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Aregional analysis of the effects of soil and climate factors on wheat yield was performed in the Argentine
Pampas in order to obtain models suitable for yield estimation and regional grain production prediction.
Soil data from soil surveys and climate data from meteorological records were employed. Grain production
information from statistics at county level was integrated at a geomorphological level. The Pampas was
divided into 10 geographical units and data from 10 growing season were used (1995-2004). Surface
regression and artificial neural networks (ANN) methodologies were tested for analyzing the data. Wheat
yield was correlated to soil available water holding capacity (SAWHC) in the upper 100 cm of the profiles
(r?=0.39) and soil organic carbon (SOC) content (r? = 0.26). The climate factor with stronger effect on yield
was the rainfall/crop potential evapotranspiration ratio (R/CPET) during the fallow and vegetative crop
growing cycle periods summed (12 =0.31). The phototermal quotient (PQ) during the pre-anthesis period
had also a significant effect on yield (2 =0.05). A surface regression response model was developed that
account for 64% of spatial and interannual yield variance, but this model could not perform a better yield
prediction than the blind guess technique. An ANN was fitted to the data that accounted for 76% of yield
variability. Comparing predicted versus observed yield a lower RMSE (P=0.05) was obtained using the
ANN than using the regression or the blind guess methods. Regional production estimations performed
by the ANN showed a good agreement with observed data with a RMSE equivalent to 7% of the whole
surveyed area production. As variables used for the ANN development may be available around 40-60
days before wheat harvest, the methodology may be used for wheat production forecasting in the Pampas.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The Argentine Pampas is a vast plain of around 50 Mha (Alvarez
and Lavado, 1998) where nearly 50% of the area is devoted to agri-
culture, being wheat one of the main crops (Hall et al., 1992). The
region is considered as one of the most suitable areas for grain crops
production in the world (Satorre and Slafer, 1999).

The effects of soil properties and climate on wheat yield have
been assessed in some areas of the Pampas at the farmers fields
scale. In the southern portion (Southern Pampa), a humid sub
region with soils of high organic matter content, water deficit
during 30 days before to 10 days after the flowering period, and tem-
perature during grain filling, accounted for over half of the variance
in crop yield (Calvifio and Sadras, 2002). In this Pampean subregion
wheat yields are also higher in deep soils (100-120 cm free rot-
ting depth) than in shallow ones (Sadras and Calviiio, 2001). In the
east portion of the Pampas (Inland Pampa and West Pampa), with
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semiarid climate and medium to low organic matter soils, wheat
yield is correlated to soil organic matter (SOM) following a linear-
plateau tendency (r? = 0.48) with a critical level at 72t SOM ha~! in
the upper 20 cm of the profile (Diaz-Zorita et al., 1999). In the north-
ern portion of the Pampas (Rolling Pampa), a humid sub region with
soils of medium organic matter content and deep profiles, rainfall
and nutrients availability accounted for 50-70% or yield variability
(Alvarez and Grigera, 2005; Sain and Jauregui, 1993).

At the scale of the whole Pampean Region there are no studies
relating both soil properties and climate to wheat yield, because
available soil data came form surveys at the series level and no
integration has been performed to county or geomorphological
levels, which allow relating those data to existing statistical yield
information. It had only been detected that wheat yield is lower
in areas with drainage problems (Veron et al., 2004). Conversely,
climate effects on wheat had been assessed in the past. Using
results from field experiments widespread along the Pampas, under
water and nutrients non-limiting scenarios, the phototermal quo-
tient (PQ =ratio between incident radiation to temperature during
the critical period of one month prior to anthesis) accounted for
nearly 50% of interannual wheat yield variability (Magrin et al.,
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1993). Combining county statistical yield data and sparse informa-
tion on harvest index, a regional analysis of climate factors effects
on the above ground net primary productivity of the crop showed
that rainfall and temperature accounted for 63% of the variance
(Veron et al., 2002). Also using this county information a model
that explains 34% of wheat yield variability was developed with PQ
and rainfall as independent variables (Veron et al., 2004).

As there is no models for yield prediction developed in the Pam-
pas, wheat production is forecasting before harvest by estimation
of surface seeded to the crop, using reports from local informers,
and average yield of different areas. In some cases, in-season yield
estimated in the field is used for adjusting average predictions.

Artificial neural networks (ANN) had become a popular tech-
nique in biological sciences due to their predictive quality and
because there are simplest than process based models (Joergensen
and Bendoricchio, 2001; Ozesmi et al., 2006). They are adaptive
analytical methodologies based on neuronal structures and pro-
cessing of the brain capable of learning relationships in patters
of information (Joergensen and Bendoricchio, 2001). ANN had the
advantage over other empirical modeling techniques that do not
assume an a priory structure for the data, are well suited for fit-
ting non-linear relationships and complex interactions, and can
expose hidden relationships among input variables (Batchelor et al.,
1997). As other empirical models they cannot extrapolate outside
the range of data inputs.

Typically an ANN is structured in three neuronal layers: an input
layer in which numbers of neurons correspond to the number
of input variables, a hidden layer with a complexity determined
empirically during ANN development, and an output layer with a
neuron for each output variable (Fig. 1). Information flows from
the input layer to the output layer through the hidden layer and
the learning process consists in adjusting the weights associated
to the transfer functions between neurons comparing ANN out-
puts with observed data by an iterative procedure (Joergensen and
Bendoricchio, 2001). This learning process is performed usually
by the back propagation algorithm that fits the weights from the
output layer through the input layer (Kaul et al., 2005). The most
common transfer function used between the hidden layer and the
output layer is the sigmoid, and the lineal function is generally used
to pass information from the input layer to the hidden layer (Kaul
et al., 2005). Agronomic examples of ANN uses are as variable as
environmental correlation (Park and Vlek, 2002), perdition of soil
organic carbon content (Somaratgne et al., 2005), generate fertil-
izer recommendations (Broner and Comstock, 1997), estimation of
soil hydraulic properties (Nemes et al., 2003), prediction of crop
development (Elizondo et al., 1994), epidemic severity evaluation
(Batchelor et al., 1997), and yield prediction (Kaul et al., 2005).

Predicted
output
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output

-—

Input layer

Hidden layer ~ Output layer

Fig. 1. Representation of a feed-forward artificial neuronal network showing layers
and connections.

My objective was to analyze at the regional scale the effects
of soil properties and climate on wheat yield in the Pampas
in order to generate models suitable for accounting spatial and
interannual yield variability. These models may be used for under-
standing which are the main factors controlling crop yield, for
the development of productivity indexes, and for grain production
forecasting. Artificial neural networks were used as tools for yield
predictions.

2. Materials and methods

The Pampas plain runs from 28 to 40°S in Argentina. The relief is
flator slightly rolling and its natural vegetation consist of grasslands
in which graminaceous vegetation species are dominant. Mean
annual rainfall ranged from 200 mm in the west to 1200 mm in
the east and mean annual temperature ranged from 14°C in the
south to 23 °C in the north. Agriculture is performed in the semi-
arid and humid portions of the region on well drained soils, mainly
Mollisols formed on loess like materials, and areas with hydromor-
phic soils are devoted to pastures (Hall et al., 1992). Wheat (Triticum
aestivum), corn (Zea mays) and soybean (Glicine max) are the main
crops, being wheat widespread all over the region. Around 6 Mha
are sown to wheat annually (SAGYP, 2004). The fallow period falls
usually between April and June and the crop growing cycle from
July to end of November, with some variability between Pampean
subregions.

Soil data were obtained from soil surveys of the provinces of
La Pampa (INTA, 1980), Buenos Aires (INTA, 1989) and Santa Fe
(INTA, 1981, 1983). In these surveys, typical profiles and the area
they occupied were reported. The surface of the surveyed area
was divided into 10 geographic units (Fig. 2) according to geomor-
phological and soil classification considerations previously defined
(INTA, 1980, 1989) and taking into account that rainfall and temper-
ature throughout each unit were homogenously. On the basis of the
soil profiles characteristics described in soil surveys and their cor-
responding area, the weighed average values of soil organic carbon
(S00Q), clay, silt, and sand were calculated as previously described
(Alvarez and Lavado, 1998) for different soil layers: 0-20, 20-50
and 50-100 cm. Each value obtained was the mean SOC, clay, silt,
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Fig. 2. Map of the Pampean Region and the geographic units studied.



72 R. Alvarez / Europ. . Agronomy 30 (2009) 70-77

or sand content of the geographic unit for each depth, and includes
the mean of all the soils within the unit weighed by the area that
occupied. Soil bulk density was estimated from texture and organic
matter contents (Rawls, 1983) and SOC contents to 50 cm depth
were expressed on a surface basis. Soil available water holding
capacity (SAWHC) was estimated to 100 cm depth by the method
of Rawls et al. (1982). In the south and west portions of the Pampas
many soils presented a strong petrocalcic layer within the upper
100cm of the profile that completely restricts roots grow. This
was taken into account in the integration of data when averaging
SAWHC of the geographic units considering for these soils, calculat-
ing SAWHC only within the free rotting depth. Total surveyed area
integrated in this study rounded 26 Mha and include around 60%
of surface destined to wheat in the Pampas. Yield information from
other argentine provinces was not used because of the lack of ade-
quate soil surveys. Neither data from the Flat Pampa, a subregion
of the Buenos Aires Province characterized by very low slopes and
hidromorphic soils, was integrated in this study because agricul-
ture is restricted to small areas on summit positions and averaging
soil properties to the geomorphic level would give biased results
for cropped soils.

Climatic records were obtained from unpublished data of the
Servicio Meteorolégico Nacional available upon request. Monthly
precipitation and mean monthly temperature were calculated
from 1995 to 2004. Potential evapotranspiration was estimated
by a modification of the Penman formula (Linacre, 1977). Locally
adjusted k. coefficients (Doorenbos and Pruitt, 1977; Totis and
Perez, 1994) were applied to estimate wheat potential evapo-
transpiration. For the fallow period as no k. coefficients were
available it was assumed a value equivalent to that corresponding
to the sowing period (0.5). The ratio rainfall/crop potential evap-
otranspiration (R/CPET) was calculated for the fallow period and
for different periods during the crop growing cycle. For estima-
tion of incoming solar radiation, a locally developed modification
of the Hunt et al. (1998) method was employed for estimation
of atmosphere transmittance which allows a closer agreement
between esteemed radiation versus radiometric measurements
in the Pampean Region (Alonso et al, 2002). Solar radiation
at the top of the atmosphere was calculated using algorithms
included in RadEst 3.00 (Donatelli et al., 2003). The PQ was cal-
culated for the critical period of one month before anthesis using
esteemed incoming radiation and mean daily temperature above
a base temperature of 4.5°C (Magrin et al., 1993). Anthesis dates
varied with latitude in the Pampas from 30 September in the
north to 10 November in the south. Anthesis dates at differ-
ent latitudes were taken from experiments published in Magrin
et al. (1993) and for intermediate latitudes estimations were
performed using unpublished data (F. Menéndez, personal com-
munication).

Yield data were calculated from unpublished records of
the Secretaria de Agricultura, Ganaderia y Pesca of Argentina
of annual harvested surface and grain production at county
level for the period 1995-2004. Yearly data of seeded sur-
face with wheat were also available. Integration of data for
the geographical units was performed as the weighed aver-
ages of the county yield averages affected by the corresponding
surfaces.

A blind guess methodology was tested for prediction of yield of
the geographical units previously defined. Average yield for each
unit was calculated for the period 1995-2004 and annual observed
yield correlated with these averages taken as predictions. Regres-
sion techniques were also tested for yield forecasting. In a fist
step, relationships between yield and soil or climate variables were
tested with linear and quadratic simple regression using the r2 as a
decision criterion. In a second step, a polynomial surface response

model was developed of the form:
Yield = ag + aqvy — aav2 + asvy — agv3 + asvqva
F o 4 Gu_gVx — Gn_1V2 4 AnVxVi_1

where ag-a, are the regression coefficients and v;-vy are the inde-
pendent variables.

The model incorporates linear and quadratic terms for assess-
ing linear and curvilinear effects of independent variables on the
dependent variable and interaction terms between independent
variables. It has been extensively used in agronomic experiment
evaluation with positive expected linear effects and negative
quadratic effects (Colwell, 1994). A combination of forward, back-
ward and stepwise regression adjustments were used in order to
obtain the simplest model with the highest 2. Terms were main-
tained in the final model only when they were significant at P=0.05
and the whole regression at P=0.01 by the F test. Autocolinear-
ity of independent variables were checked by means of the VIF
value (Neter et al., 1990). A hierarchical approach was implemented
combining variables for calculating others that include the effects
of the variables in the fist level but allowed the simplification of
models. (Schaap et al., 1998). Ten-fold cross validation was used
for assessing the ability of the best regression model obtained of
generalization to other possible data sets.

A feed-forward back propagation ANN was them tested for yield
prediction. This kind of ANN, known as multilayer preceptors, had
shown to be well suited for yield prediction at the plot scale and
other agronomic uses when managing sets of data of similar size
to that available in this study (Kaul et al., 2005; Starrett et al.,
1997). Lineal transfer functions were used from the input layer to
the hidden layer and from the output layer to the network output,
meanwhile a sigmoid function (Lee et al., 2003) connected the hid-
den layer to the output layer. Input variables were scaled by the
minimax procedure between 0 and 1 to make variation ranges uni-
form and data suitable for the sigmoid function (Park and Vlek,
2002). Network outputs were de-scaled to original units. The ANN
was developed by a supervised learning procedure using the back
propagation algorithm for weights fitting (Rogers and Dowla, 1994).
A hierarchical approach was implemented for model simplifica-
tion during the selection of input variables, preferring those that
resulted from the integration of variables used in their construction,
which effects resumed (Park and Vlek,2002). The stepwise method-
ology was applied for inputs selection during ANN testing (Gevrey
et al., 2003). The learning rate controls the size of weight change
made by the back propagation algorithm during each iteration (Kaul
et al., 2005). A larger learning rate may lead to faster convergence
but may lead to a local minimum (Lee et al., 2003). Consequently,
a low learning rate of 0.1 was used during ANN development. The
epoch size represents the number of epochs (iterations) for which
the algorithm will run. On each epoch, the entire training set is
fed through the network, and used to adjust the network weights
(Somaratgne et al., 2005). Around 50 epochs are adequate for con-
vergence in some situations (Schaap and Bouten, 1996; Schaap et
al., 1998). An epoch size of 100 was used here.

As the number of neuron in the hidden layer increase, the model
fits better to the training data but the problem of possible overlearn-
ing (overfitting) increase too (Ozesmi et al., 2006). Consequently,
a balance between prediction ability of the ANN and complexity
must be reach. Maximum initial number of neurons in the hid-
den layer was set by methods describe by Somaratgne et al. (2005)
and neurons were deleted one at a time till model simplification
reduced its ability to fit the data using the r2 as decision criterion.
Cross-validation is recommended to avoid overlearning (Ozesmi et
al., 2006), with early stopping of weights adjustment, when devia-
tion from the verification set becomes higher than from the training
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Table 1
Range of variability of soil and climate variables and wheat yield
Clay (%)* Silt(%)* Sand(%)* Organiccarbon Temperature Radiation Rainfall Yield (kgha1)
(%) (ccy (MJm-2d-1)d
Fallow period Vegetative Reproductive
(mm) period (mm) period (mm)
Mean 238 34.6 41.6 2.07 135 19.0 184 117 211 2500
Minimum 9.70 21.1 5.90 1.17 10.3 6.70 64.0 20.0 30.0 947
Maximum 33.6 60.6 69.2 3.42 17.3 241 492 259 389 4130

2 0-100 cm depth or down to petrocalcic horizon.

b 0-50 cm depth.

¢ During crop growing cycle.

4 During critical period of one month before anthesis.

Table 2
Correlation coefficients between independent variables

Available water holding capacity

Organic carbon

Fototermal quotient Rainfall fallow period Rainfall vegetative period

Organic carbon 0.127

Fototermal quotient -0.234 0.289
Rainfall fallow period 0.163 0.254
Rainfall vegetative period -0.104 0.536
Rainfall reproductive period 0.112 0.194

0.009
0.002 0.200
—0.247 0.313 0.445

R>0.195; 0.254; and 0.321; significant at P=0.05; 0.01 and 0.001, respectively.

set (Park and Vlek, 2002). Data were randomly partitioned in 70%
training: 30% verification and iteration stopped when the 2 of the
verification set tended to be lower when comparing to the r2 of
the training set. To test the generalization capacity of the models
developed a modification of the procedure outlined by Schaap and
Bouten (1996) was applied. Data were partitioned 10 times in 70:30
for training and verification, respectively, and best models gener-
ated with the first 70:30 partition run against the remain 70:30 data
groups. Comparing r2 between groups shown if model were able to
predict yield independently of the partition of data and thus may
generalize.

Wheat production estimations were performed using yield pre-
dictions generated by the three methodologies tested and an
estimation of harvested surface. This later estimation was obtained
regressing harvested surface with seeded surface. Slopes and inter-
cepts of predicted versus observed yield and grain production
regressions were compared by the t test using IRENE (Fila et al.,
2003). Root mean square error (RMSE) (Kobayashi and Salam, 2000)
was calculated for each estimation methodology and significant dif-
ferences between RMSE tested by an F test (Xiong and Meullenet,
2006).

3. Results

A broad range of variability was observed in the soil and climate
properties of the Pampas Region that leads to a 4-fold difference in
wheat yield throughout regions and years (Table 1). Soil texture in
the 0-50 cm layer varied from sandy loam to silty clay loam. Five
geographical units had no impedance constraints within the upper
100 cm of the profile, meanwhile in the other five, average depths to
petrocalcic horizon ranged from 77 to 88 cm. As the consequence of
the combination of texture and free rooting depth, SAWHC ranged
from 79 to 187 mm. Soil fertility, evaluated thought organic car-
bon content, was also very different between units (41-126 t Cha~!
in the 0-50cm soil layer). Variability of climatic conditions was
even greater, with a 4-fold difference of incoming solar radiation
during the crop critical period. This produced, when related to
temperature, a PQ range of 1.09-2.22MJ m~2d~! °C-1. Rainfall was
the environmental variable with the greater variability. A 5-fold
range of rainfall during the fallow and whole crop growing periods

summed occurred, which produced that R/CPET ranged from 0.30
to 2.0.

Relationships between environmental variables were low. Soil
organic carbon was not significantly correlated with SAWHC,
meanwhile positive correlations were observed between SOC
and rainfall (Table 2). Soil available water holding capacity was
mainly determined by the clay + silt contents of the soils (SAWHC
(mm)=31+0.012clay +silt (tha~1), 2 =0.98, P=0.01). Positive sig-
nificant associations were also observed between rainfall during
the fallow and crop growing periods, and a negative correlation
existed between PQ and rainfall during the reproductive period.

Wheat yield was significantly correlated with some environ-
mental variables, increasing along time with an average gain of
52kgha~1y~1 in the study area (Table 3). A curvilinear relation-
ship was observed between yield and SAWHC, reaching maximum
yield values in soils that can store around 150 mm of available water
in the upper 100 cm of the profile. Texture appeared as the main soil
factor controlling wheat yield though its effect on soil water prop-
erties. Clay +silt mass in the top 100 cm depth accounted for 37% of
yield variability (P=0.01) using the quadratic model. Yield was also
significantly correlated with soil organic carbon content, increasing
from low carbon levels to around 90 t C ha~! and thereof stabilizing.
As the PQ increased, wheat yield increased too but with a low cor-
relation coefficient. Arise in PQof 1 MJm~2d~1°C-! determined an
average yield increase of 640 kg ha~!. Rainfall during the fallow and
the crop vegetative periods were significantly correlated with yield,
but no significant association was detected between yield and rain-

Table 3
Significance of regression terms from regressions between wheat yield and some
independent variables, and corresponding determination coefficients

Independent variable Lineal term Quadratic Determination
term coefficient (R?)

Year 0.05 ns 0.05

Available water holding capacity 0.001 0.001 0.39

Organic carbon 0.01 0.05 0.26

Fototermal quotinet 0.05 ns 0.04

Rainfall fallow period 0.001 0.001 0.24

Rainfall vegetative period 0.001 ns 0.11

Rainfall reproductive period ns ns ns
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Fig. 3. Relationships between observed and predicted wheat yield (A) and Pampean grain production (B) using the blind guess estimation methodology.
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Fig. 4. Relationships between observed and predicted wheat yield (A) and Pampean

fall during the reproductive stage. When regressing yield against
R/CPET of fallow and vegetative periods summed a quadratic model
accounted for 31% of yield variability. This correlation coefficient
could not be improved including the reproductive stage.

Estimation of wheat yield by the blind guess methodology
accounted for 56% of spatial yield variability (Fig. 3A). By defini-
tion this methodology could not account for interannual variability.
Regression between observed versus predicted yield had inter-
cept non-different from 0 and slope equal to 1 (P=0.05). Despite
this medium determination coefficient for yield perdition, forecast-
ing grain production by multiplying predicted yield and estimated
harvested surface was very much better (Fig. 3B). This was the
consequence of the deep impact of harvested surface on pro-
duction and of the close agreement between seeded surface
and harvested surface (harvested surface =0.981 x seeded surface,
r2=0.998, P=0.001). Harvested surface was in average 2% lower
than seeded surface and could be estimated with precision some
months before crop harvest. Grain production forecasting by the
blind guess method was around 3% lower that the observed produc-
tion across all regions and years. Integrating grain production for
the whole surveyed area, RMSE was equivalent to 10.6% of annual
average production.

A surface regression response model could be fitted to yield data
that accounted for around 64% of the variance (Fig. 4A). The model
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y =0.894 x + 0.0751
R?=0.910

Observed grain production (Mt
N

o l® i . R :
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Predicted grain production (Mt)

grain production (B) using lineal surface regression as estimation methodology.

included year of harvest, SAWHC, R/CPET and PQ as independent
variables, and the regression of observed against estimated values
showed intercept equal to 0 and slope of 1 (P=0.05). Year of harvest
and PQ showed positive effects on wheat yield, meanwhile SAWHC
and R/CPET presented linear positive effects and curvilinear nega-
tive terms. The average determination coefficient of a 10-fold cross
validation was 0.53 indicating that the generalization ability of the
regression method was not high. Estimating grain production of
the surveyed region as the product of yield predicted by the sur-
faceregression and estimated harvested surface gave similar results
that the blind guess methodology, with a RMSE equivalent to 9.2%
of whole area production (Fig. 4B). The regression methodology
could not improved yield and grain production predictions when
compared to the blind guess strategy (Table 4).

Table 4
Root mean square errors from different estimation methodologies of yield and pro-
duction of wheat

Methodology Yield (kgha=') Production (Mt)
Blind guess 450 a 1020000 a
Regression 411 a 881000 a
Neural network 333b 700000 b

Values followed by the same letters (a and b) in a column are not different at P=0.05.
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Fig. 5. Relationships between observed and predicted wheat yield (A) and Pampean grain production (B) using an artificial neural network as estimation methodology.

The ANN that best fitted to yield data used as network inputs
year of harvest, SAWHC, SOC, R/CPET and PQ. It was structured with
five neurons in the hidden layer and accounted for 76% of yield vari-
ance (Fig. 5A). Regression of observed versus predicted yield had
intercept non-different from 0 and slope equal to 1 (P=0.05). When
data were partitioned 10 times 70:30 for training and verification,
respectively, and the network run, all determinations coefficients
from the validation data sets ranged from 0.76 to 0.80 showing a
good generalization ability of the ANN method. Grain production
could be well predicted by the ANN with an average sub estimation
of 3% across regions and years (Fig. 5B). This methodology allowed
better predictions of yield and grain production than the blind
guess and the regression methods. The RMSE of the ANN approach
was significant lower that those of the other strategies (Table 4).

4. Discussion

In the study area of this work annual yield gain averaged 4% per
year during the 1995-2004 period. This increase may be attributed
both to genetic improvement (Calderini et al., 1995) and better
management practices (Satorre and Slafer, 1999).

Soil available water holding capacity had a strong impact on
wheat yield in the Pampas when averaging data at a macro regional
level. In other parts of the World studies performed at different
scales showed significant effects on crops yield of SAWHC or some
related soil properties. Analyzing sub-field yield variability, plant
available water storage capacity of soils regulated wheat productiv-
ity in Southern Australia (Wong and Asseng, 2006), meanwhile soil
texture was highly correlated to soybean yield in Mississippi soils
(Cox et al., 2003). Collecting data from field experiments or pro-
duction fields, significant relationships had been found between
texture and cotton yield in Central Greece (Kalivas and Kollias,
2001), or free rooting depth and different crop yields in Spain (De
la Rosa et al., 1981). Productivity index generated for specific soil
types, using texture and rooting depth among other properties, may
explain around 50% of corn and soybean yield variance in Illinois
soils and are useful for average yield estimation at county level
when climate inter annual variability is not taken into account
(Garcia-Paredes et al., 2000). Consequently, the determination of
the capacity of soils to store available water appeared to be neces-
sary when developing yield prediction models under a variety of
climate, soil conditions and scales of analysis.

The relationship founded between SOC and wheat yield seems
to be based on the impact of organic matter as a source of nutrients.
On-farm local studies showed that nitrate nitrogen levels at wheat

sowing are higher in organic matter rich soils (Alvarez et al., 2002),
and mineralization during the crop growing cycle also increase in
Pampean soils of high SOC content (Gonzalez Montaner et al., 1997).
In the semiarid portion of the Pampas soils present a wide spectrum
of SOC contents, textures and free rotting depths. Field experiments
performed in this area showed that SOCis correlated to wheat yield,
independently of soil texture or depth (Bono and Alvarez, 2006).
Conflicting results had been obtained in studies of the effects of
SOC on crops yield worldwide. In some cases, significant relation-
ships could be established between SOC and yield (Catching et al.,
2002; Garcia-Paredes et al., 2000), meanwhile in others not sig-
nificant association was detected between both variables (Alvarez
and Grigera, 2005; Jiang and Thelen, 2004). As a consequence, the
inclusion of this soil property in models developed for predicting
yield seems to be useful only in some situations; especially in cases
where the range of the variable is very broad, whit some data in
the very low SOC levels that restricts crop yield (Diaz-Zorita et al.,
1999).

In the present study, a better adjustment was obtained when
correlating wheat yield with the R/CPET during the fallow and
vegetative growing period summed than when including the repro-
ductive period too. This result may be attributed partially to the
importance of soil water content at sowing on crop yield which has
been yet quantified in the semiarid portion of the Pampas executing
on-farm experiments (Bono and Alvarez, 2006). Soil water content
at sowing is taken into account indirectly in this study including
the fallow period in the water index R/CPET. Water deficits during
the vegetative stage affect wheat yield in the Pampas (Brisson et al.,
2001; Gonzélez Montaner et al., 1997) but also around the critical
flowering period (Calvifio and Sadras, 2002). This later expected
effect was not detected by the ANN model. The use of the water
index R/CPET, which integrated variables related to water availabil-
ity to the crop at different stages, allowed a better explanation of
wheat yield variance that the use of the simple variables in the
construction of the ANN model (results not presented). The hier-
archical approach used here resulted in a simple model with good
predictive capacity.

Using both soil productivity rates and climate variables for yield
prediction, ANN had shown to be better tools than regression meth-
ods when analyzing corn and soybean yield data generated in field
trials (Kaul et al., 2005). Integration of data at regional scales, as
performed in this study, allows improving fits averaging outliers,
with higher improvement as surface increase (Bakker et al., 2005).
Confounding effects, generated by autocolineality between inde-
pendent variables is a potential problem in this kind of studies,
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which may be overwhelming by experimentation, fixing all con-
ditions except the one is tested (Bakker et al., 2005). Correlation
between independent variables was generally low in the Pampas
and only variables not significantly correlated were included in the
ANN model, so confounding effects may be discarded. As all vari-
ables used in the ANN model are available 40-60 days before wheat
harvest, in-season yield and production predictions are possible.
Different methodologies for in-season prediction of crop yield had
been tested in other agricultural regions as the use of the NDVI for
wheat (Freeman et al., 2003) or the application of agro-climatic
models for sorghum (Potgieter et al., 2005), but this techniques are
not available in the Pampean Region at present.

The ANN approach allowed a better prediction of wheat
yield and production than other methodologies when applied
at a regional scale. These results may be considered as a first
step in the developing of methods suitable for yield prediction
for the whole Pampean Region and the methodology may be
applied in other cropping areas of the World and for different
crops.
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