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a b s t r a c t

A regional analysis of the effects of soil and climate factors on wheat yield was performed in the Argentine
Pampas in order to obtain models suitable for yield estimation and regional grain production prediction.
Soil data from soil surveys and climate data from meteorological records were employed. Grain production
information from statistics at county level was integrated at a geomorphological level. The Pampas was
divided into 10 geographical units and data from 10 growing season were used (1995–2004). Surface
regression and artificial neural networks (ANN) methodologies were tested for analyzing the data. Wheat
yield was correlated to soil available water holding capacity (SAWHC) in the upper 100 cm of the profiles
(r2 = 0.39) and soil organic carbon (SOC) content (r2 = 0.26). The climate factor with stronger effect on yield
was the rainfall/crop potential evapotranspiration ratio (R/CPET) during the fallow and vegetative crop
growing cycle periods summed (r2 = 0.31). The phototermal quotient (PQ) during the pre-anthesis period
had also a significant effect on yield (r2 = 0.05). A surface regression response model was developed that
account for 64% of spatial and interannual yield variance, but this model could not perform a better yield
prediction than the blind guess technique. An ANN was fitted to the data that accounted for 76% of yield
variability. Comparing predicted versus observed yield a lower RMSE (P = 0.05) was obtained using the
ANN than using the regression or the blind guess methods. Regional production estimations performed

by the ANN showed a good agreement with observed data with a RMSE equivalent to 7% of the whole
surveyed area production. As variables used for the ANN development may be available around 40–60
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days before wheat harvest

. Introduction

The Argentine Pampas is a vast plain of around 50 Mha (Alvarez
nd Lavado, 1998) where nearly 50% of the area is devoted to agri-
ulture, being wheat one of the main crops (Hall et al., 1992). The
egion is considered as one of the most suitable areas for grain crops
roduction in the world (Satorre and Slafer, 1999).

The effects of soil properties and climate on wheat yield have
een assessed in some areas of the Pampas at the farmers fields
cale. In the southern portion (Southern Pampa), a humid sub
egion with soils of high organic matter content, water deficit
uring 30 days before to 10 days after the flowering period, and tem-
erature during grain filling, accounted for over half of the variance
n crop yield (Calviño and Sadras, 2002). In this Pampean subregion
heat yields are also higher in deep soils (100–120 cm free rot-

ing depth) than in shallow ones (Sadras and Calviño, 2001). In the
ast portion of the Pampas (Inland Pampa and West Pampa), with
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ethodology may be used for wheat production forecasting in the Pampas.
© 2008 Elsevier B.V. All rights reserved.

emiarid climate and medium to low organic matter soils, wheat
ield is correlated to soil organic matter (SOM) following a linear-
lateau tendency (r2 = 0.48) with a critical level at 72 t SOM ha−1 in
he upper 20 cm of the profile (Díaz-Zorita et al., 1999). In the north-
rn portion of the Pampas (Rolling Pampa), a humid sub region with
oils of medium organic matter content and deep profiles, rainfall
nd nutrients availability accounted for 50–70% or yield variability
Alvarez and Grigera, 2005; Sain and Jauregui, 1993).

At the scale of the whole Pampean Region there are no studies
elating both soil properties and climate to wheat yield, because
vailable soil data came form surveys at the series level and no
ntegration has been performed to county or geomorphological
evels, which allow relating those data to existing statistical yield
nformation. It had only been detected that wheat yield is lower
n areas with drainage problems (Veron et al., 2004). Conversely,
limate effects on wheat had been assessed in the past. Using

esults from field experiments widespread along the Pampas, under
ater and nutrients non-limiting scenarios, the phototermal quo-

ient (PQ = ratio between incident radiation to temperature during
he critical period of one month prior to anthesis) accounted for
early 50% of interannual wheat yield variability (Magrin et al.,

http://www.sciencedirect.com/science/journal/11610301
http://www.elsevier.com/locate/eja
mailto:ralvarez@agro.uba.ar
dx.doi.org/10.1016/j.eja.2008.07.005
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soil profiles characteristics described in soil surveys and their cor-
responding area, the weighed average values of soil organic carbon
(SOC), clay, silt, and sand were calculated as previously described
(Alvarez and Lavado, 1998) for different soil layers: 0–20, 20–50
and 50–100 cm. Each value obtained was the mean SOC, clay, silt,
R. Alvarez / Europ. J. A

993). Combining county statistical yield data and sparse informa-
ion on harvest index, a regional analysis of climate factors effects
n the above ground net primary productivity of the crop showed
hat rainfall and temperature accounted for 63% of the variance
Veron et al., 2002). Also using this county information a model
hat explains 34% of wheat yield variability was developed with PQ
nd rainfall as independent variables (Veron et al., 2004).

As there is no models for yield prediction developed in the Pam-
as, wheat production is forecasting before harvest by estimation
f surface seeded to the crop, using reports from local informers,
nd average yield of different areas. In some cases, in-season yield
stimated in the field is used for adjusting average predictions.

Artificial neural networks (ANN) had become a popular tech-
ique in biological sciences due to their predictive quality and
ecause there are simplest than process based models (Joergensen
nd Bendoricchio, 2001; Özesmi et al., 2006). They are adaptive
nalytical methodologies based on neuronal structures and pro-
essing of the brain capable of learning relationships in patters
f information (Joergensen and Bendoricchio, 2001). ANN had the
dvantage over other empirical modeling techniques that do not
ssume an a priory structure for the data, are well suited for fit-
ing non-linear relationships and complex interactions, and can
xpose hidden relationships among input variables (Batchelor et al.,
997). As other empirical models they cannot extrapolate outside
he range of data inputs.

Typically an ANN is structured in three neuronal layers: an input
ayer in which numbers of neurons correspond to the number
f input variables, a hidden layer with a complexity determined
mpirically during ANN development, and an output layer with a
euron for each output variable (Fig. 1). Information flows from
he input layer to the output layer through the hidden layer and
he learning process consists in adjusting the weights associated
o the transfer functions between neurons comparing ANN out-
uts with observed data by an iterative procedure (Joergensen and
endoricchio, 2001). This learning process is performed usually
y the back propagation algorithm that fits the weights from the
utput layer through the input layer (Kaul et al., 2005). The most
ommon transfer function used between the hidden layer and the
utput layer is the sigmoid, and the lineal function is generally used
o pass information from the input layer to the hidden layer (Kaul
t al., 2005). Agronomic examples of ANN uses are as variable as
nvironmental correlation (Park and Vlek, 2002), perdition of soil
rganic carbon content (Somaratgne et al., 2005), generate fertil-

zer recommendations (Broner and Comstock, 1997), estimation of
oil hydraulic properties (Nemes et al., 2003), prediction of crop
evelopment (Elizondo et al., 1994), epidemic severity evaluation
Batchelor et al., 1997), and yield prediction (Kaul et al., 2005).

ig. 1. Representation of a feed-forward artificial neuronal network showing layers
nd connections.
my 30 (2009) 70–77 71

My objective was to analyze at the regional scale the effects
f soil properties and climate on wheat yield in the Pampas
n order to generate models suitable for accounting spatial and
nterannual yield variability. These models may be used for under-
tanding which are the main factors controlling crop yield, for
he development of productivity indexes, and for grain production
orecasting. Artificial neural networks were used as tools for yield
redictions.

. Materials and methods

The Pampas plain runs from 28 to 40◦S in Argentina. The relief is
at or slightly rolling and its natural vegetation consist of grasslands

n which graminaceous vegetation species are dominant. Mean
nnual rainfall ranged from 200 mm in the west to 1200 mm in
he east and mean annual temperature ranged from 14 ◦C in the
outh to 23 ◦C in the north. Agriculture is performed in the semi-
rid and humid portions of the region on well drained soils, mainly
ollisols formed on loess like materials, and areas with hydromor-

hic soils are devoted to pastures (Hall et al., 1992). Wheat (Triticum
estivum), corn (Zea mays) and soybean (Glicine max) are the main
rops, being wheat widespread all over the region. Around 6 Mha
re sown to wheat annually (SAGYP, 2004). The fallow period falls
sually between April and June and the crop growing cycle from

uly to end of November, with some variability between Pampean
ubregions.

Soil data were obtained from soil surveys of the provinces of
a Pampa (INTA, 1980), Buenos Aires (INTA, 1989) and Santa Fe
INTA, 1981, 1983). In these surveys, typical profiles and the area
hey occupied were reported. The surface of the surveyed area
as divided into 10 geographic units (Fig. 2) according to geomor-
hological and soil classification considerations previously defined
INTA, 1980, 1989) and taking into account that rainfall and temper-
ture throughout each unit were homogenously. On the basis of the
Fig. 2. Map of the Pampean Region and the geographic units studied.
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r sand content of the geographic unit for each depth, and includes
he mean of all the soils within the unit weighed by the area that
ccupied. Soil bulk density was estimated from texture and organic
atter contents (Rawls, 1983) and SOC contents to 50 cm depth
ere expressed on a surface basis. Soil available water holding

apacity (SAWHC) was estimated to 100 cm depth by the method
f Rawls et al. (1982). In the south and west portions of the Pampas
any soils presented a strong petrocalcic layer within the upper

00 cm of the profile that completely restricts roots grow. This
as taken into account in the integration of data when averaging

AWHC of the geographic units considering for these soils, calculat-
ng SAWHC only within the free rotting depth. Total surveyed area
ntegrated in this study rounded 26 Mha and include around 60%
f surface destined to wheat in the Pampas. Yield information from
ther argentine provinces was not used because of the lack of ade-
uate soil surveys. Neither data from the Flat Pampa, a subregion
f the Buenos Aires Province characterized by very low slopes and
idromorphic soils, was integrated in this study because agricul-
ure is restricted to small areas on summit positions and averaging
oil properties to the geomorphic level would give biased results
or cropped soils.

Climatic records were obtained from unpublished data of the
ervicio Meteorológico Nacional available upon request. Monthly
recipitation and mean monthly temperature were calculated
rom 1995 to 2004. Potential evapotranspiration was estimated
y a modification of the Penman formula (Linacre, 1977). Locally
djusted kc coefficients (Doorenbos and Pruitt, 1977; Totis and
erez, 1994) were applied to estimate wheat potential evapo-
ranspiration. For the fallow period as no kc coefficients were
vailable it was assumed a value equivalent to that corresponding
o the sowing period (0.5). The ratio rainfall/crop potential evap-
transpiration (R/CPET) was calculated for the fallow period and
or different periods during the crop growing cycle. For estima-
ion of incoming solar radiation, a locally developed modification
f the Hunt et al. (1998) method was employed for estimation
f atmosphere transmittance which allows a closer agreement
etween esteemed radiation versus radiometric measurements

n the Pampean Region (Alonso et al., 2002). Solar radiation
t the top of the atmosphere was calculated using algorithms
ncluded in RadEst 3.00 (Donatelli et al., 2003). The PQ was cal-
ulated for the critical period of one month before anthesis using
steemed incoming radiation and mean daily temperature above
base temperature of 4.5 ◦C (Magrin et al., 1993). Anthesis dates

aried with latitude in the Pampas from 30 September in the
orth to 10 November in the south. Anthesis dates at differ-
nt latitudes were taken from experiments published in Magrin
t al. (1993) and for intermediate latitudes estimations were
erformed using unpublished data (F. Menéndez, personal com-
unication).
Yield data were calculated from unpublished records of

he Secretaría de Agricultura, Ganadería y Pesca of Argentina
f annual harvested surface and grain production at county
evel for the period 1995–2004. Yearly data of seeded sur-
ace with wheat were also available. Integration of data for
he geographical units was performed as the weighed aver-
ges of the county yield averages affected by the corresponding
urfaces.

A blind guess methodology was tested for prediction of yield of
he geographical units previously defined. Average yield for each
nit was calculated for the period 1995–2004 and annual observed

ield correlated with these averages taken as predictions. Regres-
ion techniques were also tested for yield forecasting. In a fist
tep, relationships between yield and soil or climate variables were
ested with linear and quadratic simple regression using the r2 as a
ecision criterion. In a second step, a polynomial surface response

a
r
C
a
t
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odel was developed of the form:

ield = a0 + a1v1 − a2v2
1 + a3v2 − a4v2

2 + a5v1v2

+· · · + an−2vx − an−1v2
x + anvxvx−1

here a0–an are the regression coefficients and v1–vx are the inde-
endent variables.

The model incorporates linear and quadratic terms for assess-
ng linear and curvilinear effects of independent variables on the
ependent variable and interaction terms between independent
ariables. It has been extensively used in agronomic experiment
valuation with positive expected linear effects and negative
uadratic effects (Colwell, 1994). A combination of forward, back-
ard and stepwise regression adjustments were used in order to
btain the simplest model with the highest r2. Terms were main-
ained in the final model only when they were significant at P = 0.05
nd the whole regression at P = 0.01 by the F test. Autocolinear-
ty of independent variables were checked by means of the VIF
alue (Neter et al., 1990). A hierarchical approach was implemented
ombining variables for calculating others that include the effects
f the variables in the fist level but allowed the simplification of
odels. (Schaap et al., 1998). Ten-fold cross validation was used

or assessing the ability of the best regression model obtained of
eneralization to other possible data sets.

A feed-forward back propagation ANN was them tested for yield
rediction. This kind of ANN, known as multilayer preceptors, had
hown to be well suited for yield prediction at the plot scale and
ther agronomic uses when managing sets of data of similar size
o that available in this study (Kaul et al., 2005; Starrett et al.,
997). Lineal transfer functions were used from the input layer to
he hidden layer and from the output layer to the network output,

eanwhile a sigmoid function (Lee et al., 2003) connected the hid-
en layer to the output layer. Input variables were scaled by the
inimax procedure between 0 and 1 to make variation ranges uni-

orm and data suitable for the sigmoid function (Park and Vlek,
002). Network outputs were de-scaled to original units. The ANN
as developed by a supervised learning procedure using the back
ropagation algorithm for weights fitting (Rogers and Dowla, 1994).
hierarchical approach was implemented for model simplifica-

ion during the selection of input variables, preferring those that
esulted from the integration of variables used in their construction,
hich effects resumed (Park and Vlek, 2002). The stepwise method-

logy was applied for inputs selection during ANN testing (Gevrey
t al., 2003). The learning rate controls the size of weight change
ade by the back propagation algorithm during each iteration (Kaul

t al., 2005). A larger learning rate may lead to faster convergence
ut may lead to a local minimum (Lee et al., 2003). Consequently,
low learning rate of 0.1 was used during ANN development. The

poch size represents the number of epochs (iterations) for which
he algorithm will run. On each epoch, the entire training set is
ed through the network, and used to adjust the network weights
Somaratgne et al., 2005). Around 50 epochs are adequate for con-
ergence in some situations (Schaap and Bouten, 1996; Schaap et
l., 1998). An epoch size of 100 was used here.

As the number of neuron in the hidden layer increase, the model
ts better to the training data but the problem of possible overlearn-

ng (overfitting) increase too (Özesmi et al., 2006). Consequently,
balance between prediction ability of the ANN and complexity
ust be reach. Maximum initial number of neurons in the hid-

en layer was set by methods describe by Somaratgne et al. (2005)

nd neurons were deleted one at a time till model simplification
educed its ability to fit the data using the r2 as decision criterion.
ross-validation is recommended to avoid overlearning (Özesmi et
l., 2006), with early stopping of weights adjustment, when devia-
ion from the verification set becomes higher than from the training
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Table 1
Range of variability of soil and climate variables and wheat yield

Clay (%)a Silt (%)a Sand (%)a Organic carbon
(%)b

Temperature
(◦C)c

Radiation
(MJ m−2 d−1)d

Rainfall Yield (kg ha−1)

Fallow period
(mm)

Vegetative
period (mm)

Reproductive
period (mm)

Mean 23.8 34.6 41.6 2.07 13.5 19.0 184 117 211 2500
Minimum 9.70 21.1 5.90 1.17 10.3 6.70 64.0 20.0 30.0 947
Maximum 33.6 60.6 69.2 3.42 17.3 24.1 492 259 389 4130

a 0–100 cm depth or down to petrocalcic horizon.
b 0–50 cm depth.
c During crop growing cycle.
d During critical period of one month before anthesis.

Table 2
Correlation coefficients between independent variables

Available water holding capacity Organic carbon Fototermal quotient Rainfall fallow period Rainfall vegetative period

Organic carbon 0.127
Fototermal quotient −0.234 0.289
Rainfall fallow period 0.163 0.254 0.009
R
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relation coefficient. A rise in PQ of 1 MJ m−2 d−1 ◦C−1 determined an
average yield increase of 640 kg ha−1. Rainfall during the fallow and
the crop vegetative periods were significantly correlated with yield,
but no significant association was detected between yield and rain-

Table 3
Significance of regression terms from regressions between wheat yield and some
independent variables, and corresponding determination coefficients

Independent variable Lineal term Quadratic
term

Determination
coefficient (R2)

Year 0.05 ns 0.05
Available water holding capacity 0.001 0.001 0.39
ainfall vegetative period −0.104 0.536
ainfall reproductive period 0.112 0.194

> 0.195; 0.254; and 0.321; significant at P = 0.05; 0.01 and 0.001, respectively.

et (Park and Vlek, 2002). Data were randomly partitioned in 70%
raining: 30% verification and iteration stopped when the r2 of the
erification set tended to be lower when comparing to the r2 of
he training set. To test the generalization capacity of the models
eveloped a modification of the procedure outlined by Schaap and
outen (1996) was applied. Data were partitioned 10 times in 70:30

or training and verification, respectively, and best models gener-
ted with the first 70:30 partition run against the remain 70:30 data
roups. Comparing r2 between groups shown if model were able to
redict yield independently of the partition of data and thus may
eneralize.

Wheat production estimations were performed using yield pre-
ictions generated by the three methodologies tested and an
stimation of harvested surface. This later estimation was obtained
egressing harvested surface with seeded surface. Slopes and inter-
epts of predicted versus observed yield and grain production
egressions were compared by the t test using IRENE (Fila et al.,
003). Root mean square error (RMSE) (Kobayashi and Salam, 2000)
as calculated for each estimation methodology and significant dif-

erences between RMSE tested by an F test (Xiong and Meullenet,
006).

. Results

A broad range of variability was observed in the soil and climate
roperties of the Pampas Region that leads to a 4-fold difference in
heat yield throughout regions and years (Table 1). Soil texture in

he 0–50 cm layer varied from sandy loam to silty clay loam. Five
eographical units had no impedance constraints within the upper
00 cm of the profile, meanwhile in the other five, average depths to
etrocalcic horizon ranged from 77 to 88 cm. As the consequence of
he combination of texture and free rooting depth, SAWHC ranged
rom 79 to 187 mm. Soil fertility, evaluated thought organic car-
on content, was also very different between units (41–126 t C ha−1

n the 0–50 cm soil layer). Variability of climatic conditions was

ven greater, with a 4-fold difference of incoming solar radiation
uring the crop critical period. This produced, when related to
emperature, a PQ range of 1.09–2.22 MJ m−2 d−1 ◦C−1. Rainfall was
he environmental variable with the greater variability. A 5-fold
ange of rainfall during the fallow and whole crop growing periods

O
F
R
R
R

0.002 0.200
−0.247 0.313 0.445

ummed occurred, which produced that R/CPET ranged from 0.30
o 2.0.

Relationships between environmental variables were low. Soil
rganic carbon was not significantly correlated with SAWHC,
eanwhile positive correlations were observed between SOC

nd rainfall (Table 2). Soil available water holding capacity was
ainly determined by the clay + silt contents of the soils (SAWHC

mm) = 31 + 0.012clay + silt (t ha−1), r2 = 0.98, P = 0.01). Positive sig-
ificant associations were also observed between rainfall during
he fallow and crop growing periods, and a negative correlation
xisted between PQ and rainfall during the reproductive period.

Wheat yield was significantly correlated with some environ-
ental variables, increasing along time with an average gain of

2 kg ha−1 y−1 in the study area (Table 3). A curvilinear relation-
hip was observed between yield and SAWHC, reaching maximum
ield values in soils that can store around 150 mm of available water
n the upper 100 cm of the profile. Texture appeared as the main soil
actor controlling wheat yield though its effect on soil water prop-
rties. Clay + silt mass in the top 100 cm depth accounted for 37% of
ield variability (P = 0.01) using the quadratic model. Yield was also
ignificantly correlated with soil organic carbon content, increasing
rom low carbon levels to around 90 t C ha−1 and thereof stabilizing.
s the PQ increased, wheat yield increased too but with a low cor-
rganic carbon 0.01 0.05 0.26
ototermal quotinet 0.05 ns 0.04
ainfall fallow period 0.001 0.001 0.24
ainfall vegetative period 0.001 ns 0.11
ainfall reproductive period ns ns ns
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Fig. 3. Relationships between observed and predicted wheat yield (A) and Pampean grain production (B) using the blind guess estimation methodology.
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that the blind guess methodology, with a RMSE equivalent to 9.2%
of whole area production (Fig. 4B). The regression methodology
could not improved yield and grain production predictions when
compared to the blind guess strategy (Table 4).

Table 4
Root mean square errors from different estimation methodologies of yield and pro-
duction of wheat

−1
Fig. 4. Relationships between observed and predicted wheat yield (A) and Pam

all during the reproductive stage. When regressing yield against
/CPET of fallow and vegetative periods summed a quadratic model
ccounted for 31% of yield variability. This correlation coefficient
ould not be improved including the reproductive stage.

Estimation of wheat yield by the blind guess methodology
ccounted for 56% of spatial yield variability (Fig. 3A). By defini-
ion this methodology could not account for interannual variability.
egression between observed versus predicted yield had inter-
ept non-different from 0 and slope equal to 1 (P = 0.05). Despite
his medium determination coefficient for yield perdition, forecast-
ng grain production by multiplying predicted yield and estimated
arvested surface was very much better (Fig. 3B). This was the
onsequence of the deep impact of harvested surface on pro-
uction and of the close agreement between seeded surface
nd harvested surface (harvested surface = 0.981 × seeded surface,
2 = 0.998, P = 0.001). Harvested surface was in average 2% lower
han seeded surface and could be estimated with precision some

onths before crop harvest. Grain production forecasting by the
lind guess method was around 3% lower that the observed produc-

ion across all regions and years. Integrating grain production for
he whole surveyed area, RMSE was equivalent to 10.6% of annual
verage production.

A surface regression response model could be fitted to yield data
hat accounted for around 64% of the variance (Fig. 4A). The model

M

B
R
N

V

rain production (B) using lineal surface regression as estimation methodology.

ncluded year of harvest, SAWHC, R/CPET and PQ as independent
ariables, and the regression of observed against estimated values
howed intercept equal to 0 and slope of 1 (P = 0.05). Year of harvest
nd PQ showed positive effects on wheat yield, meanwhile SAWHC
nd R/CPET presented linear positive effects and curvilinear nega-
ive terms. The average determination coefficient of a 10-fold cross
alidation was 0.53 indicating that the generalization ability of the
egression method was not high. Estimating grain production of
he surveyed region as the product of yield predicted by the sur-
ace regression and estimated harvested surface gave similar results
ethodology Yield (kg ha ) Production (Mt)

lind guess 450 a 1020000 a
egression 411 a 881000 a
eural network 333 b 700000 b

alues followed by the same letters (a and b) in a column are not different at P = 0.05.
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ig. 5. Relationships between observed and predicted wheat yield (A) and Pampea

The ANN that best fitted to yield data used as network inputs
ear of harvest, SAWHC, SOC, R/CPET and PQ. It was structured with
ve neurons in the hidden layer and accounted for 76% of yield vari-
nce (Fig. 5A). Regression of observed versus predicted yield had
ntercept non-different from 0 and slope equal to 1 (P = 0.05). When
ata were partitioned 10 times 70:30 for training and verification,
espectively, and the network run, all determinations coefficients
rom the validation data sets ranged from 0.76 to 0.80 showing a
ood generalization ability of the ANN method. Grain production
ould be well predicted by the ANN with an average sub estimation
f 3% across regions and years (Fig. 5B). This methodology allowed
etter predictions of yield and grain production than the blind
uess and the regression methods. The RMSE of the ANN approach
as significant lower that those of the other strategies (Table 4).

. Discussion

In the study area of this work annual yield gain averaged 4% per
ear during the 1995–2004 period. This increase may be attributed
oth to genetic improvement (Calderini et al., 1995) and better
anagement practices (Satorre and Slafer, 1999).
Soil available water holding capacity had a strong impact on

heat yield in the Pampas when averaging data at a macro regional
evel. In other parts of the World studies performed at different
cales showed significant effects on crops yield of SAWHC or some
elated soil properties. Analyzing sub-field yield variability, plant
vailable water storage capacity of soils regulated wheat productiv-
ty in Southern Australia (Wong and Asseng, 2006), meanwhile soil
exture was highly correlated to soybean yield in Mississippi soils
Cox et al., 2003). Collecting data from field experiments or pro-
uction fields, significant relationships had been found between
exture and cotton yield in Central Greece (Kalivas and Kollias,
001), or free rooting depth and different crop yields in Spain (De

a Rosa et al., 1981). Productivity index generated for specific soil
ypes, using texture and rooting depth among other properties, may
xplain around 50% of corn and soybean yield variance in Illinois
oils and are useful for average yield estimation at county level
hen climate inter annual variability is not taken into account

García-Paredes et al., 2000). Consequently, the determination of
he capacity of soils to store available water appeared to be neces-

ary when developing yield prediction models under a variety of
limate, soil conditions and scales of analysis.

The relationship founded between SOC and wheat yield seems
o be based on the impact of organic matter as a source of nutrients.
n-farm local studies showed that nitrate nitrogen levels at wheat

t
p
w
C
p

production (B) using an artificial neural network as estimation methodology.

owing are higher in organic matter rich soils (Alvarez et al., 2002),
nd mineralization during the crop growing cycle also increase in
ampean soils of high SOC content (González Montaner et al., 1997).
n the semiarid portion of the Pampas soils present a wide spectrum
f SOC contents, textures and free rotting depths. Field experiments
erformed in this area showed that SOC is correlated to wheat yield,

ndependently of soil texture or depth (Bono and Alvarez, 2006).
onflicting results had been obtained in studies of the effects of
OC on crops yield worldwide. In some cases, significant relation-
hips could be established between SOC and yield (Catching et al.,
002; García-Paredes et al., 2000), meanwhile in others not sig-
ificant association was detected between both variables (Alvarez
nd Grigera, 2005; Jiang and Thelen, 2004). As a consequence, the
nclusion of this soil property in models developed for predicting
ield seems to be useful only in some situations; especially in cases
here the range of the variable is very broad, whit some data in

he very low SOC levels that restricts crop yield (Díaz-Zorita et al.,
999).

In the present study, a better adjustment was obtained when
orrelating wheat yield with the R/CPET during the fallow and
egetative growing period summed than when including the repro-
uctive period too. This result may be attributed partially to the

mportance of soil water content at sowing on crop yield which has
een yet quantified in the semiarid portion of the Pampas executing
n-farm experiments (Bono and Alvarez, 2006). Soil water content
t sowing is taken into account indirectly in this study including
he fallow period in the water index R/CPET. Water deficits during
he vegetative stage affect wheat yield in the Pampas (Brisson et al.,
001; González Montaner et al., 1997) but also around the critical
owering period (Calviño and Sadras, 2002). This later expected
ffect was not detected by the ANN model. The use of the water
ndex R/CPET, which integrated variables related to water availabil-
ty to the crop at different stages, allowed a better explanation of

heat yield variance that the use of the simple variables in the
onstruction of the ANN model (results not presented). The hier-
rchical approach used here resulted in a simple model with good
redictive capacity.

Using both soil productivity rates and climate variables for yield
rediction, ANN had shown to be better tools than regression meth-
ds when analyzing corn and soybean yield data generated in field

rials (Kaul et al., 2005). Integration of data at regional scales, as
erformed in this study, allows improving fits averaging outliers,
ith higher improvement as surface increase (Bakker et al., 2005).
onfounding effects, generated by autocolineality between inde-
endent variables is a potential problem in this kind of studies,
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hich may be overwhelming by experimentation, fixing all con-
itions except the one is tested (Bakker et al., 2005). Correlation
etween independent variables was generally low in the Pampas
nd only variables not significantly correlated were included in the
NN model, so confounding effects may be discarded. As all vari-
bles used in the ANN model are available 40–60 days before wheat
arvest, in-season yield and production predictions are possible.
ifferent methodologies for in-season prediction of crop yield had
een tested in other agricultural regions as the use of the NDVI for
heat (Freeman et al., 2003) or the application of agro-climatic
odels for sorghum (Potgieter et al., 2005), but this techniques are

ot available in the Pampean Region at present.
The ANN approach allowed a better prediction of wheat

ield and production than other methodologies when applied
t a regional scale. These results may be considered as a first
tep in the developing of methods suitable for yield prediction
or the whole Pampean Region and the methodology may be
pplied in other cropping areas of the World and for different
rops.
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