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INHIBITION-BASED RELAXATION OSCILLATIONS EMERGE

IN RESONATOR NETWORKS

Andrea Bel1,2,∗, Ana Torresi1 and Horacio G. Rotstein3,4,∗∗

Abstract. We investigate the mechanisms responsible for the generation of oscillations in mutu-
ally inhibitory cells of non-oscillatory neurons and the transitions from non-relaxation (sinusoidal-like)
oscillations to relaxation oscillations. We use a minimal model consisting of a 2D linear resonator, a 1D
linear cell and graded synaptic inhibition described by a piecewise linear sigmoidal function. Individu-
ally, resonators exhibit a peak in their response to oscillatory inputs at a preferred (resonant) frequency,
but they do not show intrinsic (damped) oscillations in response to constant perturbations. We show
that network oscillations emerge in this model for appropriate balance of the model parameters, partic-
ularly the connectivity strength and the steepness of the connectivity function. For fixed values of the
latter, there is a transition from sinusoidal-like to relaxation oscillations as the connectivity strength
increases. Similarly, for fixed connectivity strength values, increasing the connectivity steepness also
leads to relaxation oscillations. Interestingly, relaxation oscillations are not observed when the 2D linear
node is a damped oscillator. We discuss the role of the intrinsic properties of the participating nodes
by focusing on the effect that the resonator’s resonant frequency has on the network frequency and
amplitude.
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1. Introduction

Oscillatory patterns are ubiquitous in chemical, biochemical and biological systems [9, 23, 25, 41, 57, 75, 82,
95]. The dynamic mechanisms of generation of oscillations require the interplay of positive (relatively fast) and
negative (relatively slow) feedback effects. In chemical and biochemical oscillators [5, 29, 41, 99], the so-called
activators favor both changes in its own production via autocatalytic effects and the production of the so-called
inhibitors. The latter oppose changes in the activator on a slower time scale that allows the activator to reach
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high enough levels. In neurons, the necessary negative and positive feedback effects are provided by the so-called
resonant and amplifying gating variables, respectively, associated to neuronal ionic currents [40, 66, 72, 74].

The properties of these oscillatory patterns in single oscillators depend on the relative levels of the positive
and negative feedback effects, which are controlled by the systems’ nonlinearities and time scales [30, 82]. These,
in turn, depend on the physical properties of the specific systems under study. Linear systems can exhibit “at
most” damped oscillations, but not sustained ones. The emergence of sustained (limit cycle) oscillations require
the presence of nonlinearities and high enough levels of the amplifying process. As the time scale separation
between the activator (e.g. neuronal voltage) and the negative feedback variable (e.g. ionic resonant gating
variable, inhibitor, repressor) increases, the oscillations transition from sinusoidal-like to relaxation oscillations.

A phenomenon closely related to the presence of oscillations is that of resonance in single cells, defined as
their ability to exhibit a peak in the amplitude response of their main variable (e.g. voltage) to oscillatory inputs
at a preferred (resonant) input frequency [40, 66, 70, 74]. This phenomenon has been distinctly observed both
experimentally and theoretically in the membrane potential of neurons operating at subthreshold levels and it
has been termed membrane potential resonance (MPR) or subthreshold resonance [2, 3, 7, 8, 12, 15, 16, 22, 24,
27, 28, 32–35, 37–40, 44–46, 49, 53, 56, 58–71, 74, 76, 77, 80, 81, 83, 86, 90, 91, 96–98]. Dynamical systems, even
two-dimensional linear systems with real eigenvalues can exhibit resonance [66, 74]. We refer to the neurons,
and in general to the dynamical systems, that can exhibit resonance in the absence of intrinsic oscillations
(damped or sustained) as resonators. Typically, resonators exhibit an overshoot response to constant inputs.
Both this overshoot and resonance are generated by the interplay of the same types feedback effects as intrinsic
oscillations, but in a different regime, with lower amplifying process levels [66, 69, 70].

In addition to the single-cell mechanisms of generation of oscillations described above, oscillations can be
generated at the network level in mutually connected cells that do not exhibit sustained oscillations when dis-
connected, but they are rather damped oscillators or resonators [4, 48, 88, 93]. The graded synaptic connectivity
used in these studies has been assumed to be instantaneously fast and to have no dynamics. Graded synapses
are present in several neuronal systems [1, 10, 14, 17, 47, 48, 78, 84, 93].

In [4] we have identified a minimal (3D) network model consisting of a two-dimensional resonator and a
one-dimensional passive cell mutually connected through graded inhibition. Oscillations are also obtained in
self-excited resonators (2D), mutually excited resonators (4D) and mutually inhibited resonators (4D), also
using graded synaptic connectivity. In self-excited networks, self-excitation provides the amplifying process nec-
essary for the generation of oscillations. In fact, self-excited resonators have the same mathematical structure
as single neurons having both resonant and amplifying ionic processes whose dynamics are also 2D [4]. Mutu-
ally excited resonators exhibit synchronized in-phase patterns and therefore their dynamics are captured by
those of self-excited resonators. In mutually inhibited two-cell networks involving at least one resonator (e.g.
resonator/resonator or resonator/passive cell networks), in contrast, the amplifying process is more complex
and involves the combined activity of the two inhibitory synaptic connectivities through the intrinsic properties
of the nodes.

The goal of this paper is to identify the conditions under which mutually inhibitory resonator/passive cell
networks exhibit relaxation oscillations and to understand the mechanisms that govern the transition from
sinusoidal-like to relaxation oscillations. To this end we use a minimal network model consisting of (i) a 2D
linear resonator, (ii) a 1D linear passive cell, and (iii) graded synaptic connectivity. We primarily used graded
synapses of sigmoidal piecewise linear (PWL) type. A secondary goal of this paper is to identify the differences
between the oscillatory patterns produced in models with PWL and smooth synaptic connectivity.

The overview of the paper is as follows. In Section 2, we describe the mathematical network model and the
mathematical tools we use in our study. In Section 3, we present our results. First, we discuss the basic aspects
of the network dynamic oscillatory structure, including the description of the fixed-points, the bifurcations
that give rise to oscillations for low values of the maximal synaptic conductance (connectivity strength) (Gin),
the transition from sinusoidal to relaxation oscillations as Gin increases, and the abrupt termination of the
oscillations in a non-smooth bifurcation for higher values of Gin. Then, we describe the necessary balances
between the two parameters capturing the synaptic connectivity, Gin and the synaptic connectivity gradedness
(captured by a parameter va), for the network oscillations to exist. For fixed-values of Gin, relaxation oscillations
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require the connectivity function to be steep enough. Subsequently, we show how the resonant frequency of the
individual 2D resonator affects the network oscillation frequency. Finally, we review some results obtained
in [4] for smooth connectivity functions, discuss the existence of relaxation oscillations and the associated
canard phenomenon, and compare the oscillatory properties of networks having smooth and PWL connectivity
functions. We conclude in Section 4 by discussing our results, their implications for network dynamics and future
work.

2. Model and mathematical tools

We consider a minimal network model consisting of two mutually inhibitory cells (Fig. 1A). The dynamics
of the individual cells are described by linearized biophysical (conductance-based) models [66, 74]. One of the
cells is a two-dimensional (2D) resonator (blue) and the other one is a one-dimensional (1D) passive cell (red).
Both are linearized around a fixed-point in the subthreshold regime. The network connectivity is implemented
using graded synapses, active at subthreshold levels.

The network model is described by the following equations

C1
dv1
dt

= −gL,1v1 − g1w1 −Gin,21S∞(v2)(v1 − Ein),

τ1
dw1

dt
= v1 − w1,

C2
dv2
dt

= −gL,2v2 −Gin,12S∞(v1)(v2 − Ein),

(2.1)

where v1 and v2 represent the voltage (mV), w1 represents the normalized gating variable for the resonant ionic
current, t is time (ms), C1 and C2 are the membrane capacitances (µF/cm2), gL,1 and gL,2 are the linearized
leak maximal conductances (mS/cm2), g1 is the ionic current linearized conductance (mS/cm2) and τ1 is the
linearized time constant (ms). The last term in the first and third equations represents the inhibitory graded
synaptic current from the other neuron, Gin,jk is the maximal conductance, Ein is the synaptic reversal potential
(referred to the resting potential) and the connectivity function S∞ is a function of sigmoid type.

We consider two different functions S∞, the sigmoid function

S∞(v) =

(
1 + e

−
v−vhlf

vslp

)−1
, (2.2)

where vhlf is the half-activation point and vslp is a positive constant (Fig. 1B, gray), and a piecewise-linear
(PWL) function of sigmoid type given by

S∞(v) =

 0 if v ≤ vb
(va − vb)−1(v − vb) if vb < v < va
1 if v ≥ va

, (2.3)

where va and vb are real constants (Fig. 1B, blue).
We consider graded synapses that operate at the subthreshold voltage level regime. These synapses can be

partially activated when the voltage is close to a certain threshold value (not related to the voltage threshold for
spike generation, which is outside the scope of this paper). In our model the values of vslp, va and vb determine
the gradedness of activation for the functions (2.2) and (2.3), respectively. In the following sections we consider
connections centered at v = 0 (vhlf = 0 and vb = −va), and values of vslp and va such that the connections act
in a range of, at most, 10 mV (see Fig. 1B).
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Figure 1. (A) Network diagram for the mutually inhibitory resonator (blue) – passive cell
(red) model. (B) Connectivity functions S∞(v): PWL sigmoid function (2.3) with vb = −3 and
va = 3 (blue) and smooth sigmoid function (2.2) with vhlf = 0 and vslp = 1 (gray).

We note that vi in (2.1) is the voltage relative to the coordinate of the equilibrium potential V̄i for the
conductance-based model (A.1)–(A.3) (see in Appendix A.1 the description of this model). In addition, Ein in
(2.1) is the synaptic reversal potential relative to V̄i. Unless stated otherwise, we used the parameter values
C1 = C2 = 1 and Ein = −20.

2.1. Fixed-point stability and Andronov–Hopf bifurcation

We calculate the stability of the fixed-points of system (2.1) considering the linearization and the corre-
sponding eigenvalues. It is important to mention that the network with the PWL connection given in (2.3) is a
non-smooth system. Thus, the state space is divided in different region by the transition planes v1 = vb, v1 = va,
v2 = vb and v2 = va. In each region the system has, at most, quadratic non-linearities, and the model could be
linearized to determine the stability of the fixed-points belonging to that region. If a fixed-point belongs to one
of the transition planes it is called a transition fixed-point [19].

To study the local bifurcation of periodic orbits we apply a version of the Hopf bifurcation theorem in the
frequency domain [52, 55]. This approach allows us to determine regions of the parameter space where periodic
solutions exist and to describe their characteristics in a small neighbourhood of the bifurcation point. Here we
briefly show how the frequency domain method is applied to our model. A more general description is presented
in the Appendix A.2.

The network model (2.1) can we written as follows v̇1
v̇2
ẇ1

 = A

 v1
v2
w1

+B u, (2.4)

where

u = −h(C · (v1, v2, w1)T , Gin) = −h(v1, v2, Gin) =

(
Gin(v1 − Ein)S∞(v2)
Gin(v2 − Ein)S∞(v1)

)
,

A =

 −gL,1 0 −g1
0 −gL,2 0
ε 0 −ε

 , B =

 1 0
0 1
0 0

T

, C =

(
1 0 0
0 1 0

)
,

and ε = 1/τ .
The above is an input–output representation of the model, where the feedback effect is provided by the

function u = −h(v1, v2, Gin), u is the vector of inputs, (v1, v2) is the vector of outputs and Gin is the
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main bifurcation parameter. By using this representation, the system is described through a transfer function
G(s) ∈ C2×2, given by

G(s) = C(sI3 −A)−1B =

(
s+ε

s2+s(gL,1+ε)+ε(gl+gL,1)
0

0 1
s+gL,2

)
,

where s is the Laplace variable and I3 is the 3× 3 identity matrix.
Let (v̂1, v̂2) an equilibrium, calculated as a solution of G(0)h(v1, v2, Gin) + (v1, v2)T = 0. Then, by linearizing

around this equilibrium we obtain the gain matrix

J =
∂h

∂(v1, v2)

∣∣∣∣
(v̂1,v̂2)

=

(
−GinS∞(v̂2) −Gin (v̂1 − Ein)S′∞(v̂2)

−Gin(v̂2 − Ein)S′∞(v̂1) −GinS∞(v̂1)

)
,

and an open-loop transfer function G(s)J for which the polynomial det(λ I2 − G(s)J) = 0, where I2 the 2× 2
identity matrix, defines λk(s,Gin) characteristic functions, k = 1, 2.

It has been proven [52, 55] that in an Andronov–Hopf bifurcation point the open-loop transfer matrix G(i ω)J

has a distinguished simple characteristic function, noted as λ̂(ω,Gin), such that for a unique frequency ω0 and a

critical value of the parameter Gin0, satisfies λ̂(ω0, Gin0) = −1 and the graphic of λ̂(ω,Gin) crosses the critical
value −1 in the complex plane when the bifurcation parameter varies.

Once a frequency ω0 and a critical value Gin0 are determined, by using the Hopf bifurcation theorem in
frequency domain (see Appendix A.2), we obtain a scalar equation in C of the form

θ
(
λ̂(ω,Gin) + 1 + θ2ξ1(ω,Gin) +O(θ2)

)
= 0, (2.5)

whose non-zero solutions are in one-to-one correspondence with the periodic small amplitude solutions of system
(2.4). The constant θ is an amplitude measure and the solutions have period close to 2π/ω0.

From the above equation, for values of the amplitude θ 6= 0 sufficiently small, we obtain the following equations
in R

Gin = Gin0 +Gin2 θ
2 + · · · , (2.6)

and

ω = ω0 + ω2 θ
2 + · · · . (2.7)

The first equation is the expression of the bifurcation of periodic solutions and it relates the main bifurcation
parameter Gin and the amplitude θ, characterizing the Hopf bifurcation phenomenon. The second expression
gives the modification of the frequency in terms of the variation of the amplitude.

Moreover, we obtain an approximated expression for the small amplitude solutions near the critical value of
the parameter, up to order two the approximation results

(v1(t), v2(t)) = (v̂1, v̂2) + e2(ω,Gin) exp(i 2ωt) +O(θ2). (2.8)

where the vector e2(ω,Gin) ∈ R2 is obtained with the iterative method, and Gin and ω are defined in (2.6) and
(2.7), respectively.

In the following section we use the expressions (2.6), (2.7) and (2.8), to find the Andronov–Hopf bifurcation
points and to describe the branch of periodic solutions of (2.1) generated in these bifurcations. In addition, the
expressions of Gin0 and Gin2 in (2.6), allows us to perform a general exploration of the parameter space in
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order to study the existence of small amplitude periodic solutions when an auxiliary parameter (e.g. gL,1, gL,2,
vslp or va) is varying.

2.2. Slow–fast system

In this subsection we rewrite the model (2.1) as a fast–slow system to help in the determination of possible
canard explosions. In planar systems this type of studies is based in Fenichel results and their generalizations
[6, 21, 26, 42, 50, 51]. Our model is three dimensional with one slow variable and two fast variables, and there
are not general results to study these cases [43]. However, we use the critical manifold, its projections and the
inflexion points near it, to predict the existence of possible canard explosions (see Sect. 3.8). This analysis is then
corroborated by numerical simulations. We perform a preliminary study of the canard explosions because the
global dynamic of the three dimensional one slow two fast systems is difficult to reconstruct from the singular
limit fast–slow decomposition.

For large enough values of τ1, system (2.1) has two time scales. We substitute ε = 1/τ1 in model (2.1) with
the connection (2.2), for 0 < ε� 1. We refer to the resulting system

v′1 = f1(v1, v2, w1, Gin),

v′2 = f2(v1, v2, Gin), (2.9)

w′1 = ε(v1 − w1) = f3(v1, w1),

as (2, 1)-fast–slow, where v1 and v2 are the fast variables, w1 is the slow variable and (·)′ = d
dt . The functions

f1 and f2 are the right-hand-sides in the first and third eqs. in (2.1). There is an associated slow time ts such
that ts = ε t.

The critical manifold for the system is the solution of f1(v1, v2, w1, Gin) = 0 and f2(v1, v2, Gin) = 0. Because
of the linear terms in the above equations, for fixed values of the maximal conductance Gin, we obtain the
following critical curve

C = C(Gin) = {(v1, v2, w1) ∈ R3 : v1 ∈ R, v2 = p2(v1, Gin), w1 = p1(v1, Gin)}, (2.10)

where

p2(v1, Gin) =
Gin,12S∞(v1)Ein

gL,2 +Gin,12S∞(v1)
p1(v1, Gin) = − 1

g1
(gL,1v1 +Gin,21S∞(p2(v1, Gin))(v1 − Ein)) . (2.11)

Since we have two bases time scales to formulate the equations, we get two systems related with (2.9). The
fast subsystem results

v′1 = f1(v1, v2, w1, Gin),

v′2 = f2(v1, v2, Gin), (2.12)

w′1 = 0.

Using Fenichel’s results, the information about the fast subsystem and the slow flow are studied to understand
the full system (2.1) [26, 43].

Each point in C is a fixed point of (2.12). The linearization matrix at (v1, v2) ∈ C results

Jfast =
∂(f1, f2)

∂(v1, v2)

∣∣∣∣
C

=

(
−gL,1 −GinS∞(v2) −Gin (v1 − Ein)S′∞(v2)
−Gin(v2 − Ein)S′∞(v1) −gL,2 −GinS∞(v1)

)
, (2.13)

where v2 = p2(v1, Gin).



INHIBITION-BASED RELAXATION OSCILLATIONS EMERGE IN RESONATOR NETWORKS 7

CBA

Figure 2. Critical manifold C (red) with its different attracting (Ca) and repelling (Cr)
branches, and singular points (dots). Projections of C in two dimensional spaces (gray curves).
(A) System with sigmoid function (2.2) where vhlf = 0 and vslp = 1. (B) System with PWL
function (2.3) where vb = −3 and va = 3. (C) System with PWL function (2.3). Critical
manifold divided by two transition planes v1 = −3 and v2 = −3.

The singular points in C are the points where Jfast is non-invertible. In the present model we have, at most,
two singular points that we called (v1,±, p2(v1,±, Gin), p1(v1,±, Gin)), where ∂p1/∂v1 = 0. The critical manifold
is divided in the following attracting (Ca) and repelling (Cr) branches

Ca,− = C ∩ {(v1, v2, w1) : v1 < v1,−},
Cr = C ∩ {(v1, v2, w1) : v1,− < v1 < v1,+}, (2.14)

Ca,+ = C ∩ {(v1, v2, w1) : v1 > v1,+}.

(Fig. 2A). The attraction or repulsion of the different branches is determined using the linearized matrix (2.13).
Each one of the above branches is formed by normally hyperbolic points.

2.2.1. Slow–fast in the PWL case

As we already mention, considering the connection S∞ given by (2.3), the system (2.9) is a non-smooth
system. We observe that the critical manifold C does not have singular points as we defined before, however,
C is divided in different branches by the transition planes (Fig. 2B and C). The stability for each branch is
calculated considering the matrix Jfast in the corresponding state space region. Three important branches for
our study are

Ca,− = C ∩ {(v1, v2, w1) : v1 < vb},
Cm = C ∩ {(v1, v2, w1) : vb < vi < va, i = 1, 2}, (2.15)

Ca,+ = C ∩ {(v1, v2, w1) : v2 < vb}.

As in the smooth case considered before, the branches Ca are attracting. However, the middle branch Cm could
be attracting or repelling depending on the value of the maximal connection Gin.

Remark 2.1. The fixed-points of the full system (2.1) are the intersection points between the critical curve C
and the plane w1 = v1.

Remark 2.2. We observe that the fast subsystem (2.12) does not present oscillations, that is, the linearization
matrix does not have pure imaginary eigenvalues for S∞(v) of sigmoid type for any fixed point. Therefore, the
full system can not present a delayed (dynamic) Hopf bifurcation (see [43]).
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2.3. Numerical simulations

The numerical solutions were computed by using a modified Euler method (Runge–Kutta, order 2) [11]. The
general time step was ∆t = 0.01, and smaller values of ∆t have been used to improve the accuracy in some
limit cases (for example, to calculate homoclinic and heteroclinic orbits). All calculations were performed using
Python programming language (Python Software Foundation).

3. Results

3.1. Network model with PWL connectivity function: basic dynamic structure

Here we consider the model (2.1) with the piecewise-linear (PWL) connectivity function (2.3). We refer to it
simply as the PWL model. Note that the PWL model is non-smooth, but not PWL due to the product in the
connectivity terms. In the following analysis we consider the maximal conductances Gin,12 = Gin,21 = Gin, and
Gin as bifurcation parameter.

The fixed-points of the PWL model are the intersection points between the critical manifold C and the plane
w1 = v1. In Figure 3 we show the (v1, w1)-space and the projection of the critical manifold C onto this plane.
C is divided in three branches, each one belongs to a different region in the state space (see Fig. 2 right). The
transition points belong to C and satisfy

v1 = −va or v1 = −va −
2gL,2v

2
a

(va + Ein)Gin
. (3.1)

By increasing the value of Gin, the number of fixed-points in the PWL model change. For small values of
Gin, there exists only one fixed-point located in the middle branch Cm. For higher values of Gin there are two
different cases. If gL,1 + g1 6= gL,2, then first the fixed-point crosses a transition variety and then two more fixed-
points are created in a non-smooth saddle-node bifurcation (Fig. 3A). If gL,1 + g1 = gL,2, then a whole segment
of non-isolated fixed points is observed in the transition between one and three fixed-points (Fig. 3B). Before
other fixed-points appear, by increasing the values of Gin, the system displays an Andronov–Hopf bifurcation
and the fixed-point in the middle branch of C becomes unstable. We study this bifurcation in detail in the next
subsection.

In all cases, the fixed-points in regions v1 < −va or v2 < −va describe the activity of the cells 2 or 1 inhibited,
respectively. These fixed-points are stable nodes for all values of the parameters.

3.2. Andronov–Hopf bifurcation and relaxation oscillations in the PWL model

Using the frequency domain approach (see Sect. 2.1) we found that the PWL model presents sustained
oscillations that are generated in an Andronov–Hopf bifurcation when the maximal conductance Gin is increased
above some critical level. The oscillations are generated around the fixed-point in the middle branch of C. In
these solutions the two nodes oscillate and, because of the mutual inhibition, the synchronization is anti-phase
(Figs. 4A and 5A).

If τ1 is large enough, then as Gin increases the amplitude of the limit cycle increases and, eventually, the cycle
intersects and cross the transition planes (Fig. 4B and C) visiting up to three regions of the state-space. We
can observe that the cycle experiences deformations following the attracting branches of the critical manifold
C. Thus, if the maximal conductance Gin is increased, a two-time-scale separation develops and the system
presents a oscillations of relaxation type (Fig. 4 right column).

For lower values of τ1, we observe sustained oscillations generated in an Andronov–Hopf bifurcation when
Gin is increased (Fig. 5). However, these oscillations are not of relaxation type nor relaxation oscillations are
observed for other values of Gin because the time scale separation is smaller than in the previous case (Fig. 5
right column). Also, we observe that since the stable cycle remains in two regions of the state-space, near an
unstable fixed-point of focus type, the amplitude is smaller than in the previous case. Interestingly, the 2D
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Figure 3. Fixed points for the PWL models for representative parameter values. Projections
of the critical manifold C (red) and w1 = v1 (green) in the (v1, w1)-space. Black (gray) dots
indicate stable (unstable) fixed-points. (A) gL,2 = 0.6. (B) gL,2 = 0.5. We use the following
additional parameter values: gL,1 = 0.25, g1 = 0.25, τ1 = 100, va = 3, and the indicated values
of Gin.

isolated node 1 shows intrinsic damped oscillations in this case, while it shows resonance, but no intrinsic
oscillations for the values of τ1 for which network relaxation oscillations are present.

Figure 6 shows amplitude and frequency of two branches of limit cycles generated in Andronov–Hopf bifur-
cations. Since the first Lyapunov coefficient Gin2 calculated applying a frequency domain approach is small (see
equation (2.6)), after the Andronov–Hopf bifurcation, the amplitude of the limit cycles grows very fast. We can
approximate the maximal conductance value when the limit cycle touches a transition plane, in non-smooth
systems this is called a grazing bifurcation [20].

As the parameter Gin increases, if τ1 is large enough, the limit cycle cross the different transition planes and
its amplitude grows more slowly (Fig. 6A). The frequency of the limit cycle decreases when the parameter is
increased and it decreases to zero when Gin tends to Gin,br = −2va(va + Ein)−1 min{gL1 + g1, gL2}. The limit
cycles disappear abruptly when Gin = Gin,br. In the next subsection we analyze in detail this transition. If
the constant time τ1 is smaller, greater values of Gin are necessary to obtain sustained oscillations. The limit
cycle shrinks around the fixed-point when Gin increases. In this case, we observe and smooth transition from
oscillation to an stable fixed-point.

3.3. Transition from oscillatory solutions to steady state in the PWL model

In all cases, the sustained oscillations disappear when the fixed-point in the central branch of the critical
manifold C crosses a transition plane as Gin is increased. This behavior is observed when Gin = Gin,br =
−2va(va +Ein)−1 min{gL1 + g1, gL2}. At that value, the flow in the region −va < v1,2 < va (the central region)
sends trajectories towards the transition planes, and, depending on the rest of the parameters, we observe two
cases. If gL,2 6= gl,1 + g1 (see Fig. 3A middle), the transition fixed-point (−va,−va, 0) attracts the trajectories
once they reach the regions v1 < −va. Thus, the system has a homoclinic orbit at the (transition) fixed-point
(Fig. 7). The homoclinic orbit can reach different regions of the state space and this strongly depends on the
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Figure 4. Generation of relaxation oscillations in the PWL model for representative val-
ues of Gin and high values of τ1. The values of Gin increase from left to right. (A) Voltage
traces (curves of v vs. t). (B) Cycles in the (v1, w1)-space. (C) Cycles in 3D state-space.
We used the following parameter values: gL,1 = 0.25, g1 = 0.25, gL,2 = 0.6, τ1 = 100 and
va = 3. The critical Andronov–Hopf value is Gin0 = 0.143636 at the fixed point v∗ =
(−1.83829,−1.83829,−0.88596), and the initial frequency at the Andronov–Hopf bifurca-
tion is f0 = 500 ω0/π = 6.293384. Up to order two, the first Lyapunov coefficient results
Gin2 = 0.000020458 indicating the occurrence of a supercritical Andronov–Hopf bifurcation.

time constant values τ1. If gL,2 = gL,1 + g1 (see Fig. 3B middle), a segment of non-isolated unstable fixed-points
is observed and there are two transition fixed-points, (−va,−va, 0) and (0, 0,−va), attracting the trajectories
in the regions v1 < −va and v2 < −va, respectively. In this case, we observe that the system has a family
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Figure 5. Non-relaxation oscillations in the PWL model for representative values of Gin and
relatively small values of τ1. The values of Gin increase from left to right. (A) Voltage traces.
(B) Cycles in the (v1, w1)-space. (C) Cycles in the 3D state-space. Parameter values are as in
Figure 4, except for τ1 = 20.

of heteroclinic orbits connecting each fixed-point in the central branch of C with the transition fixed-points
(−va,−va, 0) or (0, 0,−va) (Fig. 8).

For higher values of Gin, the fixed-point belongs to one of the attracting branches of C and it becomes a
stable node. Then, the transition from large amplitude oscillations to steady state solutions is abrupt when the
maximal synaptic conductance is increased and the time constant τ1 is large enough. However, the periodic



12 A. BEL ET AL.

Figure 6. Dependence of the network oscillation amplitude and frequency with the maximal
synaptic conductance Gin. The oscillation amplitude was computed in terms of the variable
v1. (A) We use the parameter values indicated in Figure 4. (B) We use the parameter values
indicated in Figure 5.

solutions do not follow the unstable branch of the critical manifold so they do not have the characteristic
canard-like shape.

3.4. A balance between Gin and the gradedness va are necessary for network
oscillations to exist in the PWL model

The parameter va (= vb) in the connectivity function (2.3) determines the synapse gradedness. Increasing
values of va (making S∞ is shallower) cause the maximal synaptic conductance necessary to generate oscillation
to increase (Figs. 9 and 10) while the initial frequency for small amplitude oscillations present minimal changes
(not shown).

The parameter va in the connectivity function (2.3) determines the synapse gradedness. We observe that
increasing this value, the maximal conductance necessary to generate oscillation increases (Figs. 9 and 10) while
the initial frequency for small amplitude oscillations present minimal changes (not shown).
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Figure 7. Homoclinic orbit varying τ1. We use the parameter values: gL,1 = 0.25, g1 = 0.25,
gL,2 = 0.6, va = 3, Gin = 3/17 and the indicated values of τ1.

Figure 8. Some heteroclinic orbits increasing τ1. We use the parameter values: gL,1 = 0.25,
g1 = 0.25, gL,2 = 0.5, va = 3, Gin = 3/17 and the indicated values of τ1.

Figures 9 and 10 show the effects of increasing values of va in combination with different changes in other
parameter. For example, increasing values of gL,1 generate that critical maximal conductance Gin0 increases
(Fig. 9A), whereas the critical parameter remains almost unchanged if gL,2, g1 or τ1 are increased (Fig. 10). We
calculate the critical values Gin0 using the frequency domain methodology (see Sect. 2.1).

The maximal conductance Gin and the connection gradedness va has to be balanced for the existence of
oscillation in the system. Suppose that the maximal conductance is fixed, τ1 is large enough, and we consider va
as bifurcation parameter. Increasing values of va the attractors transition from stable fixed-points to relaxation
oscillations, in such a way as we observe increasing Gin (Fig. 9A). For higher values of va the oscillations are
sinusoidal and then they disappear in an Andronov–Hopf bifurcation at a critic value of va (Fig. 11). After this
bifurcation the remaining attractor is the stable fixed point in the middle branch of C.

3.5. The resonant frequency of the non-oscillatory resonant cell controls the network
oscillation frequency

Here we analyze how changes in resonant frequency (fres) of the non-oscillatory 2D cell (node 1) affect the
network oscillation frequency (fntw). For the isolated 2D cell, the resonant frequency and maximal impedance
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Figure 9. Oscillatory region and critical parameter values as function of va. (A) Andronov–
Hopf bifurcation points (solid line) and values of Gin,br (dashed line) as function of va. In the
shadowed region the system presents sustained oscillations, I and II indicate the number of
stable fixed-points in the corresponding region. The values of gL,1 are indicated in each panel.
(B) Projections of C and transition planes in (v1, w1)-space. Left : representative values of va
and fixed values of Gin = 0.15 and gL,1 = 0.2. Right : representative values of Gin and fixed
values of va = 3 and gL,1 = 0.35. We used the following additional parameter values: g1 = 0.25,
gL,2 = 0.6, τ1 = 100 and Ein = −20.

are given, respectively, by

fres =
500

π
ωres =

500

π

√
− 1

τ21
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√
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τ1
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and
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gL,1 − 1

τ1
− 2

g1
τ1

+
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√
g1(2 + g1τ1 + 2gL,1τ1)

τ1

−1 (3.3)
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Figure 10. Critical parameter Gin0 as function of va. Andronov–Hopf critical values (solid
line). (A) gL,1 = 0.25, g1 = 0.25 and τ1 = 100. (B) gL,1 = 0.25, gL,2 = 0.6 and τ1 = 100.
(C) gL,1 = 0.2, gL,2 = 0.6 and g1 = 0.25.

Figure 11. Voltage traces considering gradedness va as bifurcation parameter. The values of
va increase from left to right. We use the following parameter values: gL,1 = 0.35, g1 = 0.25,
gL,2 = 0.6, Gin = 0.2 and τ1 = 100.

The factor of 500 in fres is used to express fres in Hz.
To study the effects of fres on fntw we follow [4, 12] and change the model parameters in such a way that

fres changes but Zmax remains constant. In particular, we consider a fixed value of gL,1, and various balanced
combinations of values of g1 and τ1 so as to increase fres and maintain Zmax constant. In this way, the changes
in fres maintain the impedance amplitude shape almost unchanged, and the resulting affects can be ascertained
to fres and not the other attributes of Z.

In all cases considered, the network frequency fntw increases with increasing values of fres (Figs. 12 and
13). For fixed values of Gin, increasing the parameter va we observe that the network frequency increases and
the oscillation amplitude decreases (Fig. 12). As we mention in the above subsection, increasing values of the
gradedness va without balancing the maximal conductance Gin causes that oscillations to vanish, thus, we
observe that the active resonant frequencies is smaller for higher values of va.

Figure 13 shows that the oscillations are present for higher values of fres and are amplified the higher Gin.
Besides, when Gin is increased, the oscillations present grazing bifurcations (see Sect. 3.2), and the network
frequency decreases to zero when Gin tends to Gin,br. Thus, the dependence of the oscillatory frequency on
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Figure 12. The intrinsic resonant frequency controls the network frequency. Network oscilla-
tion frequency (left) and network oscillation amplitude (right) as functions of fres. The network
oscillation amplitude was computed in terms of the amplitude of the oscillator 1. We use the
following parameter values: gL,1 = 0.25, Zmax = 3.94 and Gin = 0.15.

the resonant frequency is effectively lost when the oscillations become of relaxation type. This phenomenon is
stronger for higher values of gL,1 and lower values of Zmax.

3.6. PWL network model without synaptic driving force

The network model (2.1) involves the product of the PWL function of sigmoid type S∞ and the driving
force (v −Ein). Here we simplify the model further by replacing this driving force factor by a positive constant
(inhibition). The resulting model reads

C1
dv1
dt

= −gL,1v1 − g1w1 −GinS∞(v2) a1,

τ1
dw1

dt
= v1 − w1,

C2
dv2
dt

= −gL,2v2 −GinS∞(v1) a2,

(3.4)

where ai > 0, for i = 1, 2.
As we discuss below, there are similarities and differences between the periodic solutions of the model (3.4)

and the solutions of the model (2.1) considered in the previous subsections. The reduced model (3.4) is mathe-
matically more tractable than the model (2.1) (it allows for analytical calculations in each linear regime) at the
expense of reducing the level of biophysical descripton [13, 73, 87, 92].

As Gin varies, we observed that the model (3.4) presents non-smooth saddle-node bifurcations or a segment
of non-isolated fixed points, depending on the values of the other parameters. This behaviour is similar to the
observed for the model (2.1) (Fig. 4). However, unlike the model (2.1), because the model (3.4) is linear in
each region of the state space, then Andronov–Hopf bifurcations are not possible. Despite this, the system (3.4)
has periodic solutions and their expressions can be calculated by solving the linear system in each region and
considering continuity conditions. The periodic solutions are generated when, by increasing the value of Gin, the
fixed point in the middle branch of the critical manifold C becomes an unstable focus (Fig. 14). By necessity,
the trajectories of these periodic solutions must visit at least two different regions in the three-dimensional state
space, and their amplitude is determined by the position of the fixed point in the critical manifold C. If the
value of τ1 is large enough, as the parameter Gin increases, the periodic solutions spend more time near the
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Figure 13. The intrinsic resonant frequency controls the network frequency. Network oscil-
lation frequency (left) and network oscillation amplitude (oscillator 1, right) as functions of
fres. (A) gL,1 = 0.15 and Zmax = 6.4. (B) gL,1 = 0.25 and Zmax = 3.94. We use the following
parameter values gL,2 = 0.6 and va = 3.

stable parts of C, and eventually take the form of relaxation oscillations (Fig. 14). When the value of τ1 is small
enough, the fixed point is near one of the knees of the curve C and small amplitude periodic solutions can be
observed in (3.4) (not shown). The behaviour is similar to the one observed for the model (2.1) (Fig. 5).

3.7. Network model with a sigmoid connectivity function revisited

In this section, we consider the network model (2.1) with the smooth connectivity function (2.2). We refer
to it simply as the sigmoid model. We studied the mechanisms that govern the emergence of oscillations in
the sigmoid model in [4]. Depending on the values of the maximal conductance Gin the system has different
number of fixed-points. Considering the maximal conductance Gin as bifurcation parameter, an Andronov–Hopf
bifurcation around one of these fixed-points generates small amplitude sustained network oscillations (Fig. 15A).
If the value of Gin increases (above the Andronov–Hopf bifurcation critical value) and the time constant τ1 is
large enough, then the periodic solutions become relaxation oscillations. Thus, we conclude the effect of the two
time scales present at the single cell level that give rise to resonance in the absence of intrinsic oscillations is
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Figure 14. Generation of oscillations in the full PWL system. The values of Gin increase from
left to right. (A) Voltage traces (curves of v vs. t). (B) Trajectories in the (v1, w1)-space, and
projection of the critical manifold C (red PWL curve). (C) Trajectories in the 3D state-space.
We used the following parameter values: gL,1 = 0.25, g1 = 0.25, gL,2 = 0.6, τ1 = 100 and va = 3.

translated to the network level when synaptic inhibition is strong enough. For lower levels of synaptic inhibition,
the network oscillations are sinusoidal-like.

There are values of the maximal conductance Gin where the system presents multistability (Fig. 15B).
Depending on the values of τ1 we observe a stable fixed-point that coexists with a stable periodic solution
(Fig. 15A). This periodic solution is of relaxation type (not shown) and disappear abruptly when the maximal
conductance is increased further. In the following subsection we study this behavior using a slow–fast system
approach.
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Figure 15. Bifurcation diagrams and region of sustained oscillations in the sigmoid model.
(A) Bifurcation diagram in the (Gin, v1) space. Stable (unstable) fixed-points in solid (dashed)
line. H0,1,2 are Andronov–Hopf critical values (gray dots). Stable sustained oscillations (green
dots). (B) Bifurcation diagram in the (Gin, τ1). H0,1,2 note the Andronov–Hopf bifurcation
branches and PF notes the pitchfork bifurcation. In the dark shadowed region the system
presents sustained (limit cycle) oscillations. The inset trajectory diagrams indicated the dynam-
ics within the regions bounded by the solid and dashed curves (except the solid green curve):
stable nodes, stable foci, unstable foci and unstable nodes (from left to right). The inset dia-
grams correspond to the 3D linearized system for the fixed-point before the static bifurcation
(PF ). The light shadowed region corresponds to multistability (limit cycle and/or fixed-points).
We use the following parameter values: gL,1 = 0.25, g1 = 0.25, gL,2 = 0.5.

3.8. Canard explosion and the inflection curve method in the sigmoid model

In a planar slow–fast dynamical system the so-called canard cycles occur near a singular Andronov–Hopf
bifurcation and they enclose non-convex areas in the phase-space [6, 21, 42]. In this case an inflection point
appears near the repelling slow manifold. The set of inflection points Iε is a region in the phase-plane where the
flow curvature vanishes. Therefore, the criterion for planar system states that if ε is small enough so that there
is a set of zero curvature in the vicinity of a repelling slow manifold and a limit cycle exists, then it is possible
that this cycles enclose non-convex zones, leading to a canard explosion. For a cubic shape critical manifold, the
inflection set and the repelling slow manifold are O(ε2) close to one another in between both folds points of C.

This criterion does not establish that limit cycles exist, but only that if such cycles exist, then they can show
canard solutions.

We consider the system’s flow near the critical manifold C (Sect. 2.2) for small values of ε = 1/τ1. We adapt
the curvature criterion mentioned before to our sigmoid model (2.1). To calculate the curvature, we consider
only two components corresponding to projections onto the (v1, w1) and (v2, w1) planes. In the first case, we
consider v2 = p2(v1, Gin) given in (2.11), and in the second case

v1 = p3(v2, w1, Gin) =
−g1w1 +GinS∞(v2)Ein

gL +GinS∞(v2)
. (3.5)

Thus, we obtain the following two dimensional systems:

v′1 = f1(v1, p2(v1, Gin), w1, Gin),
w′1 = f3(v1, w1).

v′2 = f2(p3(v2, w1, Gin), v2, w1, Gin),
w′1 = f3(v1, w1).

(3.6)
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Figure 16. Inflection curves at the Andronov–Hopf critical value Gin0 = 0.2187016. Critical
manifold C (solid red) and its repelling branch (dotted red). Singular points (open blue circle)
and fixed-point (filled circle). Inflection curves Ii,ε (dashed lines) for ε = 0.01. (A) Projections
onto the (v1, w1) plane. (B) Projections onto the (v2, w1) space. We use the following parameter
values: gL,1 = 0.25, g1 = 0.25 and gL,2 = 0.5.

From these systems we define D1 = det

(
v′1 v′′1
w′1 w′′1

)
and D2 = det

(
v′2 v′′2
w′1 w′′1

)
. The inflection points in

the projections are, respectively,

I1,ε = {(v1, w1) : D1 = 0} I2,ε = {(v2, w1) : D2 = 0}. (3.7)

As an example, Figure 16 shows the inflection points and the critical curve C in the two projections mentioned
above. We can observe that each projection of C onto the corresponding planes has a cubic-like shape. The
curves in Figure 16 present similarities with the inflection lines and critical manifold of the 2D Hodgkin–Huxley
model studied in [18, 54].

Applying the methodology presented in Section 2.1, we calculate that the system presents a subcritical
Andronov–Hopf bifurcation at value Gin0 = H1 (Fig. 15) and the bifurcation point is in the vicinity of the
singular points (folds) of the cubic-like curves (Fig. 16). This last observation in combination with the existence
of inflections points near the curve Cr is an indicator that canard orbits can exist in the system. Performing
some numerical calculations we obtain canard-like period orbits for values of the parameter Gin slightly greater
than the Andronov–Hopf bifurcation value H1 (Fig. 17).

It is expected that the branch of relaxation oscillations (generated in the Andronov–Hopf bifurcation at
H0) to fall down under the branch of unstable orbits generated in H1, showing the typical behavior of a
canard explosion. A formal proof of existence of such explosion requires the application of another methodology
(analytical and numerical).

3.9. Similarities and differences between the sigmoid (smooth) and PWL network
models

In both models, depending on the values of the parameters, the bifurcation diagrams for the fixed-points are
classified into two types: the pitchfork and the saddle-node. The sigmoid model presents the classical scenario
for these static bifurcations (see Fig. 15A for a pitchfork example), whereas in the PWL model the bifurcation
the pitchfork bifurcation occurs through a segment of non-isolated fixed-points and the saddle-node bifurcation
is non-smooth (Fig. 3).
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Figure 17. Canard-like oscillation near and Andronov–Hopf bifurcation. Value of Gin near
the value of Gin0 in Figure 16. (A) Critical manifold C (solid red) and its repelling branch
(dotted red). Fixed-point (filled circle) and cycle (solid blue). Inflection curves Ii,ε (dashed lines)
for ε = 0.01, projections onto (v1, w1) and (v2, w1) planes. (B) Critical manifold C (red) and
cycle (blue) in 3D state-space. We use the following parameter values: gL,1 = 0.25, g1 = 0.25,
gL,2 = 0.5 and τ1 = 100.

For the two models, at critical values of the parameter Gin where a unique fixed-point exists, a supercritical
Andronov–Hopf bifurcation appears generating a branch of stable limit cycles. This is the only dynamical
bifurcation in the PWL model. In the sigmoid model two additional Andronov–Hopf bifurcations appear (both
of them for greater values of Gin). These last bifurcations give raise to a multistability region in the parameter
space (Fig. 15).

If the constant time τ1 is large enough, the network presents two times scales. In both models, whenever
Gin is increased from a critical value Gin0, the small amplitude oscillations (generated in an Andronov–Hopf
bifurcation) evolve and become of relaxation type. However, these models present differences when the value
of Gin increases. In the PWL model, the amplitude of the limit cycles, first grows very fast, then the cycle is
transformed in a relaxation oscillation (Figs. 4 and 6A), and finally it disappears abruptly when a transition
fixed-point exists (Figs. 7 and 8). In the sigmoid model, the relaxation oscillation becomes a canard-like solution,
and eventually disappears abruptly when the parameter Gin reaches a critical value (Figs. 15 and 17).

If τ1 is small, both the PWL and sigmoid models present sustained oscillations which are not of relaxation
type for any value of the synaptic conductance Gin. In particular, in the PWL model, the amplitude of the
oscillations is smaller than the one observed for greater values of τ1 (Figs. 5 and 6A) and, by increasing the
values of Gin, the cycles shrink around the same fixed-point in which they were generated. This behavior is not
observed in the sigmoid model.

Finally, as we have shown in [4], in the sigmoid model the resonance frequency of the 2D node in the network
controls the network frequency. This behavior is observed in the PWL model (Figs. 12 and 13) and we show
that it depends on the values the gradedness of the connectivity function va.
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4. Discussion

In this paper we set out to understand the circumstances under which mutually inhibitory networks of
non-oscillatory cells exhibit relaxation oscillations and the mechanisms that govern the transition from non-
relaxation, sinusoidal-like oscillations to relaxation oscillations. We used a minimal model consisting of a 2D
linear resonator, a 1D linear cell and graded synaptic inhibition of PWL type. This model allows us to understand
the mechanisms underlying the oscillatory phenomena in terms of a simple set of parameters for the linear
components of the network.

The oscillations that emerge in this model for balanced values of Gin (maximal synaptic conductance) and va
(the synaptic gradedness) within some range are a network phenomenon since none of the components display
intrinsic oscillations, consistent with our previous findings [4]. For fixed values of va, sinusoidal-like oscillations
are created in a subcritical Hopf bifurcation, they transition to relaxation oscillations as Gin increases, and
are abruptly terminated in a non-smooth bifurcation for higher values of Gin that depends on the other model
parameters. The properties of the regions in the (Gin, va) plane for which oscillations exist depend on the
parameter values for both the 1D cell and the 2D resonator. The mechanisms of generation of oscillations
crucially depend on the presence of the 2D resonator who provides the necessary negative feedback operating at
a slow time scale. Even though this feedback is not enough to produce intrinsic (damped) oscillations in the 2D
node, its combination with the nonlinear amplification provided by the PWL synaptic connectivity produces
oscillations at the network level.

The development of relaxation oscillations requires a relatively strong nonlinearity provided by high enough
levels of Gin and low enough levels of va. In contrast to what can be expected from other systems (e.g. [48]), the
relaxation oscillations are lost when the 2D node is a damped oscillator instead of a resonator. Damped oscillators
have a smaller time scale separation between the two variables (faster negative feedback) than resonators.
However, the lack of relaxation oscillations patterns is not because the trajectories become more rounded in
the phase-space diagram, with an amplitude roughly of the same order of magnitude, as it would be the case
for the FitzHugh-Nagumo model, for instance, but because the amplitude dependence with Gin is qualitatively
different between the two cases. For networks having a 2D resonator, the oscillation amplitude monotonically
increases with Gin, while for networks having a 2D damped oscillator, the oscillation amplitude first increases
and then decreases as Gin increases.

We followed previous work [4, 12] and investigated the dependence of the network oscillatory frequency (fntw)
on the properties of the resonator via its resonant frequency (fres), while controlling for the maximal impedance
to remain fixed so as to minimize the effects that changes in fres have on the impedance profile. In all cases
considered the fntw monotonically increased with fres. The range of values of fres for which oscillations exist
critically depend on va, becoming narrower the larger va (the shallower the synaptic connectivity function),
indicating that the existence of oscillations is strengthen by nonlinearities of degree higher than two (a linear
synaptic connectivity function will produce quadratic nonlinearities in the synaptic connectivity term).

Our results using the minimal networks models we considered here highlight the role that the intrinsic, non-
oscillatory properties of the nodes play in the generation of network oscillations, particularly network relaxation
oscillations. The mechanistic principles extracted from our study can be applied to more complex networks that
can be though of as extensions of the models we considered here such as the firing rate models of Wilson–Cowan
type [94] with adaptation [14, 78, 84] for neuronal populations (and networks of neuronal populations). More
research is necessary to understand how the intrinsic properties of these networks affect the network oscillations.

The original Wilson–Cowan equations are an excitatory-inhibitory pair with one-dimensional dynamics for
each node (population). Oscillations in this system are heavily dependent on self-connectivity in the participating
nodes. In contrast, the model we present in this paper involves mutual inhibition. There are two main differences
between the two formulations. First, the argument of the sigmoid function in firing rate models is the sum of
all synaptic terms and the stimuli, while in our formulation the argument of the sigmoid function is the firing
rate of a single node. Multiple connections in our model would involve the sum of sigmoid functions (one for
each incoming input) instead of the “sigmoid of a sum”. Second, the connectivity term in our model involves a
driving force factor, which is absent in firing rate models. By reducing the model further such as the connectivity
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becomes piecewise liner (by replacing the diriving force of the synaptic connection by an appropriate constant),
oscillations are still possible, but the mechanisms by which they are generated are different between the original
and the reduced model since Andronov–Hopf bifurcations are not possible in linear systems.

A natural extension of our work is to consider larger networks involving 1D linear cells and 2D linear resonators
with both inhibitory and excitatory connectivity. Future research should aim to understand how oscillations
result from the interplay of the intrinsic properties of these two types of cells, the mixed connectivity and the
network topology.

Appendix A

A.1 Conductance-based models

The linearized model (2.1) is based in biophysical (conductance-based) models [36, 79] with (at most) two
ionic currents. The current balance equation to describe the neuronal subthreshold dynamics is given by

C
dV

dt
= −IL − I1 − I2 − Isyn(t) + Iapp + Iin(t), (A.1)

where V is the membrane potential (mV), t is time (ms), C is the membrane capacitance (µF/cm2), Iapp is the
applied bias (DC) current (µA/cm2), Iin(t) is a time-dependent input current (µA/cm2), IL = GL (V −EL) is
the leak current, and

Ij = Gj xj (V − Ej), j = 1, 2, (A.2)

are generic expressions for ionic currents with maximal conductance Gj (mS/cm2) and reversal potentials Ej
(mV) respectively. The gating variables obey kinetic equations of the form

dxj
dt

=
xj,∞(V )− x
τj,x(V )

. (A.3)

where xj,∞(V ) and τj,x(V ) are the voltage-dependent activation/inactivation curve and time constant
respectively. The former is given by

x∞(V ) =

(
1 + e

σx
V −Vhlf,x

Vslp,x

)−1
, (A.4)

where Vhlf,x and Vslp,x > 0 are constants and the sign of σx indicates whether the curve describes an activation
(σx < 0) or inactivation (σx > 0) process. In all cases we use voltage-independent time constants τj,x, since we
are focusing on the subthreshold voltage regime where the time constants are typically slowly varying functions
of V .

In this paper we consider 2D models with one dynamic gating variable x1 defined by (A.3) and the other
gating variable evolving on a fast time scale for which the adiabatic approximation x2 = x2,∞(V ) is made.
The 1D models we use can be interpreted as reductions of the 2D models where the term including the gating
variable x1 is lacking or where the adiabatic approximations has been made for x1.

The ionic currents we consider here are persistent sodium INap = GNap p∞(V ) (V −ENa), hyperpolarization-
activated, mixed-cation, inward (or h-) Ih = Gh r (V −Eh) and slow-potassium (M-type) IKs = GKs q (V −Ek).
The first one favors changes in voltage and is an example of amplifying current whereas the other two oppose
changes in voltage and are called resonant currents. In the above notation we have x1 = r and x1 = q for the
currents Ih and IKs, whereas x2,∞(V ) = p∞(V ) for the current INap. Functions and parameter values to define
the different gating variables can be consulted, for example, in [74].
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A.2 Andronov–Hopf bifurcation in a frequency domain formulation

In the present appendix we briefly review a formalism to study local oscillations of a dynamic system using
a frequency domain approach [52, 55, 89]. By using an input-output representation, the system is described
through a transfer function G(s) ∈ Cm×l, which depends on the main (or distinguished) bifurcation parameter
µ ∈ R. The aim is to determine values of µ where a classical (one limit cycle) or a degenerate (multiple limit
cycles) Andronov–Hopf bifurcation arises. We apply the frequency domain approach to calculate the bifurcation
points and then, with an iterative method, we obtain analytical expressions relating the bifurcation parameter
and the frequency of the periodic solutions with its amplitude. These expressions allows us to describe the
Andronov–Hopf bifurcation and the branch of periodic solutions generated in it.

Let D be an n-dimensional dynamical non-linear system described by

ẋ = F (x, µ),

with x ∈ Rn, µ ∈ R is the bifurcation parameter and F : Rn ×R→ Rn is a smooth vector field Ck, with k > 3,
with equilibrium point x = 0 satisfying F (0, µ) = 0.

By choosing the input and output variables appropriately, it is possible to write the following representation

S :

 ẋ = Ax+Bu,
y = Cx,
u = −f(y, µ),

which verifies that F (x, µ) = Ax − Bf(Cx, µ), A ∈ Rn×n is not necessarily the linearization around the equi-
librium point, B ∈ Rn×l, f : Rm ×R→ Rl, is Ck with k > 3 (it can also contain linear terms), and C ∈ Rm×n.
The feedback is given by the function u = −f(y, µ), u is the vector of inputs and y is the vector of outputs.

By applying the Laplace transform, the following representation is obtained (Ly)(s) = G(s)(Lu)(s), where s

is the Laplace variable and G(s) = C [sI −A]
−1
B ∈ Cm×l is known as the transfer function.

The realization {A,B,C} associated to G(s) should be minimal (controllable and observable) and, if possible,
with less number of variables and equations than the original system (m ≤ n, l ≤ n). The minimal condi-
tion assures that both representations, D and S, have the same dynamical behavior, i.e. they are topological
equivalent, see [52, 55, 89].

Let ŷ an equilibrium of S, solution of

G(0)f(y, µ) + y = 0.

Then, by linearizing around ŷ, it is obtained a gain matrix J = ∂f
∂y |ŷ and an open-loop transfer function G(s)J

for which the polynomial det(λ I − G(s)J) = 0 defines λk(s, µ) characteristic functions, k = 1, · · · , k0. Notice
that k0 is the minimum number between m and l.

Remark A.1. The equilibrium ŷ of S in the frequency domain is in correspondence with an equilibrium x̂ of
D in the time domain.

It is supposed that the system S satisfies the following conditions:
(H1)df : there is a simple characteristic function of the open-loop transfer matrix G(i ω)J , noted for simplicity

as λ̂(ω, µ), such that for a unique frequency ω0 and a critical value of the parameter µ0 verifies λ̂(ω0, µ0) = −1.

(H2)df : < ~λ∂µ, ~λ
⊥
∂ω > 6= 0, where ~λ∂µ = (∂<λ̂∂µ (ω0, µ0), ∂=λ̂∂µ (ω0, µ0)), ~λ⊥∂ω = (∂=λ̂∂ω (ω0, µ0),−∂<λ̂∂ω (ω0, µ0)), <

and = are the real and imaginary parts and < ·, · > is the scalar real product.

These are classical Andronov–Hopf bifurcation conditions in the frequency domain. It is supposed here that
the rest of characteristic functions do not cross the critical value −1 in the complex plane. These two conditions
are the counterpart in the frequency domain to the classic conditions for the Andronov–Hopf bifurcation theorem
in the time domain.
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Now, we give a version of the Andronov–Hopf bifurcation theorem using higher-order harmonic balance. Its
proof, presented in [89], contains a Lyapunov Schmidt reduction method and an iterative process to determine
the vectors for computing the main coefficients of the bifurcation equation up to any order. The new algorithm
can be implemented simply by using symbolic computations.

Theorem A.2. Let be S a system that verifies (H1)df and (H2)df , then the bifurcation equation of periodic
orbits of higher-order in the frequency domain is

θ

(
λ̂(ω, µ) + 1 +

q∑
k=1

θ2kξk(ω, µ) +O(θ2q+2)

)
=0.

The non-zero solutions of (A.2) are one-to-one in correspondence with the periodic solutions of small amplitude
θ of the system S with period close to 2π/ω0.

The system S admits approximate oscillations of the form

y(t) = ŷ +

2q∑
j=−2q

ej(ω, µ) exp(ijωt) +O(θ2q+2).

The expressions of ξk(ω, µ) and ej(ω, µ) are obtained in the proof of the theorem.

Corollary A.3. If the conditions (H1)df and (H2)df are verified, from (A.2) for θ 6= 0 sufficiently small, it
gives

µ = µ0 + µ2 θ
2 + µ4 θ

4 + · · · , (A.5)

ω = ω0 + ω2 θ
2 + ω4 θ

4 + · · · . (A.6)

The equation (A.5) is the expression of the bifurcation of periodic solutions since it relates the main bifurcation
parameter µ and the amplitude θ, characterizing the Andronov–Hopf bifurcation phenomenon. The expression
(A.6) gives the modification of the frequency in terms of the variation of the amplitude.

For the particular case q = 1, if the conditions (H1)df , (H2)df and µ2 6= 0 are verified, the classical conditions
of the Hopf bifurcation theorem in the frequency domain are satisfied and the appearance of oscillations follows
the typical quadratic relation, at least locally, from the equilibrium.

For order q > 1, an interesting question is determine which is the minimum power of θ in (A.5) that charac-
terizes completely the local bifurcation diagrams and the types of singularities organized around a weak focus
(in two dimensions) or near a degenerate Andronov–Hopf bifurcation (in three or more dimensions), i.e. a
generalized Andronov–Hopf bifurcation [31, 85].

Acknowledgements. This work was partially supported by the National Science Foundation grant DMS-1608077 (H.G.R.),
the NJIT Faculty Seed Grant 211278 (H.G.R.) and the Universidad Nacional del Sur grant PGI 24/L096 (A.B., A.T.).
H.G.R. is grateful to the Courant Institute of Mathematical Sciences at NYU and the Department of Mathematics at
Universidad Nacional del Sur, Argentina.

References

[1] C. Ambrosio-Mouser, F. Nadim and A. Bose, The effects of varying the timing of inputs on a neural oscillator. SIAM J. Appl.
Dyn. Sys. 5 (2006) 108–139.

[2] J.J. Art, A.C. Crawford and R. Fettiplace, Electrical resonance and membrane currents in turtle cochlear hair cells. Hear. Res.
22 (1986) 31–36.

[3] J. Beatty, S.C. Song and C.J. Wilson, Cell-type-specific resonances shape the response of striatal neurons to synaptic inputs.
J. Neurophysiol. 113 (2015) 688–700.



26 A. BEL ET AL.

[4] A. Bel and H.G. Rotstein, Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to
produce network oscillations. J. Comput. Neurosci. 46 (2019) 169–195.

[5] B.P. Belousov, A periodic reaction and its mechanism. Compilation of Abstracts on Radiation Medicine, Medgiz, Moscow
(1959) 147–145.

[6] E. Benoit, J.L. Callot, F. Diener and M. Diener, Chasse au Canard. Collect. Math. 32 (1981) 37–76.

[7] A. Boehlen, U. Heinemann and I. Erchova, The range of intrinsic frequencies represented by medial entorhinal cortex stellate
cells extends with age. J. Neurosci. 30 (2010) 4585–4589.

[8] A. Boehlen, C. Henneberger, U. Heinemann and I. Erchova, Contribution of near-threshold currents to intrinsic oscillatory
activity in rat medial entorhinal cortex layer II stellate cells. J. Neurophysiol. 109 (2013) 445–463.

[9] C. Borgers, An Introduction to Modeling Neuronal Dynamics. Springer, Switzerland (2017).

[10] J.N. Brea, L.M. Kay and N.J. Kopell, Biophysical model for gamma rhythms in the olfactory bulb via subthreshold oscillations.
Proc. Natl. Acad. Sci. USA 106 (2009) 21954–21959.

[11] R.L. Burden and J.D. Faires, Numerical Analysis. PWS Publishing Company, Boston (1980).
[12] Y. Chen, X. Li, H.G. Rotstein and F. Nadim, Membrane potential resonance frequency directly influences network frequency

through gap junctions. J. Neurophysiol. 116 (2016) 1554–1563.
[13] S. Coombes, Neuronal networks with gap junctions: a study of piece-wise linar planar neuron models. SIAM J. Appl. Dyn.

Sys. 7 (2008) 1101–1129.
[14] R. Curtu and J. Rubin, Interaction of canard and singular Hopf mechanisms in a neural model. SIAM J. Appl. Dyn. Sys. 4

(2011) 1443–1479.
[15] E. D’Angelo, S.K.E. Koekkoek, P. Lombardo, S. Solinas, E. Ros, J. Garrido, M. Schonewille and C.I. De Zeeuw, Timing in

the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162 (2009) 805–815.
[16] E. D’angelo, T. Nieus, A. Maffei, S. Armano, P. Rossi, V. Taglietti, A. Fontana and G. Naldi, Theta-frequency bursting and

resonance in cerebellar granule cells: experimental evidence and modeling of a slow K+-dependent mechanism. J. Neurosci.
21 (2001) 759–770.

[17] F. David, E. Courtiol, N. Buonviso and N. Fourcaud-Trocme, Competing mechanisms of gamma and beta oscillations in the
olfactory bulb based on multimodal inhibition of mitral cells over a respiratory cycle. eNeuro 2 (2015) e0018–15.2015.

[18] M. Desroches, M. Krupa and S. Rodrigues, Inflection, canards and excitability threshold in neuronal models. J. Math. Biol.
67 (2013) 989–1017.

[19] M. di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and
Applications. Springer-Verlag, New York (2008).

[20] M. di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Piecewise-smooth dynamical systems: theory and applications.
Vol. 163 of Applied Mathematical Sciences. Springer (2008).

[21] F. Dumortier and R. Roussarie, Canard cycles and center manifolds. Memoirs of the American Mathematical Society, Rhode
Island (1996) 577.

[22] T.A. Engel, L. Schimansky-Geier, A.V. Herz, S. Schreiber and I. Erchova, Subthreshold membrane-potential resonances shape
spike-train patterns in the entorhinal cortex. J. Neurophysiol. 100 (2008) 1576–1588.

[23] I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, New York (1998).
[24] I. Erchova, G. Kreck, U. Heinemann and A.V.M. Herz, Dynamics of rat entorhinal cortex layer II and III cells: Characteristics

of membrane potential resonance at rest predict oscillation properties near threshold. J. Physiol. 560 (2004) 89–110.

[25] G.B. Ermentrout and D. Terman, Mathematical Foundations of Neuroscience. Springer, New York (2010).
[26] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31 (1979) 53–98.

[27] D.M. Fox, H. Tseng, T. Smolinsky, H.G. Rotstein and F. Nadim, Mechanisms of generation of membrane potential resonance
in a neuron with multiple resonant ionic currents. PLoS Comput. Biol. 13 (2017) e1005565.

[28] P. Gastrein, E. Campanac, C. Gasselin, R.H. Cudmore, A. Bialowas, E. Carlier, L. Fronzaroli-Molinieres, N. Ankri and
D. Debanne, The role of hyperpolarization-activated cationic current in spike-time precision and intrinsic resonance in cortical
neurons in vitro. J. Physiol. 589 (2011) 3753–3773.

[29] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Basis of Periodic and Chaotic Behavior.
Cambridge University Press, Cambridge (1996).

[30] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag,
New York (1983).

[31] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Vol. 42 of
Applied Mathematical Sciences. Springer, Switzerland (1983).

[32] Y. Gutfreund, Y. Yarom and I. Segev, Subthreshold oscillations and resonant frequency in guinea pig cortical neurons:
physiology and modeling. J. Physiol. 483 (1995) 621–640.

[33] J.G. Heys, L.M. Giacomo and M.E. Hasselmo, Cholinergic modulation of the resonance properties of stellate cells in layer II
of the medial entorhinal. J. Neurophysiol. 104 (2010) 258–270.

[34] J.G. Heys, N.W. Schultheiss, C.F. Shay, Y. Tsuno and M.E. Hasselmo, Effects of acetylcholine on neuronal properties in
entorhinal cortex. Front. Behav. Neurosci. 6 (2012) 32.

[35] M.H. Higgs and W.J. Spain, Conditional bursting enhances resonant firing in neocortical layer 2–3 pyramidal neurons.
J. Neurosci. 29 (2009) 1285–1299.

[36] A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conductance and
excitation in nerve. J. Physiol. 117 (1952) 500–544.



INHIBITION-BASED RELAXATION OSCILLATIONS EMERGE IN RESONATOR NETWORKS 27

[37] H. Hu, K. Vervaeke, J.F. Storm and L.J. Graham, Complementary theta resonance filtering by two spatially segregated
mechanisms in CA1 hippocampal pyramidal neurons. J. Neurosci. 29 (2009) 14472–14483.

[38] H. Hu, K. Vervaeke and J.F. Storm. Two forms of electrical resonance at theta frequencies generated by M-current, h-current
and persistent Na+ current in rat hippocampal pyramidal cells. J. Physiol. 545 (2002) 783–805.

[39] B. Hutcheon, R.M. Miura and E. Puil, Subthreshold membrane resonance in neocortical neurons. J. Neurophysiol. 76 (1996)
683–697.

[40] B. Hutcheon and Y. Yarom, Resonance, oscillations and the intrinsic frequency preferences in neurons. Trends Neurosci. 23
(2000) 216–222.

[41] J. Keener and J. Sneyd, Mathematical Physiology. Springer-Verlag, New York (2001).

[42] M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points – fold and canard
points in two dimensions. SIAM J. Math. Anal. 33 (2001) 286–314.

[43] C. Kuehn, Multiple Time scale Dynamics, Applied Mathematical Series. Springer-Verlag, New York (2015).

[44] I. Lampl and Y. Yarom, Subthreshold oscillations and resonant behaviour: two manifestations of the same mechanism.
Neuroscience 78 (1997) 325–341.

[45] T. Lau and M. Zochowski, The resonance frequency shift, pattern formation, and dynamical network reorganization via
sub-threshold input. PLoS ONE 6 (2011) e18983.

[46] R.R. Llinás and Y. Yarom, Oscillatory properties of guinea pig olivary neurons and their pharmachological modulation: an
in vitro study. J. Physiol. 376 (1986) 163–182.

[47] Y. Manor, F. Nadim, S. Epstein, J. Ritt, E. Marder and N. Kopell, Network oscillations generated by balancing graded
asymmetric reciprocal inhibition in passive neurons. J. Neurosci. 19 (1999) 2765–2779.

[48] Y. Manor, J. Rinzel, I. Segev and Y. Yarom. Low-amplitude oscillations in the inferior olive: a model based on electrical
coupling of neurons with heterogeneous channel densities. J. Neurophysiol. 77 (1997) 2736–2752.

[49] B. Marcelin, A. Becker, M. Migliore, M. Esclapez and C. Bernard, h channel-dependent deficit of theta oscillation resonance
and phase shift in temporal lobe epilepsy. Neurobiol. Dis. 33 (2009) 436–447.

[50] F. Marino, G. Catalán, P. Sánchez, S. Balle and O. Piro, Thermo-optical ’canard orbits’ and excitable limit cycles. Phys. Rev.
Lett. 92 (2004) 073901.

[51] F. Marino, F. Marin, S. Balle and O. Piro, Chaotically spiking canards in an excitable system with 2D inertial fast manifolds.
Phys. Rev. Lett. 98 (2007) 074104.

[52] A.I. Mees, Dynamics of Feedback Systems. John Wiley & Sons, Chichester, UK (1981).
[53] J. Mikiel-Hunter, V. Kotak and J. Rinzel, High-frequency resonance in the gerbil medial superior olive. PLoS Comput. Biol.

12 (2016) 1005166.
[54] J. Moehlis, Canard for a reduction of the Hodgkin–Huxley equations. J. Math. Biol. 52 (2006) 141–153.

[55] J.L. Moiola and G. Chen, Hopf Bifurcation Analysis: A Frequency Domain Approach, Vol. 21 of World Scientific Series on
Nonlinear Science. World Scientific Publishing, Singapore (1996).

[56] R. Muresan and C. Savin, Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits.
J. Neurophysiol. 97 (2007) 1911–1930.

[57] J.D. Murray, Mathematical Biology: I. An Introduction. Springer, Berlin (2002).

[58] R. Narayanan and D. Johnston, Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread
changes in intrinsic oscillatory dynamics and excitability. Neuron 56 (2007) 1061–1075.

[59] R. Narayanan and D. Johnston, The h channel mediates location dependence and plasticity of intrinsic phase response in rat
hippocampal neurons. J. Neurosci. 28 (2008) 5846–5850.

[60] M.F. Nolan, J.T. Dudman, P.D. Dodson and B. Santoro, HCN1 channels control resting and active integrative properties of
stellate cells from layer II of the entorhinal cortex. J. Neurosci. 27 (2007) 12440–12551.

[61] F.G. Pike, R.S. Goddard, J.M. Suckling, P. Ganter, N. Kasthuri and O. Paulsen, Distinct frequency preferences of different
types of rat hippocampal neurons in response to oscillatory input currents. J. Physiol. 529 (2000) 205–213.

[62] R.K. Rathour and R. Narayanan, Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics
to parametric variability in hippocampal model neurons. J. Physiol. 590 (2012) 5629–5652.

[63] R.K. Rathour and R. Narayanan, Homeostasis of functional maps in inactive dendrites emerges in the absence of individual
channelostasis. Proc. Natl. Acad. Sci. USA 111 (2014) E1787–E1796.

[64] F. Rau, J. Clemens, V. Naumov, R.M. Hennig and S. Schreiber, Firing-rate resonances in the peripheral auditory system of
the cricket, gryllus bimaculatus. J. Comp. Physiol. 201 (2015) 1075–1090.

[65] W.H. Remme, R. Donato, J. Mikiel-Hunter, J.A. Ballestero, S. Foster, J. Rinzel and D. McAlpine, Subthreshold resonance
properties contribute to the efficient coding of auditory spatial cues. Proc. Natl. Acad. Sci. USA 111 (2014) E2339–E2348.

[66] M.J.E. Richardson, N. Brunel and V. Hakim, From subthreshold to firing-rate resonance. J. Neurophysiol. 89 (2003) 2538–2554.
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