
Climatic Change (2009) 97:145–170
DOI 10.1007/s10584-009-9600-8

Value of perfect ENSO phase predictions
for agriculture: evaluating the impact
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Abstract In many places, predictions of regional climate variability associated with
the El Niño–Southern Oscillation phenomenon offer the potential to improve farm-
ers’ decision outcomes, by mitigating the negative impacts of adverse conditions or
by taking advantage of favorable conditions. While the notion that climate forecasts
are potentially valuable has been established, questions of when they may be more
or less valuable have proven harder to resolve. Using simulations, we estimate
the expected value of seasonal climate information under alternative assumptions
about (a) land tenure (ownership vs. short-term leases) and (b) the decision maker’s
objective function (expected utility vs. prospect theory value function maximization),
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employing a full range of plausible parameter values for each objective function.
This allows us to show the extent to which the value of information depends on
risk preferences, loss aversion, wealth levels and expectations, as well as situational
constraints. Our results demonstrate in a non-laboratory decision context that, in
some cases, psychologically plausible deviations from expected utility maximization
can lead to substantial differences in estimates of the expected value of climate
forecasts. Efforts to foster effective use of climate information and forecasts in
agriculture must be grounded in a firm understanding of the goals, objectives and
constraints of decision makers.

1 Introduction

1.1 Climate variations and decision making

A major scientific advancement of the twentieth century was the progress made in
diagnosing, modeling and predicting seasonal climatic variations. Climate forecasts
can affect peoples’ behavior and, in turn, their livelihoods. Agriculture is one
sector that may benefit from reliable forecasts of seasonal variability. Agricultural
stakeholders consistently rank climate variability among the top sources of risk to
production or profits (Harwood et al. 1999). Prediction of an impending wet growing
season, for example, may encourage farmers to apply more fertilizer or select a less
drought-tolerant crop. Improved decisions may enhance productivity, food security
and social welfare. The way in which and the extent to which climate forecasts can
improve decisions depend on the decision makers’ constraints and objectives, as we
demonstrate in this paper.

1.2 Forecast capabilities, value and use

Current understanding of sea surface temperature variability in the equatorial Pacific
and its climatic impacts enables skillful, though imperfect, forecasts of future sea
surface temperature anomalies (Landsea and Knaff 2000). Climate and crop yield
variability associated with the El Niño–Southern Oscillation (ENSO) phenomenon
can also be predicted with some skill (Mason et al. 1999; Goddard et al. 2001). ENSO
is the greatest single source of climatic variability on seasonal-to-interannual scales in
much of the world (Trenberth and Stepaniak 2001; Goddard et al. 2001) and results
from the two-way interaction between the ocean and atmosphere in the tropical
Pacific Ocean. ENSO involves two extreme phases: “El Niño” events and “La Niña”
events; those time periods which do not fall in these extreme phases are labeled as
“neutral” (Trenberth 1997). Links between ENSO-related climate variability and
agricultural outcomes exist in many agricultural regions (Dilley 1997; Hsieh et al.
1999; Hammer et al. 2001; Naylor et al. 2001; Amissah-Arthur et al. 2002; Gimeno
et al. 2002).

The value that climate forecasts may have under different decision circumstances
(e.g., crops grown, resource conditions, production technologies) has become an
important public policy concern. In this paper, we define the expected value of
forecast information (EVOI) as the difference between the expected value of the
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outcome from an improved, forecast-assisted decision and the expected value of
the outcome of a decision made without the forecast. In the developed world,
climate data, forecasts and technical assistance often are provided and subsidized
by the public sector (Glantz 2000). Estimated forecast value can help show if
improved forecast provision and dissemination may offer more to society than other
innovations, such as genetically modified seed varieties. Richard Katz’s internet site
(http://www.isse.ucar.edu/staff/katz/agriculture.html) offers reviews and summaries
of numerous studies that estimate forecast value for agriculture. The mere existence
of a technical innovation such as improved climate forecasts does not ensure its
use (Schultz 1964), and forecast use has indeed advanced slowly (Trenberth 1997;
Changnon and Kunkel 1999; Goddard et al. 2001).

Efforts to foster effective use of climate information and forecasts in agriculture
must be grounded in a firm understanding of the goals, objectives, and constraints of
decision makers in the target system, for two reasons. First, the goals and objectives
of farmers’ decisions (i.e., their objective functions, in decision-theoretic terms)
influence how climate information (both historical data and forecasts) is used. In
this paper we examine the differences identified as “optimal” by maximization of the
objective functions associated with expected utility (EU) theory and prospect theory
(PT). How climate information is used, in turn, has implications for how climate
information should be presented and communicated, i.e., for the design of climate
forecasts and tutorials of climate-information use. Decisions about the contents and
formats of current climate forecasts make implicit assumptions about what farmers
are trying to achieve and how such information will be used.

Second, decision makers in numerous domains often have poor insight into their
owndecisionprocesses,goalsandobjectives(Camerer 1981; Dawes 1971; Dawes et al.
1989; Schoemaker and Russo 1993; Ebert and Kruse 1978; Wrights 1979). Keeney
(1992) has provided broad theoretical support for the argument that thinking about
one’s decision objectives is an important component of effective decision making.
This offers opportunities for interventions to help farmers enhance their decisions.
When made aware of the objective function and goals implicit in their actions,
decision makers tend to react in one of two ways. Some are surprised by identified
objectives and the information they used in their decisions (Bond et al. 2008; Slovic
and Lichtenstein 1968, supplementary materials). Further, once aware of these objec-
tives and information use, these decision makers may wish they were not using them:
examples may include crop yield maximization rather than profit maximization in
farm production decisions. (e.g., List 2003). Other decision makers may concur with
identified goals, objectives, and information used, once made apparent to them, and
refuse to give them up (e.g., greater sensitivity to losses than to gains), even if they
violate normative models (Samuelson 2004). Identification of objective functions and
decision goals provides feedback about implicit decision processes, which can then be
reviewed and either explicitly acknowledged and accepted, or rejected.

1.3 Objectives and contributions

The purpose of this paper is to evaluate the influence of an individual’s decision goals
upon EVOI. While the notion that climate forecasts are potentially valuable has
been established, questions of when they may be more or less so have proven harder
to resolve. In particular, the impacts of decision goals have only seldom received

http://www.isse.ucar.edu/staff/katz/agriculture.html


148 Climatic Change (2009) 97:145–170

mention (e.g., Hansen 2002; Rubas et al. 2006; Meza et al. 2008). For comparative
purposes, we gauge the effects of decision processes relative to those of wealth and
land tenure regime, effects which have been examined elsewhere (e.g., Hammer et al.
2001). The point that the EU model does not adequately describe climate-sensitive
decisions has also been made elsewhere but not specifically for PT in estimating
EVOI (e.g., Jochec et al. 2001). If EVOI depends on the assumption of farmers’
objective function and its parameters, then we should reconsider the validity of
basing EVOI estimates exclusively or primarily on EU maximization as the objective
function.

1.4 Approach

To test the robustness of climate-forecast value estimates to alternative objective
functions and their parameter values, we simulate farm-level ENSO forecast value
for existing rainfed cropping systems in the Pampas region of central-eastern Ar-
gentina. We compare simulated EVOI for a plausible range of parameter values
for each objective function, reflecting individual differences in farmers’ cognition
and motivation. We assume farmers maximize either EU or PT value. To keep an
already complex story manageable, we focus on the case of perfect ENSO phase
forecasts, which assumes decision makers correctly anticipate ENSO phase but not
daily weather. We examine decisions relate to production of cereals and oilseeds,
i.e., a specific use of climate information in agricultural decision making. However,
similarity in resource conditions (e.g., soils and rainfall), production scale, crops
grown, land tenure regimes and high input technology in the Pampas to those in other
major production areas, such as the Midwestern US, suggests broader relevance
for our results. In the sections that follow, we discuss our case study, alternative
objective functions that may underlie risky decision making, our empirical approach
and findings.

2 Case study

The climate, soils and cropping systems of the Argentine Pampas have been char-
acterized by Hall et al. (1992). We focus on the region near Pergamino (33◦56′ S,
60◦33′ W), the most productive sub-region of the Pampas (Paruelo and Sala
1993). Earlier evidence of forecast value in attitudinal (Letson et al. 2001), agro-
climatological (Ferreyra et al. 2001; Podestá et al. 2002) and decision studies
(Messina et al. 1999; Letson et al. 2005; Bert et al. 2006, 2007; Podestá et al. 2008)
suggested Pergamino as a promising region for study.

The Pampean ENSO signal has been well documented. During the late spring
(October–December) of La Niña events, maximum temperatures and radiation tend
to be higher, while minimum temperatures and rainfall tend to be lower than normal;
the opposite tends to occur in El Niño events, though less markedly (Grondona et al.
2000; Furrer and Katz 2007). The ENSO-related climatic impacts, in turn, affect crop
yields. A clear association exists between maize and soybean yields and ENSO: high
(low) yields are more likely during El Niño (La Niña) events (Podestá et al. 1999).

Two characteristics of agricultural production in the study region have impli-
cations for our analysis. First, agriculture in the Pampas is market-oriented and
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technology-intensive. As a consequence, a broad spectrum of agronomic manage-
ment options exists and can be explored in the optimization. Second, a considerable
proportion of the area currently farmed is not owned by the farmers exploiting
it. Short land leases (usually one year) provide incentives for tenants to maximize
short-term profits via highly-profitable crops. In contrast, land owners tend to rotate
crops to steward long-term sustainability of production and soil quality (Leteinturier
et al. 2006), which implies fewer opportunities to benefit from forecast use. Given
the differences in decision making goals and constraints between land owners and
tenants, we model the two groups separately.

Farmers in the Pampas can easily access forecasts of ENSO from the beginning of
the decision-making process. Land assignment decisions start several months prior
to sowing. When harvest of the previous cycle’s summer crops is completed (March
to April), preliminary land allocation decisions are made for the following season.
The plans are executed as the sowing of each crop occurs (May for wheat, September
for maize and November for soybean) and could be revised along this period. Since
some ENSO events can be forecasted qualitatively only a few months in advance and
occasionally after an event has begun (Landsea and Knaff 2000), farmers will be less
than certain about an ENSO phase when making these decisions. After decisions
about land assignment are made, farmers focus on crop management decisions.
Decisions related to crop management are made 2 to 3 months prior to sowing (e.g.,
July to August for maize) but are often revised up to the period preceding planting
(Bert et al. 2006, 2007).

At least four other studies have estimated the expected value of climate forecast
for crop production in Pergamino. Royce et al. (2001) linked a widely used crop
model, CERES-maize, to a simulated annealing algorithm and a partial budget calcu-
lator, to optimize crop management by ENSO phase. Messina et al. (1999) provided
comparative estimates of the expected value of climate forecasts for Pergamino
and Santa Rosa, a nearby but semi-arid location. Jones et al. (2000) estimated the
potential economic value of climate forecasts for farm scale management decisions
in Tifton, GA, for comparison with the estimates of Messina et al. (1999). Letson
et al. (2005) extended Messina et al. (1999) by considering variability in historical
crop prices and weather to explore EVOI dispersion. However, each study assumes
that farmers are trying to maximize EU, and none examines the effect of alternative
objective functions or crop selection constraints.

3 Theories of risky choice: expected utility and prospect theory

3.1 Missing motivations

Models of risky choice have an extensive history in economics. In this paper we
examine the differences among simulated agricultural production decisions identified
as “optimal” by maximization of the objective functions associated with EU and PT.
Because of our interest in comparing objective functions, we discuss them in some
detail here. Traditional EU maximization, further described below, is a widely used
criterion in agricultural economics, and thus is a useful benchmark against which to
compare the results of other objective functions. However, with the growing interest
in PT as a theory of risky decision making, agricultural and resource economists
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have an exciting opportunity to explore how alternative objective functions might
improve analysis and insight (Shaw and Woodward 2008). Notably, George Akerlof
has recently explored the implications of utility functions dependent on norms, or
decision makers’ notions of what ought to be, to which he refers to as “missing
motivations”. Akerlof recommends that “economists observe decision makers as
closely as possible, with the express intent of characterizing their motivation, and
would use such characterization as the basis for modeling of economic structure”
(Akerlof 2007, p. 57).1

3.2 Expected utility

The EU hypothesis assumes that individuals evaluate uncertain prospects according
to their expected level of satisfaction or “utility” and is the predominant descrip-
tive and normative model of choice under uncertainty in economics. Specifically,
EU asserts that people maximize a probability-weighted average of the outcomes’
utilities. To do so, a decision maker calculates the utility in each possible state and
constructs a weighted average. The weights are the decision maker’s estimate of
the probability of each state. The expected utility is thus, in probabilistic terms,
an “expectation.” Empirically speaking, most decision makers exhibit risk aversion,
meaning that they would rather take a certain amount of money than take a gamble
with an expected payoff that is slightly larger than the certain amount.

We define a risky prospect q as the ensemble i = (1,. . . , n) of possible wealth
outcomes wi with associated probabilities pi. The farm-wide economic outcome of
each action vector �x during cropping cycle i, π i, is computed as:

πi =
∑

l=1

xl πil (1)

where π il is the net margin for year i and cropping alternative l and xl is the amount
of land allocated to cropping alternative l (i.e., a component of the land allocation
vector �x), and the summation is across all possible cropping alternatives. The total
wealth of a decision maker at the end of cropping cycle i is: wi = w0 + π i, where w0

is the decision maker’s initial wealth (i.e., prior to production decisions for year i)
and π i is the farm-wide income during year i. A decision maker evaluates the EU of
prospect q as:

E[U(q)] =
∑

i

piu(wi) (2)

1George Akerlof has shown how insights from sociology and psychology could broaden the power of
economics. In his Nobel Lecture (Akerlof 2001), he wrote: “Economics is a powerful tool, but like a
microscope, it focuses attention on some aspects of reality (especially the role of prices in markets),
while it also diverts attention from other aspects. There are still important areas of economics that
are all but uncharted because of this limited focus. It is consistent with this interpretation that Daniel
Kahneman, a leader in changing the focus of economics and one of last year’s (2002) prize winners,
is not only a trained psychologist, but also, has special expertise in human optical illusion.”
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One flexible form of utility function u(·) is given by Pratt (1964) as:

u(w) ∝

⎧
⎪⎪⎨

⎪⎪⎩

w1−r

1 − r
i f r �= 1

ln w i f r = 1

(3)

where r is the coefficient of constant relative risk aversion (CRRA). CRRA implies
that preferences among risky prospects will be unchanged if all payoffs are multiplied
by a positive constant (Hardaker et al. 2004). The parameter r describes the curvature
of the utility function and captures degree of risk aversion, e.g., r = 0 for risk
neutrality and r > 0 for risk aversion.

The EU model has been central in the analysis of choice under risk and uncer-
tainty, not only because of its compelling axiomatic foundation, but also because of
its mathematical tractability (Shaw and Woodward 2008). Despite these strengths,
there is both experimental and real-world evidence that individuals often do not
behave in a manner consistent with EU theory (McFadden 1999; Camerer 2000). A
central assumption of EU theory is that the utility of decision outcomes is determined
entirely by the final, reference-independent wealth they generate. Yet, decision
makers’ evaluation of outcomes instead appears to be influenced by a variety of
relative comparisons (Kahneman 2003).

3.3 Prospect theory

PT (Kahneman and Tversky 1979) and its modification, cumulative PT (Tversky
and Kahneman 1992; Fennema and Wakker 1997) currently have become the most
prominent alternative to the EU theory. PT formalizes one type of relative com-
parison observed when decision makers evaluate the utility of decision outcomes.
In PT, a value function V(·) is defined by changes in wealth rather than reference-
independent wealth states as in utility theory (Fig. 1; Kahneman 2003). Outcomes wi

are evaluated as gains or losses with respect to reference value wref: wi = �wi − wref.
Furthermore, the value function for losses is steeper than the value function for
gains, resulting in a sharp kink at the reference point. This feature of the value
function models the phenomenon of loss aversion, i.e., the observation that the
negative experience or disutility of a loss of a given magnitude is larger than the
positive experience or utility of a gain of the same magnitude. Empirical studies have
consistently confirmed loss aversion as an important aspect of human choice behavior
(Schmidt and Zank 2005; Camerer 2000; Rabin 1998). Kahneman and Tversky (1979)
define the subjective value of a prospect q as:

V(q) =
∑

i

piv[�wi] (4)

where �wi is the difference between the outcome wi and the reference point
wref, a free parameter that separates perceived gains from perceived losses. The
subjective evaluation of this difference can be expressed as suggested by Tversky
and Kahneman (1992):

v(�w) = h(�w)|�w|α (5)
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Fig. 1 The valuation of outcomes in prospect theory. The prospect theory (PT) value function
passes (Eqs. 4, 5 and 6) through a reference point (wref), or status quo. Its s-shape indicates that
risk preferences (α) over negative prospects are not a mirror image of their preferences over positive
prospects. While decision makers are risk-averse over prospects involving gains, they are risk-loving
over prospects involving losses. As the function’s asymmetry implies, given the same variation in
absolute value, there is a bigger impact of losses than of gains (loss aversion, λ). In contrast to
expected utility theory, the PT value function measures losses and gains, not absolute wealth

where the function h(�w) is the step function

h(�w) =
⎧
⎨

⎩

1 i f �w ≥ 0

−λ i f�w < 0
(6)

and λ is a parameter (λ > 1) that reflects increasing loss aversion. The exponent α

in Eq. 5 ranges between 0 and 1 and describes the curvature of the value function.
Because of the discontinuity at the reference point, α describes the degree of risk
aversion (concavity) in the domain of gains and the degree of risk seeking (convexity)
in the domain of losses.

4 Empirical approach

4.1 Crop yield simulation

In collaboration with our regional stakeholders, we defined 64 different cropping
alternatives (CAs) that reflect a realistic range of cultivation options for the study
area (Bert et al. 2006, 2007). Several CAs are associated with the same crop, although
involving different management options, as shown in Tables 1 and 2, where the
monetary units are constant US dollars equivalent to the median of 2000–2005
prices. Each CA combines (a) a crop (maize, full-cycle soybean and wheat–soybean),
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(b) various agronomic decisions (cultivar/hybrid choice, planting date, fertilization
options) and (c) a set of initial conditions (water and nitrogen in the soil at planting)
that result from previous production decisions. Additional details on the crop
simulation and farm decision model can be found in (Podestá et al. 2008).

Yields for each CA were simulated using the crop models in the Decision
Support System for Agrotechnology Transfer package (Jones et al. 1998). These
models simulate daily crop growth and development as a function of inputs such
as management practices, weather, soils and cultivars. These models have been
calibrated and validated under field conditions in several production environments
including the Pampas (Guevara et al. 1999; Meira et al. 1999; Mercau et al. 2007). We
used 1931–2003 daily weather for Pergamino (maximum and minimum temperature,
precipitation and solar radiation) to run the models. Other inputs such as (1) genetic
coefficients describing physiological processes and developmental differences among
genotypes, and (2) soil conditions, including moisture and N content at the beginning
of simulations, were provided by Asociación Argentina de Consorcios Regionales
de Experimentación Agrícola (AACREA, www.aacrea.org.ar), a non-profit farmers’
group that partnered with us in this study. For each CA, 72 simulated yields were
obtained (one for each cropping cycle in the 1931–2003 historical weather record).

4.2 Farm decision models

4.2.1 Choice variables and solution method

Economic outcomes were simulated for a hypothetical 600-ha farm, the median
size of AACREA farms in the region. We used a stochastic whole-farm crop and
management choice model to capture the role of climate forecasts in decision
making and to estimate their value. The choice variable in the optimization is the
vector �x = (x1, . . . , x64)that reports the percentage of area of the 600-ha hypothetical
farm allocated to each of the 64 CAs considered. Different land amounts allocated
to the 64 CAs were considered by the optimization of each objective function.
The optimization was performed using algorithm MINOS5 in the GAMS software
package (Gill et al. 2000). We drew from a uniform distribution to assign starting
values, to assure that model solutions were global maxima.2 The Appendix gives a
more detailed presentation of the model structure, assumptions and data sources.

We solved the farm model for two sets of objective functions, EU and PT,
optimized with and without using ENSO-phase forecasts. Specifically, we calculated
the expected value of a decision made based on a perfect forecast of ENSO phase,
i.e., knowing with certainty which ENSO phase will occur, but taking into account
weather variability within that given phase, because there is still an imperfect
relationship between the ENSO phase and daily weather. We assumed the forecast-
ing system is consistent with historical probabilities of the climatic conditions. To
estimate EVOI, we compared the expected value of a decision made based on perfect
ENSO information with that without this information. We used the farm model to:

2To set initial values for our land allocations, we randomly drew from a uniform distribution bounded
by 0 and 1. We used this procedure to re-solve the model ten times for each value of r, w0, λ, α and
wref. In all cases, model solutions were identical up to three decimal places, with respect to the varying
initial values.

http://www.aacrea.org.ar


156 Climatic Change (2009) 97:145–170

(a) identify optimal decisions with and without ENSO information; and (b) simulate
annual economic outcomes for the optimal decisions, with and without forecast use,
for the length of our weather series.

4.2.2 Farm model constraints

Model constraints imposed by crop rotations warrant mention. Differences in goals
and constraints between land owners and tenants require that we explore optimal
decisions separately for these groups. With three major cropping systems (maize,
soybean, and a wheat–soybean double crop), the rotation advocated by AACREA
allocates about 33.3% of the land to each of these cropping systems in a given year.
To allow owners some flexibility in land allocation, we introduced two constraints in
the optimization: land assigned to a crop could be no less than 25%, or more than
45% of the farm area. These constraints did not apply to land tenants, who could
allocate the entire farmed area to a single crop. A final constraint specified that no
land could be left idle.

4.2.3 Parameter space explored for each objective function

Each objective function has a set of parameters. In some cases, a given parameter
value describes a personality characteristic (e.g., risk aversion) that varies among
decision makers. With no widely accepted values for parameters, a broad range of
plausible values is considered, including available empirical estimates in the region.
In this section, we describe and justify our choice of central (or nominal) parameter
values (Table 3).

Expected utility The EU function has two parameters: (1) the decision maker’s
initial wealth w0 and (2) the constant relative risk aversion coefficient r (Table 3).
Initial wealth w0 is defined as liquid assets, or borrowing ability. For land owners,
this quantity was estimated as 40% of the value of the farm land. We assume a

Table 3 Range of parameters considered for each objective function

Objective function Parameter Land owners Land tenants

Typical Values Typical Values
value explored value explored

Expected Initial $1,400 ha−1 $900, $1,400, $1,000 ha−1 $700, $1,000,
utility wealth (w0) $1,900 ha−1 $1,400 ha−1

Risk aversion 1.5 0.0, 0.5, 1.0, Same as for land owners
coefficient (r) 2.0, 3.0, 4.0

Prospect Reference $232.5 ha−1 100, 232.5 $20 ha−1 $5, $20, $50,
theory value wealth (wr) $400 ha−1 $80 ha−1

function
Risk 0.88 0.60, 0.65, Same as for land owners

preference (α) 0.70, 0.75,
0.80, 0.85,
0.88, 0.90,
1.00

Loss 2.25 1.00, 2.25, Same as for land owners
aversion (λ) 3.50
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farmer will not sacrifice future income potential by selling crop land, but can borrow
up to 40% of his/her land value (see Messina et al. 1999). The 1994–2003 average
land value in Pergamino was $3,541 ha−1, making w0 equal to $1,400 ha−1 ($3,541 ×
0.4 ha−1), where the monetary units are constant US dollars equivalent to the median
of 2000–2005 prices. In sensitivity analysis, we also allowed w0 to take on the values
of 900 and 1900. For land tenants, we assumed a w0 value of $1,000 ha−1, the liquid
assets required to finance two complete cropping cycles (i.e., in case of a total loss
in one cycle, the farmer still has capital to fund a second). In sensitivity analysis, we
also allowed w0 to take on the values of 700, 1,200 and 1,400. For the risk-aversion
coefficient r, we followed the Hardaker et al. (2004) classification: 0.5 is hardly risk
averse; 1.0, somewhat risk averse; 2.0, rather risk averse; 3.0, very risk averse; and
4.0, extremely risk averse. We also included risk indifference by considering r = 0.
The range of r values (from 0 to 4) was the same for owners and tenants.

Prospect theory value function The PT value function is defined by (1) a refer-
ence wealth wref that separates outcomes perceived as gains and losses, (2) a risk
preference parameter α, and (3) a loss aversion parameter λ that quantifies the
relative impact of gains and losses (Table 3). The combination of all three parameters
accounts for the choice phenomena or choice behaviors that need to be explained
solely with reference to the risk aversion parameter in EU. For land owners, wref was
estimated as the income easily achieved by renting out the land instead of farming it.
This value of wref was estimated to be $232.5 ha−1 (a rental fee of 1.4 tons of soybean
per hectare times a price of $166 ton−1). In sensitivity analysis, we also allowed wref

to take on the values of $100 and $400 ha−1. For land tenants, wref was estimated
as the income obtained by placing the tenant’s initial wealth (w0 = $1,000 ha−1, as
described for EU) in a bank for 6 months (the duration of a cropping season) at an
annual interest of 4% (representative of current rates in Argentina). The nominal
wref value, then, was $20 ha−1. In sensitivity analysis, we also allowed wref to take on
the values of $5, $50 and $80 ha−1. For the risk-preference parameter α we explored
nine values over its possible range, the 0–1 interval. For the loss-aversion parameter
λ, we explored three values (1, 2.25 and 3.5) chosen to span the 95% percentile range
empirically estimated in decision experiments in the region by Weber (2007).

5 Results

5.1 Land tenure, decision objectives and economic outcomes

Our linked modeling approach allowed us to consider several important hypotheses
regarding the relationship between decision contexts and the EVOI. We are inter-
ested in the role of land tenure (owner managed vs. tenant managed) and of the
differences in cognitive process assumed to underlie different objective functions
(EU maximization versus PT value maximization), and we use three different depen-
dent measures (land allocations, incomes, EVOI) to evaluate our model simu-
lations. Those four permutations of land-tenure and decision objectives give us
three testable hypotheses on whether land tenure or assumed cognitive process
influences economic outcomes with regard to the use of climate-forecast information.
Specifically, we wish to compare the degree of influence that land tenure and decision
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objective each impart on the selection of CAs, on the resulting incomes, and on
EVOI.

We begin in Section 5.2 by reporting the optimal land allocations with and without
forecast use, as determined by our farm model. These findings are intended to help
build reader intuition for more detailed results that follow. Also in Section 5.2,
we report results on income levels and relate them to the type of ENSO phase
forecast issued (i.e., El Niño, neutral or La Niña) and to risk preference, and compare
those between the two types of land tenure and two objective functions. Later, in
Section 5.3, we report findings on EVOI and discuss how they relate to land tenure,
decision process, the ENSO phase forecast and risk preference.

5.2 Land allocations and incomes

If assumptions regarding land tenure and decision processes and thus objective
functions matter, they should at least influence farm CA choices. Tables 1 and 2
describe the available CAs prevalent in the case study region, by genotype, planting
date, rate of nitrogen fertilization and row spacing. Tables 1 and 2 also offer the
mean and standard deviation of simulated economic returns for each CA, across all
72 of the years in our data set and also by each ENSO phase. Comparative findings
are offered for owner management (Table 1) and for tenant management (Table 2).
Note that we include four maize alternatives, three for soybean, and four others for
a wheat–soybean relay or double crop. For land owners, full-cycle soybean CAs are
most profitable, except for El Niño years, when the wheat–soybean double crop CAs
offer the highest returns. For land tenants, the reverse is true: the wheat–soybean
double crop CAs offer the highest returns, except in neutral and La Niña years when
the full cycle soybean CAs are most profitable.

Figure 2 displays the optimal CAs for each combination of land tenure and
objective function (recall our assumptions about land owners, but not land tenants
adhering to crop rotations, see Section 4.2.2). While land tenure appears to matter
a great deal, the type of cognitive process has only a marginal influence. For
brevity, and because of the similarity of our findings across the parameter space we
considered, we show only representative cases in Fig. 2, i.e., wref = 232, λ = 2.25 and
α = 0.88 for PT maximizing owners; w0 = 1,400 and r =1 for EU maximizing owners;
w0 = 1,000 and r = 1 for EU maximizing tenants; and wref = 20, λ = 2.25 and α =
0.88 for PT maximizing tenants (Podestá et al. 2008).

In the case of land tenants, with one exception, monocropping prevails because
of the absence of crop rotation commitments. In neutral and La Niña events full
cycle soybean CAs are the dominant choice, while wheat–soybean double CAs are
dominant in El Niño years. The exception to monocropping is the PT maximizing
farmer using climatology rather than the ENSO phase forecasts, who allocates 40%
of land to the most profitable CA, a wheat–soybean double crop, and hedges against
climate risk by allocating the remaining 60% to a full cycle soybean CA offering
lower but more stable income. The PT/tentant using ENSO forecasts benefits most
in El Niño years, when the income differential for phase specific versus climatological
management is greatest [$165.1 ha−1 vs. (0.4 × 77.6 + 0.6 × 69.4)= $72.7 ha−1]. The
forecast response strategies in the case of PT/tenants are to avoid hedging costs
and are offensive in the sense that they take advantage of anticipated favorable
conditions. In part, the PT/tenants are responding to lower wref levels that make
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EU - Owners EU - Tenants

Fig. 2 Optimal land allocations for each combination of land tenure and cognitive process

losses relatively unlikely. The opposite is true in the case of EU/tenants, because
the forecast response is defensive in selecting a full cycle soybean CA offering lower
but more stable income.

In the case of land owners, the crop rotation commitments, by restricting the
decision space, closely link the land allocations of the EU and PT maximizing
farmers. In neutral and La Niña years, full cycle soybean CAs are the dominant
choice, meaning they receive the maximum land allocation of 45%. In El Niño
years, the wheat–soybean double crop CAs get the (maximum) 45% land allocation.
In all cases, maize CAs are the least profitable and receive the minimum land
allocation, 25%. The lone instance where the land allocations of the utility- and
PT-maximizing farmers differ is in El Niño years, when the PT maximizing land
owner opts for a slightly less profitable but more stable wheat–soybean CA. The
land allocation findings in Fig. 2 are broadly consistent with known regional ENSO
crop yield associations (Podestá et al. 1999; Table 3 and Fig. 3), as well as observed
land allocations in the Argentine Agricultural Census (2002), and confirm our basic
approach by replicating expert knowledge of regional decision making. A detailed
comparison of our simulated land allocations with the 2002 observed allocations
appears in Podestá et al. (2008) and is also available upon request from the
corresponding author.
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Fig. 3 EVOI in $ ha−1

certainty equivalent units for
EU and a land owners and b
land tenants

(a) EU - Owners

(b) EU - Tenants

Raising and stabilizing farm incomes is an important policy goal, so we are also
interested in how assumptions regarding land tenure and decision processes might
influence farm incomes. In general, economic returns per hectare are greater for
owners, because of differences in fixed and structural costs, as shown in Tables 1
and 2, which implies that relaxing our rotational constraints on owners would merely
replicate the tenant decisions. Because land tenure matters more than cognitive
process in terms of optimal land allocations, we are not surprised to see that it does
so as well for income levels, as indicated by the economic returns in Tables 1 and 2
and the land allocations in Fig. 2. For owners, income per hectare is about $164 ha−1,
while for tenants income is about $71 ha−1. For brevity, and because of the similarity
of our findings across the parameter space considered, we mention here only repre-
sentative cases shown in Fig. 2, in comparing farm incomes optimized on climatology
vs. that optimized on ENSO phase. For EU/Tenants, incomes for climatological and
perfect phase information are $69.4 and $71.3 ha−1. For PT/tenants, those incomes
are $72.7 and $71.3 ha−1. For EU/owners, those incomes are $164.4 and $163.5 ha−1.
For PT/Owners, those incomes are $164.4 and $164.2 ha−1. In contrast, we see in the
next section that the effects of both land tenure and decision objective parameter
values are much larger upon EVOI.
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5.3 Expected value of information

The next set of results is our estimated EVOI for each possible type of land tenure
and cognitive decision process, expressed in certainty equivalent3 dollars on a per
hectare basis. The chief finding is that EVOI is three to five times higher for tenants
than for owners, under EU and PT, since owners abide by crop rotations and have
less flexibility to respond to climate forecasts. While higher EVOI is a welcome
result, it must be balanced against the environmental degradation that accompanies
monocropping. For illustrative purposes, we again highlight a few, representative
cases: i.e., in Fig. 3a, w0 = {900, 1,400 and 1,900} for EU owners; in Fig. 3b, w0 = {700,
1,000 and 1,300} for EU tenants; in Fig. 4a, wref = {100, 232 and 400) and λ = {1, 2.25
and 3.5} for PT owners; and in Fig. 4b, wref = {5, 20, 50 and 80} and λ = {1, 2.25 and
3.5} for PT tenants.

One way to interpret forecast responses is to note their direction, that is, whether
the farmer uses ENSO forecasts primarily to avoid risk associated with adverse
conditions (defensive response) or to seek more profits by taking advantage of
favorable conditions (offensive response). In Fig. 2, for EU/tenants, farmers already
are positioned to take advantage of El Niño events, because of favorable resource
conditions, and use forecasts defensively to minimize income losses associated with
neutral and La Niña events; in Fig. 3b, the associated EVOI estimate is $12.00 ha−1.
The case of PT/tenants is less clear for the representative case shown in Fig. 2:
farmers are diversified and would use forecasts offensively (more soy–wheat, less
soy) to take advantage of expected favorable conditions in El Niño events but
would also use forecasts defensively (more soy, less soy–wheat) in Niña and neutral
events. Over the parameter space considered (Fig. 4b), however, EVOI increases
with risk aversion, suggesting that PT/tenant forecast use is primarily defensive; the
relevant EVOI estimate in Fig. 4b is $15.00 ha−1. Land owners also use forecasts
offensively, to take advantage of favorable conditions, and shift land into riskier but
more profitable soy–wheat CAs during El Niño events. The relevant EVOI estimates
are in Fig. 3a for EU, $1.80 ha−1 and in Fig. 4a for PT, $1.80 ha−1. Our estimates for
tenants are consistent with those for the region reported in Messina et al. (1999),
Royce et al. (2001), Jones et al. (2000) and Letson et al. (2005).

To discuss the sensitivity of EVOI with respect to changes in objective function
parameters, we begin by noting that the far right point in the PT maximization
diagrams (Fig. 4a, b), corresponding to α = 1, is identical to the far left point,
corresponding to r = 0, in the EU maximization diagrams (Fig. 3a, b). The cases
of α = λ = 1 and r = 0 are identical and equivalent to expected profit maximization.

In both cases of EU maximization (Fig. 3a, b), the EVOI rises, with few excep-
tions, with level of constant relative risk aversion, regardless of the level of initial

3The certainty equivalent is the amount of money the decision maker is willing to exchange for a
given risky prospect. It is defined as the inverse of the utility function evaluated at the probability
weighted average of the utilities. Since we evaluate the outcomes of farm decisions in terms of the
final wealth they generate for the farmer, we compare the effect of different decisions (with or
without climate information) in terms of wealth certainty equivalents. Formally, let U[E(W)] be
the level of utility associated with an expected level E(W) of a lottery promising different levels of
wealth W. Let E[U(W)] be the expected utility from the same lottery. The certainty equivalent of a
wealth lottery is the level of wealth WCE such that U(WCE) = E[U(W)] or WCE = U−1{E[U(W)]}.
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(a) (b)

Fig. 4 EVOI in $ ha−1 certainty equivalent units for PT and a land owners and b land tenants. For
land owners (a), we show the representative cases for wref = {100, 232, 400} and λ = {1, 2.25, 3.5}. For
land tenants (b), we show representative cases for wref = {5, 20, 50, 80} and λ = {1, 2.25, 3.5}

wealth we assume, a finding consistent with other published results (e.g., Messina
et al. 1999; Letson et al. 2005). In the case of owner management (Fig. 3a), EVOI
increases nearly monotonically with r. In the case of tenant management (Fig. 3b),
the EVOI-risk aversion relationship is less consistent, with the EVOI increasing
initially but then remaining constant for r ≥ 2, since diversified land allocations tend
to reduce effective climate forecast responses. The effect of different levels of initial
wealth w0 is minor throughout most of the range of risk preference and especially for
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tenant management. EVOI varies primarily because of the way in which similar sets
of CAs are evaluated by an objective function with different parameter settings.

For PT owners and tenants (Fig. 4a, b), increases in the loss aversion parameter
λ and decreases in the reference wealth parameter wref have the same effect that
decreases in w0 and increases in r had for the case of EU maximization. In essence,
increases in loss aversion or decreases in reference wealth act to increase EVOI:
higher λ values do so by weighing losses more heavily, losses that forecast use can
help avoid, while lower wref values discourage risk hedging behavior, and increase
decision flexibility, since lower income expectations imply a lower probability of
losses (Podestá et al. 2008). On the other hand, α (where smaller values indicate more
risk aversion in the domain of gains), exerts a more complex influence on EVOI. For
tenants, the lack of crop rotations enables a higher EVOI but also allows a greater
opportunity for rising λ or falling α to induce risk hedging. Since hedging behavior
restricts the decision space, both forecast responses and EVOI diminish. For owners,
greater risk concern (i.e., higher λ, lower wref and α) implies higher EVOI, as in the
case of EU/owners.

6 Discussion

Similar land allocations and incomes, once evaluated by EU and PT, imply markedly
different EVOI estimates. Since decision objectives exert more influence on EVOI in
our case study, while land tenure does so for land allocations and income levels, one
implication is that our findings in general are robust over the range of parameters we
consider. The contrast between land allocations and incomes vs. EVOI as economic
outcomes is a crucial one, since land allocations and incomes are observable, while
EVOI is not. Even if engaging in similar CAs and earning similar incomes, the EU
and PT farmers may have quite different EVOI perceptions. The implication is that
decision goals are of fundamental importance, since observing or simulating land
allocations and incomes alone is not enough to tell us EVOI.

Not surprisingly, the more descriptive PT model complicates efforts to prescribe
advice. Because of the complex way in which PT evaluates risk, farm strategies (and
policy interventions) are not as obvious (Fig. 4a, b). Risk aversion in the EU model
is summarized by the parameter r, which suggests that small scale farmers might be
targeted for technical assistance and use of complementary risk management tools.
However, in a PT decision environment risk aversion may result from low income
expectations (lower wref), curvature of the value function (α < 1) and/or loss aversion
(λ > 1), each of which may call for different actions. As experimental evidence
continues to mount in support of PT as a descriptive model (e.g., Camerer 2000),
those who facilitate agro-technology transfer (e.g., cooperative extension) may have
more success if they address loss aversion and relative wealth changes, as they appear
basic to forecast adoption decisions. One way to do so is to inform decision makers
about their implicit decision processes. Changing user goals is not a legitimate policy
objective but raising agricultural productivity and incomes traditionally has been.

Our EVOI estimates may contribute to comparisons with payoffs from alternative
agricultural innovations, but such comparisons also require expenditure estimates,
which are themselves laborious and beyond our scope. At least two studies have
made such comparisons. Adams et al. (2003) estimate a 30% rate of return to
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Mexican agriculture. Similarly, Sassone and Weiher (1999) report that investments
in the TOGA ocean observing program have a rate of return of 13% to 26% for US
agriculture. By comparison, rates of return to other agricultural innovations appear
higher. While studies using different methods and coverage give a range of estimates,
the consensus is that the payoff from the government’s investment in agricultural
research has been high (Fuglie and Heisey 2007). A recent review of 35 studies
published over 1965–2005, reports a median rate of return of 45% (Huffman and
Evenson 2006).

7 Conclusions

People perceive events and outcomes in ways that differ from standard assumptions
in economics (McFadden 1999). Our results show in a non-laboratory decision
context that psychologically plausible deviations from EU maximization may lead
to differences in EVOI estimates. Climate variability and change must be assessed
within the specific decision contexts in which they occur. Such a finding is consistent
with traditional social science research on technology diffusion in agriculture. In his
seminal (and Nobel prize winning) Transforming Traditional Agriculture, Schultz
argues that agricultural technology is highly “location specific” and must be adapted
to the cultural and resource conditions where applied (Schultz 1964). We concur
with Meinke et al. (2006) who notes that the traditional reductionist approach to
science has a tendency to create islands of knowledge in a sea of ignorance, with a
stronger focus on analysis of scientific inputs rather than synthesis of socially relevant
outcomes. The reductionist approach may be the principal reason why intended
end users of climate information generally fail to embrace what climate science has
to offer.

To make climate forecasts more useful, both the effects of land tenure and
cognitive decision processes warrant careful attention, since the two may have
conflicting policy implications. We have argued elsewhere that effective use of
climate forecasts requires well-functioning forecast generation, communication and
application (Podestá et al. 2002; see also Pielke et al. 2000). Appreciating the role
of each of the three components in conditioning EVOI can help identify priority
needs in these three parallel processes. For example, slow rates of climate-forecast
adoption (i.e., strict adherence to crop rotations), despite the EVOI estimates
reported here and elsewhere may be a rational response to concerns about long term
soil degradation from soybean monocropping. Or would-be users’ reluctance may
simply reflect a benefit of forecast use that does not compensate for the more com-
plicated adaptive management it requires. If so, public investments to raise EVOI,
by increasing forecast skill, may be justified. On the other hand, if risk preferences
are as complex as portrayed by PT that might also deter forecast adoption and
would call for different public investments, e.g., improving forecast comprehension
(communication) or learning how to use climate forecasts in coordination with more
traditional risk management tools, e.g., crop insurance (application).

While we have assumed perfect ENSO phase forecasts here as a convenient
fiction, we do relax this assumption elsewhere in our work. Following Kite-Powell
and Solow (1994), it is fairly simple to include uncertainty in the occurrence of an
ENSO phase. As climate forecasting systems improve globally, so will quantitative
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predictions of expected regional climate conditions (one determinant of EVOI). Our
simulation framework can incorporate this evolution through the development of
procedures to generate sets of synthetic weather series consistent with forecasted
scenarios (e.g., a wet spring).
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Appendix

A Farm model decision variables and objectives, cost calculations and data sources

To select optimal actions, we use a decision model that is a mathematical formulation
of the outcomes associated with all combinations of a set of actions and a set of
possible states of the world (e.g., Hardaker et al. 2004). The mathematical statement
of our model will not be repeated here, as it is quite similar to the decision model in
Appendix C in Letson et al. (2005), though here without a labor constraint. Below we
describe our decision variables, objective functions, assumptions and data sources.

B Decision variables

Each possible action is given by the vector �x = (x1, . . . , x64) that includes the per-
centage of area of a hypothetical farm allocated to each of the 64 CAs (Tables 1 and
2). For example, a given action �x may involve an allocation of 25% of the area to CA
x8 (a specific management for maize), 35% to CA x27 (a specific wheat–soybean CA)
and 40% to CA x56 (a specific soybean CA). Values for other components of �x are 0
(i.e., no land is allocated to them).

C Objective functions

Expected utility optimization The EU of a gamble (Eq. 2) may be expressed as a
linear combination of the utility of the final wealth wi outcomes and their associated
probabilities:

E[U(�x)] =
n∑

i=1

piu[wi(�x)] (7)

where pi is the probability of a given climate for production cycle i. We assume the
climates for all production cycles in the historical record have the same probability
(i.e., ignoring any trends in climate), i.e., pi = 1

/
n, where n is 72 cycles. The

optimization selects �x∗ = (
x∗

1, . . . , x∗
64

)
, the proportion of land allocated to each CA

that maximizes EU.
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Prospect theory value optimization Kahneman and Tversky (1979) propose a value
function, v(·), that assigns a value to an outcome (Fig. 1). The value function passes
through the reference point, wref, and is s-shaped. Its curvature is given by the
parameter 0 ≤ α ≤ 1 (Eq. 5). As its asymmetry implies, given the same variation
in absolute value, there is a bigger impact of losses than of gains, where λ > 1 reflects
increasing loss aversion (Eq. 6).

One plausible reference wealth value is the income wrent a farmer could get with
minimal effort (e.g., renting his/her land) added to the decision maker’s initial wealth,
w0: wref = w0 + wrent. The change in wealth then becomes: �wi = π i − wrent. The
total value function for PT (Eq. 4) then can be rewritten as:

V(�x) =
n∑

i=1

piv[�wi(�x)]. (8)

The optimization selects �x∗ = (
x∗

1, . . . , x∗
64

)
, the proportion of land allocated to each

CA that maximizes the value of V(·).
Optimizing the value function with the GAMS software (Gill et al. 2000) was

problematic because of the discontinuity of function h (·) (defined in Eq. 6) at
�wi = 0 (where the PT value function has a sharp kink and is not differentiable).
To address the problem, we used a continuous function h̃ (·) that is numerically
equivalent to h (·):

h̃(x) = 1/2[1 − λ + (1 + λ) tan h(ρx)] (9)

where ρ is an arbitrary parameter such that ρ > 1; large values of ρ (we used ρ = 10)
reproduce the function more closely. More information about and justification for
this approximation can be found in Podestá et al. (2008).

D Cost calculations and data sources

We computed net economic returns per hectare π ij for year i and CA j as the
difference between income and costs:

πij = Yij P j − (F j + Vij + Si + Ti). (10)

Gross incomes per hectare Yij P j were the product of simulated yield for a year and
CA (Yij) and a constant output price for each crop (Pj). Assumed output prices were
in constant US dollars equivalent to the median of 2000–2005 prices during the month
when most of the harvest is marketed (April, May, and January for maize, soybean,
and wheat, respectively). After deducting export taxes charged by the Argentine
government, these prices were US $78.9, $166.0, and $112.0 ton−1 for maize, soybean
and wheat, respectively. Because some costs applied only to owners or to tenants,
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we calculated the economic returns for each separately. Four different kinds of costs
were involved in the computation of net returns.

Fixed costs F j for CA j are independent of yield. For land owners, fixed costs
included: (a) farmer’s salary, health insurance and a fixed fiscal contribution. For
land tenants, fixed costs also included (b) land rental (assumed to be $232.5 ha−1,
equal to the value of 1.4 tons of soybean) and (c) management costs ($12 ha−1).

Variable costs Vij are a function of yield in year i for CA j. These include: (a) input
costs (e.g., fertilizer, seed, field labors), (b) harvesting costs, estimated as 8% of gross
income (Yij P j), (c) transportation costs ($10 ton−1), (d) sales tax and commissions,
estimated as 8% of gross income. Variable costs were the same for land owners and
tenants.

Structural costs Si are applicable only to land owners and covered: (a) maintenance
of farm infrastructure, (b) real estate taxes and (c) management and technical
advice. Structural costs are independent of farm activities or CA yields. For the
sake of simplicity, however, they were approximated following a criterion used by
AACREA: they were a percentage (23%, 18%, and 20% for maize, soybean and
wheat–soybean respectively) of income per hectare after subtracting variable costs
(Yij P j − Vij). Because structural costs are incurred even if part of the farm is idle, we
assume that the entire 600-ha area of the hypothetical farm is cultivated.

Income tax Ti applies equally to land owners and tenants and was computed as:

T =
{

b (π̄ − a) + c
c

i f
i f

π̄ ≥ a
π̄ < a

(11)

where a is a threshold income above which farmers pay an average tax rate b =
0.32. Below a, farmers pay a minimum tax c assumed to be $59.33 ha−1. To simplify
calculations, an average annual income π̄ of $177.5 ha−1 ($57.6 ha−1) was assumed for
owners (tenants). While our assumed average income differs from our simulations
in Section 5.2, as a lump sum that deviation influences neither our optimal land
allocations nor our EVOI estimates.
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