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Tiling the plane with different hexagons and
triangles

Pablo A. Panzone

Abstract. We prove that the plane can be tiled with equilateral triangles and regular hexagons
of integer sides using exactly one of each family.

1. INTRODUCTION AND RESULTS. This paper deals with hybrid tilings of the
plane using certain polygons. We writeSn, Tn,Hn for a square, an equilateral triangle
and a regular hexagon respectively of sidesn. Also we writeTIn for a triangle of sides
{n, n, n

√
2}.

A result of W.T. Tutte [6] says that it is impossible to tile an equilateral triangle
using unequal equilateral triangles, and E. Buchman [1] proved that a convex region
cannot be tiled by a finite union of unequal equilateral triangles. K. Scherer [5] proved
that the plane cannot be tiled with equilateral triangles of different sizes if one triangle
is the smallest. At the other hand, a square can besquared: it is possible to tile a square
using a finite number of different squares of integer side. The smallest such configu-
ration was given by A.J.W. Duijvestijn (see [3, p. 78], [2]). The minimum number of
squares required is 21. This a bidimensional result as a cube can not becubed.

In a similar vein, the following remarkable result is due to Frederick and James
Henle (see [4]).

Theorem. The plane can be tiled with squaresSn, n = 1, 2, 3, . . . using exactly one
of each.

This theorem answers a question originally posed by S. Golomb with contributions
of different authors; for its history and contributors see [3] and [4]. Thus the mentioned
result of Scherer says that the above theorem is false ifSn is replaced byTn. It is an
easy exercise to see that it is impossible to tile the plane using different hexagonsHn.
The following theorems show that certain hybrid tilings are possible.

Theorem A. The plane can be tiled with trianglesTn, n = 1, 2, 3, . . . and hexagons
Hn, n = 1, 2, 3, . . . using exactly one of each.

Theorem B. The plane can be tiled with trianglesTIn, n = 1, 2, 3, . . . and squares
Sn, n = 1, 2, 3, . . . using exactly one of each.

Theorem B will follow from results of [4]. Our main contribution is Theorem A
which was inspired by and contains ideas of [4].

2. PROOF OF THEOREM A. We need the following definitions.

Definition. A figure is calledperfect if it is composed of a finite number of differ-
ent polygons (here the word different means that no rigid movement or a reflection
followed by a rigid movement can transform one polygon into another).

Definition. When we add certain polygons to a perfect figure A to form a new perfect
figure B we will say that we ‘puff figure A up to figure B.’
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Figure 1.

We show in Figure 1 a heptagon with integer sidesa, b, c, d, e, f, g; interior angles
âb = 240◦, b̂c = 60◦ and the rest all equal to120◦. Such a heptagon will be described
as a 5-tuple(a, b, c, e, g). This is so because

a+ c = e+ f, and

a+ b+ g = e+ d.
(1)

Hint: the first (respectively second) equation follows by projecting to a line perpendic-
ular to the sided (respectivelyc).

Sometimes our heptagon will have sidef = 0 (g 6= 0) or g = 0 (f 6= 0) and in-
deed it will be a hexagon (this is the case ifa+ c = e or a+ b = e+ d respectively).
See Figure 1. We will keep our notation as a 5-tuple(a, b, c, e, g) if such is the case.
In what follows a reflected heptagon or hexagon will be consideredin the same way
and all the figures will have integer sides.

Definition. A heptagon (or hexagon) defined by(a, b, c, e, g) is calledstandard if
it is perfect (i.e. it is tiled by different regular hexagons and equilateral triangles of
integer sides),c 6= e, and such that neitherTc norTe belong to its tiling.

Example 1. A standard heptagon defined by(1, 1, 3, 2, 2) and tiled byT1, H2 is
shown in Figure 1.

The following two lemmas are preparatory for Lemma 3, from which Theorem A
follows easily. Lemma 3 says, roughly speaking, that given a standard heptagon (or
hexagon)H0 such thatTn0

(or Hn0
) does not belong to its tiling (and with certain

conditions), it is possible to puff it to a new standard heptagon (or hexagon)H1 us-
ing Tn0

(or Hn0
). Repeating this, one tiles the plane exhausting all the hexagons and

triangles.
In Lemma 1 and Lemma 2, a principal role is played by the first entry (which we

distinguish) of the 5-tuple of a heptagon (or hexagon) defined by (a, ∗, ∗, ∗, ∗); such
lemmas show that one may puff conveniently such a heptagon (orhexagon) to a new
heptagon (or hexagon)without changing this entry ‘a.’ This permits us to lower this
entry and to eventually prove Lemma 3. Therefore, our arguments may be seen as
inductive in that first entry (as in [4]).

Lemma 1. Assume that one has a standard heptagon (or hexagon), which we call H0,
defined by(a, b0, c0, e0, g0). Also letN ≥ 2 be an integer number. Then one can puff
H0 up to a new standard heptagon (or hexagon) defined by(a, b, c, e, g), which we
call H, such that:
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I) b = ka+ g + i, with 0 ≤ i < a, N ≤ k;
II) c0 < c, e0 < e;

III) to puffH0 up toH one usesTj or Hj with j ≥ min {c0, e0};
IV) the tiling ofH contains neither the triangleTn1

nor the hexagonHn1
for some

min {c0, e0} < n1 < min {c, e}.

Proof. The perfect heptagon (hexagon)H 0 of the hypothesis is shown shadowed in
Figure 2. As shown in that figure we add

Tc0 , Te0 , T2c0+d0+e0 , Hc0+d0+e0 ,

giving a new heptagon described by(a, b1, c1, e1, g0) with

b1 = 2c0 + d0 + e0 + b0 > b0.

Figure 2.

This new heptagon (hexagon) is perfect forH 0 contains no polygon of side≥ c0 +
d0 + e0 andTc0 , Te0 (c0 6= e0) do not belong to its tiling becauseH 0 is standard.

Also this new heptagon is standard for it contains no trianglesTc1 , Te1 wherec1 >
e1 > e0 andc1 > c0. Thus (II) and (III) are true in this case.

Repeating this procedure an appropriate number of times gives the requiredH .
Assume that(a, bM , cM , eM , g0) is the tuple which defines the heptagon (hexagon)
obtained iteratingM times. ThenbM−g0

a
> N for suitably largeM and (I) follows.

Finally the sides (other thana and g0) grow exponentially. From this (IV) follows
taking, perhaps, a largerM .

Lemma 2. Assume that one has a standard heptagon (or hexagon), which we call H,
defined by(a, b, c, e, g) such thatb = ka + g + i with 0 ≤ i < a and2 ≤ k. Then
one can puffH up to a new standard hexagonH′ defined by(a, b′, c′, e′, g′) and such
that:

I) b′ = (k − 1)a+ g′ + i;

II) H′ contains no hexagonHb′ and no trianglesTb′ , Td′ or Tj with j ≥ a+b′+g′

2
;

also ifg 6= 0 then it does not containTg′ ;
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III) to puffH up toH′ one usesTj or Hj with j ≥ min {c, e};

IV) c < c′, e < e′ andb < b′;

V) min {c, e} < min {b′, c′, d′, e′, g′} andf ′ = 0;

VI) d′ < g′ < b′ < e′.

Remark. Notice that by (I), one may repeatedly use the lemmak − 1 times. It is clear
by (VI) and (II) that if one uses the lemma at least twice (i.e.k ≥ 3) thenH ′ contains
no triangleTg′ .

Proof. (I). The perfect heptagon (hexagon)H of the hypothesis is shown shadowed in
Figure 3.

Figure 3.

We add four triangles and one hexagon as shown in the same figure. That is, we add

Tc, Te, T2c+d+e, T2e+d+c+f , Hc+d+e.

The new hexagonH ′ is perfect becauseH can not contain figures of sides≥ c+ d+ e
and by hypothesisTc, Te (c 6= e) are not in the tiling ofH . Observe that(2c + d +
e) + a = (2e+ d+ c+ f), thusT2c+d+e, T2e+d+c+f are different. Finally our new
hexagonH ′ has

b′ = 2c+ d+ e+ b, and

g′ = g + 2e+ d+ c+ f.

Equation (1) and our hypothesis give

c = −a+ e+ f,

b = ka+ g + i, and

c+ d+ e = c+ d+ e.

Adding these equations term wise yieldsb′ = (k − 1)a+ g′ + i.

(II) and (VI). Notice that

b′ = 2c+ d+ e+ b,
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c′ = 3c+ 2d+ 2e < e′ = c′ + a,

d′ = c+ d+ e, and

g′ = g + 2c+ d+ e+ a,

(for the last equality use identity (1)). AsH can not contain figures of sides≥ c+ d+
e, thenTb′ , Tc′ , Te′ , Td′ , Hb′ do not belong to the tiling ofH .

We can show that

{e 6= c} < d′ < 2c+ d+ e < 2e+ d+ c+ f ≤ g′ < b′ < c′ < e′,

and therefore all the polygons

Te, Tc, Td′ , T2c+d+e, T2e+d+c+f , Tg′ , Tb′ , Tc′ , Te′ , Hc+d+e, Hb′ ,

are different except possibly forT2e+d+c+f andTg′ which depends on the fourth in-
equality, which is equivalent toe + f ≤ g + c + a. Using (1) this is equivalent to
0 ≤ g. Thus ifg 6= 0, thenH ′ does not containTg′ as stated. AlsoH ′ is standard and
(VI) follows.

The first, second, and seventh of the inequalities above are trivial. The third one is
equivalent toc < e + f which follows from (1). The fifth one is equivalent tob >
a + g which is true by hypothesis. Lastly, the sixth inequality is equivalent tob <
c+ d+ e.

Finally, to show thatH ′ does not contain trianglesTj with j ≥ a+b′+g′

2
, it suffices

to notice that

a+ b′ + g′

2
> 2e+ d+ c+ f,

and that the triangleT2e+d+c+f is the biggest triangle we use to puffH up toH ′. The
above inequality is equivalent toa+ b+ c+ g > e+ f , which follows from (1).

(III-IV-V). These properties are easy and they are left to the reader.

Lemma 3. Assume that one has a standard heptagon (or hexagon), which we call H0,
defined by(A0, B0, C0, E0, G0). Also assume thatTn0

(orHn0
) does not belong to the

tiling for somen0 < min {C0, E0}. Then one can puffH0, usingTn0
(or Hn0

), up to
a new standard heptagon (hexagon)H1 defined by(A1, B1, C1, E1, G1). There exists
n1 such that neitherTn1

nor Hn1
belong to its tiling andn0 < n1 < min {C1, E1}.

Moreover the distance fromH0 to the boundary ofH1 is at least 1.

Proof. Step 1.We write

H0 = H 0, and

(A0, B0, C0, E0, G0) = (a, b0, c0, e0, g0).

Our hypothesis is equivalent to the following assertion:

H0 is standard andTn0
(or Hn0

) does not belong to its tiling for some
n0 < min {c0, e0}.
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We use Lemma 1 to putH 0 in the hypothesis of Lemma 2. We chooseN of that
lemma large enough such that

(

2− 5n0

N

)

> 1. (2)

The inequality forcesN ≥ 6.
Indeed using Lemma 1 one can puffH 0 up to a new perfect heptagon (or hexagon)

H , defined by(a, b, c, e, g), such that

b = ka+ g + i, k ≥ N, 0 ≤ i < a, (3)

and by (III),Tn0
(orHn0

) do not belong to the tiling ofH .
Notice that by (IV) and the hypothesis there existsn1 such that

n0 < min {c0, e0} < n1 < min {c, e} , (4)

and neitherTn1
norHn1

belong to the tiling ofH .

Step 2.Now H satisfies the hypothesis of Lemma 2. By the remark after Lemma 2
we apply itk − 1 times (≥ N − 1 ≥ 5 by (3)) to produce a puffing fromH up toH ′

defined by(a, b′, c′, e′, g′) and

b′ = a+ g′ + i, with (5)

b′ ≥ N.

This last inequality follows from (IV).
Notice that by (III), (IV) and (4) this puffing does not addTn0

(or Hn0
) or Tn1

or
Hn1

. Also by (V) one has

min {c, e} < min {b′, c′, d′, e′, g′} , and (6)

f ′ = 0. (7)

Finally, observe that by the same remark, the triangleTg′ does not belong to the
tiling of H ′.

Step 3.Noticing thatH ′ is standard and using (VI), (II), (4) and (6) one notices the
following remark.

One may add freely the following different figures

Td′ , Tg′ , Tb′ , Te′ , Hb′ , Tn0
(or Hn0

), Tn1
, Hn1

, (8)

to H′ to form a new figure keeping it perfect.

Now we distinguish two cases: eitheri > 0 or i = 0.

If 0 < i we puff H ′ (which by (7) is a hexagon) up to the perfect heptagonH ′′

defined by(i, b′′, c′′, e′′, g′′) addingHb′ , Tg′ , Te′ , see Figure 4.
But Tn0

(orHn0
), Tn1

orHn1
do not belong to the tiling ofH ′′ and

n0 < n1 < min {c′′, e′′} . (9)

6 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 August 19, 2014 12:07 p.m. square-maa1.tex page 7

Figure 4.

By (3) one hasi < a and therefore in the tuple(i, b′′, c′′, e′′, g′′) we have lowered
the first entry. Notice that the trianglesTc′′=d′+e′ , Te′′=b′ ( e′′ < c′′ by (VI)) do not
belong to the tiling ofH ′′ (the first triangle is too big), i.e.H ′′ is standard. Finally
notice that the puffing fromH 0 up toH ′′ uses figures of sides≥ min {c0, e0}.

Gathering what we have yields the following:

H′′ is standard and neitherTn0
(or Hn0

) nor Tn1
nor Hn1

belong to its tiling with
n0 < n1 < min {c′′, e′′}.

Therefore, one may go to Step 1 (taking the sameN ) and repeat until we have
i = 0.

If i = 0 then using (5) we have

b′ = a+ g′, b′ ≥ N, (10)

and then we puffH ′ up to the perfect hexagonHe addingHb′ , Tg′ ; but nowHe is a
hexagon whose interior angles are all equal to120◦. See Figure 5.

We addTn0
(orHn0

) as shown in Figure 5 and Figure 6 respectively. In any case it
will give the desired perfect figureH1 of our lemma defined by(A1, B1, C1, E1, G1)
such that:

i) neitherTC1
norTE1

belong to its tiling andC1 6= E1, i.e.H1 is standard;
ii) neitherTn1

norHn1
belong to its tiling andn0 < n1 < min {C1, E1};

iii) H1 containsTn0
(orHn0

) in its tiling.

Note: if one follows this process, a ‘belt’ of thickness at leastone is formed around
our originalH 0 = H0.

The case for the triangleTn0
is clear from Figure 5: we add toHe the trianglesTe′

andTn0
. The so built hexagonH1 (hereA1 = n0) is standard by remark (8).

The case for theHn0
is as follows. The inequalities

d′ < g′ < b′ < 2b′ − 5n0 < 2b′ − 4n0 < · · ·
· · · < 2b′ − n0 < 3b′ + g′ − n0 < 5b′ + g′ − n0,
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Figure 5.

Figure 6.

hold and we add all triangles with the above sides (except forTg′) and the hexagons
H5b′+g′−n0

, Hn0
to He as shown in Figure 6, whereHe, Hn0

are shadowed. All these
inequalities follow from (VI) but the third one, which follows from (2) and (10):

2b′ − 5n0 = b′
(

2− 5n0

b′

)

≥ b′
(

2− 5n0

N

)

> b′.

It is clear from remark (8) thatTd′ , Tg′ , Tb′ do not belong to the tiling ofH ′. The
triangles

T3b′+g′−n0
, T5b′+g′−n0

, T2b′−in0

i = 1, . . . , 5 do not belong to the tiling ofH ′ by (II) of Lemma 2. Indeed by (10) one
hasa+b′+g′

2
= b′. Therefore, the heptagonH1 is perfect and it is easy to see that it is

standard.

Proof of Theorem A.The proof follows easily from Lemma 3 takingn0 to be the min-
imum with the property so stated. The lemma can be used again repeatedly and, in this
way, we exhaust all the possible triangles and hexagons.

One may start the process with the heptagon of Example 1:H1 does not belong to
its tiling and1 < min {C0, E0} = min {3, 2} = 2.
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3. PROOF OF THEOREM B. An ell is a polygon as shown in Figure 7, whose
interior angles are all equal to90◦ except one which is equal to270◦.

Figure 7.

One may summarize the key results of [4] as follows.

Lemma 4. Every ell with integer side lengths can be puffed up to a perfect rectangle
using squares of different integer sizes such that each new square is so large that no
translate of it is a subset of the ell. Moreover the distance of the ell from the boundary
of the rectangle is at least one.

Based on this lemma one can prove the theorem as follows.

Step 0.Start withS1.
Step 1. Assume that one has a perfect rectangleR of sidesa ≥ b. Let n =

min {m : Sm or TIm does not belong to the tiling ofR}. If n < b we puff R up
to a perfect ell by adding eitherSn or TIn, TIn+a, TI2n+a, andSn+a as shown in
Figure 7. Otherwise we puffR up by adding a squareSm with m > a.

Step 2.We puff the given perfect ell up to a rectangle according to Lemma 4. Then
go back to Step 1.
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