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Tiling the plane with different hexagons and
triangles

Pablo A. Panzone

Abstract. We prove that the plane can be tiled with equilateral triangles and regulagbes
of integer sides using exactly one of each family.

1. INTRODUCTION AND RESULTS. This paper deals with hybrid tilings of the
plane using certain polygons. We write, T,,, H,, for a square, an equilateral triangle
and a regular hexagon respectively of sideslso we writeT'[,, for a triangle of sides
{n,n,nv2}.

A result of W.T. Tutte f] says that it is impossible to tile an equilateral triangle
using unequal equilateral triangles, and E. Buchnidmpfoved that a convex region
cannot be tiled by a finite union of unequal equilateral triasgK. Schererd] proved
that the plane cannot be tiled with equilateral triangles fhérBnt sizes if one triangle
is the smallest. At the other hand, a square casgogred it is possible to tile a square
using a finite number of different squares of integer side. Thallest such configu-
ration was given by A.J.W. Duijvestijn (se8,[p. 78], [2]). The minimum number of
squares required is 21. This a bidimensional result as a cubeotéecubed

In a similar vein, the following remarkable result is due to Fredednd James
Henle (seed)).

Theorem. The plane can be tiled with squar®s, n = 1,2, 3, ... using exactly one
of each.

This theorem answers a question originally posed by S. Golortibogntributions
of different authors; for its history and contributors sgegnd [4]. Thus the mentioned
result of Scherer says that the above theorem is falSg i§ replaced byr,,. It is an
easy exercise to see that it is impossible to tile the plamedifferent hexagon#l,,.
The following theorems show that certain hybrid tilings are guesi

Theorem A. The plane can be tiled with trianglés,, n» = 1,2, 3, ... and hexagons
H,,n=1,2,3,... using exactly one of each.

Theorem B. The plane can be tiled with trianglés/,,, n = 1,2, 3, ... and squares
S,,n =1,2,3,... using exactly one of each.

Theorem B will follow from results of4]. Our main contribution is Theorem A
which was inspired by and contains ideas4jf [

2. PROOF OF THEOREM A. We need the following definitions.

Definition. A figure is calledperfect if it is composed of a finite number of differ-
ent polygons (here the word different means that no rigid movemeatreflection
followed by a rigid movement can transform one polygon into andthe

Definition. When we add certain polygons to a perfect figure A to form a new perfect
figure B we will say that we ‘puff figure A up to figure B.
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Figure 1.

We show in Figure 1 a heptagon with integer sidek, ¢, d, e, f, g; interior angles

ab = 240°, be = 60° and the rest all equal t20°. Such a heptagon will be described
as a 5-tuplda, b, c, e, g). This is so because

a+c=e+ f, and

1)
a+b+g=e+d

Hint: the first (respectively second) equation follows by profegto a line perpendic-
ular to the sidel (respectively).

Sometimes our heptagon will have sifle= 0 (g # 0) or g = 0 (f # 0) and in-
deed it will be a hexagon (this is the case #- ¢ = e ora 4+ b = e + d respectively).
See Figure 1. We will keep our notation as a 5-tufleb, ¢, e, g) if such is the case.
In what follows a reflected heptagon or hexagon will be consideréde same way
and all the figures will have integer sides.

Definition. A heptagon (or hexagon) defined by, b, c, e, g) is calledstandard if
it is perfect (i.e. it is tiled by different regular hexagons andiledgral triangles of
integer sides); # e, and such that neithdr. nor T, belong to its tiling.

Example 1. A standard heptagon defined By, 1,3,2,2) and tiled byT;, H, is
shown in Figure 1.

The following two lemmas are preparatory for Lemma 3, from which Theote
follows easily. Lemma 3 says, roughly speaking, that giveraadsrd heptagon (or
hexagon)H, such that7},, (or H,,) does not belong to its tiling (and with certain
conditions), it is possible to puff it to a new standard hepta@w hexagony; us-
ing T,,, (or H,,). Repeating this, one tiles the plane exhausting all thedensand
triangles.

In Lemma 1 and Lemma 2, a principal role is played by the first entrydlwtve
distinguish) of the 5-tuple of a heptagon (or hexagon) definefb«, x, x, *); such
lemmas show that one may puff conveniently such a heptagdmef@gon) to a new
heptagon (or hexagomyithout changing this entryd.’ This permits us to lower this
entry and to eventually prove Lemma 3. Therefore, our argumenysh@aseen as
inductive in that first entry (as ird]).

Lemma 1. Assume that one has a standard heptagon (or hexagon), whichlinég
defined by(a, by, ¢, €0, go)-. Also letN > 2 be an integer number. Then one can puff
H, up to a new standard heptagon (or hexagon) defineddyy, c, e, g), which we
call H, such that:
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) b=ka+g+i,with0 <i<a, N<Ek;
) co <c e <e;
1) to puffH, up toH one useqd’; or H; with j > min {co, eo };
IV) the tiling ofH contains neither the trianglé’,, nor the hexagoid,,, for some
min {cp, eg} < ny; < min{c,e}.

Proof. The perfect heptagon (hexagoH), of the hypothesis is shown shadowed in
Figure 2. As shown in that figure we add

Tco ) Teg ’ T2(10+d0+50 ) Hco+d0+eo7

giving a new heptagon described fy, b,, ¢1, €1, go) with

b1:200+d0+€0+b0>b0.

Hc.3+du +en

Figure 2.

This new heptagon (hexagon) is perfect fbg contains no polygon of side ¢, +
do + eg andT,,, T, (co # eo) do not belong to its tiling becaugt, is standard.

Also this new heptagon is standard for it contains no triangles’., wherec, >
e1 > eg ande; > ¢q. Thus (1) and (1) are true in this case.

Repeating this procedure an appropriate humber of times gieesetjuiredH.
Assume thata, by, car, ear, go) is the tuple which defines the heptagon (hexagon)
obtained iteratingl/ times. Then”Mi"0 > N for suitably largeM and (I) follows.
Finally the sides (other tham and go) grow exponentially. From this (1V) follows
taking, perhaps, a largér . ]

Lemma 2. Assume that one has a standard heptagon (or hexagon), whichling,c
defined by(a, b, ¢, e, g) such thath = ka + g + i with 0 < i < a and2 < k. Then
one can pufH up to a new standard hexagéti defined by(a, ¥, ¢/, €', ¢') and such
that:

)b =(k—1a+g +i;

I1) H’ contains no hexago#l,, and no trianglesT,, T,y or T} with j > %'*9';
also if g # 0 then it does not contaiff,/;
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1) to puffH up toH’ one used’; or H; with j > min {c, e};
V) e<d,e<eandb <V
V) min{c,e} <min{t/,c,d’,e,¢'} and f' = 0;
V) d <g <b <e.
Remark. Notice that by (I), one may repeatedly use the lentimal times. Itis clear

by (VI) and (11) that if one uses the lemma at least twice §.€x 3) thenH’ contains
no triangleT, .

Proof. (). The perfect heptagon (hexagad)of the hypothesis is shown shadowed in
Figure 3.

H \
A Toetaters

\
T.

Heydte

Figure 3.

We add four triangles and one hexagon as shown in the same figuateisTwe add

Tca Tea T20+d+ea T26+d+c+f7 Hc+d+e-

The new hexagohi’ is perfect becausd can not contain figures of sidesc + d + ¢
and by hypothesig’., T, (c # e) are not in the tiling ofH. Observe thaf2c + d +
e)+a=2e+d+c+ f), thusToeigie, Toeraret ¢ are different. Finally our new
hexagonH' has

b'=2c+d+e+b, and
g =g+2e+d+c+f.

Equation (1) and our hypothesis give

c=—-a+e+ f,
b=ka+g+1i, and
c+d+e=c+d+e.

Adding these equations term wise yields= (k — 1)a + ¢’ + i.
(I and (VI1). Notice that

b =2c+d+e+b,
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d=3c+2d+2e<eée =c+a,
d=c+d+e, and
Jd=g+2c+d+e+a,

(for the last equality use identity (1)). A4 can not contain figures of sidesc + d +
e, thenTy, T, T, Ty, Hy do not belong to the tiling of.
We can show that

{e#ct<d <2c+d+e<2e+d+c+f<g <V <<,
and therefore all the polygons
Tea Tc; Td’; T26+d+ea T26+d+c+fa Tg’a Tb’a Tc’7 Te’a HC+d+87 Hb’a

are different except possibly far. ..+ andZy, which depends on the fourth in-
equality, which is equivalent te + f < g + ¢ + a. Using (1) this is equivalent to
0 < g. Thusifg # 0, thenH’ does not contaifl, as stated. Als#1’ is standard and
(V1) follows.

The first, second, and seventh of the inequalities above aialtfihe third one is
equivalent toc < e 4+ f which follows from (1). The fifth one is equivalent to>
a + g which is true by hypothesis. Lastly, the sixth inequality ggigalent tob <
c+d+e.

Finally, to show thatH’ does not contain trianglés; with j > % it suffices
to notice that

a—i—b’—i—g’

5 >2e+d+c+ f,

and that the triangl&}., 4. . s is the biggest triangle we use to puffup toH'. The
above inequality is equivalent to+ b + ¢ + g > e + f, which follows from (1).

(IlI-1V-V). These properties are easy and they are left to the reader. [ |

Lemma 3. Assume that one has a standard heptagon (or hexagon), whichllwg &
defined by Ay, By, Cy, Ey, Gy). Also assume thék,, (or H,,,) does not belong to the
tiling for somen, < min {Cy, E,}. Then one can puff,, usingZ,, (or H,,), up to
a new standard heptagon (hexag@) defined by( A, By, C4, E1, G1). There exists
ny such that neithef,,, nor H,,, belong to its tiling andry < n; < min {C4, E; }.
Moreover the distance frofi, to the boundary of{, is at least 1.

Proof. Step 1.We write

Ho=H,, and
(A07B07007E07G0> - (aa b0760760790)~

Our hypothesis is equivalent to the following assertion:

H, is standard and’’,,, (or H,,,) does not belong to its tiling for some
ng < min {cy, eg}.
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We use Lemma 1 to putl, in the hypothesis of Lemma 2. We choa¥eof that
lemma large enough such that

(2~ %) S 1 )

The inequality forcesV > 6.
Indeed using Lemma 1 one can ptff, up to a new perfect heptagon (or hexagon)
H, defined by(a, b, ¢, e, g), such that

b=ka+g+1, k>N, 0<i<a, 3)

and by (lll), T;,, (or H,,,) do not belong to the tiling of.
Notice that by (IV) and the hypothesis there existssuch that

no < min {co, €0} < ny < min{c, e}, 4)
and neithefl’,, nor H,,, belong to the tiling ofH.

Step 2.Now H satisfies the hypothesis of Lemma 2. By the remark after Lemma 2
we apply itk — 1 times > N — 1 > 5 by (3)) to produce a puffing from up toH’
defined by(a, b', ¢, €', ¢') and

bV =a+g +1i, with (5)
b > N.

This last inequality follows from (1V).
Notice that by (ll1), (IV) and (4) this puffing does not addl, (or H,,) or T}, or
H,, . Also by (V) one has

min {c,e} <min{b’,,d' e, ¢'}, and (6)
f'=0. (7)
Finally, observe that by the same remark, the triarijledoes not belong to the

tiling of H'.

Step 3.Noticing thatH’ is standard and using (VI), (II), (4) and (6) one notices the
following remark.

One may add freely the following different figures
Td’7 Tg’7 Tb’7 Te’; Hb/a ﬂzo (Or Hno)y Tnl ; Hnlv (8)
to H' to form a new figure keeping it perfect.

Now we distinguish two cases: either- 0 ori = 0.

If 0 < i we puff H' (which by (7) is a hexagon) up to the perfect heptagth
defined by(i, b”, ¢, e”, ¢") addingH,, T/, T., see Figure 4.
ButT,, (or H,,), T,,, or H,, do not belong to the tiling of{” and

ng <n; <min{c’ e"}. 9)
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Figure 4.

By (3) one has < a and therefore in the tupl@, b”, ¢”,e”, g") we have lowered
the first entry. Notice that the triangl&3/_y o, Tor—y (€” < ¢” by (VI)) do not
belong to the tiling ofH” (the first triangle is too big), i.eH"” is standard. Finally
notice that the puffing fromtd, up toH"” uses figures of sides min {cy, ey }.

Gathering what we have yields the following:

H" is standard and neithet,,, (or H,,) nor T,,, nor H, belong to its tiling with
ng < n; < min{c”’,e"}.

Therefore, one may go to Step 1 (taking the saWiand repeat until we have
1 =0.

If ¢ = 0 then using (5) we have
V=a+g, V>N, (10)

and then we pufH’ up to the perfect hexagae adding H,,, T,/; but nowHe is a
hexagon whose interior angles are all equél20°. See Figure 5.
We addT’,, (or H,,) as shown in Figure 5 and Figure 6 respectively. In any case it

will give the desired perfect figur®; of our lemma defined byA,, By, C,, E1, G;)
such that:

i) neitherTc, norTg, belong to its tiling and”; # E;, i.e.’H, is standard;
ii) neitherT,,, nor H,, belong to its tiling anchy < n; < min{C}, E; };
i) H, containsr;,, (or H,,,) in its tiling.
Note: if one follows this process, a ‘belt’ of thickness at least is formed around
our originalHy = H,.
The case for the triangl&;,, is clear from Figure 5: we add tde the trianglesl’.,

andT,,,. The so built hexago®, (hereA; = n,) is standard by remark (8).
The case for thé{,,, is as follows. The inequalities

d<g <b <20 —5ng <20 —4ng < ---
e <20 —ng <3 + g —ng < BV + g — no,
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Figure 5.

Hipygi—ng

Hy Tsor4gr—no

Figure 6.

hold and we add all triangles with the above sides (excepifgrand the hexagons
Hsyy g0y, Hy, to He as shown in Figure 6, whetde, I, are shadowed. All these
inequalities follow from (VI) but the third one, which follows from (2)é(10):

’ Y 5710 ’ 577,0 ’
2 —5n0—b(2—7> 2b(2—w) >V,
It is clear from remark (8) thaf, T,/, Ty do not belong to the tiling oH’. The
triangles

T3b/+g/—n0 ) T5b’+g’—n07 TQb/—ino

i =1,...,5do not belong to the tiling of’ by (Il) of Lemma 2. Indeed by (10) one

has# = b’. Therefore, the heptagdH, is perfect and it is easy to see that it is
standard. [ |

Proof of Theorem AThe proof follows easily from Lemma 3 taking, to be the min-
imum with the property so stated. The lemma can be used agaiategiheand, in this
way, we exhaust all the possible triangles and hexagons.

One may start the process with the heptagon of Examplé, [does not belong to
its tiling and1 < min {Cy, Ey} = min {3,2} = 2. ]
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3. PROOF OF THEOREM B. An ell is a polygon as shown in Figure 7, whose
interior angles are all equal t)° except one which is equal &¥0°.

ell p @ T
Tl 2nta
SIH—Q
Tlhta
bR
S
Figure 7.

One may summarize the key results 4f s follows.

Lemma 4. Every ell with integer side lengths can be puffed up to a perictangle
using squares of different integer sizes such that each gears is so large that no
translate of it is a subset of the ell. Moreover the distanicéhe ell from the boundary
of the rectangle is at least one.

Based on this lemma one can prove the theorem as follows.

Step 0.Start with,S;.

Step 1. Assume that one has a perfect rectanfleof sidesa > b. Let n =
min {m : S,, or T'I,, does not belong to the tiling d¢}. If n < b we puff R up
to a perfect ell by adding eithe$,, or T'1,,, T'1,, .o, T'I5,.4, and S, ., as shown in
Figure 7. Otherwise we puf® up by adding a squarg,, with m > a.

Step 2.We puff the given perfect ell up to a rectangle according to LemnTdnén
go back to Step 1.
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