

SADIO Electronic Journal of Informatics and

Operations Research

http://www.dc.uba.ar/sadio/ejs

vol. 11, no. 1, pp. 16-30 (2012)

Practical Assessment Scheme to Service Selection for SOC-based

Applications
*

Martín Garriga
1,3

 Andres Flores
1,3

 Alejandra Cechich
1
 Alejandro Zunino

2,3

1
GIISCo Research Group

Facultad de Informática

Universidad Nacional del Comahue

Neuquén, Argentina

[martin.garriga,andres.flores,acechich]@fai.uncoma.edu.ar
2
ISISTAN Research Institute

UNICEN

Tandil, Argentina

azunino@isistan.unicen.edu.ar
3
CONICET (National Scientific and Technical Research Council)

 Argentina

Abstract

Service-Oriented Computing promotes building applications by consuming

reusable services. However, facing the selection of adequate services for a specific

application still is a major challenge. Even with a reduced set of candidate

services, the assessment effort could be overwhelming. On a previous work we

have presented a novel approach to assist developers on discovery, selection and

integration of services. This paper presents the selection method, which is based

on a comprehensive scheme for services' interfaces compatibility. The scheme

allows developers to gain knowledge on likely services' interactions and their

required adaptations to achieve a positive integration. The scheme is also

complemented by a framework based on black-box testing to verify compatibility

on the expected behavior of a candidate service. The usefulness of the selection

method is highlighted through a series of case studies.

Keywords: Service oriented Computing, Component-based Soft-

ware Engineering, Web Services

*
 This work is supported by projects: ANPCyT–PAE-PICT 2007-02312 and UNCo–IEUCSoft

(04-E072)

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 17

1 Introduction

Service-Oriented Computing (SOC) is a paradigm that promotes the development of distributed applications

in heterogeneous environments [Erickson and Siau, 2008]. Service-oriented applications are developed by

reusing existing third-party components or services that are invoked through specialized protocols. Mostly,

the software industry has adopted SOC by using Web Service technologies. A Web Service is a program with

a well-defined interface that can be located, published, and invoked by using standard Web protocols [Bichler

and Lin, 2006]. However, a broadly use of the SOC paradigm requires efficient approaches to allow service

consumption from within applications [McCool, 2005]. Currently, developers are required to manually search

for suitable services to then provide the adequate “glue-code” for assembly into the application under

development. This implies a large effort into discovering services, analyzing the suitability of retrieved

candidates and identifying the set of adjustments for the final assembly of a selected candidate service

[Cavallaro and Di Nitto, 2008].

In order to ease the development of SOC-based applications we have presented in a previous work [Flores et

al., 2010] an approach which helps at discovery, selection and integration of services. This proposal is based

on two recent approaches, each one focused on different aspects of maintainability. The first approach, called

EasySOC [Crasso et al., 2010], provides specific semi-automated methods for both discovery and integration

of services, for which a comprehensive review of current methods and techniques was previously carried out

– as can be seen in [Crasso et al., 2008; Crasso et al., 2010; Mateos et al., 2010]. The second approach, called

TestOOJ [Flores and Polo, 2010] was initially developed to work with off-the-shelf (OTS) software

components as a solution for substitutability of component-based systems. This approach supplies a method

for selection of the most appropriate third-party candidate component. Since web services involve a special

case of software component [Stuckenholz, 2005; Canfora and Di Penta, 2006; Kung-Kiu and Zheng, 2007],

few initial adjustments were required to apply this selection method for SOC-based application development.

The whole approach is fully supported by two semiautomatic tools, named EasySOCPlugin and TestOOJ

respectively, which have been conveniently integrated to validate the ideas proposed in this paper.

Particularly, the selection method provides two main assessment procedures: an Interface Compatibility

analysis and a Behavioral Compatibility evaluation. The former is made at a syntactic level to identify

different aspects concerning the interface of a candidate service, for which details are provided throughout

this paper. The latter is based on a testing framework to complement the previous analysis, by verifying

compatibility on the expected behavior of candidate services.

This paper is focused on the Interface Compatibility step, which has been conveniently extended to provide a

comprehensive Assessment Scheme to evaluate interfaces from candidate services according to requirements

of internal components from a SOC-based application. This scheme allows characterizing the matchmaking

process through a series of syntactic compatibility cases conveying not only the usual programming standards

(e.g. names on operations and parameters), but also differentiating strong and potential similarity cases. In our

previous work, this step of Interface Compatibility analisys had a very reduced underlying model just to cover

a few matching cases that were mostly the trivial ones, and making it unable to aid developers to outline a

likely solution upon different missmatching cases [Flores et al., 2010].

In this work, the Assessment Scheme has been divided into two main parts: automatic-strong matching and

semiautomatic-potential matching, where the former involves similarity cases directly recognized from

candidate's interfaces, and the latter involves those cases initially analyzed as a mismatching that could be

solved by a decision of a developer based on a semi-automatic assistance. The whole package of information

achieved from this process provides developers an important insight on candidate services and the required

adaptations for integration.

The second evaluation of the selection method addressing the behavior evaluation of candidate services

considers current techniques from [Jaffar-Ur Rehman, 2007; Orso, 2006; Mariani et al., 2007]. This step has

been particularly conceptualized based on the observability testing metric [Freedman, 1991; Jaffar-Ur

Rehman, 2007] that identifies a component operational behavior by analyzing data transformations

(input/output). This testing metric helps to understand the functional mapping performed by a component and

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 18

therefore its behavior. Hence, a potential compatibility of a candidate service could be exposed – as we

analyzed on a previous work [Flores and Polo, 2010] and was also discussed in [Cechich and Piattini, 2007;

Alexander and Blackburn, 1999]. In addition, [Canfora and Di Penta, 2006] presents a summary of fair

techniques to test SOC-based systems, pointing out their close relation to component-based systems.

The paper is organized as follows. Section 2 presents an overview of the whole process for SOC-based

application development. Section 3 gives details of the Assessment Scheme of the Selection Method. Section

4 presents a series of case studies. Section 5 presents related work. Conclusions and future work are presented

afterwards.

2 A Process for SOC-based Application Development

During development of a service-oriented application, a developer may decide to implement specific parts of

a system in the form of in-house components. Additionally, for some of the comprising components the

decision could be the acquisition of third-party components, which in turn could be solved with the

connection to web services. Figure 1 depicts our proposal intended to assist developers in the process of

discovery, selection and integration of web services. Following are briefly described the steps for each of the

three main phases of the process.

Figure 1. Process for SOC-based Application Development

1
st
 Phase – Service Discovery

Being C a client component that requires certain services to be fulfilled. A specification for a required service

could be described in the form of an interface IR and a dependency from C to IR. Additional annotations as

JavaDoc comments could be attached to them [Flores et al., 2010].

1.1. Query Generation. Information gathered from C and IR is processed by applying text mining techniques

to form an initial query comprised of relevant terms. This query can also be properly refined and

expanded by exploring other internal components from the client application and analyzing superclasses

from the IR’s hierarchy [Crasso et al., 2010].

1.2. Service Search. The final query becomes the input for a search method called WSQBE that uses a

Query-by-Example search engine [Crasso et al., 2008]. An initial step deduces the most related category

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 19

to the query (or example functionality), to then look for relevant services within its registry. The

developer may also set a specific category in order to get a more focused and reduced search. The

outcome is a wieldy list of candidate services.

2
nd

 Phase – Service Selection

Although the list of candidate services is not too large, still a decision must be made about the most

appropriate service S (with interface IS) for the consumer’s application. This phase is intended to help not only

to identify an adequate candidate service, but also to confirm that its behavior match the requirements of the

client application. Each service S is evaluated at a time, by previously deriving a Java version of the WSDL

description of its interface IS [Flores et al., 2010].

2.1 Build Behavioral Test Suite. A test suite TS is generated with the purpose to represent behavioral

aspects from a third-party service, with required interface IR. This TS complies with certain criteria that

help describing different facets of interactions of component C with the required service (through IR).

Notice that the goal of this TS is not to find faults but to represent behavior [Flores and Polo, 2010].

2.2. Interface Compatibility. Both the required interface IR and the provided interface IS are syntactically

compared. The evaluation is based on a comprehensive Assessment Scheme to recognize either

automatic-strong or semiautomatic-potential matchings, from the set of operations of IR and the

operations offered by IS. The Assessment Scheme provides a chance to not discard potential candidate

services in which operations do not completely coincide on their names, order of parameters, etc. The

outcome of this step is an Interfaces Matching List where each operation from IR may have a corres-

pondence with one or more operations from IS. Since this step is the main focus of this paper, details are

given in Section 3.

2.3. Behavior Compatibility. Service S, which has passed the previous step, must be evaluated on its

behavior. This implies to execute the TS generated from IR, against S (through IS). The purpose is to find

the true operation correspondences from the Interfaces Matching List generated in the previous step,

from which a set of wrappers (W) for S (through IS) is generated. Another goal is to find a wrapper w ∈

W to be placed between IR and IS to allow the client component C to safely call service S. For this, each

w ∈ W is taken at a time as the target class under test by running the TS from IR. After the whole set W

has been tested, the percentage of successful tests should be higher than 70% to have a final conclusive

result on compatibility. This also implies that at least one wrapper can be taken as the most suitable to

allow the integration of service S to the client component C [Flores and Polo, 2010].

3
rd

 Phase – Service Integration

After a candidate service S has passed the evaluations from the Selection Phase, the most adequate wrapper w

∈ W can be used to proceed with the integration of service S to the client component C [Flores et al., 2010].

3.1. Mapping of Selected Interface. From the most adequate wrapper w ∈ W and making use of the

Interfaces Matching List is generated a specific Interface Mapping comprised of concrete correspon-

dences between the required interface IR and the interface IS (of the selected web service S). The

Interface Mapping adopts the form of an XML file.

3.2. Integration of Selected Service. From the Interface Mapping defined into the XML file in the previous

step, the Adapter design pattern is applied to generate an adapter AS, where each operation from the

required interface IR will invoke a specific operation from the selected interface IS. In addition, the

physical connection to S for allowing invoking operations exhibited in IS, is managed through the

Dependency Injection design pattern [Johnson, 2005]. Thus, a proxy for S (PS) is generated, from where

C will end up calling the operations declared in IS through PS, which transparently invokes the remote

service S. Interestingly, this mechanism is not intrusive, since the code of C remains untouched still on

dependency with IR, from where the adapter AS and the proxy PS have been generated.

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 20

Next sections provide detailed information particularly related to the Interface Compatibility step. A case

study will be used to illustrate the usefulness of the Assessment Scheme into the Selection Method.

2.1 Case Study

Let us suppose the development of a communication tool for exchanging instant messages with contacts from

a user’s contact list. We have specified the behavior of the required service in the form of operations defined

into a Java interface IR, named ChatIF. Figure 2(a) shows the required interface ChatIF, which includes a

complex type named Content. By running the 1
st
 Phase of the process, a web service called OMS (Online

Messenger Service) has been discovered at http://www.nims.nl/. Particularly we are interested in two of those

services: OMS2
2
 and OMS2Simple

3
. The former provides an interface IS1 comprised of 38 operations. The

most relevant ones can be seen in Figure 2(b), where another complex type named Message is used for

enclosing the contents to be exchanged. The latter, whose interface IS2 is shown in Figure 2(c), uses the

String type for the operations’ return, instead of any other built-in or complex type.

(a) Required Interface

(b) Candidate Web Service OMS2

(c) Candidate Web Service OMS2_Simple

Figure 2. Instant Messenger Application – Chat

2
 http://www.nims.nl/soap/oms2.wsdl

3
 http://www.nims.nl/soap/oms2simple.wsdl

<<imports>>

<<imports>>

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 21

3 Interface Compatibility Analysis

The Selection Method, corresponding to the 2
nd

 phase of the whole process for SOC-based application

development, entails handling certain context information from the application’s business domain. Such

information is vital to understand the functionality that will be fulfilled by a third-party service. We assume

the availability of the documentation artifacts describing the expected software architecture, including the

Requirement Specification document (as knowledge source).

As explained in Section 2, the Selection Method concerns two main evaluations on candidate services, from

which a concrete recommendation concerning the most appropriate service is achieved. The final evaluation

procedure (Step 2.3) takes the set of candidate services to be put under test with the purpose to discover a

compatibility with respect to the expected behavior for the client application. Nevertheless, such final

evaluation requires a previous assessment at a syntactic level on Interface Compatibility (Step 2.2), which

may provide useful preliminary information to help developers gain knowledge on several aspects. The

outcomes may help elude to early discard a candidate service upon simple mismatches but also preventing

from a serious incompatibility. In addition, helpful information about the adaptation effort of a candidate

service may take shape for a positive integration into the consumer application.

Particularly, the Interface Compatibility analysis is comprised of a practical Assessmen Scheme that has been

conveniently extended to cover a comprehensive range of matching cases, from which a developer may easily

understand causes of a certain compatibility result. Besides, the scheme has also been divided into two parts:

automatic matching cases and semi-automatic potential matchings. Both parts characterize syntactic similarity

cases into four levels of compatibility, to help analyzing operations from the interface IS (of a candidate

service S), with respect to the required interface IR.

Following is presented the first part of the scheme which recognizes automatic matching cases. Section 3.2

presents the second part of the scheme, intended to be applied for solving mismatching cases.

3.1 Assessment Scheme: Automatic Matchings

The Assessment Scheme is focused on characterizing operations equivalence from a required interface IR

when is compared to an interface IS (of a candidate service S). Table 1 presents the first part of the Assessment

Scheme, which is divided into four levels to describe different syntactic constraints for a pair of

corresponding operations. Such syntactic constraints are based on individual conditions for each element

comprising the operations’ signature of an interface (return, name, parameter, exception). Table 2 sum-

marizes the set of operation matching conditions, according to the elements of an operation’s signature.

Table 1. Assesment Scheme: Automatic Matchings

Level Constraints

� Exact Match

 (1 case)

 Two operations must have identical signatures. (four identical conditions): [R1,N1,P1,E1]. This

implies an equivalence value of 4 (by adding the value 1 of each condition)

�Near Exact

 Match

 (13 cases)

 Three or two identical conditions. The remaining might be second conditions: (R2/N2/P2/E2).

Exceptional cases: three identical conditions with a remaining third condition (N3/P3/E3). This

implies equivalence values between 5 and 6.

Example: operation logout of ChatIF has near-exact_2 match to OMS2_Logout of OMS2 with a

substring equivalence for the operation name (“logout”): [R1,N2,P1,E1].

� Soft Match

 (26 cases)

 Similar to the previous level, but only two identical conditions. Previous exceptional cases may occur

with lower equivalence conditions. This implies equivalence values between 7 and 8.

� Near Soft

 Match

(14 cases)

 There cannot be two identical conditions, i.e. all conditions can be relaxed simultaneously. This

implies equivalence values between 9 and 11.

Those conditions concerning data type equivalence involve the subsumes relationship or subtyping (written

<:), which implies a direct subtyping (written <1) in case of built-in types in the Java language [Gosling et al.,

2005]. It is expected that types on operations from IS have at least as much precision as types on IR. However,

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 22

there is a special case with the String type, which is considered as a wildcard type since it is generally used

in practice to allocate different kinds of data. A criterion of “no inclusion” has been defined about conditions

R3 and P4 that are evaluated in this first part of the scheme as incompatibilities (treated as conditions R0 and

P0 respectively). For example, operation sendMessageTo of ChatIF could have a correspondence with

operation OMS2_SendMessageToChat because there is identical return and exceptions with an equivalent

operation name (R1,N2,E1). However, in sendMessageTo there is a parameter of complex type

(Content) without a counterpart into the operation OMS2_SendMessageToChat – i.e. P4 that is initially

evaluated as P0. In Section 3.2 is shown how this incompatibility can be solved.

Complex data types imply a special treatment in which the comprising fields must be equivalent one-to-one

with fields from a counterpart complex type. This means, there must be a correspondence for each field of a

complex type from an operation opR ∈ IR – though extra fields from interface IS may be initially left out of any

correspondence. For example, the operation receiveNextMessage of ChatIF has a complex type as a

return (Content), and operation OMS_ReceiveMessage of OMS2 also has a complex type as a return

(Message). Both complex types are equivalent because their fields are equivalent one-to-one. Therefore,

operation receiveNextMessage has equivalence near_exact_12 with OMS_ReceiveMessage, since

they coincide on number, type and order for parameters and exceptions (P1,E1) and there is a substring

equivalence for their names (N2) – common words “receive” and “message”. Finally, from the previous

comments there is an equivalent complex type as a return (R2).

Table 2. Syntactic Matching Conditions for Interface Compatibility

Signature Element Condition Description

Return Type

R0 Not compatible

R1 Equal return type

R2 Equivalent return type (subtyping, Strings or Complex types)

R3 Not equivalent complex types or lost precision

Operation Name

N1 Equal operation name

N2 Equivalent operation name (substring)

N3 Operation name ignored

Parameters

P0 Not Compatible

P1 Equal number, type and order for parameters into the list

P2 Equal number and type for parameters into the list

P3
Equal number and type at least equivalent (including subtyping,

Strings or Complex types) for some parameters into the list

P4 Not equivalent complex types or lost precision

Exceptions

E0 Not compatible

E1 Equal number and type, and also order for exceptions into the list

E2 Equal number and type for exceptions into the list.

E3
If non-empty original’s exception list, then non-empty candidate’s list

(no matter the type).

The first part of the Assessment Scheme in Table 1 is finally comprised of 54 cases, from the combination of

individual conditions (classified into the four levels of compatibility). In the following section is addressed the

possibility to solve certain cases of mismatch by means of a semi-automatic assistance based on the second

part of the Assessment Scheme for Interface Compatibility.

3.2 Assessment Scheme: Solving Mismatches

In general, when certain mismatch cases are detected for the interface IR, a developer may outline a likely

solution with the support of context information from the application’s business domain and particularly the

Requirement Specification document (as source of knowledge). We have identified specific cases in which a

concrete compatibility can be set up providing a semi-automatic mechanism to ease this procedure. Thus, a

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 23

given operation opR ∈ IR can be linked to a specific operation opS ∈ IS (of a candidate Web service S), with

which initially there was no correspondence through the automatic interface assessment. Table 3 presents the

second part of the Assessment Scheme, in which only new cases are described for all but the first level of

compatibility (exact-match). This time, the lowest individual conditions for return and parameters (R3,P4) are

considered likely possibilities to solve mismatch cases.

The second part of the Assessment Scheme is comprised of additional 54 cases therefore making the whole

scheme able to recognize 108 cases for Interface Compatibility. In addition, this second part not only is

intended to assist on solving mismatch cases, but also to allow a developer to “force” certain correspondences

even when an automatic match has been previously identified. In this case, a developer may consider that for

a specific operation opR ∈ IR, there is another correspondence that better fits for the application’s context.

Then, the developer is enabled to make such prioritization for a particular matching, which then is considered

in first order for the processing on the Selection Method’s subsequent step (see Section 2).

Table 3. Assessment Scheme: Solving Mismatches

Level Constraints

�Near Exact

 Match

 (1 case)

Three identical conditions with the return that may have a no equivalent complex type or lost

precision: [R3,N1,P1,E1]. This implies an equivalence value of 6.

� Soft Match

(13 cases)

Two identical conditions, similar to automatic scheme. Either return or parameter (not both)

with a nonequivalent complex type or lost precision (R3/P4). This implies equivalence values

between 7 and 8.

Example: operation sendMessageTo of ChatIF could match operation

OMS2_SendMessageToChat. However, the first operation includes a parame-ter of

complex type (Content) without a match into the other operation that has only String

parameters (initially evaluated as P0). This can be re-evaluated considering that the wildcard

type String might contain a chain of all fields from the complex type – i.e. an equivalence

soft_25: [R1,N2,P4,E1].

� Near Soft

 Match

(40 cases)

Either two identical conditions with the condition P4 or relaxing all conditions simultaneously.

This implies equivalence values between 9 and 13.

3.3 Assessment Scheme: Syntactic Distance

The final outcome of the Interface Compatibility step is a matching list characterizing each correspondence

according to the four levels of the Assessment Scheme, named Interface Matching List. For each operation

opR ∈ IR, a list of compatible operations from IS is shaped. For example, let be IR with three operations opRi, 1

≤ i ≤ 3, and IS with five operations opSj, 1 ≤ j ≤ 5. The matching list might result as follows:

{ (opR1, {opS1, opS5}), (opR2, {opS2, opS4}), (opR3, {opS3}) }.

An additional aspect can be highlighted from the Assessment Scheme in Table 2 and 3. Each of the four levels

of compatibility aggregates different equivalence cases, which also allows generating additional information

concerning a specific numeric equivalence value for those cases. For example, the value of exact equivalence

([R1,N1,P1,E1]) is 4, which is the result of adding the value 1 of each condition. Therefore, from the

Interface Matching List, a totalized equivalence value could be calculated, to synthesize the achieved degree

of Interface Compatibility between a required interface IR and a candidate interface IS (from a service S). Only

the higher compatibility level for each operation is considered to calculate that value, named Syntactic

Distance. The corresponding formula is shown in (1).

where N is the interface’s size of IR, and MapComp are the values for the compatibility cases found for

operation opRi.

(1) syntDist(IR,IS)= Σi=1 Min(opRi,MapComp(IR,IS)) − 1

 N ∗ 4

N

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 24

The Syntactic Distance concerns a helpful metric for comparison when a set of candidate services is under

evaluation, providing for a developer a better understanding of the achieving results. In the case that all

operations in the Interface Matching List presents an exact equivalence, the Syntactic Distance between IR and

IS is zero. Although this might give the feeling of a perfect interface match, this iniatilly only means that IR is

included into IS, while the interface IS may be larger on size – i.e., including additional operations.

The success on the precision achieved during the Interface Compatibility step is essential to reduce the

computation effort for the subsequent step of behavior evaluation (see Section 2). This is the main reason for

the definition of the whole Assessment Scheme, in which different design and programming heuristics have

been applied, mostly from a practical experience perspective.

4 Case Studies

This section shows in detail the evaluation results for the example presented in Section 2.1. Then two other

case studies are briefly described.

4.1 Instant Messenger – Chat

In the automatic matching results for ChatIF and service OMS2, a mismatch is identified for operation

sendMessageTo of ChatIF for which a semi-automatic solution could be set up by a soft_25

(R1,N2,P4,E1) match to operation OMS2_SendMessageToChat of OMS2. The rest of the ChatIF

interface has found a match – as shown in Table 4. For example, operation createUser has a near-exact_2

match to operation OMS_CreateUser (due to the substring equivalence). Operations login and logout

obtained similar result by a near-exact_2 match to alike operations, and four near-exact_7 matches to other

operations. Finally, operation receiveNextMessage obtained a near-exact_12 match to operation

OMS_ReceiveMessage of OMS2 service.

As no automatic matching has been found for ChatIF and OMS2Simple, Table 5 shows the final matching

results for ChatIF and service OMS2Simple, where mismatches have been solved in the semi-automatic

step by the notion of the String type as a wildcard type (see Section 3.1).

Table 4. Final Interface Compatibility between ChatIF and OMS2

ChatIF OMS2

boolean sendMessageTo

(String,String,

String,Content)

soft 25, boolean OMS2

SendMessageToChat (String,

String, String, String), R1,N2,P4,E1

boolean createUser (String,

String, String, String,

String, String, String, long,

long, long)

n_exact_2, boolean

OMS_CreateUser (String, String,

String, String, String, String, String,

long, long, long), R1, N2, P1, E1

Content

receiveNextMessage

(String, String)

n_exact_12,Message

OMS_ReceiveMessage (String,

String,), R2, N2, P1, E1

boolean logout(String,

String)

n_exact_2,boolean

OMS2_Logout(String,String), R1,

N2, P1, E1]

n exact 7, boolean

OMS_Login

(String, String),

R1, N3, P1, E1

n_exact 7, boolean

OMS DeleteUser

(String, String), R1, N3,

P1, E1

boolean login(String,

String)

 n_exact_2, boolean

OMS_Login(String, String),

R1, N2, P1, E1

n exact 7, boolean

OMS2 Logout

(String, String),

R1, N3, P1, E1

n exact 7,boolean OMS

DeleteUser (String,

String), R1, N3, P1, E1

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 25

At this point, the Interface Matching List for both candidate services is available. Thus, the syntactic distance

could be used to determine which of them is better to continue with the Behavioral Compatibility (step 2.3).

Table 6 summarizes the best values found for each candidate service and each operation in ChatIF.

The syntactic distance between ChatIF and OMS2 is 29/20-1 = 0,45 according to formula (1), and

considering OMS2_Simple the syntactic distance is 40/20-1 = 1. Because the lower value is the better, the

suggested candidate service is OMS2.

Table 5. Final Interface Compatibility between ChatIF and OMS2Simple

ChatIF OMS2

boolean createUser(String,

String,String,String,String,

String, String,long,long,long)

[soft_16, String OMS_CreateUser_simple (String,

String,String,String,String,String,String,long,long,long), R3, N2, P1, E1]

boolean sendMessageTo

(String,String, String,Content)

[n_soft_39, String OMS2_SendMessageToChat_simple (String, String,

String, String), R3, N2, P4, E1]

Content receiveNextMessage

(String, String)

[soft_16, String OMS_ReceiveMessage_simple(String, String), R3, N2,

P1, E1]

boolean logout(String, String) [soft_36, String OMS2_Logout_simple (String, String), R3, N3, P1, E1]

boolean login(String, String) [soft_36, String OMS_Login_simple(String, String), R3, N3, P1, E1]

Table 6. Interface Compatibility summary for ChatIF, OMS2, and OMS2Simple

ChatIF Operations OMS2 Best Value* OMS2_Simple Best Value*

createUser 5 6

sendMessageTo 8 11

receiveNextMessage 6 7

Logout 5 8

Login 5 8

Total 29 40

Syntactic Distance 0,45 1

* Total Best Value 20 (based on ChatIF size)

4.2 Weather System

This case study is a system in which it is required to provide temperature information on both Celsius and

Fahrenheit scales. A required interface IR has been defined in the Java format, named TemperatureIF,

which is shown in Figure 4(a). Candidate web services are named TempConvert
4
 and Converter

5
, whose

interfaces IS1 and IS2 are shown in Figure 4(b) and 4(c) respectively.

(a) Required Interface (b) Candidate Service (c) Candidate Service

Figure 4. Weather System

4
 http://www.w3schools.com/webservices/tempconvert.asmx?WSDL

5
 http://www.elguille.info/Net/WebServices/CelsiusFahrenheit.asmx?WSDL

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 26

When running the automatic Interface Matching between TemperatureIF and service TempConvert,

the results reveal that all operations from TemperatureIF have found a match – as shown in Table 7. In

this case, both operations from TemperatureIF obtained similar result by two matches to both operations

of TempConvert service. The String type which is recognized as a wildcard type allows to have an

equivalence on types for return and parameters (R2,P3).

Table 7. Interface Compatibility for TemperatureIF–TempConvert

TemperatureIF TempConvertSoap

double doFarenheitCentigrado

(double)

[n_soft_12, String fahrenheitToCelsius

(String), R2, N3, P3, E1]

[n_soft_12, String celsiusToFahrenheit

(String), R2, N3, P3, E1]

double dofahrenheitCentigrado

(float)

[n_soft_12, String fahrenheitToCelsius

(String), R2, N3, P3, E1]

[n_soft_12, String celsiusToFahrenheit

(String), R2, N3, P3, E1]

Table 8 shows the results of automatic Interface Matching for TemperatureIF and Converter. Again,

the results are not conclusive because two matches have been found for each operation. Table 9 shows the

syntactic distance calculated between TemperatureIF and both candidate services, where is 1 for

TempConvert and 0,5 for Converter. Thus, the suggested candidate for the next step of Behavioral

Compatibility is the Converter service.

Table 8. Interface Compatibility for TemperatureIF–Converter

TemperatureIF Converter

double doFarenheitCentigrado

(double)

[n_exact_7, double faC

(double), R1, N3, P1, E1]

[n_exact_7, double caF

(double), R1, N3, P1, E1]

double doCentigradoFarenheit

(double)

[n_exact_7, double faC

(double), R1, N3, P1, E1]

[n_exact_7, double caF

(double), R1, N3, P1, E1]

Table 9. Interface Compatibility summary for TemperatureIF and the candidates

Operations of TemperatureIF TempConvert Best Value* Converter Best Value*

doFarenheitCentigrado 8 6

doCentigradoFarenheit 8 6

Total 16 12

Syntactic Distance 1 0,5

*Total Best Value 8 (based on TempConvert size)

4.3 Math Application

This case study is a Math Application where a calculator component is needed, for which a Java required

interface IR, named SimpleCalculator, has been defined, which is shown in Figure 5(a). The candidate

web service is named Calculator
6
 and its interface IS is shown in Figure 5(b).

When running the Interface Matching between the IR interface and the candidate service’s interface IS, the

results reveal that all operations from SimpleCalculator have found a match, with an exception on

operation divide – as can be seen in Figure 6. In this case the incompatibility factor implies the return type

in which there is a loss of precision – from double to float (R3), with respect to the homologue

operation of Calculator service. However, this case can be easily solved with the support of the semi-

automatic procedure, where a soft_39 match was finally set up.

6
 http://soatest.parasoft.com/axis/calculator.wsdl

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 27

(a) Required Interface (b) Candidate Service

Figure 5. Math Application

These case studies show how a developer may gain specific and valuable knowledge about an application’s

context by the support of the Assessment Scheme. For each likely equivalence case automatically identified,

there is a clear rationale that is also reinforced by the characterization within the four levels of compatibility.

In addition, different scenarios of compatibility upon low levels may be analyzed by setting up other

correspondences with the semi-automatic assistance based on the second part of the scheme. In this way, a

certain web service may be saved from being early discarded as a potential candidate, but also a concrete

validation is given for any change on correspondences, which become very helpful for a developer to

understand the required adaptation effort to achieve the service integration.

Figure 6. Automatic Interface Compatibility for SimpleCalculator–Calculator

5 Related Work

The work in [Kokash, 2006] provides a comparative analysis of existing approaches to improve Web Services

discovery. This work is closely related to Service Selection, since an improved discovery method performs a

partial preliminary selection among the candidates. In particular Information Retrieval (IR) techniques have

been used on several approaches as an effort to increase precision of web service discovery without involving

any additional level of semantic markup. Although such approaches report concrete improvements, they seem

to be insufficient for automatic retrieval if they are applied without using any complementary technique.

Hence, the work in [Kokash, 2006] provides an approach that combines different techniques of lexical and

structural information matching. Another strategy more close to a semantic basis implies the use of formal

ontology-based methods, which yet involve a high cost making service designers be alienated from their use

in practice [Kokash, 2006]. This tradeoff must be thoughtfully considered.

In particular, one work analyzed in [Kokash, 2006] is strongly related to our approach. To support

programmatic service discovery, in [Stroulia and Wang, 2005] the authors have developed a suite of methods

to assess the similarity between two WSDL specifications based on the structure of their data types and

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 28

operations, and the semantics of their natural language descriptions and identifiers. Given only a textual

description of the desired service, a semantic IR method can be used to identify and order the most relevant

WSDL specifications based on the similarity of the comprising element descriptions. If a (potentially partial)

specification of the desired service behavior is also available (as in our case), this set of likely candidates can

be further refined by a semantic structure-matching step, assessing the structural similarity of the desired and

retrieved services and the semantic similarity of their identifiers.

Techniques presented on the aforementioned work not only can be applied to improve the service discovery

step, but also could be adapted to the service selection process. There is a common rationale between the

structural assessment mechanisms proposed by [Stroulia and Wang, 2005] and our practical assessment

scheme, since both of them address the comparison of data types, operations and identifiers.

Another work defines the notion of compatibility degree based on formal comparisons [Ouederni, 2011]. In

this proposal, a generic flooding-based technique is applied for measuring the compatibility degree of service

protocols. The work is focused on the interaction protocol level of service interfaces, for which it is proposed

a generic framework where the compatibility degree of service interfaces can be automatically measured

according to different compatibility notions. They consider a formal model for describing service interfaces

with interaction protocols. Also, the computation of a global and unique compatibility degree from the

detailed measures helps in ranking and selecting some services from many possible candidates. As a

difference, our approach is based on a more practical perspective attending the industry requirements in which

formalisms are not widely accepted since involves higher effort and computational costs.

The work in [Ait-Bachir, 2008] presents a similarity measure between behavioral interfaces of Web Services.

The behavioral aspect refers to the control flow between the operations and establishes their

interdependencies. In conversational services, such behavioral interfaces can be described using Business

Process Executing Language (BPEL), for instance. Nevertheless, Finite State Machines (FSM) is the formal

model adapted in this work to describe behavioral interfaces. In contrast, our approach makes use of

compliance assessment by means of behavioral execution of services. This is achieved by applying a testing

framework.

The idea of an adapter to address a mismatch between two services is also discussed in [Benatallah and

Motahari Nezhad, 2008]. Authors of this work distinguish between two types of mismatches: interface-level

and protocol-level. Mismatches at the interface-level characterize heterogeneities related to operation

definition in WSDL interfaces. Examples at this level include operation signature mismatch and parameter

constraint mismatch. When certain interface mismatch appears, an adapter is settled to solve the

incompatibility. In our approach, the assessment scheme for interface compatibility is the basis to generate

wrappers or adapters. Particularly, the second part of the scheme (see Section 3.2) which is intended to solve

interface mismatches could also be used to automatically provide potential matching cases. This allows

developers to realize about non-initially considered compatibilities.

Finally, in [De Antonellis and Melchiori, 2003] a comparison of services’ structure which is based on a

semantic markup is presented. This comparison is performed through a tool named ARTEMIS, which

calculates a set of similarity coefficients and clusters the services to evaluate their level of compatibility. In

this work, the assessment is accomplished between an abstract service and a concrete service instance from a

certain category. Instead, in our work the interface compatibility includes different elements (return, name,

parameters and exceptions) and it compares a required interface against the interface of a candidate service.

Although our work is syntactically oriented, it includes a structural aspect which is usually neglected, related

to failed function executions represented by exceptions, as mentioned in [Rodriguez et al., 2010]. This aspect

is even important on service protocols affecting expected execution sequences. Then, it is also considered

during the behavior assessment into our approach.

6 Conclusions and Future Work

In this paper we have presented details of a Selection Method which allows evaluating a candidate web

service for its likely integration into a SOC-based application under development. This method is part of a

larger process for discovery and integration of services, and provides a practical Assessment Scheme for

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 29

Interface Compatibility where a synthesis of design and programming heuristics have been added, both to

improve possibilities to identify potential matchings, but also to help developers to gain knowledge on the

application’s context for a candidate service. The syntactic distance metric provides a measurable value to

mathematically support the candidate selection. Additionally, such selection might consider other aspects like

Quality of Service parameters – e.g., performance, security, and so on.

The whole process of discovery, selection and integration has a fully support to achieve efficiency and

reliability. Our current work is focused on exploring Information Retrieval techniques to better analyzing

concepts from interfaces, which has been initially applied on the EasySOC approach. Another concern

implies the composition of candidate services to fulfill functionality, which is particularly useful when a

single candidate service cannot provide the whole required functionality. We will expand the current

procedures and models mainly based on business process descriptions and service orchestration [Peltz, 2003;

Weerawarana, 2005].

References

Ait-Bachir, A. (2008). Measuring Similarity of service interfaces. In ICSOC PhD Symposium 2008 Australia.

Alexander, R. & Blackburn, M. (1999). Component Assessment Using Specification-Based Analysis and

Testing (Rep. No. SPC-98095-CMC). Herndon, Virginia, USA.

Benatallah, B. & Motahari Nezhad, H. R. (2008). Developing Adapters for Web Services Integration. In

WWW 2010 Raleigh, North Carolina, USA.

Bichler, M. & Lin, K. (2006). Service-oriented computing. Computer, 39 (3), 99-101.

Canfora, G. & Di Penta, M. (2006). Testing Services and Service-Centric Systems: Challenges and

Oppotunities. IT Professional, 8(2), 10-17.

Cavallaro, L. & Di Nitto, E. (2008). An Approach to Adapt Service Requests to Actual Service Interfaces. In

ACM International Workshop SEAMS'08.

Cechich, A. & Piattini, M. (2007). Early Detection of COTS Component Functional Suitability. Information

and Software Technology, 49(2), 108-121.

Crasso, M., Mateos, C., Zunino, A., & Campo, M. (2010). EasySOC: Making Web Service Outsourcing

Easier. Information Sciences.

Crasso, M., Zunino, A., & Campo, M. (2008). Easy web service discovery: A query-by-example approach.

Science of Computer Programming, 71(2), 144-164.

De Antonellis, V. & Melchiori, M. (2003). An Approach to Web Service Compatibility in Cooperative

Processes. In Applications and the Internet Workshops Symposium 2003.

Erickson, J. & Siau, K. (2008). Web service, service-oriented computing, and service-oriented architecture:

Separating hype from reality. Journal of BD Management, 19(3), 42-54.

Flores, A., Cechich, A., Zunino, A., & Polo, M. (2010). Testing-Based Selection Method for Integrability on

Service-Oriented Applications. In 5th IEEE ICSEA'10 (pp. 373-379).

Flores, A. & Polo, M. (2010). Testing-based Process for Component Substitutability. Software Testing,

Verification and Reliability, [early view press], 33.

Freedman, R. S. (1991). Testability of Software Components. IEEE Transactions on Software Engineering,

17(6), 553-564.

Garriga et al., Practical Assessment Scheme to Service Selection, EJS 11(1) 16-30 (2012) 30

Gosling, J., Joy, B., Steele, G., & Bracha, G. (2005). Java(TM) Language Specification. (3rd ed.) US:

Addison-Wesley.

Jaffar-Ur Rehman, M. (2007). Testing Software Components for Integration: a Survey of Issues and

Techniques. Software Testing, Verification and Reliability, 17(2), 95-133.

Johnson, R. (2005). J2EE Development Frameworks. Computer Sciences, 38(1), 107-110.

Kokash, N. (2006). A Comparison of Web Service Intervace Similarity Measures. In Starting AI Researchers'

Symposium STAIRS 2006 Amsterdam, Netherlands: IOS Press.

Kung-Kiu, L. & Zheng, W. (2007). Software Component Models. IEEE Transactions on Software

Engineering, 33(10), 709-724.

Mariani, L., Papagiannakis, S., & Pezzé (2007). Compatibility and Regression Testing of COTS component-

based software. In IEEE ICSE (pp. 85-95). Minneapolis, USA.

Mateos, C., Crasso, M., Zunino, A., & Campo, M. (2010). Separation of Concerns in Service-Oriented

Applications Based on Pervasive Design Patterns. In 25th ACM SAC'10.

McCool, R. (2005). Rethinking the Semantic Web. IEEE Internet Computing, 9(6), 86-87.

Orso, A. (2006). Using Component Metadata to Regression Test Component-based Software. Software

Testing, Verification and Reliability, 17, 61-94.

Ouederni, M. (2011). Measuring the compatibility of service interaction protocols. In ACM Symposium on

Applied Computing, SAC 2011 (pp. 1560-1567).

Peltz, C. (2003). Web Services Orchestration and Choreography. IEEE Computer, 36(10), 46-52.

Rodriguez, J. M., Crasso, M., Zunino, A., & Campo, M. (2010). An analysis of frequent ways of making

undiscoverable Web Service descriptions. EJS, 9(1), 5-23.

Stroulia, E. & Wang, Y. (2005). Structural and Semantic Matching for Assessing Web-Services Similarity.

International Journal of Cooperative Information Systems, 14, 407-437.

Stuckenholz, A. (2005). Component Evolution and Versioning State of the Art. ACM SIGSOFT Software

Engineering Notes, 30(1), 7-20.

Weerawarana, S. (2005). Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,

WS-BPEL, WS-Reliable Messaging and More. (1 ed.) Prentice Hall.

