 by guest on 09 April 2020



Acc
ep

ted
 M

an
us

cri
pt

 

20 
 

LITERATURE CITED 

Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. 2009. RIG-I-dependent 
sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA 
intermediate. Nat Immunol, 10: 1065-72. 

Adamus T, Kortylewski M. 2018. The revival of CpG oligonucleotide-based cancer immunotherapies. 
Contemp Oncol (Pozn), 22: 56-60. 

Amborabe BE, Bonmort J, Fleurat-Lessard P, Roblin G. 2008. Early events induced by chitosan on 
plant cells. J Exp Bot, 59: 2317-24. 

Asurmendi S, Berg RH, Koo JC, Beachy RN. 2004. Coat protein regulates formation of replication 
complexes during tobacco mosaic virus infection. Proc Natl Acad Sci U S A, 101: 1415-20. 

Barbero F, Guglielmotto M, Capuzzo A, Maffei ME. 2016. Extracellular Self-DNA (esDNA), but Not 
Heterologous Plant or Insect DNA (etDNA), Induces Plasma Membrane Depolarization and 
Calcium Signaling in Lima Bean (Phaseolus lunatus) and Maize (Zea mays). Int J Mol Sci, 17. 

Bartels S, Boller T. 2015. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, 
stress, and development. J Exp Bot, 66: 5183-93. 

Beckers GJ, Jaskiewicz M, Liu Y et al. 2009. Mitogen-activated protein kinases 3 and 6 are required 
for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 21: 944-53. 

Birkenbihl RP, Diezel C, Somssich IE. 2012. Arabidopsis WRKY33 is a key transcriptional regulator of 
hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol, 159: 
266-85. 

Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. 2011. CpG DNA as a vaccine adjuvant. Expert 
Rev Vaccines, 10: 499-511. 

Boudsocq M, Willmann MR, McCormack M et al. 2010. Differential innate immune signalling via 
Ca(2+) sensor protein kinases. Nature, 464: 418-22. 

Cadmus MC, Rogovin SP, Burton KA, Pittsley JE, Knutson CA, Jeanes A. 1976. Colonial variation in 
Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a 
variant strain. Can J Microbiol, 22: 942-8. 

Collins AC, Cai H, Li T et al. 2015. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for 
Mycobacterium tuberculosis. Cell Host Microbe, 17: 820-8. 

Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 2006. The Arabidopsis receptor kinase FLS2 
binds flg22 and determines the specificity of flagellin perception. Plant Cell, 18: 465-76. 

Chinchilla D, Boller T, Robatzek S. 2007a. Flagellin signalling in plant immunity. Adv Exp Med Biol, 
598: 358-71. 

Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. 2009. One for all: the receptor-associated 
kinase BAK1. Trends Plant Sci, 14: 535-41. 

Chinchilla D, Zipfel C, Robatzek S et al. 2007b. A flagellin-induced complex of the receptor FLS2 and 
BAK1 initiates plant defence. Nature, 448: 497-500. 

Chuang TH, Ulevitch RJ. 2000. Cloning and characterization of a sub-family of human toll-like 
receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw, 11: 372-8. 

Demirci FY, Manzi S, Ramsey-Goldman R et al. 2007. Association study of Toll-like receptor 5 (TLR5) 
and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus. J 
Rheumatol, 34: 1708-11. 

Du X, Poltorak A, Wei Y, Beutler B. 2000. Three novel mammalian toll-like receptors: gene structure, 
expression, and evolution. Eur Cytokine Netw, 11: 362-71. 

Duran-Flores D, Heil M. 2014. Damaged-self recognition in common bean (Phaseolus vulgaris) shows 
taxonomic specificity and triggers signaling via reactive oxygen species (ROS). Front Plant Sci, 
5: 585. 

Duran-Flores D, Heil M. 2018. Extracellular self-DNA as a damage-associated molecular pattern 
(DAMP) that triggers self-specific immunity induction in plants. Brain Behav Immun, 72: 78-
88. 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa061/5817573 by guest on 09 April 2020



Acc
ep

ted
 M

an
us

cri
pt

 

21 
 

Elias F, Flo J, Lopez RA, Zorzopulos J, Montaner A, Rodriguez JM. 2003. Strong cytosine-guanosine-
independent immunostimulation in humans and other primates by synthetic 
oligodeoxynucleotides with PyNTTTTGT motifs. J Immunol, 171: 3697-704. 

Elias F, Flo J, Rodriguez JM, De Nichilo A et al. 2005. PyNTTTTGT prototype oligonucleotide IMT504 
is a potent adjuvant for the recombinant hepatitis B vaccine that enhances the Th1 
response. Vaccine, 23: 3597-603. 

Felix G, Duran JD, Volko S, Boller T. 1999. Plants have a sensitive perception system for the most 
conserved domain of bacterial flagellin. Plant J, 18: 265-76. 

Fenyk S, Dixon CH, Gittens WH at al. 2016. The Tomato Nucleotide-binding Leucine-rich Repeat 
Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide 
Exchange. J Biol Chem, 291: 1137-47. 

Fenyk S, Townsend PD, Dixon CH at al. 2015. The Potato Nucleotide-binding Leucine-rich Repeat 
(NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein. J Biol Chem, 
290: 24945-60. 

Flors V, Leyva Mde L, Vicedo B at al. 2007. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 
reduces susceptibility to Botrytis cinerea in tomato. Plant J, 52: 1027-40. 

Gallucci S, Maffei ME. 2017. DNA Sensing across the Tree of Life. Trends Immunol, 38: 719-732. 
Garneau JE, Dupuis ME, Villion M et al. 2010. The CRISPR/Cas bacterial immune system cleaves 

bacteriophage and plasmid DNA. Nature, 468: 67-71. 
Gasser S, Zhang WYL, Tan NYJ et al. 2017. Sensing of dangerous DNA. Mech Ageing Dev, 165: 33-46. 
Gomez-Gomez L, Felix G, Boller T. 1999. A single locus determines sensitivity to bacterial flagellin in 

Arabidopsis thaliana. Plant J, 18: 277-84. 
Gudesblat GE, Torres PS, Vojnov AA. 2009. Xanthomonas campestris overcomes Arabidopsis 

stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant 
Physiol, 149: 1017-27. 

Gust AA, Biswas R, Lenz HD at al. 2007. Bacteria-derived peptidoglycans constitute pathogen-
associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem, 282: 
32338-48. 

Hartmann G. 2017. Chapter Four: Nucleid acid immunity. Advances in Immunology, 133: 121-169. 
Hartmann G, Krieg AM. 2000. Mechanism and function of a newly identified CpG DNA motif in 

human primary B cells. J Immunol, 164: 944-53. 
Hartmann G, Weiner GJ, Krieg AM. 1999. CpG DNA: a potent signal for growth, activation, and 

maturation of human dendritic cells. Proc Natl Acad Sci U S A, 96: 9305-10. 
Heese A, Hann DR, Gimenez-Ibanez S et al. 2007. The receptor-like kinase SERK3/BAK1 is a central 

regulator of innate immunity in plants. Proc Natl Acad Sci U S A, 104: 12217-22. 
Heil F, Hemmi H, Hochrein H et al. 2004. Species-specific recognition of single-stranded RNA via toll-

like receptor 7 and 8. Science, 303: 1526-9. 
Heil M. 2009. Damaged-self recognition in plant herbivore defence. Trends Plant Sci, 14: 356-63. 
Heil M, Vega-Muñoz I. 2019. Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats.  

International Review of Cell and Molecular Biology: Elsevier. 
Huang HJ, Cui JR, Xia X, Chen J, Ye YX, Zhang CX, Hong XY. 2019. Salivary DNase II from Laodelphax 

striatellus acts as an effector that suppresses plant defence. New Phytol, 224: 860-874. 
Huffaker A, Pearce G, Ryan CA. 2006. An endogenous peptide signal in Arabidopsis activates 

components of the innate immune response. Proc Natl Acad Sci U S A, 103: 10098-103. 
Jahrsdörfer B, Weiner GJ. 2008. CpG oligodeoxynucleotides as immunotherapy in cancer. Update 

Cancer Therapy, 3: 27-32. 
Kadota Y, Sklenar J, Derbyshire P et al. 2014. Direct regulation of the NADPH oxidase RBOHD by the 

PRR-associated kinase BIK1 during plant immunity. Mol Cell, 54: 43-55. 
Knip M, Richard MMS, Oskam L, van Engelen HTD, Aalders T, Takken FLW. 2019. Activation of 

immune receptor Rx1 triggers distinct immune responses culminating in cell death after 4 
hours. Mol Plant Pathol, 20: 575-588. 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa061/5817573 by guest on 09 April 2020



Acc
ep

ted
 M

an
us

cri
pt

 

22 
 

Kopfnagel V, Wagenknecht S, Harder J et al. 2018. RNase 7 Strongly Promotes TLR9-Mediated DNA 
Sensing by Human Plasmacytoid Dendritic Cells. J Invest Dermatol, 138: 872-881. 

Krieg AM. 2002. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol, 20: 709-
60. 

Latz E, Schoenemeyer A, Visintin A et al. 2004a. TLR9 signals after translocating from the ER to CpG 
DNA in the lysosome. Nat Immunol, 5: 190-8. 

Latz E, Visintin A, Espevik T, Golenbock DT. 2004b. Mechanisms of TLR9 activation. J Endotoxin Res, 
10: 406-12. 

Lee S, Choi H, Suh S et al. 1999. Oligogalacturonic acid and chitosan reduce stomatal aperture by 
inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina 
communis. Plant Physiol, 121: 147-52. 

Li T, Chen ZJ. 2018. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, 
senescence, and cancer. J Exp Med, 215: 1287-1299. 

Ma H, Yanofsky MF, Huang H. 1991. Isolation and sequence analysis of TGA1 cDNAs encoding a 
tomato G protein alpha subunit. Gene, 107: 189-95. 

Macho AP, Boutrot F, Rathjen JP, Zipfel C. 2012. Aspartate oxidase plays an important role in 
Arabidopsis stomatal immunity. Plant Physiol, 159: 1845-56. 

Mazzoleni S, Bonanomi G, Incerti G et al. 2015a. Inhibitory and toxic effects of extracellular self-
DNA in litter: a mechanism for negative plant-soil feedbacks? New Phytol, 205: 1195-210. 

Mazzoleni S, Carteni F, Bonanomi G et al. 2015b. Inhibitory effects of extracellular self-DNA: a 
general biological process? New Phytol, 206: 127-32. 

Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006. Plant stomata function in innate 
immunity against bacterial invasion. Cell, 126: 969-80. 

Millet YA, Danna CH, Clay NK et al. 2010. Innate immune responses activated in Arabidopsis roots 
by microbe-associated molecular patterns. Plant Cell, 22: 973-90. 

Montaner A, De Nichilo A, Rodrìguez JM et al. 2012. IMT504: A new and potent adjuvant for rabies 
vaccines permitting significant dose sparing. World Journal of Vaccines, 2: 182-188. 

Nekrasov V, Li J, Batoux M et al. 2009. Control of the pattern-recognition receptor EFR by an ER 
protein complex in plant immunity. EMBO J, 28: 3428-38. 

Niehl A, Wyrsch I, Boller T, Heinlein M. 2016. Double-stranded RNAs induce a pattern-triggered 
immune signaling pathway in plants. New Phytol, 211: 1008-19. 

Ohto U, Ishida H, Shibata T, Sato R, Miyake K, Shimizu T. 2018. Toll-like Receptor 9 Contains Two 
DNA Binding Sites that Function Cooperatively to Promote Receptor Dimerization and 
Activation. Immunity, 48: 649-658 e4. 

Ohto U, Shibata T, Tanji H et al. 2015. Structural basis of CpG and inhibitory DNA recognition by Toll-
like receptor 9. Nature, 520: 702-5. 

Park HJ, Wang W, Curlango-Rivera G et al. 2019. A DNase from a Fungal Phytopathogen Is a 
Virulence Factor Likely Deployed as Counter Defense against Host-Secreted Extracellular 
DNA. MBio, 10. 

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic 
Acids Res, 29: e45. 

Ramakers C, Ruijter JM, Deprez RH, Moorman AF. 2003. Assumption-free analysis of quantitative 
real-time polymerase chain reaction (PCR) data. Neurosci Lett, 339: 62-6. 

Real MD, Company P, Garcia-Agustin P, Bennett AB, Gonzalez-Bosch C. 2004. Characterization of 
tomato endo-beta-1,4-glucanase Cel1 protein in fruit during ripening and after fungal 
infection. Planta, 220: 80-6. 

Rigby RE, Webb LM, Mackenzie KJ et al. 2014. RNA:DNA hybrids are a novel molecular pattern 
sensed by TLR9. EMBO J, 33: 542-58. 

Rodriguez JM, Elias F, Flo J, Lopez RA, Zorzopulos J, Montaner AD. 2006. Immunostimulatory 
PyNTTTTGT oligodeoxynucleotides: structural properties and refinement of the active motif. 
Oligonucleotides, 16: 275-85. 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa061/5817573 by guest on 09 April 2020



Acc
ep

ted
 M

an
us

cri
pt

 

23 
 

Rossi FR, Garriz A, Marina M et al. 2011. The sesquiterpene botrydial produced by Botrytis cinerea 
induces the hypersensitive response on plant tissues and its action is modulated by salicylic 
acid and jasmonic acid signaling. Mol Plant Microbe Interact, 24: 888-96. 

Roux M, Schwessinger B, Albrecht C et al. 2011. The Arabidopsis leucine-rich repeat receptor-like 
kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic 
and biotrophic pathogens. Plant Cell, 23: 2440-55. 

Saijo Y, Loo EP, Yasuda S. 2018. Pattern recognition receptors and signaling in plant-microbe 
interactions. Plant J, 93: 592-613. 

Schwessinger B, Roux M, Kadota Y et al. 2011. Phosphorylation-dependent differential regulation of 
plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. 
PLoS Genet, 7: e1002046. 

Sirois CM, Jin T, Miller AL et al. 2013. RAGE is a nucleic acid receptor that promotes inflammatory 
responses to DNA. J Exp Med, 210: 2447-63. 

Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that 
activates the type I interferon pathway. Science, 339: 786-91. 

Takeuchi O, Akira S. 2008a. MDA5/RIG-I and virus recognition. Curr Opin Immunol, 20: 17-22. 
Takeuchi O, Akira S. 2008b. RIG-I-like antiviral protein in flies. Nat Immunol, 9: 1327-8. 
Torres MA, Dangl JL. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic 

stress and development. Curr Opin Plant Biol, 8: 397-403. 
Toum L, Torres PS, Gallego SM, Benavides MP, Vojnov AA, Gudesblat GE. 2016. Coronatine Inhibits 

Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS 
Production. Front Plant Sci, 7: 1851. 

Townsend PD, Dixon CH, Slootweg EJ et al. 2018. The intracellular immune receptor Rx1 regulates 
the DNA-binding activity of a Golden2-like transcription factor. J Biol Chem, 293: 3218-3233. 

Vega-Muñoz I, Feregrino-Pérez A, Torres-Pacheco I, Guevara-González R. 2018. Exogenous 
fragmented DNA acts as a damage-associated molecular pattern (DAMP) inducing changes in 
CpG DNA methylation and defence-related responses in Lactuca sativa. Functional Plant 
Biology, 45: 1065-1072. 

Wen F, White GJ, VanEtten HD, Xiong Z, Hawes MC. 2009. Extracellular DNA is required for root tip 
resistance to fungal infection. Plant Physiol, 151: 820-9. 

Wickstrom E. 1986. Oligodeoxynucleotide stability in subcellular extracts and culture media. J 
Biochem Biophys Methods, 13: 97-102. 

Yakushiji S, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. 2009. Bacterial DNA activates 
immunity in Arabidopsis thaliana. J Gen Plant Pathol, 75: 227-234. 

Yasuda S, Okada K, Saijo Y. 2017. A look at plant immunity through the window of the multitasking 
coreceptor BAK1. Curr Opin Plant Biol, 38: 10-18. 

Zhang W, He SY, Assmann SM. 2008. The plant innate immunity response in stomatal guard cells 
invokes G-protein-dependent ion channel regulation. Plant J, 56: 984-96. 

Zheng X, Kang S, Jing Y, Ren Z et al. 2018. Danger-Associated Peptides Close Stomata by OST1-
Independent Activation of Anion Channels in Guard Cells. Plant Cell, 30: 1132-1146. 

Zipfel C, Kunze G, Chinchilla D et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor 
EFR restricts Agrobacterium-mediated transformation. Cell, 125: 749-60. 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

caa061/5817573 by guest on 09 April 2020



Acc
ep

ted
 M

an
us

cri
pt

 

24 
 

 

 

 

Figure captions 

Fig.1 ssODNs induce immunity against Pst DC3000 and B. cinerea but not against 

TMV-Cg in A. thaliana 

(A) ssODNs protect from Pst DC3000. Col-0 plants were infiltrated with H2O (mock), flg22 

(1μM), IMT504 (4 μM) or 2006 (4 μM) 24 h prior to infection with Pst DC3000. Bacterial 

growth was measured at 0 and 4 d post inoculation (dpi), cfu, colony-forming units. (B) 

ssODNs protect from B. cinerea. Col-0 plants were infiltrated with H2O (mock), IMT504 (4 

μM) or 2006 (4 μM) 24 h prior to infection with B. cinerea, and lesion areas were measured 

48 h after inoculation. (C) TMV-Cg accumulation 5- and 7-days post infection (dpi) of Col-0 

plants pre-infiltrated 24 h before infection with IMT504 (4 μM) relative to H20 (mock) 

control. TMV-Cg infection was determined as TMVCg-CP transcript relative accumulation 

by RT-qPCR. Different letters indicate statistically significant differences (p < 0.05, (A) two-

way ANOVA, (B,C) one-way ANOVA). Error bars represent SE from two biological 

replicates per treatment in three independent experiments (A), from 12 lesion replicates in 

three independent experiments and 30 replicates in one additional independent experiment 

(B), and from 8 replicates in two independent experiments (C)  

 

Fig. 2 ssODNs inhibit root growth and promote stomatal closure in a dose-dependent 

manner 

(A) IMT504 and 2006 inhibit Col-0 root growth. Two-day-old seedlings were transferred for 

five days to liquid MS medium supplemented with IMT504 or 2006 at the indicated 

concentrations. (B) IMT504 and 2006 promote stomatal closure in Col-0. Stomatal apertures 
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were measured 1.5 h after incubation with IMT504 or 2006 at the indicated concentrations 

(C) DNase I treatment reduces promotion of stomatal closure by IMT504. A 30-minute pre-

treatment of IMT504 with DNase I, but not with DNase I buffer alone, reduced its capacity to 

promote stomatal closure. IMT504 was used at 4 μM for the stomatal assay. Different letters 

indicate significant differences (p < 0.05, one-way ANOVA). Error bars represent SE from 

three independent trials (A, B); n=5 (A), or 40 (B, C) per trial.  

Fig. 3 ssODNs inhibit root growth and promote stomatal closure in a BAK1 dependent 

manner 

(A) bak1-5 and bak1-5/bkk1 mutants are less sensitive than Col-0 in inhibition of root growth 

by IMT504 and 2006. Two-day-old seedlings were incubated for five days in liquid MS 

medium supplemented with phosphorothioate IMT504 (4 μM) or 2006 (4 μM). (B) bak1-5 

and bak1-5/bkk1 mutants fail to close stomata in response to IMT504 and 2006. Stomatal 

apertures were measured 1.5 h after incubation with H2O (mock), ABA (20 µM), flg22 (5 

µM), PEP1 (100nM), IMT504 (4 μM) or 2006 (4 μM). Different letters indicate significant 

differences (p < 0.05, two-way ANOVA) (A, B). Error bars represent SE from three 

independent trials (A, B); n=5 (A) or 40 (B) per trial.  

Fig. 4 Promotion of stomatal closure by ssODNs involves ROS production and is 

reduced in mpk3 and npr1-3 mutants 

(A) DPI inhibits ssODN-induced stomatal closure. DPI (20 μM) was added to the incubation 

buffer 10 minutes prior to flg22 (5 μM), IMT504 (4 μM) and 2006 (4 μM). (B) Coronatine 

(COR, 1.56 μM) partially prevented stomatal closure induced by IMT504 (4 μM) and 2006 (4 

μM). (C) npr1-3 and mpk3 mutants displayed reduced susceptibility to IMT504 and 2006. 

Epidermis were incubated with IMT504 (4 μM) and 2006 (4 μM) or flg22 (5 μM). Different 

letters indicate significant differences (p < 0.05 (A), (B) one-way ANOVA, Turkey´s test; (C) 
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two-way ANOVA). Error bars represent SE from three independent trials, n=40 per trial in all 

experiments. Stomatal apertures were measured 1.5 h after application of the respective 

treatments. 

Fig. 5 ssODNs induce defence related genes MPK3, PROPEP1 and WRKY33  

A. thaliana 7-d-old seedlings were incubated in liquid MS medium with IMT504 (4 μM), 

2006 (4 μM), flg22 (1 μM) or H2O (control, mock). Plants were harvested 4 h post 

incubation, and expression of MPK3, PROPEP1, WRKY33 and FRK1 was measured by 

qRT-PCR. Asterisks indicate significant differences relative to mock-treated plants (p < 0.05, 

permutation test, Fg Statistics). Error bars represent SD from three independent trials with 2 

biological replicates each. 
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