Altered expression of Bcl-2 and Bax in follicles within dehydroepiandrosterone-induced polycystic ovaries in rats

Diana Bas¹, Dalhia Abramovich¹, Fatima Hernandez¹, Marta Tesone¹, ²a

¹Instituto de Biología y Medicina Experimental (IBYME)-CONICET, ²Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Running title: Bcl-2 apoptotic protein levels in PCOS ovaries

aCorrespondence: Marta Tesone, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina.
FAX 54 011 4786 2564; e-mail: mtesone@dna.uba.ar

Key words: apoptotic proteins, dehydroepiandrosterone, polycystic ovary syndrome
Abstract

Polycystic ovary syndrome (PCOS) is a heterogeneous disease characterized by hyperandrogenemia, hirsutism, oligo- or amenorrhea, insulin resistance and anovulation. The aim of the present study was to evaluate if the balance between the ovarian expression of Bax (proapoptotic protein) and Bcl-2 (antiapoptotic protein) is altered in a PCOS model developed in rats by DHEA administration. In addition, the ovarian morphology and the circulating progesterone levels were evaluated.

Histological studies confirmed the presence of follicular cysts, atretic follicles and the absence of corpora lutea in the ovaries from the PCOS group and a significant decrease in circulating progesterone levels. Immunohistochemical studies showed that the expression of Bcl-2 and Bax were mainly localized in granulosa cells of antral follicles in both groups. Bax expression was greater in preantral and antral follicles from PCOS ovarian sections than in Controls. In contrast, intense Bcl-2 immunostaining was observed in Control antral follicles, while Bcl-2 protein was either absent in preantral follicles or weakly expressed in antral follicles from PCOS rats. These results were partially confirmed by western studies. Data revealed that the ovarian level of Bcl-2 protein was lower in PCOS than in Control, and that there were no differences in Bax ovarian levels between groups. However, Bax/ Bcl-2 ratio was significantly higher in PCOS group than in Control group. In conclusion, an increase in ovarian apoptosis through an imbalance among the Bcl-2 family members may be involved in the transformation of growing follicles in cystic follicles in the ovaries from DHEA-induced PCOS rats.
Introduction

Infertility affects 10% of human couples, a proportion of which are due to ovarian dysfunction. Polycystic ovary syndrome (PCOS) represents a remarkable 75% of cases of anovulatory infertility (Dunaif and Thomas, 2001; Ehrmann, 2005). This is a heterogeneous disease frequently characterized by hyperandrogenemia, hirsutism, oligo- or amenorrhea, insulin resistance and anovulation. However, the lack of a clear etiology associated with these syndromes has led to multiple treatments with few effective therapies for infertility.

Apoptosis is a physiological process that plays a critical role in the maintenance of homeostasis in multicellular organisms (Schwartzman and Cidlowski, 1993). Signaling for apoptosis occurs through multiple independent pathways that converge in a common machinery of cell destruction. For example, several genes belonging to the bcl-2 family may function as intracellular mediators of cell survival. The protein products of the bcl-2 and Bax genes have been described as anti- or proapoptotic factors, respectively (Korsmeyer, 1992; Reed, 1994; Boise et al., 1993). Depending on the balance of these proteins, the activation of the initiator caspase 9 and the sequential activation of several effector caspases such as caspase 3 or 7, which promote apoptosis in various systems, occurs (Budihardjo et al., 1999).

Mahesh (Mahesh, 1966) and Greenblatt (Greenblatt and Mahesh, 1974) showed that dehydroepiandrosterone (DHEA) and its sulfate derivative are among the first androgens that increase during puberty in most patients with PCOS. It has been demonstrated that the injection of DHEA to immature rats produces an animal model of PCOS that exhibits the prominent features of human PCOS- i.e., the follicles undergo atresia or exhibit various stages of cystogenesis up to complete pathological transformation into follicular cysts (Roy et al., 1962; Anderson et al., 1992). Thus, this model appears to be appropriate to study the process of follicular atresia in PCOS stages.

The ovarian cycle is characterized by extensive tissue remodeling, where 99% of mammalian follicles fail to ovulate and become atretic by a hormonally controlled apoptotic process (Hsueh et al., 1996). Although Bcl-2 family protein members are involved in this process, their significance in PCOS development remains unclear. Accordingly, the aim of the present study was to evaluate if the balance between the ovarian expression of Bax (a proapoptotic protein) and Bcl-2 (an antiapoptotic protein) is altered in a PCOS model developed in rats by DHEA administration. In addition, the ovarian morphology and the circulating progesterone levels were evaluated.

Materials and Methods

Animal Treatments and Tissue Collection

General care and housing of rats was carried out at the Instituto de Biologia y Medicina Experimental (IByME), Buenos Aires, Argentina. Prepubertal rats were from our colony. Immature female Sprague-Dawley rats (21-23 days old) were allowed food and water ad libitum, kept at room temperature (21-23 °C) on a 12L:12D cycle. To induce the hyperandrogenic PCOS condition the protocol developed by (Henmi et al., 2001) was used. Rats were injected s.c. with DHEA (PCOS group, 6 mg/100 g body weight/0.2 ml sesame oil, n=4-6) every evening for 15 days. Control animals were injected with 0.2 ml of sesame oil every evening for an equivalent length of time (Control group, n=4-6). There were no signs of inflammation at the injection sites throughout the experiment. The animals were either euthanized by CO2 asphyxiation or...
decapitated to obtain blood samples for steroid extraction. The plasma was stored at -20°C for subsequent RIA analysis. Ovaries were removed and cleaned of adhering tissue; one ovary per rat was used for Western immunoblot assays and the other for immunohistochemical assays.

Immunohistochemistry

Ovaries from both the control and the PCOS group were obtained and immediately fixed in 4% neutral buffered formalin for 12 h and then embedded in paraffin. Five-micron step sections were mounted at 50-μm intervals onto microscope slides to prevent counting the same follicle twice, according to Woodruff et al. (Woodruff et al., 1990). Tissue sections were treated as previously described (Abramovich et al., 2010). Sections were incubated with goat polyclonal anti-Bcl-2 (1:100) or rabbit polyclonal anti-Bax (1:100) primary antibodies. Specificity for Bcl-2 and Bax was supported by the loss of staining in follicular tissue preabsorbed with their respective peptides from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

Morphological characteristics of preantral follicles (PF) include their size (PF: 120-200 μm) and an oocyte surrounded by 2-4 layers of granulosa cells. Antral follicles (AF) are defined as follicles of 200-500 μm in diameter with a well-defined and thick granulosa layer and an internal and external thecal layer (Hughes Jr. and Gorospe, 1991; Hirshfield and Midgley, Jr., 1978). Cystic follicles were characterized by a thickened theca interna layer and a diminished granulosa cell layer. Atresia was defined as the presence of >10 pyknotic granulosa cells; in the smallest follicles, the criterion for atresia was a degenerated oocyte and/or precocious antrum formation (Andreu et al., 1998).

Western blot

Five ovaries per group were resuspended in 350μl of lysis buffer (20 mM Tris-HCl [pH 8], 137 mM NaCl, 1% NP-40, and 10% glycerol) supplemented with protease inhibitors (0.5 mM PMSF, 0.025 mM N-CBZ-L-phenylalanine chloromethyl ketone, 0.025 mM N-p-tosyl-lysine chloromethyl ketone, and 0.025 mM 1-tosylamide-2-phenyl-ethylchloromethyl ketone) (all the products were obtained from Sigma) and homogenized with an Ultra-Turrax (IKA Werk, Breisgau, Germany) homogenizer. Samples were centrifuged at 4°C for 10 min at 10 000 x g, and the resulting pellets discarded. Protein concentration in the supernatant was measured by the Bradford assay. Western blot technique was performed as previously described (Abramovich et al., 2010). Blots were incubated with anti-Bax (1/200); anti Bcl-2 (1/500) and anti-actin B (1/1.000) primary antibodies. Blots were then incubated with anti-rabbit or anti-mouse antibodies conjugated with horseradish peroxidase (1:1000) and finally detected by chemiluminescence and autoradiography with an x-ray film.

Quantification for the Western Immunoblot

In each experiment, equal amounts of protein were loaded for all samples, and protein extracts from the PCOS and Control groups were loaded on the same gel. For quantification, a screening was performed on blots with an x-ray film using different times of exposure to optimize the signal. The density of each band was normalized to the density of the actin B band that was used as an internal control. The levels of protein were compared and analyzed with densitometric studies by Scion Image for Windows (Scion Corporation, NIH, Washington, D.C.). Optical density data are expressed as arbitrary units ± SEM.
Serum progesterone levels

Following ether extraction, serum steroid levels were measured by RIA in rats from the Control and PCOS groups, as described previously (Saragueta et al., 1989; Irusta et al., 2003). Progesterone was measured using a specific antibody supplied by Dr. G. D. Niswender (Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO). Under these conditions, the intra-assay and inter-assay variations were 8.0 and 14.2% respectively.

Data Analysis

Data are expressed as the mean ± SEM. Three different experiments with 4-6 ovaries each were carried out for Western blot analysis and representative gels are shown in the figures. Statistical analysis was performed with a paired t-Test using the GraphPad Prism program version 4.00. Values of p<0.05 were considered significantly different.

Results

Morphological Studies and Serum Progesterone Levels

Ovarian histology confirmed the presence of follicular cysts and many atretic follicles and the absence of corpora lutea in the rat ovaries from the PCOS group (Fig. 1B). In contrast, Control ovaries showed the presence of numerous growing follicles and some corpora lutea (Fig. 1A). Progesterone concentration in serum was measured after 15 days of DHEA treatment (PCOS group) and in control animals (Control group). A significant decrease in circulating progesterone levels was observed in the PCOS group (Control: 11.7 ± 2.3 ng/ml; PCOS: 4.8 ± 1.3 ng/ml, n=8, p<0.05).

Analysis of Bcl-2 and Bax in the ovaries from the PCOS and Control groups

Figure 2 shows the immunohistochemical staining for Bcl-2 in ovarian sections from PCOS and Control rats during the different follicular stages. In the Control group, we found that Bcl-2 was expressed in granulosa cells (Gc) at all follicular stages. In contrast, no immunostaining for Bcl-2 was observed in thecal cells (Tc) (Fig. 2). In preantral follicles we detected minimal expression of this protein (Fig. 2A). However, intense immunostaining for Bcl-2 was observed in antral follicles (Fig. 2C). In PCOS rats, Bcl-2 protein was either absent in preantral follicles (Fig. 2B) or weakly expressed in Gc in antral follicles (Fig. 2D). In contrast, atretic follicles showed intense staining for Bcl-2 in ovarian sections from both groups (Fig. 2E-F).

Figure 3 shows the immunohistochemical staining for Bax in ovarian sections from Control and PCOS rats. In Gc from the Control group, Bax protein was either absent in preantral follicles (Fig. 3A) or moderately expressed in antral follicles (Fig. 3C). In contrast, Bax expression was greater in Gc from preantral and antral PCOS follicles (Fig. 3B & 3D). Antral ovarian follicles from Control and PCOS rats showed a weak Bax expression in Tc, whereas preantral follicles showed total absence of expression (Fig. 3A-D). In addition, atretic follicles showed an intense staining for Bax in ovarian sections from both groups (Fig. 3E-F).

In addition, follicular cysts from the rat ovaries of the PCOS group showed a weak expression of Bcl-2 in Gc (Fig. 2H) and an intense expression of Bax (Fig. 3H).
Figure 4 shows the expression of ovarian Bcl-2 and Bax protein determined by Western immunoblot. No differences in Bax ovarian levels were detected between groups (Fig. 4A). However, expression of Bcl-2 protein was lower (p<0.05) in ovaries from PCOS rats than in those from Control rats (Fig. 4B). In addition, the Bax/Bcl-2 ratio was significantly increased in the PCOS group in comparison to the Control group (Fig. 4C).

Discussion

The present study investigated the protein expression levels and cellular localization of Bcl-2 and Bax in ovaries from DHEA-induced PCOS rats. In order to correlate these results with morphological and functional ovarian changes, ovarian structures were also examined and serum progesterone levels measured. Histological studies confirmed the presence of follicular cysts and many atretic follicles and the absence of corpora lutea in the ovaries from the PCOS group and, as a consequence, a significant decrease in the circulating progesterone levels. Our data constitute the first evidence that these alterations are associated with changes in the expression of ovarian apoptotic proteins of the Bcl-2 family. We demonstrated by immunohistochemical studies that the expression of Bcl-2 and Bax was mainly localized in granulosa cells (Gc) of antral follicles both in control and PCOS rats, pointing out the importance of Gc during the process of follicular atresia and cystogenesis observed in PCOS ovaries. However, Bax expression was greater in Gc of preantral and antral follicles from PCOS ovarian sections than in those from the Control group. In contrast, intense Bcl-2 immunostaining was observed in Control antral follicles, while Bcl-2 protein was either absent in preantral follicles or weakly expressed in antral follicles from PCOS rats. These results were partially confirmed by western immunoblot studies. Our data revealed that the ovarian level of Bcl-2 protein was lower in ovaries from PCOS rats than in those from Control rats, and that no changes in Bax ovarian levels were detected between groups. The different expression of Bax observed using immunohistochemical assays could be due to the fact that for Western blots the whole ovary was used, while immunohistochemical studies detect the staining in each follicular stage. A possible dilution could take place when the total ovarian level of Bax was measured. Nevertheless, the Bax/Bcl-2 ratio measured by Western blots was significantly higher in the PCOS group than in the Control group.

Tilly et al have demonstrated that follicular atresia is associated with an imbalance among the Bcl-2 family members. Gonadotropin treatment inhibits granulosa cell apoptosis and follicular atresia mediated by the reduction of granulosa Bax expression while maintaining the levels of Bcl-2 and Bcl-xL (Tilly, 1996; Tilly et al., 1995). Thus, it was postulated that the intrinsic pathway of apoptosis would be involved in follicular atresia (Tilly et al., 1995; Tilly, 1996). In addition, in a previous study, we have shown that the local inhibition of Vascular Endothelial Growth Factor A (VEGFA) activity appears to cause an increase in ovarian apoptosis through an imbalance among the Bcl-2 family members, thus leading a larger number of follicles to atresia (Abramovich et al., 2006). Moreover, in vivo GnRH agonist treatment caused an increase in follicular atresia and apoptosis process in follicles from eCG-treated rats, which is correlated with a decrease in the ratio of anti-apoptotic: proapoptotic proteins, as observed for the Bcl-xL/Bcl-xS pair (Parborell et al., 2002). A similar mechanism could take part in the development of the PCOS state induced by high levels of androgens (Tilly and Tilly, 1995; Parborell et al., 2002). Accordingly, the present data indicate that the intrinsic
pathway participates in the transformation of growing follicles in cystic follicles in the ovaries from DHEA-induced PCOS rats. In an earlier study, Honmna et al (Honnma et al., 2006) demonstrated that the extrinsic apoptotic pathway is also involved in the mechanisms of follicular atresia in rat ovaries affected by PCOS induced by DHEA. In the same animal PCOS model used in this study, these authors found an increase in the number of apoptotic follicle cells and in the ovarian levels of the proapoptotic protein FasL and the processed caspase-8 protein. All these data lead us to suggest that both pathways may be involved in the development of the PCOS stage. In addition, our results are in agreement with those obtained by Salvetti et al. in a different PCOS model. In rats exposed to continuous light they described changes in the ovarian expression of Bcl-2 family members using immunodetection assays (Salvetti et al., 2009).

Apoptosis is related to the oxidant-antioxidant equilibrium. Thus, damage to biological systems caused by the excess of reactive oxygen species (ROS) produce cellular oxidative stress. It has been reported that hyperandrogenization of BALB/c mice with DHEA prevents ovulation by increasing ovarian oxidative stress and altering the endocrine and immune systems (Elia et al., 2006; Luchetti et al., 2004; Sander et al., 2005; Solano et al., 2006; Belgorosky et al., 2010). These alterations could be associated with the changes in the expression of the apoptotic proteins described in this study.

In summary, our data demonstrate that the Bax/ Bcl-2 ratio was significantly higher in the ovaries from the PCOS group than in those from the Control group. Thus, changes in the intrinsic pathway of apoptosis are associated to the ovarian alterations observed in the ovaries from DHEA-induced PCOS rats.

Conclusions

Our data suggest that an increase in ovarian apoptosis through an imbalance among the Bcl-2 family members may be involved in the transformation of growing follicles in cystic follicles in the ovaries from DHEA-induced PCOS rats.

Acknowledgements

We thank Paola Garcette (IByME-CONICET) for technical assistance and the animal care staff of the Division of Animal Resources at IBYME for their contributions. This research was supported by ANPCyT (PICT 5-26047), CONICET (PIP1223) and Roemmers Foundation.

References

Anderson E, Lee MT, Lee GY. Cystogenesis of the ovarian antral follicle of the rat: ultrastructural changes and hormonal profile following the administration of dehydroepiandrosterone. Anat Rec 1992; 234:359-82.

Tilly JL, Tilly KI, Kenton ML, Johnson AL. Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of

Figure legends

Figure 1. Representative photomicrographs of ovarian sections stained with hematoxylin-eosin. A: normal cycling control rat treated with vehicle. B: PCOS rat treated with 6 mg DHEA/100 g body weight for 15 days. Note the presence of numerous growing follicles (F) and some corpora lutea (CL) in Fig. 1A and numerous cystic follicles (Cy), atretic follicles (At) and the absence of corpora lutea in Fig. 1B.

Figure 2. Immunohistochemical staining for Bcl-2 in representative ovarian sections from Control and PCOS rats showing different follicular stages. Panels A, C and E show representative fields of ovarian sections from Control rats. Panels B, D, F and H show representative fields of ovarian sections from PCOS rats. Panel G: negative control. Specificity for Bcl-2 is supported by the loss of staining in follicular tissue preabsorbed with Bcl-2 peptide (not shown). PF, preantral follicle; AF, antral follicle; At: atretic follicle; Cy: cystic follicles Gc, granulosa cells; Tc, theca cells; Oo, oocyte; St, stroma. Scale bars represent 50 μm.

Figure 3. Immunohistochemical staining for Bax in representative ovarian sections from PCOS and Control rats showing the different follicular stages. Panels A, C and E show representative fields of ovarian sections from Control rats. Panels B, D, F and H show representative fields of ovarian sections from PCOS rats. Panel G: negative control. Specificity for Bax is supported by the loss of staining in follicular tissue in the absence of the primary antibody (not shown). PF, preantral follicle; AF, antral follicle; At: atretic follicle; Cy: cystic follicles Gc, granulosa cells; Tc, theca cells; Oo, oocyte; St, stroma. Scale bars represent 50 μm.

Figure 4. Effect of DHEA treatment on proapoptotic and antiapoptotic ovarian protein content. After homogenization, proteins were extracted, subjected to 12% SDS-PAGE, and transferred onto nitrocellulose membranes. A) Upper panel: Densitometric quantification of Bax content. Bars represent the mean ± SEM normalized to actin B. Lower panel: Representative immunoblot of Bax ovarian protein content from control and DHEA-treated rats (PCOS group). Bax protein was visualized with an anti-Bax antibody. No differences in Bax ovarian levels were detected between groups. B) Upper panel: Densitometric quantification of Bcl-2 content. Bars represent the mean ± SEM normalized to actin B. Lower panel: Representative immunoblot of Bcl-2 protein content in antral follicles from control and DHEA-treated rats (PCOS group). Bcl-2 protein was visualized with an anti-Bcl-2 antibody. Levels of Bcl-2 protein were significantly decreased after DHEA treatment (n = 5; p < 0.05). C) Ratio Bax/Bcl-2 in the PCOS and Control groups. The ratio was significantly increased after DHEA treatment (n = 5; p < 0.05).