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1. Introduction, notation and results

The following two formulas are due to B. Riemann and they were stated in his famous
and epoch-making memoir Ueber die Anzahl der Primzahlen unter einer gegebenen
Grösse, see [1] and [2]. As usual we write Γ(s) for the Gamma function and ζ(s) =∑∞

1
1
ns for the Riemann zeta-function. They are

π−s/2Γ(s/2)ζ(s) =
1

s− 1
− 1

s
+

∫ ∞
1

ψ(x)(xs/2 + x(1−s)/2)
dx

x
, (1.1)

with s ∈ C where

ψ(x) :=

∞∑
n=1

e−n
2πx, (1.2)

and if s = 1
2 + it, t ∈ C then

1

2
s(s− 1)π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

χ(u)cos(ut)du, (1.3)
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where

χ(u) := 4

∞∑
n=1

(2π2n4e9u/2 − 3πn2e5u/2)e−πn
2e2u .

These powerful integral representations are quite useful. We recall just a few exam-
ples on the use of these formulas.

Among the many things that Riemann proved in the cited memoir, he showed that
the reflection formula follows using formula (1.1) which is unchanged under s→ 1− s,
see Chapter II of [2].

G. H. Hardy proved in 1914 that an infinite number of zeros of the zeta function are
on the critical line. G. Pólya gave a proof of this fact using formula (1.3). In fact, the
series defining the kernel χ(t) in formula (1.3) converges very rapidly. Pólya considered
a cosine transform with a different but asymptotically equivalent kernel:

16π2

∫ ∞
0

cosh(9u/2)e−2π cosh(2u) cos(ut)du.

He showed that the last integral can be written in terms of Bessel functions and
it has only real zeros. Furthermore, its zero distribution is the same as what the
Riemann Hypothesis predicts, see Chapter X of [2]. In this line of research a far-
reaching generalization was given by D. Hejhal [3] and Haseo Ki [4] proved zero-
distribution theorems of certain approximations of Epstein zeta-functions.

G. Csordas, T. S. Norfolk and Richard S. Varga [5] proved a fifty-eight year-old
conjecture of Pólya, on a necessary condition for the Riemann Hypothesis. They used
again formula (1.3). Its proof is very technical and depends on a delicate analysis on
the kernel χ(u). See [6] pp. 92.

P. Walker [7] proved an approximating formula, which we recall in Theorem 3.1,
related to formula (1.1). He shows that the term 1

s−1 −
1
s in that formula can be

absorbed, so to say, into a finite cosine transform. We will use his approach to prove
formulas of the same type.

G. Pólya seems to be the first who emphasized the importance on giving neces-
sary and sufficient conditions on a general kernel χ(u) to secure that the integral∫∞

0 χ(u) cos(uz)du have only real zeros. There is now a vast literature concerning the
location of the zeros of sine or cosine transforms with contributions of many masters of
the classical analysis. The reader may consult the very comprehensive paper [6]. But
despite that many important, necessary and/or suficient conditions upon a kernel χ(u)
are known for the above integral to have only real zeros, the results are so involved
that it is impossible to apply them to Riemann’s formula (1.3).

So it seems to be of interest and desirable to have other formulas involving the
Riemann zeta-function as cosine transform of certain kernels. This is the aim of this
paper.

Theorems 2.1, 3.2, 4.1, 4.2 contain formulas in the above spirit. There we also give
formulas for the following two Dirichlet series defined for <s > 0 (the first series is
Dirichlet beta-function which corresponds to the non-trivial character mod 4 and the
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second one corresponds to the non-trivial character mod 3):

L1(s) =
1

1s
− 1

3s
+

1

5s
− 1

7s
+ · · · ,

L2(s) =
1

1s
− 1

2s
+

1

4s
− 1

5s
+

1

7s
− 1

8s
· · · .

(1.4)

In particular we believe that the formulas (2.4), (4.1), (4.8) and the approximation
formulas (3.4), (4.7) are new.

Our proofs depend on known Lambert series, on certain formulas appearing in P.
Walker’s paper [7] and on formulas given by S. Ramanujan in his paper Some Definite
Integrals, Messenger of Mathematics, (1915), see [8] pp. 56 (some were also shown
by G. H. Hardy). Several integrals of Ramanujan in the cited paper have been proved
by C. T. Preece [9] (see also [10] pp. 291).

Section 6 contains a curious formula.
We start recalling the definition of the theta function (see [11])

θ3(q) :=

∞∑
−∞

qn
2

. (1.5)

Briefly, if q = e−πx, then

θ3(e−πx) = 1 + 2ψ(x). (1.6)

Observe that the transformation formula for the theta function

√
xθ3(e−xπ) = θ3(e−π/x), (1.7)

can be written in terms of ψ(x) as

1 + 2ψ(x) =
1 + 2ψ( 1

x)
√
x

.

2. Formulas for the Riemann zeta-function

Using formula (1.2) set

ψ0(x) := 4ψ(x) {1 + ψ(x)} . (2.1)

The following formulas are similar to formulas (1.1) and (1.3).

Theorem 2.1. a) If s = 1
2 + it, t ∈ C, then

s(s− 1)2π−sζ(s)Γ(s)L1(s) =

∫ ∞
0

{
2e

3u

2 ψ′0(eu) + e
5u

2 ψ′′0(eu)
}

cos(tu)du. (2.2)

(Note: here ψ′0(eu) is d
dxψ0(x)|x=eu and ψ′′0(eu) is d2

dx2ψ0(x)|x=eu.)
b) If s ∈ C, then
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4π−sζ(s)Γ(s)L1(s) =
1

s− 1
− 1

s
+

∫ ∞
1

(x−s + xs−1)ψ0(x)dx. (2.3)

c) If s = 1
2 + it, t ∈ C, then

ζ(s)
{

4π−sΓ(s)L1(s)− π−s/2Γ(s/2)
}

= 4

∫ ∞
0

{
2ψ(eu) + 2ψ2(eu)− ψ(e2u)

}
eu/2 cos(tu)du

= 2

∫ ∞
0

{
θ2

3(e−πe
u

)− θ3(e−πe
2u

)
}
eu/2 cos(tu)du.

(2.4)

In the last two integrals the kernel is an even function of u.

Proof. Let us follow Riemann’s footsteps. We have ([11] pp. 285)

θ2
3(q)− 1

4
=

∞∑
1

qn

1 + q2n
. (2.5)

Next we take s = σ + it with σ, t ∈ R, and 1 < σ; thus our variable s belongs to an
open half plane which we call H∗.

The integration of the right-hand side of the above formula for q = e−x with respect
to xs−1dx yields

∫ ∞
0

xs−1
∞∑
1

e−nx

1 + e−2nx
dx = ζ(s)

∫ ∞
0

ys−1 e−y

1 + e−2y
dy = ζ(s)Γ(s)L1(s),

where the last formula follows after expanding e−y

1+e−2y on a the geometric series and
using the following well-known formula∫ ∞

0
ys−1e−nydy =

Γ(s)

ns
.

Observe that
∑∞

1
e−nx

1+e−2nx is O(1/x) as x → 0+ and is O(e−x) as x → +∞; thus the
integrals above are absolutely convergent if s ∈ H∗. One may use Lebesgue’s dominated
convergence theorem with fN (x) → f(x) and fN (x) := xs−1

∑N
1

e−nx

1+e−2nx , f(x) :=

xs−1
∑∞

1
e−nx

1+e−2nx noticing that |fN (x)| ≤ xσ−1
∑∞

1 e−nx.
Using the left hand side of (2.5) one gets

ζ(s)Γ(s)L1(s) =
1

4

∫ ∞
0

xs−1{θ2
3(e−x)− 1}dx =

πs

4

∫ ∞
0

xs−1{θ2
3(e−πx)− 1)}dx =

4



πs

4

{∫ 1

0
+

∫ ∞
1

}
,

where we have changed variables x = πX in the second equality.
Thus, multiplying by s(s− 1)4π−s, we obtain, if s ∈ H∗,

s(s− 1)4π−sζ(s)Γ(s)L1(s) = s(s− 1)
{∫ 1

0
+

∫ ∞
1

}
. (2.6)

Now we use the theta transformation formula for the first integral in (2.6):∫ 1

0
=

∫ 1

0
xs−1{θ2

3(e−πx)− 1}dx =

∫ 1

0
xs−1

{1

x
θ2

3(e−π/x)− 1
}
dx = (y = 1/x) =

∫ ∞
1

y−1−s
{
yθ2

3(e−πy)− 1
}
dy =

∫ ∞
1

y−s
{
θ2

3(e−πy)− 1
}
dy +

∫ ∞
1

(y − 1)y−1−sdy =

∫ ∞
1

y−s
{
θ2

3(e−πy)− 1
}
dy +

1

s− 1
− 1

s
.

The identity is true if s ∈ H∗ but the last integral is defined for s ∈ C.
Observe that ψ0(x) = θ2

3(e−πx)− 1 = O(e−πx) as x→ +∞. Therefore by analytical
continuation one has the following identity valid for s ∈ C

s(s− 1)4π−sζ(s)Γ(s)L1(s) = 1 + s(s− 1)

∫ ∞
1

(x−s + xs−1)ψ0(x)dx, (2.7)

which proves part (b) of the theorem.
Let s = 1/2 + it, t ∈ R. Then

1 + s(s− 1)

∫ ∞
1

(x−s + xs−1)ψ0(x)dx =

1 + s(s− 1)

∫ ∞
1

d

dx

{
ψ0(x)

(x−s+1

1− s
+
xs

s

)}
dx− s(s− 1)

∫ ∞
1

ψ′0(x)
(x−s+1

1− s
+
xs

s

)
dx =

1 + ψ0(1) +

∫ ∞
1

ψ′0(x)
(
sx1−s + (1− s)xs

)
dx =

1 + ψ0(1)−
∫ ∞

1

d

dx

(
x2ψ′0(x)(x−s + xs−1)

)
dx+

∫ ∞
1

{
x2ψ′0(x)

}′(
x−s + xs−1

)
dx =
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1 + ψ0(1) + 2ψ′0(1) +

∫ ∞
1

{
x2ψ′0(x)

}′(
x−s + xs−1

)
dx =

∫ ∞
1

{
x2ψ′0(x)

}′(
x−s + xs−1

)
dx.

In the last equality we have used the fact that the transformation formula for the theta
function gives xψ0(x) + x = ψ0(1/x) + 1 and the derivative at x = 1 yields

1 + ψ0(1) + 2ψ′0(1) = 0.

Observe that if s = 1/2 + it, then(
x−s + xs−1

)
=

2 cos(t lnx)√
x

.

Thus,∫ ∞
1

{
x2ψ′0(x)

}′(
x−s + xs−1

)
dx = 2

∫ ∞
1

{
2
√
xψ′0(x) + x

√
xψ′′0(x)

}
cos(t lnx)dx.

Formula (2.2), i.e. part (a) of the theorem, follows changing variables x = eu.
To prove the formula (2.4) substract the formula (2.3), namely,

4π−sζ(s)Γ(s)L1(s) =
1

s(s− 1)
+

∫ ∞
1

(x−s + xs−1)ψ0(x)dx,

from Riemann’s formula

π−s/2Γ(s/2)ζ(s) =
1

s(s− 1)
+

∫ ∞
1

(xs/2 + x(1−s)/2)ψ(x)
dx

x
.

getting, if s = 1/2 + it,

ζ(s)
{

4π−sΓ(s)L1(s)− π−s/2Γ(s/2)
}

=

8

∫ ∞
1

{
ψ(x) + ψ2(x)

}
cos(t lnx)

dx√
x
− 2

∫ ∞
1

ψ(x) cos

(
t

2
lnx

)
dx

x3/4
.

The last integral is equal to 2
∫∞

1 ψ(x2) cos(t lnx) dx√
x

after changing variables. Thus

the last expression is equal to

4

∫ ∞
1

{
2ψ(x) + 2ψ2(x)− ψ(x2)

}
cos(t lnx)

dx√
x
.
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The first equality of (2.4) follows from this as before, after changing variables x = eu.
The second one is a consequence of

{
2ψ(x) + 2ψ2(x)− ψ(x2)

}
=

{
θ2

3(e−πx)− θ3(e−πx
2

)

2

}
,

which follows from (1.6).
Finally, observe that because of (1.7) one has

{
θ2

3(e−πx)− θ3(e−πx
2

)
}√

x =
{
θ2

3(e−π/x)− θ3(e−π/x
2

)
} 1√

x
,

which yields that the stated kernel is an even function of u whenever x = eu.
The proof is complete.

3. Remarks on a paper of P. Walker

In this section we follow closely P. Walker’s paper [7]. Putting s = 1/2+it, 0 < <(s) < 1
and replacing the terms −1/s,−1/(1− s) by the divergent integrals 1/2

∫∞
1 xs/2−1dx,

1/2
∫∞

1 x(1−s)/2−1dx in formula (1.1) we get

π−s/2Γ(s/2)ζ(s) = −1

s
− 1

1− s
+

∫ ∞
1

ψ(x)(xs/2 + x(1−s)/2)
dx

x

=

∫ ∞
1

(1/2 + ψ(x))(xs/2 + x(1−s)/2)
dx

x

=

∫ ∞
0

2(1 + 2ψ(e2u))eu/2 cos(tu)du,

(recall that ψ(x) =
∑∞

n=1 e
−n2πx). This is a formal identity, indeed the inner function

in the last integral is not integrable on the real positive axis.
Walker’s idea is to modify the above integral by inserting a suitable kernel (one may

see this as if the term 1/(s− 1)− 1/s were absorbed into the integral). He proved the
following theorem. Here the set H1 is defined as follows:

H1 := i(H − 1/2) ∩ {−i(H − 1/2)} ,

where

H := {z : <z < 0} ∪
{
z : <z ≥ 0, |2(1 +

√
1 + z2)−1exp(

√
1 + z2 − 1)| < 1

}
.

Theorem 3.1. (P. Walker [7]) Define for n = 1, 2, 3, . . ., t = t1 + it2, t1, t2 ∈ R,

Pn(t) :=

∫ n

0

(
1− u2

n2

)n
2(1 + 2ψ(e2u))eu/2 cos(tu)du. (3.1)
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Then for s = 1/2 + it

Pn(t)→ π−s/2Γ(s/2)ζ(s), (3.2)

uniformly on each compact subset (in the variable t) contained in H1.

It is important to note that the set H1 contains the closed critical strip

{t| − 1/2 ≤ =(t) ≤ 1/2;<(t) ≥ 2} .

A first aim of this section is to give an analogous result. Recall that

ψ0(x) := 4ψ(x) {1 + ψ(x)} .

Theorem 3.2. Let n = 1, 2, 3, . . . and set

Qn(t) :=

∫ n

0

(
1− u2

n2

)n
2(1 + ψ0(eu))eu/2 cos(tu)du. (3.3)

Then, if s = 1/2 + it,

Qn(t)→ 4π−sζ(s)Γ(s)L1(s), (3.4)

uniformly on each compact subset (in the variable t) contained in H1.

One can summarize the results in [7] in the following lemma whose proof follows
easily from the results given in that paper.

Lemma 3.3. If t ∈ H1 and s = 1/2 + it, then

n

∫ 1

0

{
(1− u2)esu

}n
du→ −1

s
,

uniformly on each compact set (in the variable t) contained in H1.

Proof. (Theorem 3.2) Assume s = 1
2 + it. We slice the integral of Qn(t) in two parts:

firstly, due to the rapid decay at infinity of ψ0(eu) and the fact that (1 − u2/n2)n

increases to unity as n→∞ one has

∫ n

0

(
1− u2

n2

)n
2ψ0(eu)eu/2 cos(tu)du→

∫ ∞
0

2ψ0(eu)eu/2 cos(tu)du =

∫ ∞
1

(x−s + xs−1)ψ0(x)dx

if n→∞ for any complex t.
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Next,∫ n

0

(
1− u2

n2

)n
2eu/2 cos(tu)du =

∫ n

0

(
1− u2

n2

)n
eu/2(eitu + e−itu)du = (3.5)

∫ n

0

(
1− u2

n2

)n {
esu + e(1−s)u

}
du =

n

∫ 1

0

{
(1− u2)esu

}n
du+ n

∫ 1

0

{
(1− u2)e(1−s)u

}n
du→ 1

s− 1
− 1

s

if n→∞ and t ∈ H1 where the limit follows from Lemma 3.3 (notice that t ∈ H1 ⇔
t ∈ H1.) The same formula holds uniformly on compact sets contained in H1.

4. Some formulas

The following theorems give closed form formulas for the Dirichlet series (1.4) and for
the Riemann zeta-function.

Theorem 4.1. a) If

χ(x) := 2ex/2
∫ ∞

0

e−y
2

cosh(exy
√
π)
dy,

and t ∈ C, |=(t)| < 1/2, then

1

π
it

2
+ 1

4

Γ

(
it+

1

2

)
Γ

(
1

4
− it

2

)
L1

(
it+

1

2

)
=

∫ ∞
0

χ(x) cos(tx)dx. (4.1)

b) If

χ(x) := 2ex/2
∫ ∞

0

e−y
2

1 + 2 cosh(exy2
√

π
3 )
dy,

and t ∈ C, |=(t)| < 1/2, then

1

2

(
2

√
π

3

)−it−1/2
Γ

(
it+

1

2

)
Γ

(
1

4
− it

2

)
L2

(
it+

1

2

)
(4.2)

=

∫ ∞
0

χ(x) cos(tx)dx.

c) If χ(x) := 2ex/2
∫∞

0
1

(1+2 cosh(πy)) cosh(π
√

3

2
exy)

dy, and t ∈ C, |=(t)| < 1/2, then
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2

π

(√
3

2

)−it− 1

2

L1

(
it+

1

2

)
L2

(
−it+

1

2

)
Γ

(
it+

1

2

)
Γ

(
−it+

1

2

)

=

∫ ∞
0

χ(x) cos(tx)dx. (4.3)

For the next theorem we need the definition of the open set H2 which is H2 :=
{t : −3/2 < =(t) < 3/2} ∩H1. The set H2 contains the closed critical strip

{t| − 1/2 ≤ =(t) ≤ 1/2;<(t) ≥ 2} .

Theorem 4.2. Set

I(α) :=
2π

α3

∫ ∞
0

e−πx/α
4

e2π
√
x − 1

dx. (4.4)

If −1 < <(s) < 2, then the following equality holds:

Γ(1− s
2)Γ(s)

2s−1πs/2
ζ (s) =

1

s− 1
− 1

s
+

∫ ∞
1

2I(α)

α

{
α2s−1 + α−(2s−1)

}
dα. (4.5)

Moreover, set

Rn(t) :=

∫ n

0

(
1− u2

n2

)n
2

(
1 +

I(eu/2)

eu/2

)
eu/2 cos(tu)du. (4.6)

Then

Rn(t)→
Γ(1− s

2)Γ(s)

2s−1πs/2
ζ (s) (4.7)

where s = 1
2 + it, uniformly on each compact set (in the variable t) contained in open

set H2.
Also, if s = 1

2 + it and −3/2 < =(t) < 3/2, then

s(s− 1)Γ(1− s
2)Γ(s)

2s−1πs/2
ζ (s) = (4.8)

8π

∫ ∞
0

{∫ ∞
0

e−πxe
−2u

e2π
√
x − 1

{
e−3u/2 − e−7u/25πx+ e−11u/22π2x2

}
dx

}
cos(ut)du.

The kernel in the last integral is an even function of u.
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In this section we provide tools for the proofs of these theorems which are given in
the next section. It is desirable to prove all these formulas in a unified way. So, we
recall first some well-known arguments.

Lemma 4.3. Assume that I(α), J(α) are defined for real α > 0 and, for fixed s,
that αs−1I(α), αs−1J(α) are absolutely integrable in α on [0,∞], [0, 1], respectively.
Moreover, assume that they satisfy with c0 > 0:

I(α) = ±c0I

(
1

α

)
+ J(α).

Then, ∫ ∞
0

αs−1I(α)dα =

∫ ∞
1

I(α)

α

{
αs ± c0α

−s} dα+

∫ 1

0
αs−1J(α)dα.

Futhermore, if one has J ≡ 0, c0 = 1 and s = it, t ∈ R, then setting χ(x) := 2I(ex),
the following formula holds

∫ ∞
0

αs−1I(α)dα =

∫ ∞
0

χ(x) cos(tx)dx,

in case one takes the plus sign. In case one takes the minus sign the following formula
holds

∫ ∞
0

αs−1I(α)dα = i

∫ ∞
0

χ(x) sin(tx)dx.

Proof. One has

∫ 1

0
αs−1I(α)dα = ±c0

∫ 1

0
αs−1I(1/α)dα+

∫ 1

0
αs−1J(α)dα

= ±c0

∫ ∞
1

β−s−1I(β)dβ +

∫ 1

0
αs−1J(α)dα.

where in the last equality we changed variables α = 1/β. Inserting this in

∫ ∞
0

αs−1I(α)dα =

∫ 1

0
+

∫ ∞
1
,

yields

∫ ∞
0

αs−1I(α)dα =

∫ ∞
1

I(α)

α

{
αs ± c0α

−s} dα+

∫ 1

0
αs−1J(α)dα,
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and the first part of the lemma follows.
If J ≡ 0, I(α) = ±I( 1

α) and s = it, t ∈ R, then

∫ ∞
0

αs−1I(α)dα =

∫ ∞
1

I(α)

α

{
αs ± α−s

}
dα.

If one takes the plus sign, making the change of variable α = ex, one obtains∫ ∞
0

αs−1I(α)dα =

∫ ∞
0

χ(x) cos(tx)dx.

The other case is similar.

In the next two lemmas we gather and reformulate some of G. Hardy and S. Ra-
manujan’s formulas which will be suitable for our purposes.

Lemma 4.4. Let I(α) be any of the following functions stated below. Then I(α) =
I( 1

α) if α > 0.

a)
√
α
∫∞

0
e−x

2

coshαx
√
π
dx.

b)
√
α
∫∞

0
e−x

2

1+2 coshαx2
√

π

3

dx.

c)
√
α
∫∞

0
1

(1+2 coshπx) coshαxπ
2

√
3
dx.

Proof. Formulas (a), (b), (c) correspond respectively to formulas (12), (11), (10) of
[8], pp. 55. Formulas similar to (a), (b) were given by G.H. Hardy. We have rescaled the
formulas given by Ramanujan. For example formula (12) of [8] pp. 55 is: if I0(α′) :=
√
α
′ ∫∞

0
e−x

2

coshα′xdx and α′β′ = π then I0(α′) = I0(β′). Formula (a) follows putting
α′ = α

√
π, β′ = β

√
π and I(α) := I0(α

√
π)/ 4
√
π.

Lemma 4.5. If I(α), J(α) are defined by

I(α) =
2π

α3

∫ ∞
0

e−πx/α
4

e2π
√
x − 1

dx, J(α) = −
(
α− 1

α

)
,

then I(α) = I( 1
α) + J(α) if α > 0.

Proof. Rescaling formula (13) of [8] pp. 56, one obtains: if

I0(α) = 2(απ)3/4

∫ ∞
0

e−απx

e2π
√
x − 1

dx, J0(α) =
1

π1/4

(
α1/4 − 1

α1/4

)
,

then I0(α) = I0( 1
α) + J0(α) if α > 0. The formula of the lemma follows changing α by

α4. See [9] and [10] pp. 291.
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5. Proofs of Theorems 4.1 and 4.2

Proof. Notice that if I(α) is any of the functions defined in (a), (b), (c) of Lemma 4.4
then I(α) = O(

√
α) as α → 0+. As I(α) = I(1/α) one has I(α) = O(1/

√
α) as

α→ +∞. Therefore, we may apply Lemma 4.3 with s = it, t ∈ R to get∫ ∞
0

αs−1I(α)dα =

∫ ∞
0

χ(x) cos(tx)dx.

Applying this to the function defined in (a) of Lemma 4.4 yields:∫ ∞
0

αs−1I(α)dα =

∫ ∞
0

αs−1/2

∫ ∞
0

e−x
2

coshαx
√
π
dxdα

=

∫ ∞
0

e−x
2

∫ ∞
0

αs−
1

2

coshαx
√
π
dαdx =

1

π
s

2
+ 1

4

∫ ∞
0

e−x
2

∫ ∞
0

βs−
1

2

coshβx
dβdx

=
1

π
s

2
+ 1

4

∫ ∞
0

e−x
2

∫ ∞
0

2βs−
1

2 (e−βx − e−3βx + e−5βx − · · · )dβdx

=
1

π
s

2
+ 1

4

Γ

(
s+

1

2

)∫ ∞
0

2e−x
2

xs+
1

2

(
1− 1

3s+
1

2

+
1

5s+
1

2

− · · ·
)
dx

=
1

π
s

2
+ 1

4

Γ

(
s+

1

2

)
Γ

(
1

4
− s

2

)(
1− 1

3s+
1

2

+
1

5s+
1

2

− · · ·
)
.

Thus, for t ∈ R,∫ ∞
0

χ(x) cos(tx)dx =
1

π
it

2
+ 1

4

Γ

(
it+

1

2

)
Γ

(
1

4
− it

2

)(
1− 1

3it+
1

2

+
1

5it+
1

2

− · · ·
)
,

where χ(x) = 2ex/2
∫∞

0
e−y

2

cosh exy
√
π
dy. This proves part (a) of the theorem in case

that t is real. The general case follows by analytical continuation: the integral∫∞
0 χ(x) cos(tx)dx defines an analytical function if t = t1 + it2 is a complex num-

ber with |Im(t) = t2| < 1/2 since χ(x) is continuous on [0,+∞), χ(x) = O(e−x/2) as
x→∞ and | cos(tx)| = O(ext2) as x→∞. This proves (a).

Proofs of the other formulas are similar.
Using Lemma 4.3 with the function defined in (b) of Lemma 4.4 with s = it, t ∈ R

13



yields∫ ∞
0

αs−1I(α)dα =

∫ ∞
0

αs−
1

2

∫ ∞
0

e−x
2

1 + 2 coshαx2
√

π
3

dxdα

=

∫ ∞
0

e−x
2

∫ ∞
0

αs−
1

2

1 + 2 coshαx2
√

π
3

dxdα

=
(

2

√
π

3

)−s− 1

2

∫ ∞
0

e−x
2

∫ ∞
0

βs−
1

2

1 + 2 coshβx
dβdx

=
(

2

√
π

3

)−s− 1

2

∫ ∞
0

e−x
2

∫ ∞
0

βs−
1

2

eβx(1 + e−βx + e−2βx)
dβdx

=
(

2

√
π

3

)−s− 1

2

Γ

(
s+

1

2

)∫ ∞
0

e−x
2

xs+
1

2

(
1− 1

2s+
1

2

+
1

4s+
1

2

− 1

5s+
1

2

+
1

7s+
1

2

− 1

8s+
1

2

· · ·
)
dx

=
(

2

√
π

3

)−s− 1

2

Γ

(
s+

1

2

)
1

2
Γ

(
1

4
− s

2

)(
1− 1

2s+
1

2

+
1

4s+
1

2

− 1

5s+
1

2

+
1

7s+
1

2

− 1

8s+
1

2

· · ·
)
.

Thus, if t is real and

χ(x) = 2ex/2
∫ ∞

0

e−y
2

1 + 2 cosh exy2
√

π
3

dy,

then ∫ ∞
0

χ(x) cos(tx)dx =

1

2

(
2

√
π

3

)−it−1/2
Γ

(
it+

1

2

)
Γ

(
1

4
− it

2

)(
1− 1

2it+
1

2

+
1

4it+
1

2

− 1

5it+
1

2

+
1

7it+
1

2

− 1

8it+
1

2

· · ·
)
.

The rest of the proof goes as before.
Case (c) is similar and left to the reader.

Proof. Let I(α), J(α) be the functions of Lemma 4.5. It is clear from its integral
definition that I(α) = O(1/α3) as α → +∞. Also, from its transformation formula
one gets I(α) = O(1/α) as α→ 0+.

Thus, if 1 < <(s) < 3, one has that αs−1I(α) is absolutely convergent on [0,∞].
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Also, (in the third equality in the formula that follows set 1/α4 = β)∫ ∞
0

αs−1I(α)dα = 2π

∫ ∞
0

αs−4

∫ ∞
0

e−πx/α
4

e2π
√
x − 1

dxdα

= 2π

∫ ∞
0

1

e2π
√
x − 1

∫ ∞
0

αs−4e−πx/α
4

dαdx

=
π

2

∫ ∞
0

1

e2π
√
x − 1

∫ ∞
0

β−(s+1)/4e−βπxdβdx

=
π(s+1)/4Γ

(
3−s

4

)
2

∫ ∞
0

x(s−3)/4

e2π
√
x − 1

dx

= π(s+1)/4Γ

(
3− s

4

)
Γ( s+1

2 )

(2π)(s+1)/2
ζ

(
s+ 1

2

)
.

Also, if 1 < <(s), then

∫ 1

0
αs−1J(α)dα = − 1

s+ 1
+

1

s− 1
.

These last two formulas and Lemma 2 yield for 1 < <(s) < 3 the following equality:

Γ(3−s
4 )Γ( s+1

2 )

2(s+1)/2π(s+1)/4
ζ

(
s+ 1

2

)
=

∫ ∞
1

I(α)

α

{
αs + α−s

}
dα− 1

s+ 1
+

1

s− 1
.

Making the change s→ 2s− 1 and multiplying by 2 yields that, for 1 < <(s) < 2,
the following holds:

Γ(1− s
2)Γ(s)

2s−1πs/2
ζ (s) =

∫ ∞
1

2I(α)

α

{
α2s−1 + α−(2s−1)

}
dα− 1

s
+

1

s− 1
.

But, as I(α) = O(1/α3) if α→∞, the above formula is an identity for −1 < <(s) <
2 as can be seen by analytical continuation. This proves formula (4.5).

The proof of (4.7) is very similar to that given in Theorem 3.2: set s = 1/2 + it and
slice Rn(t) in two parts. Firstly,∫ n

0

(
1− u2

n2

)n
2

(
I(eu/2)

eu/2

)
eu/2 cos(tu)du→

∫ ∞
0

(
I(eu/2)

eu/2

)
eu/2 cos(tu)du =

∫ ∞
1

2I(α)

α

{
α2s−1 + α−(2s−1)

}
dα,

for any complex t if n → ∞. The limit follows due to the rapid decay at infinity of
I(eu/2) and the fact that (1− u2/n2)n increases to unity as n→∞.

The other part is exactly (3.5) and formula (4.7) follows using (4.5). Notice that
condition 1 < <(s) < 2 is equivalent to −3/2 < =(t) < 3/2.
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Finally, we prove (4.8). Then, multypling by s(s− 1) formula (4.5), we obtain

s(s− 1)Γ(1− s
2)Γ(s)

2s−1πs/2
ζ (s) = 1 + s(s− 1)

∫ ∞
1

2I(α)

α

{
α2s−1 + α−(2s−1)

}
dα

= 1 + s(s− 1)

∫ ∞
1

d

dα

{2I(α)

α

(α−2s+2

2− 2s
+
α2s

2s

)}
dα

− s(s− 1)

∫ ∞
1

d

dα

{
2I(α)

α

}(α−2s+2

2− 2s
+
α2s

2s

)
dα

= 1 + I(1)− s(s− 1)

∫ ∞
1

d

dα

{
2I(α)

α

}(α−2s+2

2− 2s
+
α2s

2s

)
dα

= 1 + I(1)−
∫ ∞

1

d

dα

{
I(α)

α

}(
(s− 1)α2s − sα−2s+2

)
dα.

Changing variables α2 = β in the last integral one obtains that the last formula is
equal to

1 + I(1)−
∫ ∞

1

d

dβ

{
I(
√
β)√
β

}(
(s− 1)βs − sβ1−s

)
dβ

= 1 + I(1)−
∫ ∞

1

d

dβ

{
β2 d

dβ

{
I(
√
β)√
β

}(
β−s + βs−1

)}
dβ

+

∫ ∞
1

d

dβ

{
β2 d

dβ

{
I(
√
β)√
β

}}(
β−s + βs−1

)
dβ

= 1 + I ′(1) +

∫ ∞
1

d

dβ

{
β2 d

dβ

{
I(
√
β)√
β

}}(
β−s + βs−1

)
dβ.

The last equality follows by noticing that
∫∞

1
d
dβ

{
β2 d

dβ

{
I(
√
β)√
β

}(
β−s + βs−1

)}
dβ =

I ′(1) − I(1) which follows from I(α) = O(1/α3) as α → +∞. Observe that the
transformation formula for I(α) yields 1 + I ′(1) = 0 and therefore the last formula is
equal to

s(s− 1)Γ(1− s
2)Γ(s)

2s−1πs/2
ζ (s) =

∫ ∞
1

d

dβ

{
β2 d

dβ

{
I(
√
β)√
β

}}(
β−s + βs−1

)
dβ.

Now, using

d

dβ

{
β2 d

dβ

{
I(
√
β)√
β

}}
= 4π

∫ ∞
0

e−πx/β
2

e2π
√
x − 1

{
1

β2
− 5πx

β4
+

2π2x2

β6

}
dx,

in the last formula and changing variables β = eu one obtains the result.
One can see, using the transformation formula I(α) = I(1/α) + 1/α − α (i.e.

Lemma 4.5) that

√
β
d

dβ

{
β2 d

dβ

{
I(
√
β)√
β

}}
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with β = eu is an even function of u.
The proof is complete.

6. Final remarks

The following theorem holds.

Theorem 6.1. If s ∈ C, then

16

π2s
ζ(2s)ζ(2s− 1)Γ(2s)

(
1− 1

42s−1

)
= (6.1)

1

s− 1
− 1

s
+ 16

∫ ∞
1

{
ψ(x) + 3ψ(x)2 + 4ψ(x)3 + 2ψ(x)4

}
(x2s−1 + x−(2s−1))dx.

Proof. One has ([11] pp. 71)

θ4
3(q)− 1

8
=

∞∑
n=1;4-n

nqn

1− qn
. (6.2)

Integrating the right side of the above formula against xs−1 gives (q = e−x):

∫ ∞
0

xs−1
∞∑

n=1;4-n

ne−nx

1− e−nx
dx =

∞∑
n=1;4-n

nΓ(s)

{
1

ns
+

1

(2n)s
+

1

(3n)s
+ · · ·

}
=

Γ(s)ζ(s)

∞∑
n=1;4-n

1

ns−1
= Γ(s)ζ(s)ζ(s− 1)

(
1− 1

4s−1

)
,

Thus,

Γ(s)ζ(s)ζ(s− 1)

(
1− 1

4s−1

)
=

∫ ∞
0

xs−1

{
θ4

3(e−x)− 1

8

}
dx =

πs
∫ ∞

0
xs−1

{
θ4

3(e−xπ)− 1

8

}
dx = πs

{∫ 1

0
+

∫ ∞
1

}
.

For the last integral
∫ 1

0 use the transformation formula

θ4
3(e−πx)− 1

8
=

1

x2

θ4
3(e−π/x)− 1

8
+

1

8x2
− 1

8

17



(this follows from (1.7)) which yields the result

∫ 1

0
=

∫ ∞
1

x1−s
{
θ4

3(e−xπ)− 1

8

}
dx+

1

8

{
1

s− 2
− 1

s

}
.

Inserting this in the above formula gives

Γ(s)ζ(s)ζ(s− 1)

πs

(
1− 1

4s−1

)
=

1

8

{
1

s− 2
− 1

s

}
+

∫ ∞
1

{
θ4

3(e−πx)− 1

8

}(
xs−1 + x1−s) dx.

Therefore, replacing in this formula s by 2s, multiplying by 16 and using that
θ3(e−πx) = 1 + 2ψ(x), one obtains (6.1).
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