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Abstract 

Plant growth promoting rhizobacteria (PGPR) is an alternative to chemical fertilizers for 

sustainable, environment friendly agriculture. There is a need to develop strategies to 

potentiate the interaction between rhizobacteria and plants. Flavonoids and organic acids 

(components of root exudates) play specific beneficial roles as carbon sources and signal 

molecules in the plant – rhizobacteria interactions. The goal of this work is to encapsulate 

signal molecules, namely citric acid and naringin, an organic acid and a flavonoid, 

respectively, by a biodegradable polymer, polycaprolactone (PCL), in order to maintain the 

stability and activity of those signal molecules and enable their slow or controlled release 
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over a selected period of time, according to the needs of the plants. This approach is 

expected to potentiate food crops, namely peanut crop, in adverse environmental conditions 

(water deficit), by promoting the beneficial interaction between the peanut plant (A. 

hypogaea) and rhizobacteria. The microcapsules (MCs) are obtained by an emulsion process 

combined with solvent evaporation technique and are characterized by scanning electron 

microscopy, thermogravimetry and Fourier transformed infrared spectroscopy. The kinetics 

of in vitro release of encapsulated molecules, in a period where the uptake of the compound 

in plants can occur, is studied. The encapsulation synthesis parameters that lead to the best 

encapsulation process yield and efficiency, as well as to the best final performance in terms 

of release, are identified. The effect of pH and molecular weight of PCL is found to mediate 

the release properties of the molecules for different types of soil. PCL 45000 Mw dissolved 

at 16% in dichloromethane leads to an encapsulation efficiency of 75% and the resulting 

MCs containing naringin exhibit a slow release profile for 30 days, unmodified by pH, 

enabling their use in soils of different characteristics. This research makes possible the 

manufacturing of smart materials for sustainable agriculture practices.  
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1. Introduction 

Due to the rapid growth of the world population, modern agriculture plays a critical role in 

meeting the demand for food and other agro-products. Fertilizers and water are the most 

important elements in agricultural production. The most important characteristic of 

commercial chemical fertilizers is instant dissolution, however because the nutrient release 

rate per unit of time is often much higher than the adsorption rate of crops, there is 

overdosing with subsequent negative effects as soil compaction and contamination and the 

decrease in crop yields (Pang et al., 2018). As an alternative to chemical fertilizers, the 

development and use of microbial inoculants based on plant growth promoter bacteria 

(PGPR) has been increasing worldwide (Askary et al., 2009; Malusa and Vassilev, 2014; 

Cesari et al., 2019). This trend complies indeed with the directives for sustainable 

agriculture practices and is aligned with one of the key Sustainable Development Goals 

(SDG) set by the United Nations, which aims by 2030 to “end hunger, achieve food 

security and improved nutrition and promote sustainable agriculture”. 

In order to reduce environmental problems and the negative impact caused by conventional 

chemical fertilizers, encapsulation of fertilizers for slow or even controlled release has been 

proposed to enable continuous release of nutrients throughout the growth season (Tolescu et 

al., 2014; Chen L. et al., 2008; Chen S. et al., 2018; Chen J. et al., 2018). Microcapsules 

(MCs) are mainly used as carrier systems for the storage and protection of functional 

compounds or the slow or controlled release of active compounds (Rathore et al., 2013; 

Loureiro et al., 2017a, b, 2019; Attaei et al., 2018), which makes them potential smart 

materials for agriculture applications.  

Biodegradable polyesters such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) 

(PLGA) and polycaprolactone (PCL) have been widely used as carriers in controlled-release 
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delivery systems. The degradation of these polyesters involves a bulk erosion process, which 

can accelerate the dilution and release of the drug (Makadia et al., 2011). PCL is one of the 

biodegradable polyesters which have attracted attention to be used in controlled drug 

delivery bioapplications due to its lack of toxicity and low cost when compared to other 

biodegradable polyesters. One example is the development of microspheres, matrix-type, 

containing quercetin or triprolidine hydrochloride incorporated in the PCL matrix (Natarajan 

et al., 2011; Sudhakar et al., 2014).  

Arachis hypogaea (peanut plant) is a vegetal with high nutritional value, the sixth most 

important source of oil and the third most important source of vegetable protein in the world 

(Mahatma et al., 2016). In Argentina, about 90% of peanut plantation takes place in Córdoba 

province which are mainly exported to European Union, Indonesia, Canada, etc. (INTA, 

2018). Taking into account the agronomic importance of peanut crop it is important to 

develop sustainable strategies to increase its production. Plant root exudates (RE) encompass 

primary and secondary metabolites (amino acids, sugars, nucleotides, organic acids, fatty 

acids and flavonoids) that lead to acidification of the rhizosphere (from pH 7 to pH 4 -5) and 

are necessary for establishing a network of interactions between the plant roots and the 

PGPR, to aid the plant growth process (Bais et al., 2006, Haichar et al., 2014; Yuang et al., 

2015, Cesari et al., 2019a,b). Flavonoids and organic acids present in RE play specific roles 

as carbon sources and molecular signals in plant-microbe interactions (Kloss et al., 1984; 

Jones, 1998). The concentration of flavonoids in the rhizosphere is between 2 μM and 50 

μM (Fabra et al., 2010; Sugiyama et al., 2017; Cesari et al., 2019), while the amount of 

organic acids is 100-800 mg.g
-1

 per root (Song et al., 2012). Flavonoids, as naringin, act as 

inducers of several nod genes in the Rhizobium spp., necessary to carry out the initial event 

of the symbiosis and an effective fixation of the atmospheric nitrogen (Amalesh et al., 2011; 
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Fox et al., 2011; Falcone Ferreyra et al., 2012). Citric acid and malic acid are the main 

organic acids detected in RE and have been reported as chemoattractant agents for 

rhizobacteria and inorganic phosphorus solubilizers (Wong, 2004; Kamilova et al., 2006).  

In the following of our previous work (Cesari et al., 2019a,b), the present paper deals with 

the protection and controlled release of signal molecules, typical root exudates, such as the 

flavonoid naringin and the organic acid, citric acid, through their encapsulation by a 

biodegradable polymer (PCL). This effort is aimed at boosting the plant (e.g. peanut) 

growth, by promoting the beneficial interaction between the plant and PGPR and, therefore, 

replacing the conventional chemical fertilizers by molecules typically present in RE. In this 

work we develop MCs whose content release responds to pH through a slow degradation of 

the PCL shell resulting in a controlled release of the encapsulated compound during 

rhizosphere acidification. These MCs are prepared by the solvent evaporation method 

combined with a water-in-oil-in-water (w/o/w) emulsion system, to generate a matrix or 

shell that protects naringin and citric acid from the environmental conditions and allow their 

controlled release, according to the needs of the plant. It is a physical, straightforward and 

flexible method for MCs preparation, and the solvent employed can be easily recovered and 

recycled. Constant stirring speed and temperature, in combination with a constant 

evaporation rate are the main keys to ensure a good reproducibility of the syntheses 

(Gonzalez et al., 2015; Iqbal et al., 2015; Arshadi, 1991; Li et al., 2008). The effect of the 

concentration and molecular weight (Mw) of the PCL used for the MCs synthesis, as well as 

the water and oil phases proportion on the encapsulation performance were studied. This is 

accomplished by a physical-chemical characterization of the MCs to evaluate the effects of 

pH and RE on the encapsulated molecules release kinetics.   
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Finally, it should be stressed that not many articles where the encapsulation of sustainable 

biofertilizers is reported, are found in the literature (Li et al., 2017; Tu et al., 2016; Tu et al., 

2015; Wu et al., 2014). Microencapsulation of bacterial cells (bacterial fertilizers) was 

reported using a mixture of sodium alginate and maltodextrin or polybutylene succinate and 

starch as a cover material (Campos et al., 2014; Wu, 2008); plant growth regulators, such as 

a-naphthalene acetate, were loaded into double-layered inorganic matrices (Hussein et al., 

2002); bioflavonoids, such as hesperidin, were encapsulated within alginate microparticles 

(Tsirigotis-Maniecka et al., 2017). None of them regards the microencapsulation of active 

species, by biodegradable polymers, namely PCL, achieved by means of a straightforward 

method based on microemulsion/solvent evaporation, with the envisaged target of this work. 

Our work lays the groundwork for the application of molecules of interest for agricultural 

use, by means of microencapsulation approaches. 

 

2. Materials and methods 

 

2.1. Materials 

Polycaprolactone (PCL) (80000 Mw, 45000 Mw and 30000 Mw), citric acid and naringin 

were obtained from SIGMA-Aldrich. Dichloromethane (DCM) was obtained from VWR 

chemicals. The emulsifier Gum Arabic was purchased from LabChem and poly vinyl 

alcohol (PVA) (88% hydrolyzed, 22000 Mw) was obtained from Sigma-Aldrich. In this 

study, PVA was used as the emulsion stabilizer, together with Gum Arabic. DCM was used 

as the organic solvent for PCL and citric acid and naringin were the molecules to be 

encapsulated. All the chemicals were used as received, without further purification. 
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2.2. Preparation of PCL microcapsules 

The PCL MCs loaded with citric acid or naringin were prepared by combination of a water-

in-oil-in-water (W1/O/W2) double emulsion system and solvent evaporation technique. The 

W1 phase, consisting of 7.2 wt% of the total emulsion system, was composed of naringin at 

1 wt% or 5 wt% in water, for the case of MCs containing naringin, or citric acid at 80 wt% 

in water or as solid drug, for the case of MCs containing citric acid. A solution of PCL in 

DCM was used as the organic phase of the emulsion system, consisting of 26 wt% of the 

total emulsion system. The syntheses were performed using PCL with different Mw of 

30000, 45000 and 80000 g/mol in order to assess the effect of the PCL Mw on the MCs’ 

formation and release behavior in the final application. The W2 phase was composed of an 

aqueous solution of 2 wt% of PVA and 1.5 wt% of arabic gum, both used as emulsion 

stabilizers. The parameters used in each synthesis are listed in Table 1.  

The MCs were prepared by dispersion of the W1 emulsion phase in the oil phase using a high 

speed homogenizer (Ultra-Turrax T25) at 10000 rpm for 60 seconds to obtain the first 

emulsion system (W1/O). This was then added to the W2 phase under mechanical stirring, at 

500-700 rpm, depending on the PCL Mw. The syntheses were carried out at such selected 

stirring speed for a certain time (1 to 3 hours) at room temperature (25 °C), until the MCs 

shell attained enough maturity to tolerate the pressure applied during the filtration 

procedure. The MCs were then filtrated using a vacuum filtration system, washed three 

times with distilled water and dried at room temperature for 24 h. 

It should be stressed that for each MCs type disclosed in Table 1, three identical and 

independent syntheses were performed. The temperature in the reactor was kept constant (25 

°C) during the syntheses, as well as the stirring speed, which are parameters that have been 
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reported to contribute to a constant evaporation rate of the employed solvent (Arshadi, 1991, 

Li et al., 2008, Gonzalez et al., 2015, Iqbal et al., 2015). 

 

[Please insert Table 1 around here] 

 

 

2.3. Physico-chemical characterization of the PCL Microcapsules  

2.3.1. Optical Microscopy 

An optical microscope (MSZ 5600, Kruss) was used in order to evaluate the stability of the 

emulsion, the droplets´ size and the MCs’ shell maturity during the synthesis procedure, as 

well as the MCs size. Images of the MCs were captured using an eyepiece ocular lens and 

analyzed using the software ImageJ (v 1.51p, National Institutes of Health, Bethesda, MD, 

USA) in order to calculate the individual MCs size and their mean value. After calibrating 

the scale, a median filter with a radius of 2.0 pixels was applied. The contrast of the images 

was enhanced, and the MCs were highlighted by a thresholding function. After the image 

treatments, to remove debris and agglomerates, the data for the size distribution of the MCs 

was obtained using the Analyze Particles functionality of the software. 

 

2.3.2. Scanning electron microscopy (SEM) 

The morphology, size distribution and average shell thickness of the obtained MCs were 

assessed through SEM, using a JEOL JSM7001F (JEOL, Tokyo, Japan) with a FEG-SEM 

(Field Emission Gun) scanning electron microscope, operating at 15 kV. The samples were 

previously coated with a conductive Au/Pd thin film, through sputtering, using a Quorum 

Technologies sputter coater, model Q150T ES.  
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2.3.3. Fourier transformed infrared spectroscopy (FTIR)  

The relative encapsulation efficiency, as well as the molecular structure of the MCs’ shell 

material were assessed by FTIR spectroscopy in the attenuated total reflectance (ATR) 

mode. Spectra of the compounds to be encapsulated as well as the MCs’ shell constituents 

were obtained for such purpose. The FTIR equipment used was a PerkinElmer, Spectrum 

Two, FTIR spectrometer, equipped with a Pike Technologies MIRacle® ATR accessory. 

The spectra were obtained with 8 cm
-1

 resolution and a data collection of 16 scans.  

 

2.3.4. Thermogravimetric analysis (TGA) 

TGA was performed, using a HITACHI STA 7200 Thermal Analysis System equipment, 

under a controlled nitrogen atmosphere (200 ml/min), at a temperature increase rate of 10 

o
C.min

-1
, in the range of 30-600

o 
C. The analysis of the resulting thermograms enabled to 

quantify the amount of encapsulated compound in the obtained MCs. This technique was 

also used to corroborate FTIR analysis results. 

 

2.4.  Encapsulation process yield and encapsulation efficiency 

To calculate the yield of the encapsulation process, the weight of the obtained dried MCs 

and the weight of all the reagents used for the MCs’ manufacture were considered. The 

encapsulation process yield equation is as follows: 

 

Moreover, the theoretical loading was also calculated, given by:  

𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑦𝑖𝑒𝑙𝑑 (%)1 

= 100 ×
𝑚(𝑑𝑟𝑖𝑒𝑑 𝑀𝐶𝑠)

𝑚 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑡𝑜 𝑏𝑒 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 + 𝑚(𝑝𝑜𝑙𝑦𝑚𝑒𝑟)
 2 
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      Theoretical loading (%) 

 

And, therefore, the encapsulation efficiency (EE) is given by the formula: 

 

 

2.5.Release behavior of the PCL Microcapsules 

 

2.5.1. In vitro release studies 

In order to study the release behavior of the encapsulated citric acid and naringin, MCs were 

placed in aqueous solutions at pH 7, 5 and 4, in a proportion of 25 mg of MCs to 1 ml of 

solution, for 40 days at room temperature (25 °C). In order to evaluate the progress of the 

cargo release from the MCs, along the time, aliquots of 1 ml were taken at predetermined 

time intervals and replaced with the same amount of fresh solution. The amount of citric 

acid and naringin in the collected samples was analyzed by UV spectroscopy (the absorption 

peak for citric acid is centered at 208-211 nm and that for naringin isa at 283 nm) using an 

UV-Vis spectrophotometer (ATI Unicam, UV2), at 2 nm resolution. Solutions containing 

citric acid and naringin at known concentrations were used to get a calibration curve for 

such purpose. As blank measurements, analogous experiments were carried out with 

solutions containing empty MCs. Triplicates of each MCs dispersion were prepared at 

different pH values, and in addition the release behavior of the MCs was studied in a RE 

= 100 ×
 𝑚(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑡𝑜 𝑏𝑒 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠)

𝑚(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑡𝑜 𝑏𝑒 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠) +  𝑚(𝑝𝑜𝑙𝑦𝑚𝑒𝑟)
 1 

𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%)

= 100 ×
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔  % ,𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑇𝐺𝐴

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (%)
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environment. The RE was collected from a hydroponic system, in which a peanut plant was 

grown in a Hoagland solution (Hoagland and Arnon, 1938), as explained in 2.6.  

The results were expressed as the cumulative release (in %) of citric acid and naringin, with 

respect to the amount of encapsulated cargo, being calculated using the following equation: 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑙𝑒𝑎𝑠𝑒  𝐶𝑅%  =   𝑀𝑡 / 𝑀0  𝑥 100 

Where 𝑀𝑡 is the mass of the released citric acid or naringin in a sample collected at a certain 

time and 𝑀0 is the initial mass of citric acid or naringin present in the MCs. 

Additionally, a mechanism of citric acid and naringin release was proposed taking into 

consideration the obtained results, by fitting the release profiles with a relevant model, as 

explained below. 

 

2.5.2. Release mechanism studies 

Several types of drug release mechanisms from matrices described by kinetics models have 

been proposed by several authors (Fernandez et al., 2009). The compound release usually 

implies water penetration in the matrix, swelling, diffusion of the dissolved drug, matrix 

degradation and saturation of the matrix pores with release medium. However, it is worth to 

mention that the release mechanism of a drug depends on the dosage, pH, nature of the drug 

and polymer used. 

In this present study, the mechanism of citric acid and naringin release from the PCL MCs 

was investigated using a semi-empirical model, known as the power law or the Peppas 

model (Peppas, 1985) since it takes into account the Fickian diffusion phenomenon and the 

relaxation phenomenon of the polymer chains: 

𝑀𝑡

𝑀∞
= 𝑘. 𝑡𝑛 
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where Mt and M represent the amount of nutrient released at a time t and at equilibrium, 

respectively, k is the constant characteristic of the compound-polymer system, and n is the 

diffusion exponent characteristic of the release mechanism, which allows to determine the 

phenomena present during the release process (Peppas, 1985; Costa and Sousa Lobo, 2001; 

Siepmann and Göpferich , 2001; Iborra, 2008). When n = 0.5 the release of the compound 

follows a Fickian type diffusion mechanism. An anomalous or non-Fickian diffusion occurs 

when 0.5 > n < 1. A quasi-Fickian diffusion process occurs for n < 0.5, in cases where the 

matrix is a porous material and, therefore, there is a combined partial diffusion either 

through a swollen matrix and the pores filled with water. Values of n < 0.5 denote the 

existence of another process simultaneous to the diffusion. In the case of n = 1 the kinetics 

of the release system is zero order, being the release process controlled by the relaxation of 

the polymer chains with the diffusion occurring at a constant speed, if the geometry of the 

system does not change during the release process. 

 

2.6. Peanut root exudate collection  

To collect the peanut RE, a germinated peanut seed was aseptically transferred to a 

hydroponic system consisting of a glass tube containing 30 ml of a Hoagland (pH 6.5) 

nutrient solution (Hoagland and Arnon, 1938). It should be stressed that the seed does not 

fall to the bottom, since it is held by a wire device. The germinated peanut seeds were 

incubated aseptically for 7 days in a growth chamber subjected to a photoperiod of 16 h of 

light exposure at 24 °C alternating with 8 h of darkness at 20 °C (Dardanelli et al., 2008b). 

On the seventh day, the plants were removed from the tubes. Sterile samples were kept at 4 
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°C and the exudates collected and centrifuged at 10000 rpm for 20 min to remove root 

debris, and stored at –20 °C until their use.  

 

3. Results and discussion 

 

3.1. Encapsulation process yield and morphology of the microcapsules 

In this work, several studies were conducted in order to determine the optimal synthesis 

conditions for the MCs production, as listed in Table 1, namely the effect of PCL Mw and 

concentration on the encapsulation yield and MCs response to relevant pH in the final 

application. The encapsulation process yields as well as the MCs’ size distribution are given 

in Table 2. It should be stressed that the MCs obtained from the three identical and 

independent syntheses, carried out for each type of MCs, displayed the same morphology 

and a relatively broad size distribution, which is typical of this technique, as exhibited in 

Table 2. Identical encapsulation process yields were achieved, shown by the low standard 

deviation (SD) values. 

 

[Please insert Table 2 around here] 

 

In the present work, the higher yields were obtained with the MCs produced using PCL of 

45000 Mw and 30000 Mw at 16% in DCM as the oil phase of the emulsion system, for both 

the citric acid and naringin encapsulation. Encapsulation yields of up to ca. 73% were 

achieved, for naringin. It should be stressed that the synthesis parameters have been 

optimized for lower Mw PCL grades, and indeed, it was observed that the lowest 

encapsulation yield was obtained using the PLC with longer polymeric chains (80000 Mw) 
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for both the encapsulation of citric acid and naringin, since the same reaction parameters 

were employed for the encapsulation with PCL 80000 Mw. A significant increase of the O 

phase viscosity was observed when using PCL 80000 Mw, which was responsible for a 

destabilization of the emulsion. Also, this high Mw PCL typically experiences solubility 

issues, so that the lower yields obtained for syntheses employing higher Mw PCL are 

probably due to losses of PCL, which is not involved in the shell formation. A trial to 

improve the process yield with PCL 80000 Mw was carried out, by further diluting PCL, 

or/and by increasing the mechanical stirring speed and, indeed, this has resulted in an 

increase of the process yield from 3 to 13.6% and from 1.4 to 31%, for citric acid and 

naringin, respectively. These were the samples that were selected for the thermogravimetric 

studies. 

As shown in Table 2, the size of the MCs was found to be within the range of 99 to 726 µm. 

Further analysis of the results shows that the MCs´ size depends either on the Mw of the 

PCL used, as well as on the compound to be encapsulated, which might be related to 

differences in the viscosity and density of the W1 and O phases. Also, despite the significant 

difference in encapsulation yield among M80(16)C(80) and M80(12)C(80), they present 

very similar sizes. The same for M80(16)N(5) and M80(12)N(5). In what regards naringin 

encapsulation, the use of PCL with 80000 Mw as shell material led to bigger MCs, with the 

M80(16)N(5) having the largest size, followed by M80(12)N(5), which  was expected since 

the latter ones were prepared with less concentrated PCL and, therefore, with a less viscous 

O phase compared to the former ones. In this case, the MCs size increases with the increase 

of the PCL Mw. This is in agreement, for instance, with the work of Shin et al., (2012) 

where MCs containing imidazole are prepared with PCL of 80000 Mw, 65000 Mw and 

14000 Mw. They report that the obtained MCs had almost uniform shapes and the size 
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increased with the increasing of the PCL Mw. Although not so notorious, it was also 

observed that the more concentrated was the W1 phase, i.e. the solution of the compound to 

be encapsulated, the larger the size of the obtained MCs. In particular, the PCL MCs 

containing citric acid exhibited a larger dimension when citric acid is encapsulated in the 

pure form (M45(16)C(100)) than when diluted in a concentration of 80wt% 

(M45(16)C(80)). In this case, PCL with 45000 Mw was the one to result in larger MCs. 

It can be observed that, when changing the encapsulated compound and its percentage, as 

well as the PCL Mw, different viscosities will be obtained for both the phases of the W1/O 

emulsion system, which could lead to destabilization resulting in some coalescence and 

consequently bigger size MCs are formed. Also, optimization of the mechanical stirring 

speed can be used to obtain a more homogeneous MCs’ size and higher encapsulation 

yields.  

Fig. 1 shows the SEM photomicrographs of the obtained MCs, at different degrees of 

magnification. The SEM analysis enabled to assess the MCs morphology, typology and 

aggregation degree. Some of the MCs were crushed on purpose on the preparation for the 

SEM analysis in order to make it possible to conclude about their morphology and 

determine their shell thickness. All the MCs were found to have a spherical shape, a core 

shell morphology and no significant aggregation. On the other hand, most of the samples 

were found to exhibit some holes on the surface, being less notorious in samples 

M80(12)C(80) and M45(16)N(1). This phenomenon can be attributed either to the 

evaporation of the W1 phase solvent, as to the diffusion of water between W1 and W2 phases 

during the MCs synthesis, through the polymeric membrane (pre-formed shell) while it is 

not sufficiently solid (Weidenauer et al., 2003; Zhou et al., 2011).  
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[Please insert Fig. 1 around here] 

 

It is possible to observe that the MCs synthesized using PCL of 30000 Mw are the ones 

presenting more and bigger surface holes. Indeed, the PCL of 30000 Mw offers less 

resistance to the diffusion of water, in comparison with PCL of higher Mw. This latter 

polymer grade, of longer polymeric chains, tends to exhibit higher mechanical strength than 

the smaller polymer chain grades. The MCs synthesized using PCL of 45000 Mw (Fig. 1C-

F; M-P) presented a smoother surface when compared to the MCs obtained using PCL of 

80000 Mw, while the MCs formed with PCL 80000 Mw (Fig. 1G-J, Q-T) present a thicker 

shell. It should also be noted, for samples M30(16)N(5) and M45(16)N(5), the presence of 

naringin in its crystalline form (Fig. 1L-P, respectively). Naringin has been reported to 

crystallize from water as an octa-hydrate molecule with a melting temperature at 83 ºC and 

is characteristic for the high water uptake. It crystallizes as needles which are usually found 

agglomerated in a rosette pattern (Hendriskson et al., 1956). Finally, there is also some 

evidence for the occurrence of naringin crystals embedded within the PCL forming the shell 

of the MCs, namely for sample M80(16)N(5), as shown in Fig.1T.  

 

3.2. Chemical structure of the microcapsules 

FTIR spectroscopy was performed to assess the presence of characteristic groups in the 

MCs, providing information on the composition of the matrix (shell) and the presence of 

citric acid or naringin in the MCs. Fig. 2 shows the FTIR spectra of PCL, citric acid, 

naringin and the selected MCs.  

 

[Please insert Fig. 2 around here] 
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The strong characteristic peak at 1720 cm
-1

 present in the FTIR spectrum of PCL, is ascribed 

to the carbonyl C=O stretching vibration. It is also possible to identify the symmetric COC 

stretching vibration peak at 1170 cm
-1

. The spectrum of citric acid exhibit typical bands of 

organic acids, such as C=O stretching, C-O stretching, OH bending and C-H stretching 

(Moreira and Santos, 2005; Sharkawy et al., 2017). The FTIR spectra of all the citric acid 

MCs (Fig. 2.A-B) show an intense peak at 1720 cm
-1

, ascribed to the stretching of the PCL 

carbonyl group, which confirms its presence in the MCs’ shell structure. However, this peak 

exhibits a slight shoulder at lower and higher frequency, which comes from the 

characteristic peaks of the citric acid spectrum in this region of the spectrum, evidencing its 

encapsulation by the PCL structure. Additionally, a wide band at 3250-3750 cm
-1

 can be 

observed in these spectra, which might correspond not only to the OH groups from the water 

used in the citric acid solution, but also to the intramolecular OH groups belonging to the 

citric acid. It should be stressed that the MCs were only dried at RT.  

Fig. 2C-D shows the FTIR spectra of PCL, naringin and selected MCs. A broad and clear 

band between 3000 and 3500 cm
-1

 is displayed in the naringin spectrum, being assigned to –

OH groups stretching vibration (Sahiner et al., 2018), probably due to its presence in the 

benzene rings as well as in the glycoside structure of naringin. In what regards the naringin 

MCs, it is also possible to confirm the presence of the carbonyl peak at 1720 cm
-1

, revealing 

that their shell is composed by PCL. The broad band around 3400 cm
-1

 could also be derived 

from the aqueous solution employed in the synthesis. In addition, peaks ascribed to carbonyl 

(C=O) bonds and C-C bonds from benzene rings can be observed at 1640 cm
-1

, and at 1500 

cm
-1

, respectively, which further reveals the encapsulation of naringin in these MCs. The 

difference observed in the carbonyl peak wavenumber in the PCL and naringin spectrum can 
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be correlated to the type of carbons the carbonyl is attached to, which in the case of naringin 

is a saturated carbon ring (Smith, 2017; Sahiner et al., 2018). Fig. 2B-D show a magnified 

image of a relevant wavenumber range, where the fingerprint of citric acid and naringin in 

the MCs spectra is clearly observed, suggesting their effective encapsulation.  

 

3.3. Thermogravimetric and encapsulation efficiency of the microcapsules 

The thermograms of the PCL, encapsulated compounds and the MCs are shown in Fig. 3.A- 

B.  

 

[Please insert Fig. 3 around here] 

 

According to the thermogram in the Fig. 3.A the citric acid and the PCL were completely 

degraded in a single step, the citric acid from 200 to 300 °C and the PCL from 340 to 450 

°C. However, the thermograms obtained from MCs exhibit two to three distinct degradation 

steps. The step of weight loss in the range of 30 to 100
o
C, not observable for the PCL nor 

the citric acid, might be correlated with the presence of water, in particular from the aqueous 

citric acid solution used in the MCs preparation. In fact, the MCs that do not exhibit this low 

temperature degradation step are the ones where citric acid is not diluted (M45(16)C(100)) 

and the ones prepared with PCL 30000 Mw, which, in this latter case, might be due to the 

thinner and more porous PCL shell, that allows a more efficient drying of the MCs core. The 

presence of water, at 7.7 wt% and 5.8 wt%, was detected in the MCs M45(16)C(80) and 

M80(12)C(80), respectively. The degradation peaks between ca. 160 to 350 °C and ca. 350 

to 450 °C can be ascribed to the degradation of citric acid and PCL, respectively. Therefore, 

since these two degradation phenomena are quite distinct in terms of temperature range, it is 
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possible to estimate the content of citric acid encapsulated in the MCs, i.e. the citric acid 

encapsulation efficiency. Samples M30(16)C(80), M45(16)C(100), M45(16)C(80) and 

M80(12)C(80) present a content of encapsulated citric acid of ca. 4 wt%, 9 wt%, 15 wt% 

and 25 wt%, respectively, of the total MCs weight, which suggests that the higher the PCL 

Mw, the more efficient the citric acid encapsulation. In fact, Table 3 shows this trend in 

terms of encapsulation efficiency values. Also, it can be concluded that the use of an 

aqueous citric acid solution works better than using non-diluted citric acid (in the powder 

form). However, it should be stressed that the highest encapsulation efficiency achieved 

regarding the encapsulation of citric acid was 38.5%, for M80(12)C(80). It is believed that 

this value might be further improved, by carrying out a synthesis optimization procedure.  

[Please insert Table 3 around here] 

 

The low encapsulation efficiency values found for citric acid loaded MCs might be due to 

the holes found in the MCs´ shell. In fact, the SEM photomicrographs of M80(12)C(80) 

show that these MCs are the ones displaying less holes. 

In what regards, the thermograms of the MCs prepared with naringin (Fig. 3B), three steps 

of weight loss can be detected, the first between 30-100°C, which might be due to the 

presence of water in the MCs, and two final steps between 254-350 °C and 350-450°C, 

correlated with the degradation of naringin and PCL, respectively. Naringin thermogram 

shows a slight decrease in mass (6 wt%) below 200 °C and shows no weight loss between 

200-250 °C. When naringin is subject to temperatures above 250 °C, a strong progressive 

weight loss can be observed, with the sample losing a total of 65% of its total mass by 600 

o
C. As for the MCs with citric acid, those prepared with naringin also exhibit three steps of 

weight loss during the same temperature range, being the first between 30-100°C, probably 
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due to the presence of OH groups and adsorbed moisture, and two higher temperature steps 

between 254-350 °C and 350-450°C, correlated with the degradation of naringin and PCL, 

respectively (Fig. 3B). The amount of encapsulated naringin is, therefore, estimated to be ca. 

3 wt%, 5 wt% and 6 wt% for the MCs M30(16)N(5), M80(12)N(5) and M45(16)N(5), 

respectively (Table 3). The lower amount of encapsulated compound in the MCs containing 

naringin, in comparison with the MCs containing citric acid, is in part due to the lower 

amount of naringin used during the synthesis, due to its low solubility in water. However, it 

should be noted that the naringin containing MCs were the ones with the best overall 

encapsulation efficiency (Table 3), with values in the range of 38 and 75.6%, with the best 

ones being M45(16)N(5), followed by M80(12)N(5). 

 

3.4. In Vitro Release Studies 

Fig. 4 shows the cumulative release profile of citric acid and naringin from the PCL MCs 

into the aqueous media at different initial pH values (4 - 5 - 7) and also into Arachis 

hypogaea RE (pH 5).  

 

[Please insert Fig. 4 around here] 

 

It should be noted that the reported data correspond to the average values obtained from 

three independent release experiments, which are provided in the graphs with the respective 

SD values. As observed in Fig. 4, the error bars are relatively small, which confirms that the 

same type of release behavior is achieved for different batches of MCs synthesized 

following the same procedure. 
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For M30(16)C(80) MCs, i.e. those prepared with lower Mw PCL, a fast release of citric acid 

can be observed after 3 days, being faster at pH 4 and 5. The citric acid content was released 

at 100% after 15 days, both in aqueous solutions and in the RE (Fig. 4A). The release of the 

total encapsulated content can be attributed to the thinner shell and the surface holes 

observed for the MCs obtained with PCL of 30000 Mw. In fact, the presence of surface 

holes can be herein claimed to be an advantage, since the degradation of PCL is known to be 

slow, being the release of small drugs supposed to be dilution controlled (Sudhakar et al., 

2014). A complete release of the total encapsulated material did not occur with the MCs of 

PLC 45000 and 80000 Mw. In many cases, drug release has been shown to be incomplete, 

mainly due to the high crystallinity and hydrophobicity of PCL (Shen et al., 2000).  The 

release of citric acid from M45(16)C(80) was pH dependent: 93% at pH 4 after 18 days, 

78% at pH 5 after 40 days and 67% at pH 7 after 43 days. When the MCs were placed in 

RE, the release of citric acid was 35% after 45 days (Fig. 4B). Similar to the above, with the 

MCs of PCL 80000 Mw the release of citric acid was 70% at pH 4-5 and 28% at pH 7 (Fig. 

4C). When the MCs were placed in RE, the release kinetics was similar to that observed in 

pH 4-5 solutions, although the maximum release was 60%. For the MCs containing citric 

acid, according to our results, the PCL material composing the MCs´ shell exhibited a 

different response according to the pH of the aqueous solution (pH 4 > pH 5 > pH 7), which 

confirms its pH response capability, enabling a controlled release of the encapsulated 

compound, as desired. This is a novel and important result for a possible agronomic 

application, since it is known that the soil zone where the microorganisms PGPR colonize 

the roots of the plants is the rhizosphere which has an acid pH (around pH 4-5). 

Fig. 4 (D-E-F) shows the release profile of naringin from PCL MCs in aqueous solutions at 

different pH solutions. Unlike that observed for the release of citric acid, the release of 
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naringin from the MCs was found to be independent on the pH of the medium. MCs 

M30(16)N(5) showed a quick release after 4 days in the aqueous solutions, with a full 

release accomplished, similarly to MCs M30(16)C(80). When those MCs were placed in 

RE, the release of naringin reached 80% after 5 days. As for M45(16)N(5), they showed a 

gradual release behavior of naringin for 30 days, being slightly higher at pH 4 and 5, than at 

pH 7. When the MCs were placed in RE the naringin release was 80%, like that observed at 

pH 7. For M80(12)N(5) the release of naringin was gradual, slow and also independent of 

the pH of the medium. When these MCs were placed in RE, a 32% of naringin release was 

observed after 8 days, and then a gradual release was observed reaching the 67% after 45 

days. Scarfato et al. (2008) reported the release of the flavonoid quercetin from 

microspheres made from cellulose acetate phthalate and cellulose acetate propionate. It was 

found in this study that the higher the concentration on cellulose acetate phthalate in the 

formulation, the higher its viscosity and the lower the quercetin release from the resulting 

microspheres, namely 25% of release versus 98% at pH 6.8, for low amounts of this reagent.  

In the present case, the release of naringin from the MCs depends on the Mw of the PCL, 

being slower and gradual in the MCs of PCL 45000 Mw and PCL 80000 Mw, which clearly 

evidences the dependence of the MCs´ morphology and shell characteristics on the PCL 

Mw, as referred above. The pH of the medium is herein found to display some effect on the 

release behavior of naringin, although its effect is not as notorious as in the case of MCs 

with citric acid. This might be due to the fact that citric acid when released lowers the pH of 

the aqueous solution (from 7.5 or 4 to 2.5), which leads to a more noticeable pH effect. 

 

3.5. Release mechanism studies 
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In order to investigate the release mechanism of citric acid and naringin from the PCL MCs 

in water solution of different pH and in RE environment, data were fitted to Peppas equation 

(described in 2.5.2 section) a method already employed in the study of PCL microparticles 

containing other types of flavonoids (Lee et al. 2007). Results of n, k and r for all the 

formulations were estimated using the least squares procedure and are listed in Table 4.  

 

[Please insert Table 4 around here] 

 

In our case the n values of different MCs were variable, depending on the PCL Mw, 

properties of the encapsulated compound and the pH of the solution where the release was 

made to occur. Values of n < 0.5 were achieved for PCL45(16)C(80) and PCL80(12)C(80) 

at pH 7, 5 and 4 (except for PCL30(16)C(80) at pH 7), indicating that the release of citric 

acid in the media follows a quasi-Fickian diffusion mechanism. Citric acid is herein 

suggested to partially diffuse through the matrix pores. Upon the contact with the release 

medium, the citric acid present at the surface of the drug-laden matrix, tends to rapidly 

dissolve (due to the high solubility of the solute in the release medium) and is released, 

generating the "burst release". Nevertheless, when the citric acid release was studied in RE, 

it was found that n > 0.5 or even > 1. Values of n greater than 0.5 are associated with an 

anomalous (non-Fickian) diffusion mechanism. In the case of PCL45(16)C(80) and 

PCL80(12)C(80), n displays values above 1. The kinetics in this case corresponds to 

anomalous non-Fickian diffusion mechanism and regards polymeric matrices in which the 

swelling of the polymer progresses steadily and very long release times (Costa and Sousa 

Lobo, 2001; Siepmann and Siepmann, 2008). As shown in Fig. 4 (b and c), the compound 

encapsulated in the MCs was not fully released when the releasing medium was RE. On the 
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contrary, it was released from 20 to 40% respectively. This fact can be explained in the 

following way: as more citric acid is released into the RE, more tendency for the release 

medium to "saturate", moment at which the release process will end. It should be stressed 

that RE contains organic acids, so saturation is even faster. 

For MCs loaded with naringin, the value of n was found to increase as the Mw of PCL 

increases. PCL30(16)N(5) MCs display values of n below 0.5, which indicates that naringin 

diffuses partially through a porous matrix (quasi-Fickian diffusion mechanism). For 

PCL45(16)N(5) MCs, the values of n were close to 0.5, indicating a Fickian-type diffusion 

mechanism. While for PCL80(12)N(5) the values were n > 1 for different pH and RE, 

indicating anomalous non-Fickian diffusion mechanism. In these cases, a full release of the 

total encapsulated compound is not possible, since the release medium "saturates" quickly. 

Values of n > 1 have also been reported for other PCL capsules (Sahoo et al., 2010; Kulkarni 

et al., 1999). 

 

4. Conclusions 

Successful encapsulation of molecules involved in the Arachis hypogaea-PGPR interaction, 

such as citric acid and naringin, was carried out using the biodegradable polymer PCL, by a 

double microemulsion W1/O/W2 technique combined with the solvent evaporation method. 

To our knowledge, this study is the first to report PCL´s MCs containing citric acid and 

naringin for a slow or controlled release in agronomic applications. 

Our results demonstrate that PCL 45000 Mw is shown to be an efficient vehicle for the 

encapsulation of signal molecules involved in the plant-PGPR interaction. The use of PCL 

45000 Mw (diluted at 16% in DCM) for the synthesis of the MCs containing citric acid or 

naringin, can be a potential solution for the current need regarding sustainable agro-
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industrial practices. Citric acid was found to be more efficiently encapsulated when diluted 

at 80 % in water. MCs loaded with citric acid presented a slow release during 45 days and 

the release kinetics is pH-responsive (pH 4> pH 5> pH 7), independent of the PCL Mw, 

which means that a controlled release might be achieved with these MCs. When the release 

in RE was analyzed, it turned out to be more gradual, which could eventually lead to a more 

sustained delivery of signal molecules to the ground in a real application. On the other hand, 

MCs containing naringin present a slow release for 30 days, unmodified by pH, which 

indicates that it could be used in soils of different characteristics, in an indiscriminate 

manner, and facilitate the continuous supply (slow release) of nutrients to the plants.  

The release kinetics of the compounds could be fitted by the Peppas model. As a result, the 

release of citric acid, except in some cases, is found to occur by a quasi-Fickian diffusion 

mechanism, while the release of naringin is closer to occur by a Fickian type diffusion 

mechanism.  

The achieved results confirm the initial assumptions of this research and create a real 

possibility of manufacturing intelligent materials for sustainable agriculture, since they are 

able to deliver signal molecules involved in plant-microorganism interaction, “when and 

where needed”. This work will be followed by applying these MCs to peanut seeds and 

studying their effect on plant-PGPR events and plant growth parameters. 
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Table and Figures 

 

Table 1. PCL’ MCs synthesis parameters: water and oil phases, temperature, stirring speed 

and synthesis duration. 

 

MCs’ acronym Water phase (W1)* 

(wt.% of W1) 

Oil phase  

(O) 

Water 

phase (W2) 

Temp. 

(°C) 

Stirring 

speed 

(rpm) 

Duration 

(hours) 

 

M30(16)C(80) 

5 ml of aqueous 

solution of Citric 

Acid (80wt.%) 

PCL 30000 Mw 

16wt.% in DCM 

 

 

 

 

 

 

 

 

Water + 

PVA 

2wt.% + 

GA 

1.5wt.% 

 

 

 

 

 

 

 

 

 

25 °C 

 

500 

 

3 

 

M45(16)C(80) 

5 ml of aqueous 

solution of 

(80wt.%) 

PCL 45000 Mw 

16wt.% in DCM 

 

500 

 

3 

 

M45(16)C(100) 

5 gr of Citric Acid 

(100wt.%) 

PCL 45000 Mw 

16wt.% in DCM 

 

600 

 

1 

 

M80(16)C(80) 

5 ml of aqueous 

solution of 

(80wt.%)  

PCL 80000 Mw 

16wt.% in DCM 

 

500 

 

1 

 

M80(12)C(80) 

5 ml of aqueous 

solution of 

(80wt.%) 

PCL 80000 Mw 

12wt.% in DCM 

 

500 

 

1 

 

M30(16)N(5) 

5 ml of aqueous 

solution of naringin 

(5wt.%) 

PCL 30000 Mw 

16wt.% in DCM 

 

500 

 

2 

 

M45(16)N(1) 

5 ml of aqueous 

solution of naringin 

(1wt.%) 

PCL 45000 Mw 

16wt.% in DCM 

 

500 

 

1 

 

M45(16)N(5) 

5 ml of aqueous 

solution of naringin 

(5wt.%)  

PCL 45000 Mw 

16wt.% in DCM 

 

500 

 

1.5 

 

M80(16)N(5) 

5 ml of aqueous 

solution of naringin 

(5wt.%)  

PCL 80000 Mw 

16wt.% in DCM 

 

500 

 

1 

 

M80(12)N(5) 

5 ml of aqueous 

solution of naringin 

(5wt.%)  

PCL 80000 Mw 

12wt.% in DCM 

 

700 

 

1 

*Water phase 1 (W1) consists of the compound to encapsulate dissolved in water. The W1 

was added to the O phase.  
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Table 2. PCL’ MCs composition, encapsulation process yield (%) and mean size (µm), and respective 

standard deviation values, obtained from triplicates of each synthesis. 

 

MCs´ acronym Final composition Encapsulation process 

yield (%) ± SD 

Mean Size 

(m) ± SD 

M30(16)C(80) PCL (30000 Mw) 16% - Citric Acid (80%) 31.0 ± 1.1 280 ± 104 

M45(16)C(80) PCL (45000 Mw) 16% - Citric Acid (80%) 36.0 ± 2.5 323 ± 130 

M45(16)C(100) PCL (45000 Mw) 16% - Citric Acid (100%) 23.0 ± 0.8 509 ± 120 

M80(16)C(80) PCL (80000 Mw) 16% - Citric Acid (80%) 3.0 ± 0.6 275± 129 

M80(12)C(80) PCL (80000 Mw) 12% - Citric Acid (80%) 13.6 ± 3.6 726 ± 152 

M30(16)N(5) PCL (30000 Mw) 16% - Naringin (5%) 55.0 ± 1.4 99 ± 22 

M45(16)N(1) PCL (45000 Mw) 16% - Naringin (1%) 72.6 ± 0.7 231 ± 100 

M45(16)N(5) PCL (45000 Mw) 16% - Naringin (5%) 60.0 ± 8.6 306 ± 134 

M80(16)N(5) PCL (80000 Mw) 16% - Naringin (5%) 1.4 ± 0.02 486 ± 160 

M80(12)N(5) PCL (80000 Mw) 12% - Naringin (5%) 31.0 ± 1.4 709 ± 79 

 

 

 

Table 3. PCL’ MCs theoretical loading, experimental loading and encapsulation efficiency. 

MCs acronym Theoretical loading (%) Experimental loading (%) 

from TGA 

Encapsulation 

efficiency (%) 

M30(16)C(80) 58.1 4 6.9 

M45(16)C(80) 58.1 15 25.8 

M45(16)C(100) 63.4 9 14.2 

M80(12)C(80) 64.9 25 38.5 

M30(16)N(5) 7.9 3 38.0 

M45(16)N(5) 7.9 6 75.9 

M80(12)N(5) 10.3 5 48.5 
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Table 4:  Release kinetics parameters of different formulations at different pH solution and RE. 

Parameters n k Correlation  

coefficient, r 

PCL30 (16)C(80) 
pH 7 0.59 0.56 0.99 

pH 5 0.29 0.72 0.99 

pH 4 0.37 0.7 0.99 

RE 0.82 0.34 0.99 

PCL45 (16)C(80) 

pH 7 0.13 0.7 0.92 

pH 5 0.22 0.81 0.99 

pH 4 0.3 0.88 0.97 

RE 1.82 0.1 0.95 

PCL80 (12)C(80) 
pH 7 0.02 0.96 0.92 

pH 5 0.04 0.95 0.93 

pH 4 0.03 0.93 0.97 

RE 1.7 0.92 0.98 

PCL30 (16)N(5) 

pH 7 0.23 0.91 0.97 

pH 5 0.46 0.85 0.99 

pH 4 0,7 0.88 0.99 

RE 0.3 0.9 0.99 

PCL45 (16)N(5) 
pH 7 0.5 0.6 0.97 

pH 5 0.4 0.58 0,9 

pH 4 0.45 0.5 0.99 

RE 0.47 0.63 0.97 

PCL80 (12)N(5) 
pH 7 1.84 0.08 0.94 

pH 5 1.49 0.12 0.92 

pH 4 1.54 0.13 0.95 

RE 1.33 0.17 0.96 
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Fig. 1. SEM photomicrographs of the microcapsules. A (30x) and B (150x): M30(16)C(80); C 

(30x) and D (70x): M45(16)C(80); E (30x) and  F (230x): M45(16)C(100); G (30x) and H 

(400x): M80(16)C(80); I (30x) and J (100x): M80(12)C(80); K (30x) and L (220x): 

M30(16)N(5); M (30x) and N (170x): M45(16)N(1); O (30x) and P (250x): M45(16)N(5); Q 

(30x) and R (190x): M80(16)N(5); S (25x) and T (130x): M80(12)N(5). The arrow in Fig. 1.P 

indicates the presence of naringin crystals encapsulated. The same happens for Fig. 1.L.  
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Fig. 2. Normalized FTIR-ATR spectra obtained from PCL 45000 Mw, encapsulated compound 

and resulting microcapsules. A: PCL MCs with citric acid; B: Magnification of the peaks 

observed in the region of interest, between 1850 and 1550 cm
-1

; C: PCL MCs with naringin; D: 

Magnification of the peaks observed in the region of interest, between 1850 and 1550 cm
-1

. 
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Fig. 3. TGA thermograms obtained from PCL 45000 Mw (shell material) and (A) citric acid and 

MCs prepared with citric acid and (B) naringin and MCs prepared with naringin. 
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Fig. 4. Percentage of cumulative in vitro release profiles of (A) MCs containing citric acid: 

M30(16)C(80), M45(16)C(80) and M80(12)C(80);  (B) MCs containing naringin: M30(16)N(5), 

M45(16)N(5) and M80(12)N(5), under different pH solutions. The release values displayed in 

the graphs are an average of three independent release experiments employing MCs of the same 

type, but from different batches (error bars represent standard deviations, n = 3). 
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Highlights 

 

 Successful encapsulation of citric acid and naringin with a biodegradable polymer PCL. 

 Controlled release to improve the interaction between rhizobacteria and peanut plant. 

 PCL Mw influences the release behavior. 

 Slow release of naringin for 30 days, by diffusion, independent on pH of the medium. 

 Controlled release of citric acid for 45 days (pH 4 > pH 5 > pH7 > RE). 
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