AN APPROXIMATION FORMULA FOR EULER-MASCHERONI'S CONSTANT

PABLO A. PANZONE

Abstract

A fast approximation formula for Euler-Mascheroni's constant based on a certain integral due to Peter Borwein is given. This asymptotic formula for γ involves harmonic numbers, $\ln 2$ and rational numbers whose denominators are powers of 2 .

1. Introduction and results

There are many results concerning the arithmetic nature of Euler-Mascheroni's constant $\gamma:=\lim _{N \rightarrow \infty} 1+1 / 2+1 / 3+\cdots+1 / N-\ln N$ (or approximations of it). P. Bundschuh (see [7]) proved that either γ is transcendental or certain roots of transcendental equations involving the gamma function and its derivative are irrational. J. Sondow (see [12]) proved some neat criteria for the irrationality of γ; many formulae for γ were discovered by him and can be found online in his personal homepage. Extensions and refinements of these results are given in [8 and 9]. A. Aptekarev was the first to prove that either γ or the so called Gompertz's constant is irrational (see [1]). T. Rivoal has recently extended this result in [11. T. Rivoal and A. Aptekarev constructed rapidly converging sequences to γ or combinations of γ and logarithms (see [2, 10, 11]). S. Ramanujan has given many formulae for γ which can be found in [4; these have been proved thanks to B. Berndt's work. Also Wolfram's website contains many other formulae.

Sondow's construction is based on the famous integrals introduced by F. Beukers for a simplified proof of Apery's result that $\zeta(3)$ is irrational (see also [13]). One of Sondow's criteria is the following: If

$$
S_{n}:=\prod_{k=1}^{n} \prod_{i=0}^{\min (k-1, n-k)} \prod_{j=i+1}^{n-i}(n+k)^{2 \operatorname{LCM}(1, \ldots, 2 n) / j\binom{n}{i}^{2}}
$$

and $\left\{\ln S_{n}\right\} \geq 1 / 2^{n}$ infinitely often, then γ is irrational. Here $\{x\}$ means the fractional part of x.

Numerical computations suggest that $\left\{\ln S_{n}\right\}$ is dense in $(0,1)$.

[^0]In this note we prove, in Theorem A below, a fast approximation formula for γ. The idea is to have an approximation formula involving the logarithms of fixed numbers. We show in Theorem B which follows immediately from Theorem A, that this is possible in some sense (with a price to be paid). In Theorem B a formula depending on a parameter n of the form:

$$
Z_{1} \gamma+Z_{2} \ln 2+\sum r,
$$

tending to zero as $n \rightarrow \infty$, is given. Here Z_{1}, Z_{2} are integer numbers (tending to infinity as $n \rightarrow \infty$) and the expression $\sum r$ means a finite sum of certain rational numbers involving harmonic numbers, i.e. $\sum_{j=1}^{n} 1 / j$, and rational numbers with denominators a power of two.

In the present paper we use ideas from P. Borwein [6], where a very nice proof of the irrationality of certain series is given using a certain integral which we modify slightly to construct an approximation to Euler's constant. Specifically we define the following function for $n \geq 2$:

$$
\begin{equation*}
F_{n}(z):=\frac{1}{2 \pi i} \int_{|t|=1} \prod_{k=1}^{n-1} \frac{\left(1-2^{k} / t\right)}{\left(1-2^{k} t\right)} \frac{(-1 / t)}{\left(1-2^{n} t\right)} \sum_{h=\theta(n)}^{\infty} \frac{1}{\left(z+2^{h} / t\right)} d t \tag{1}
\end{equation*}
$$

where $\theta(n)$ is a function from the set of positive integers to itself such that $n \leq \theta(n)$.
Our proof is based on the integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} F_{n}(z) d z d \tau \tag{2}
\end{equation*}
$$

where the rational function $p_{n}(\tau)$ is defined recursively by

$$
p_{0}(\tau)=1 /(1+\tau), \quad\left(\tau p_{r-1}(\tau)\right)^{\prime}=p_{r}(\tau)
$$

and β is a curve which, roughly speaking, encloses the negative integers and goes from $-\infty+i \infty$ to $-\infty-i \infty$. Specifically we take $\beta=\beta_{1} \cup \beta_{2} \cup \beta_{3}$, where with $\alpha:=$ $3 \pi / 4$ one defines $\beta_{2}\left(\right.$ resp. $\left.-\beta_{1}\right):=\{\exp (-i \alpha) t($ resp. $\exp (i \alpha) t), 1 / 2 \leq t \leq \infty\}$. The curve β_{3} is the arc of the circle given by the equation $\{\exp (i t) / 2 ; \alpha \leq t \leq 2 \pi-\alpha\}$.

Recall the notation for the q-binomial coefficients

$$
\left[\frac{n}{m}\right]_{q}:=\frac{\prod_{s=n-m+1}^{n}\left(1-q^{s}\right)}{\prod_{s=1}^{m}\left(1-q^{s}\right)}, \quad \text { if } 0<m<n,
$$

$\left[\frac{n}{0}\right]_{q}=\left[\frac{n}{n}\right]_{q}:=1$, and defined to be zero otherwise (see [5).
Definition 1. Define, for $2 \leq n$,

$$
\begin{aligned}
q_{m, n} & :=(-1)^{m-1} 2^{m(m-1) / 2}\left[\frac{n-1}{m-1}\right]_{2}\left[\frac{n+m-1}{m}\right]_{2} \\
a_{n} & :=(-1)^{n} \sum_{m=1}^{n} q_{m, n}
\end{aligned}
$$

$$
\begin{aligned}
& b_{n}:=-\sum_{m=1}^{n} q_{m, n} \sum_{h=1}^{\theta(n)+m-1} \frac{1}{2^{h n}} \sum_{i=0}^{n-1}(-1)^{n-1-i} 2^{h(n-1-i)} p_{i}(1), \\
& c_{n}:=(-1)^{n+1} \sum_{m=1}^{n} q_{m, n}(\theta(n)+m-1), \\
& d_{n}:=\sum_{k=1}^{n}(-1)^{k} \frac{p_{k-1}(1)}{2^{k}-1}, \\
& e_{n}:=(-1)^{n} \sum_{m=1}^{n} q_{m, n} \sum_{j=1}^{2^{\theta(n)+m-1}} \frac{1}{j} .
\end{aligned}
$$

Observe that $a_{n}, c_{n} \in \mathbb{Z}, e_{n}$ is a sum of harmonic numbers, and by Lemma 3 (a) the coefficient $p_{n}(1)$ can be written in closed form:

$$
p_{n}(1)=\frac{1}{2^{n+1}} \sum_{i=0}^{n}(-1)^{i}\left\langle\frac{n}{i}\right\rangle,
$$

for $n \geq 1$, and $p_{0}(1)=1 / 2$, where $\left\langle\frac{n}{i}\right\rangle$ are the Eulerian numbers. Recall that the Eulerian number $\left\langle\frac{n}{k}\right\rangle$ gives the number of permutations of $\{1,2, \ldots, n\}$ having k permutation ascents, and one has the formula

$$
\left\langle\frac{n}{k}\right\rangle=\sum_{j=0}^{k+1}(-1)^{j}\binom{n+1}{j}(k-j+1)^{n} .
$$

Our main result is the following explicit approximation formula.
Theorem A. Let $\theta(n)$ be any function from the set of positive integers to itself such that $n \leq \theta(n)$. Then

$$
\begin{aligned}
-\gamma a_{n}+a_{n} d_{n}+ & b_{n}+e_{n}+c_{n} \ln 2 \\
& =O\left(\left(\frac{0.792(n+1)}{\ln (n+2)}\right)^{n+1} n!\max \left(\frac{\theta(n) 2^{n(n+1) / 2}}{2^{n \theta(n)+\theta(n)}}, \frac{1}{2^{\theta(n) n+n}}\right)\right)
\end{aligned}
$$

Note: the constant implied in the O-symbol does not depend on n nor the function $\theta(n)$.

For example taking $\theta(n)=n$ the above O-term is

$$
O\left(\frac{1}{2^{\frac{n^{2}}{2}-c n \ln n}}\right)
$$

where $c>0$ is some positive constant. The proof of Theorem is given in Section 2.
Definition 2. For fixed $0<\rho<\frac{1}{8}$, set

$$
\begin{aligned}
g_{n} & :=2^{\left[n^{2} \rho\right]} \Pi_{k=[n / 2]}^{n}\left(2^{k}-1\right) \\
b_{n}^{\prime} & :=(-1)^{n+1} \sum_{m=1}^{n} q_{m, n} \sum_{i=0}^{n-1} \frac{(-1)^{i} p_{i}(1)}{\left(2^{i+1}-1\right) 2^{(i+1)(n+m-1)}} .
\end{aligned}
$$

Next we specialize $\theta(n)=n$. Indeed one has the following theorem.
Theorem B. Assume $\theta(n)=n, 0<\rho<\frac{1}{8}$. For some constant $0<c^{\prime}$,

$$
\begin{aligned}
-\gamma a_{n} g_{n}+b_{n}^{\prime} g_{n}+e_{n} g_{n} & +c_{n} g_{n} \ln 2 \\
& =\gamma Z_{1}+b_{n}^{\prime} g_{n}+e_{n} g_{n}+Z_{2} \ln 2=O\left(2^{-\left(\frac{1}{8}-\rho\right) n^{2}+c^{\prime} n \ln n}\right)
\end{aligned}
$$

where Z_{i} are integer numbers. Moreover $e_{n} g_{n}$ is a sum of harmonic numbers and $b_{n}^{\prime} g_{n}$ is a rational number whose denominator is a power of 2 .

Theorem B is proved in Section 3. We make some remarks concerning the last theorem.

One has the following corollary, where $\{x\}$ means the fractional part of x.
Corollary. If γ is a rational number then:
a) The sequence $\left\{b_{n}^{\prime} g_{n}+e_{n} g_{n}+c_{n} g_{n} \ln 2\right\}$ cannot be dense in $[A, B] \subset[0,1]$, $A<B$.
b) The sequence $\left\{n!\left(b_{n}^{\prime} g_{n}+e_{n} g_{n}+c_{n} g_{n} \ln 2\right)\right\}$ has $\{0,1\}$ as its only possible limit points.

The proof, which follows from Theorem B is given in Section 3.
Remark 1. Notice that $\left|a_{n}\right| \approx 2^{\left(\frac{3}{2}\right)\left(n^{2}-n\right)}$ as $n \rightarrow \infty$, which together with Lemma 7 (iii) gives

$$
\left|a_{n} g_{n}\right| \approx 2^{\left(\frac{15}{8}+\rho\right) n^{2}+O(n)} \quad \text { as } n \rightarrow \infty
$$

Also if $\left[n^{2} \rho\right] \geq n$, then $p_{i}(1) 2^{\left[n^{2} \rho\right]} \in \mathbb{Z}, i=1, \ldots, n-1$, and therefore $b_{n}^{\prime} g_{n} 2^{2 n^{2}-n} \in$ \mathbb{Z}.

Remark 2. The coefficient a_{n} has some similitude with a particular case of the so called q-little Legendre polynomials defined by:

$$
P_{n}(x, q)=\sum_{m=0}^{n}(-1)^{m} q^{m(m+1) / 2-m n}\left[\frac{n}{m}\right]_{q}\left[\frac{n+m}{m}\right]_{q} x^{m}
$$

Notice that

$$
a_{n+1}=(-1)^{n+1} \sum_{m=0}^{n}(-1)^{m} 2^{m(m+1) / 2}\left[\frac{n}{m}\right]_{2}\left[\frac{n+m}{m}\right]_{2}\left(2^{n}+\frac{2^{n}-1}{2^{m+1}-1}\right)
$$

2. Outline and proof of Theorem A

The proof of Theorem A is rather technical so we give first an outline and the ideas behind it.

In Lemma 1 we decompose the function (1) as

$$
F_{n}(z)=A_{n}(z)+B_{n}(z)+C_{n}(z)
$$

and apply the formula 22 to this equality (Lemma 2 is an auxiliary result). That is,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} F_{n}(z) d z d \tau \\
&=\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}}\left(A_{n}(z)+B_{n}(z)+C_{n}(z) d z\right) d \tau
\end{aligned}
$$

Integrals along $F_{n}(z)$ and $C_{n}(z)$ are estimated in Lemmas 5 and 6 and they give the O-term of Theorem A these integrals are small in magnitude. The term $B_{n}(z)$ is a polynomial so the integral corresponding to it is zero. The integral corresponding to $A_{n}(z)$ gives the linear form $-\gamma a_{n}+a_{n} d_{n}+b_{n}+e_{n}+c_{n} \ln 2$. This is proved in Lemma 4 with the help of Lemma 3. This is basically the proof of Theorem A

We explain some ideas behind our theorem. A particular case of [6] gives a proof of the irrationality of $\sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)}$ for rational fixed z using an integral of the form (see [6, formula (1)])

$$
\tilde{F}_{n}(z):=\frac{1}{2 \pi i} \int_{|t|=1} \prod_{k=1}^{n-1} \frac{\left(1+2^{k} / z t\right)}{\left(1-2^{k} t\right)} \frac{(-1 / t)}{\left(1-2^{n} t\right)} \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h} / t\right)} d t
$$

which is slightly similar to our $F_{n}(z)$. The integral $\tilde{F}_{n}(z)$, which can be shown to be small for fixed z and large n, is of the form

$$
\tilde{F}_{n}(z)=\operatorname{Rac}_{1}(z) \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)}+\operatorname{Rac}_{2}(z)
$$

where $\operatorname{Rac}_{i}(z), i=1,2$, are rational functions in z. On the other hand,

$$
\begin{aligned}
1-\gamma=\int_{0}^{1} \frac{\sum_{h=1}^{\infty} \tau^{2^{h}}}{(1+\tau)} d \tau & =\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z}}{1+\tau} \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)} d z d \tau \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \tau^{-z} p_{0}(\tau) \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)} d z d \tau
\end{aligned}
$$

the first equality is well-known (we prove it below) and the second one follows from shifting the curve β to the left picking the residues at the poles $z=-2^{h}$. So this suggests that the integral

$$
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \tau^{-z} p_{0}(\tau) \tilde{F}_{n}(z) d z d \tau
$$

is small. But this is not a linear form in γ and $\ln 2$. Indeed other constants of apparently different type appear (for example $\int_{0}^{1} \frac{\sum_{h=1}^{\infty} \frac{\tau^{2}}{2 h}}{(1+\tau)} d \tau$).

But the integral

$$
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \tau^{-z} p_{0}(\tau) F_{n}(z) d z d \tau
$$

is a linear form in γ and $\ln 2$ only. On the other hand, estimates for this last integral are not good enough because now z is a variable and one needs roughly a factor $1 / z^{n}$ (when z is large) which is not present. This can be corrected with Definition 2 introducing a polynomial $p_{n}(\tau)$ which is not too large (and, of course, without losing the fact that this is a linear form in γ and $\ln 2)$.

Lemma 1. Let F_{n} be defined by (11. Then if $n \geq 2$,

$$
F_{n}(z)=A_{n}(z)+B_{n}(z)+C_{n}(z)
$$

where

$$
\begin{aligned}
A_{n}(z)= & \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)} \sum_{m=1}^{n}(-1)^{m-1} 2^{m(m-1) / 2}\left[\frac{n-1}{m-1}\right]_{2}\left[\frac{n+m-1}{m}\right]_{2} \\
& -\sum_{m=1}^{n}(-1)^{m-1} 2^{m(m-1) / 2}\left[\frac{n-1}{m-1}\right]_{2}\left[\frac{n+m-1}{m}\right]_{2} \sum_{h=1}^{\theta(n)+m-1} \frac{1}{\left(z+2^{h}\right)},
\end{aligned}
$$

and $B_{n}(z)$ is a polynomial in z.
Also $C_{n}(z)=0$ if $2^{\theta(n)}>|z|$ and if z belongs to the ring shaped region $\left\{2^{\theta(n)} \leq\right.$ $\left.2^{m_{0}}<|z|<2^{m_{0}+1}\right\}, m_{0} \in N$, then

$$
C_{n}(z)=-\sum_{h=\theta(n)}^{m_{0}} \prod_{k=1}^{n-1} \frac{\left(1+2^{k-h} z\right)}{\left(z+2^{k+h}\right)} \frac{z^{n-1}}{\left(z+2^{n+h}\right)}
$$

Proof. The formula follows using the theory of residues: the product in (1) has simple poles at $t=\frac{1}{2}, \ldots, \frac{1}{2^{n}}$, which gives

$$
\begin{aligned}
& \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)} \sum_{m=1}^{n} \frac{\Pi_{k=1}^{n-1}\left(1-2^{k+m}\right)}{\Pi_{k=1, k \neq m}^{n}\left(1-2^{k-m}\right)} \\
& \quad-\sum_{m=1}^{n} \frac{\Pi_{k=1}^{n-1}\left(1-2^{k+m}\right)}{\Pi_{k=1, k \neq m}^{n}\left(1-2^{k-m}\right)} \sum_{h=1}^{\theta(n)+m-1} \frac{1}{\left(z+2^{h}\right)}
\end{aligned}
$$

where we have used that

$$
\sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h} 2^{m}\right)}=\sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)}-\sum_{h=1}^{m} \frac{1}{\left(z+2^{h}\right)}
$$

The term $A_{n}(z)$ is obtained if one notices that

$$
\begin{equation*}
\frac{\Pi_{k=1}^{n-1}\left(1-2^{k+m}\right)}{\Pi_{k=1, k \neq m}^{n}\left(1-2^{k-m}\right)}=(-1)^{m-1} 2^{m(m-1) / 2}\left[\frac{n-1}{m-1}\right]_{2}\left[\frac{n+m-1}{m}\right]_{2} \tag{3}
\end{equation*}
$$

The integrand in formula (11) has a pole of order $n-1$ at $t=0$, which gives the polynomial $B_{n}(z)$ whose precise form we shall not need.

The term $C_{n}(z)$ is present due to the possible poles (in the variable t) of $\sum_{h=\theta(n)}^{\infty} \frac{1}{\left(z+2^{h} / t\right)}$: if $2^{\theta(n)}>|z|$ there are no poles in $\{|t|<1\}$ and therefore $C_{n} \equiv 0$. If $2^{\theta(n)} \leq 2^{m_{0}}<|z|<2^{m_{0}+1}$ then in the last sum the only poles inside
$\{|t|<1\}$ are those corresponding to $h=\theta(n), \ldots, m_{0}$. Using residues the formula follows.

Also we will need an estimate of

$$
\begin{equation*}
I_{m}(z):=\frac{1}{2 \pi i} \int_{|t|=1} \prod_{k=1}^{n-1} \frac{\left(1-2^{k} / t\right)}{\left(1-2^{k} t\right)} \frac{(-1 / t)}{\left(1-2^{n} t\right)} \frac{1}{\left(z+2^{m} / t\right)} d t \tag{4}
\end{equation*}
$$

for one has

$$
\begin{equation*}
F_{n}(z)=\sum_{m=\theta(n)}^{\infty} I_{m}(z) \tag{5}
\end{equation*}
$$

Lemma 2. Let I_{m} be defined as above. Then $I_{m}(z)=0$ if $2^{m}<|z|$ and

$$
I_{m}(z)=\prod_{k=1}^{n-1} \frac{\left(1+2^{k-m} z\right)}{\left(z+2^{k+m}\right)} \frac{z^{n-1}}{\left(z+2^{n+m}\right)}
$$

if $2^{m}>|z|$.
Proof. Let $\delta=\{|t|=1\}$ and $\delta_{m}=\left\{|t|=\left|2^{m} / z\right|+1\right\}$. Then

$$
I_{m}(z)=\frac{1}{2 \pi i} \int_{\delta \cup \delta_{m}} \prod_{k=1}^{n-1} \frac{\left(1-2^{k} / t\right)}{\left(1-2^{k} t\right)} \frac{(-1 / t)}{\left(1-2^{n} t\right)} \frac{1}{\left(z+2^{m} / t\right)} d t
$$

for we can change the curve δ_{m} to an arbitrarily large circle and therefore the integral over δ_{m} is zero. If $2^{m}>|z|$ then one uses residues for the pole at $t=-2^{m} / z$ in the open annulus formed by the two curves δ, δ_{m} and the result follows (if $2^{m}<|z|$ there is no pole inside this open annulus).

Lemma 3. Set $p_{0}(\tau):=\frac{1}{1+\tau}$ and define $p_{r}(\tau)$ recursively by

$$
\left(\tau p_{r-1}(\tau)\right)^{\prime}=p_{r}(\tau)
$$

Then:
a) If $n \geq 2$ then $p_{n-1}(\tau)=\frac{e_{1}}{(1+\tau)^{2}}+\cdots+\frac{e_{n}}{(1+\tau)^{n}}$ with $e_{i} \in \mathbb{Z}$. Also

$$
\max _{\tau \in[0,1]}\left|p_{n}(\tau)\right| \leq\left(\frac{0.792(n+1)}{\ln (n+2)}\right)^{n+1} n!
$$

and one has the closed formula

$$
p_{n}(1)=\frac{1}{2^{n+1}} \sum_{i=0}^{n}\left\langle\frac{n}{i}\right\rangle(-1)^{i},
$$

for $n \geq 1$, where $\left\langle\frac{n}{i}\right\rangle$ are the Eulerian numbers.
b) If $n \geq 2$ then

$$
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)} d z d \tau=\sum_{k=1}^{n}(-1)^{n-k} \frac{p_{k-1}(1)}{2^{k}-1}+(-1)^{n}(1-\gamma)
$$

c) If $n \geq 2$ then

$$
\begin{aligned}
& \int_{0}^{1} p_{n}(\tau) \tau^{2^{h}} d \tau \\
& \quad=\sum_{i=0}^{n-1}(-1)^{n-1-i} 2^{h(n-1-i)} p_{i}(1)+(-1)^{n} 2^{n h} \ln 2+(-1)^{n+1} 2^{n h} \sum_{j=2^{h-1}+1}^{2^{h}} \frac{1}{j}
\end{aligned}
$$

Proof. a) The first part follows by induction and is left as an easy exercise to the reader. We prove the inequality stated. First observe that

$$
\left(\tau\left(\tau\left(\tau \ldots\left(\tau p_{0}(\tau)\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}\right)^{\prime}=p_{n}(\tau)
$$

where the number of derivatives is n. But

$$
\left(\tau\left(\tau\left(\tau \ldots\left(\tau p_{0}(\tau)\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}\right)^{\prime}=\sum_{k=1}^{n+1} S(n+1, k) \tau^{k-1} p_{0}^{(k-1)}(\tau)
$$

where $S(n, k)$ are the Stirling numbers of the second kind (recall that these numbers have the property $S(1, n)=S(n, n)=1$ and

$$
S(n, k)=k S(n-1, k)+S(n-1, k-1),
$$

from which the above formula follows by iteration of this last formula). Using these identities we have if $\tau \in[0,1]$

$$
\left|p_{n}(\tau)\right| \leq \sum_{k=1}^{n+1} S(n+1, k) \max _{i=0, \ldots, n}\left|p_{0}^{(i)}(\tau)\right| \leq \sum_{k=1}^{n+1} S(n+1, k) n!=B(n+1) n!
$$

where $B(n)$ is the n-th Bell number, see [14]. The inequality in the lemma follows from a result in [3], namely: if $n \in N$ then

$$
B(n)<\left(\frac{0.792 n}{\ln (n+1)}\right)^{n}
$$

Finally, the closed form formula is proved as follows: using Cauchy's formula in the above formulae gives

$$
p_{n}(1)=\frac{1}{2 \pi i} \int_{|z-1|=1} \sum_{k=1}^{n+1} S(n+1, k)(k-1)!\frac{1}{(z-1)^{k}(1+z)} d z .
$$

But if $n \geq 1$ then

$$
(-1)^{n+1} L i_{-n}(z)=\sum_{k=1}^{n+1} S(n+1, k)(k-1)!\frac{1}{(z-1)^{k}}
$$

where $L i_{n}(z):=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}}$ is the polylogarithm function, which gives

$$
p_{n}(1)=\frac{(-1)^{n+1}}{2 \pi i} \int_{|z-1|=1} \frac{L i_{-n}(z)}{1+z} d z=\frac{(-1)^{n}}{2 \pi i} \int_{|z+1|=1} \frac{L i_{-n}(z)}{1+z} d z .
$$

The proof of the last equality (and the closed form formula) follow from here and the known identity

$$
L i_{-n}(z)=\frac{1}{(1-z)^{n+1}} \sum_{i=0}^{n}\left\langle\frac{n}{i}\right\rangle z^{n-i} .
$$

Hint: $\int_{|z|=R} \frac{L i_{-n}(z)}{1+z} d z=0$, if $R>2$, (say) for $\left|\frac{L i i_{n}(z)}{1+z}\right|=O\left(1 /|z|^{2}\right)$ as $|z| \rightarrow \infty$. Now use residues.
b) From the well-known formula

$$
\int_{0}^{1} \frac{\sum_{h=1}^{\infty} \tau^{2^{h}}}{(1+\tau)} d \tau=1-\gamma
$$

and, for $0<\tau<1$,

$$
\frac{1}{2 \pi i} \int_{\beta} \frac{\tau^{-z}}{\left(z+2^{h}\right)} d z=\tau^{2^{h}}
$$

(this last formula follows by deforming the curve β, moving it arbitrarily to a left half plane and taking into account the pole at $z=-2^{h}$), one has

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \tau^{-z} p_{0}(\tau) \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)} d z d \tau \\
& \quad=\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z}}{1+\tau} \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)} d z d \tau=\int_{0}^{1} \frac{\sum_{h=1}^{\infty} \tau^{2^{h}}}{(1+\tau)} d \tau=1-\gamma \tag{6}
\end{align*}
$$

Also
(Remark: the above formula for $1-\gamma$ follows from $\sqrt{7}$ and the identity

$$
\begin{equation*}
\sum_{j=2^{h-1}+1}^{2^{h}} \frac{1}{j}=\sum_{j=1}^{2^{h}} \frac{(-1)^{j+1}}{j} \tag{8}
\end{equation*}
$$

Indeed adding (7) for $h=1, \ldots, N$ and using (8) we get $\int_{0}^{1} \frac{\sum_{h=1}^{N} \tau^{2^{h}}}{(1+\tau)} d \tau=$ $N \ln 2-\sum_{j=2}^{2^{N}} 1 / j$, and the formula follows.)

Now observe that integrating by parts and using $\left(\tau p_{r-1}(\tau)\right)^{\prime}=p_{r}(\tau)$ yield

$$
\int_{0}^{1} p_{r}(\tau) \sum_{h=1}^{\infty} \frac{\tau^{2^{h}}}{2^{h r}} d \tau=\frac{1}{2^{r}-1} p_{r-1}(1)-\int_{0}^{1} p_{r-1}(\tau) \sum_{h=1}^{\infty} \frac{\tau^{2^{h}}}{2^{h(r-1)}} d \tau
$$

The lemma follows iterating this last formula, using (6) and noting that

$$
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{r}(\tau)}{(-z)^{r}} \sum_{h=1}^{\infty} \frac{1}{\left(z+2^{h}\right)} d z d \tau=\int_{0}^{1} p_{r}(\tau) \sum_{h=1}^{\infty} \frac{2^{2^{h}}}{2^{r h}} d \tau,
$$

(same proof as (6)). This proves part b).
c) Integrating by parts and using $\left(\tau p_{r-1}(\tau)\right)^{\prime}=p_{r}(\tau)$ yield:

$$
\int_{0}^{1} p_{n}(\tau) \tau^{2^{h}} d \tau=p_{n-1}(1)-2^{h} \int_{0}^{1} p_{n-1}(\tau) \tau^{2^{h}} d \tau
$$

Iterating this one gets

$$
\int_{0}^{1} p_{n}(\tau) \tau^{2^{h}} d \tau=\sum_{i=0}^{n-1}(-1)^{n-1-i} 2^{h(n-1-i)} p_{i}(1)+(-1)^{n} 2^{n h} \int_{0}^{1} \frac{\tau^{2^{h}}}{1+\tau} d \tau
$$

Now use (7) and (8) to obtain (c).
The following lemma is a kind of linear form for γ.
Lemma 4. The following formula holds: if $2 \leq n$ then

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} F_{n}(z) d z d \tau= & -a_{n} \gamma+a_{n} d_{n}+b_{n}+e_{n}+c_{n} \ln 2 \\
& +\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} C_{n}(z) d z d \tau
\end{aligned}
$$

where $C_{n}(z)$ is defined in Lemma 1, γ is Euler's constant, and $a_{n}, b_{n}, c_{n}, d_{n}, e_{n}$ are as in Theorem (A.
Proof. Recall that from Lemma 1 one has

$$
F_{n}(z)=A_{n}(z)+B_{n}(z)+C_{n}(z)
$$

First note that $\int_{\beta} \tau^{-z} z^{m} d z=0$ if $m \in \mathbb{Z}$ (again deform arbitrarily the curve to a left half-plane), and therefore

$$
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} B_{n}(z) d z d \tau=0
$$

So we are left with the integral over A_{n}. From the definition of $A_{n}(z)$ in Lemma 1 and Lemma 3 (b) one gets:

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} A_{n}(z) d z d \tau \\
& \quad=a_{n}(1-\gamma)+a_{n} d_{n}-\sum_{m=1}^{n} q_{m, n} \sum_{h=1}^{\theta(n)+m-1} \frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} \frac{1}{\left(z+2^{h}\right)} d z d \tau
\end{aligned}
$$

where $a_{n}, d_{n}, q_{m, n}$ are defined in Theorem A. Now notice that

$$
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} \frac{1}{\left(z+2^{h}\right)} d z d \tau=\frac{1}{2^{h n}} \int_{0}^{1} p_{n}(\tau) \tau^{2^{h}} d \tau
$$

and use Lemma3 (c). This gives (here $e_{n}^{\prime}:=(-1)^{n} \sum_{m=1}^{n} q_{m, n} \sum_{j=2}^{2^{\theta(n)+m-1}} \frac{1}{j}$)

$$
\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} A_{n}(z) d z d \tau=a_{n}(1-\gamma)+a_{n} d_{n}+b_{n}+e_{n}^{\prime}+c_{n} \ln 2
$$

where b_{n}, c_{n} are defined in Theorem A. The lemma follows by noticing that $a_{n}+$ $e_{n}^{\prime}=e_{n}$, where e_{n} is defined in Theorem A.

In the following lemmas (5 and 6) we estimate the integrals that appear in Lemma 4 , we remark that the constant implied in the O-symbol in these lemmas is absolute.

Lemma 5. If $2 \leq n$ then

$$
\left|\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} F_{n}(z) d z d \tau\right|=O\left(\frac{1}{2^{\theta(n) n+n}} \max _{\tau \in[0,1]}\left|p_{n}(\tau)\right|\right) .
$$

Proof. We will use formula (5); so we first estimate $I_{m}(z)$ with $m \geq \theta(n) \geq n$. Recall that by Lemma 2 one has $I_{m}(z)=0$ if $|z|>2^{m}$. We chop the curve β in pieces: let β_{r}^{\prime} be the part of the curve β in $\left\{2^{r-1} \leq|z|<2^{r}\right\}, r=1,2, \ldots, m$. Then using Lemma 2 , taking absolute values in the product expression and writing $\left(1+2^{a}\right)=2^{a}\left(1+2^{-a}\right)$ whenever $a \geq 1$, one gets

$$
\max _{z \in \beta_{r}^{\prime}}\left|\frac{I_{m}(z)}{(-z)^{n}}\right| \leq O\left(\frac{2^{(n-1-m+r)(n-m+r) / 2}}{2^{m n+n(n+1) / 2} 2^{r}}\right) \leq O\left(\frac{1}{2^{m n+n+r}}\right)
$$

if $1 \leq n-1-m+r$, where the constant implied in the O-symbol is absolute. The last inequality follows because $2^{(n-1-m+r)(n-m+r) / 2} \leq 2^{(n-1) n / 2}$ if $r=1, \ldots, m$.

If $n-1-m+r \leq 0$ then

$$
\max _{z \in \beta_{r}^{\prime}}\left|\frac{I_{m}(z)}{(-z)^{n}}\right| \leq O\left(\frac{1}{2^{m n+n(n+1) / 2} 2^{r}}\right) \leq O\left(\frac{1}{2^{m n+n+r}}\right)
$$

Now if $L_{\beta_{r}^{\prime}}\left(\leq 2^{r}\right)$ is the length of any of the two segments which compose β_{r}^{\prime} then

$$
\begin{aligned}
\int_{0}^{1} \int_{\beta_{r}^{\prime}}\left|\frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} I_{m}(z)\right| d z d \tau & \leq 2 L_{\beta_{r}^{\prime}} \int_{0}^{1} \tau^{2^{r-1} \cos (\pi-\alpha)}\left|p_{n}(\tau)\right| \max _{z \in \beta_{r}^{\prime}}\left|\frac{I_{m}(z)}{(-z)^{n}}\right| d \tau \\
& \leq O\left(\frac{1}{2^{m n+n+r}} \max _{\tau \in[0,1]}\left|p_{n}(\tau)\right|\right)
\end{aligned}
$$

where α is the angle defined at the beginning in the definition of the curves β_{1}, β_{2}.
Finally let β_{0}^{\prime} be the part of the curve β in $|z|<1$. It is easy to see that

$$
\max _{z \in \beta_{0}^{\prime}}\left|\frac{I_{m}(z)}{(-z)^{n}}\right| \leq O\left(\frac{1}{2^{m n+n(n+1) / 2}}\right)
$$

and

$$
\int_{0}^{1} \int_{\beta_{0}^{\prime}}\left|\frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} I_{m}(z)\right| d z d \tau \leq O\left(\frac{1}{2^{m n+n(n+1) / 2}} \max _{\tau \in[0,1]}\left|p_{n}(\tau)\right|\right) .
$$

All this gathers to give

$$
\begin{aligned}
& \left|\int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} I_{m}(z) d z d \tau\right|=\left|\int_{0}^{1} \int_{\bigcup_{i=0}^{m} \beta_{i}^{\prime}} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} I_{m}(z) d z d \tau\right| \\
& \quad \leq \int_{0}^{1} \int_{\bigcup_{i=0}^{m} \beta_{i}^{\prime}}\left|\frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} I_{m}(z)\right| d z d \tau=O\left(\frac{1}{2^{m n+n}} \max _{\tau \in[0,1]}\left|p_{n}(\tau)\right|\right),
\end{aligned}
$$

and the lemma follows using this last formula and formula (5).
Lemma 6. If $2 \leq n$ then

$$
\left|\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} C_{n}(z) d z d \tau\right|=O\left(\frac{\theta(n) 2^{n(n+1) / 2}}{2^{n \theta(n)+\theta(n)}} \max _{\tau \in[0,1]}\left|p_{n}(\tau)\right|\right) .
$$

Proof. Set $D_{h}(z):=\prod_{k=1}^{n-1} \frac{\left(1+2^{k-h} z\right)}{\left(z+2^{k+h}\right)} \frac{z^{-1}}{\left(z+2^{n+h}\right)}$. Use the definition of $C_{n}(z)$ as given in Lemma 1 to notice that $C_{n}(z) /(-z)^{n}= \pm \sum_{h=\theta(n)}^{m_{0}} D_{h}(z)$ for $2^{m_{0}}<|z|<$ $2^{m_{0}+1}, \theta(n) \leq m_{0} \in N$. Using the same notation as in the proof of Lemma 5
$\max _{z \in \beta_{m_{0}+1}^{\prime}}\left|D_{h}(z)\right|=O\left(\frac{2^{\sum_{k=1}^{n-1}\left(k-h+m_{0}+1\right)}}{2^{\sum_{k=1}^{n} \max \left\{m_{0}, k+h\right\}} 2^{m_{0}}}\right)=O\left(\frac{2^{(n-1)\left(m_{0}+1-h\right)+n(n-1) / 2}}{2^{\sum_{k=1}^{n} \max \left\{m_{0}, k+h\right\}} 2^{m_{0}}}\right)$.
Now we have two cases. One case is when $h \leq m_{0}-n$ and therefore

$$
\sum_{k=1}^{n} \max \left\{m_{0}, k+h\right\}=m_{0} n .
$$

In this case

$$
\max _{z \in \beta_{m_{0}+1}^{\prime}}\left|D_{h}(z)\right|=O\left(\frac{2^{-(h-1)(n-1)+n(n-1) / 2}}{2^{2 m_{0}}}\right)=O\left(\frac{2^{-(\theta(n)-1)(n-1)+n(n-1) / 2}}{2^{2 m_{0}}}\right)
$$

where the last inequality follows because $\theta(n) \leq h$.
The other case is when h satisfies $m_{0}-n+1 \leq h \leq m_{0}$. In this case

$$
\sum_{k=1}^{n} \max \left\{m_{0}, k+h\right\}=m_{0} n+\left(h-m_{0}+n\right)\left(h-m_{0}+n+1\right) / 2 .
$$

Thus

$$
\begin{aligned}
\max _{z \in \beta_{m_{0}+1}^{\prime}}\left|D_{h}(z)\right| & =O\left(\frac{2^{-(h-1)(n-1)+n(n-1) / 2-\left(h-m_{0}+n\right)\left(h-m_{0}+n+1\right) / 2}}{2^{2 m_{0}}}\right) \\
& =O\left(\frac{2^{-(h-1)(n-1)+n(n-1) / 2}}{2^{2 m_{0}}}\right)=O\left(\frac{2^{-(\theta(n)-1)(n-1)+n(n-1) / 2}}{2^{2 m_{0}}}\right),
\end{aligned}
$$

This gives

$$
\max _{z \in \beta_{m_{0}+1}^{\prime}}\left|\frac{C_{n}(z)}{(-z)^{n}}\right|=O\left(\frac{m_{0} 2^{-(\theta(n)-1)(n-1)+n(n-1) / 2}}{2^{2 m_{0}}}\right) .
$$

Therefore one has

$$
\begin{aligned}
& \int_{0}^{1} \int_{\beta_{m_{0}+1}^{\prime}}\left|\frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} C_{n}(z)\right| d z d \tau \\
& \leq 2 L_{\beta_{m_{0}+1}^{\prime}} \int_{0}^{1} \tau^{2^{m_{0}} \cos (\pi-\alpha)}\left|p_{n}(\tau)\right| \max _{z \in \beta_{m_{0}+1}^{\prime}}\left|\frac{C_{n}(z)}{(-z)^{n}}\right| d \tau \\
& \quad=O\left(\frac{m_{0} 2^{-(\theta(n)-1)(n-1)+n(n-1) / 2}}{2^{2 m_{0}}} \max _{\tau \in[0,1]}\left|p_{n}(\tau)\right|\right)
\end{aligned}
$$

Now using this last formula and (recall $C_{n}(z)=0$ if $|z|<2^{\theta(n)}$)

$$
\int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} C_{n}(z) d z d \tau=\sum_{m_{0}=\theta(n)}^{\infty} \int_{0}^{1} \int_{\beta_{m_{0}+1}^{\prime}} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} C_{n}(z) d z d \tau
$$

one gets

$$
\begin{aligned}
&\left|\frac{1}{2 \pi i} \int_{0}^{1} \int_{\beta} \frac{\tau^{-z} p_{n}(\tau)}{(-z)^{n}} C_{n}(z) d z d \tau\right| \\
&=O\left(\frac{\theta(n) 2^{-(\theta(n)-1)(n-1)+n(n-1) / 2}}{2^{2 \theta(n)}} \max _{\tau \in[0,1]}\left|p_{n}(\tau)\right|\right)
\end{aligned}
$$

The lemma follows simplifying the O-symbol.
Theorem A is a direct consequence of Lemmas 3 (a), 45 and 6 .

3. Proofs of Theorem B and of Corollary

We need first the following lemma.
Lemma 7. Let a_{n}, c_{n}, d_{n} be defined as in Theorem A. Then
i) $a_{n}, c_{n} \in \mathbb{Z}$.
ii) $d_{n} 2^{n} \Pi_{k=[n / 2]}^{n}\left(2^{k}-1\right) \in \mathbb{Z}$.
iii) For some constant $0<c$, $\prod_{k=[n / 2]}^{n}\left(2^{k}-1\right)=O\left(2^{\frac{3}{8} n^{2}+c n}\right)$.

Proof. The proof of (i-ii) is immediate using Lemma 3 (a), i.e. $2^{n} p_{n-1}(1) \in \mathbb{Z}$. Part (iii) is easy and is left to the reader.

Proof of Theorem B. We apply Theorem A in its simplest form, i.e. we take $\theta(n)=$ n. In this case the O-term of Theorem A is

$$
O\left(\frac{1}{2^{\frac{n^{2}}{2}}-c n \ln n}\right)
$$

where $c>0$ is some positive constant. Next one has

$$
b_{n}^{\prime}=a_{n} d_{n}+b_{n}
$$

Thus Theorem Ay yields

$$
-\gamma a_{n}+b_{n}^{\prime}+e_{n}+c_{n} \ln 2=O\left(\frac{1}{2^{\frac{n^{2}}{2}}-c n \ln n}\right)
$$

Multiplying this by $g_{n}=2^{\left[n^{2} \rho\right]} \prod_{k=[n / 2]}^{n}\left(2^{k}-1\right)$ gives the desired result if one notices that by Lemma 7

$$
g_{n}=O\left(2^{\left(\frac{3}{8}+\rho\right) n^{2}+c n}\right),
$$

and that $a_{n} g_{n}, c_{n} g_{n} \in \mathbb{Z}$. This finishes the proof of Theorem B.

Proof of Corollary. We prove the remark for the second sequence. Note that if γ were a rational number then $\gamma n!a_{n} g_{n} \in \mathbb{Z}$ for $n_{0}<n$. Also $n!=O\left(2^{c^{\prime \prime} n \ln n}\right)$ $\left(0<c^{\prime \prime}\right)$ and therefore by Theorem B

$$
n!\left(-\gamma a_{n} g_{n}+b_{n}^{\prime} g_{n}+e_{n} g_{n}+c_{n} g_{n} \ln 2\right) \rightarrow 0
$$

and the assertion follows from this.
For the first sequence the proof is similar and is left to the reader.

References

[1] A. I. Aptekarev, On linear forms containing the Euler constant. Preprint, 2009. arXiv:0902.1768v2 [math.NT].
[2] A. I. Aptekarev (ed.), Rational approximation of Euler's constant and recurrence relations, Collected papers, Sovrem. Probl. Mat., 9, Steklov Math. Inst., RAS, Moscow, 2007, 84 p. (in Russian).
[3] D. Berend and T. Tassa, Improved bounds on Bell numbers and on moments of sums of random variables, Probab. Math. Statist. 30 (2010), 185-205. MR 2792580
[4] B. Berndt, Ramanujan's Notebooks I-V, Springer-Verlag, 1985-1998.
[5] J. Borwein and P. Borwein, Pi and the AGM. A study in analytic number theory and computational complexity, Wiley, New York, 1987. MR 0877728
[6] P. Borwein, On the irrationality of certain series, Math. Proc. Cambridge Philos. Soc. 112 (1992), 141-146. MR 1162938
[7] P. Bundschuh, Zwei Bemerkungen über transzendente Zahlen, Monatsh. Math. 88 (1979), 293-304. MR 0555344
[8] T. Hessami Pilehrood, Kh. Hessami Pilehrood, Criteria for irrationality of generalized Euler's constant, J. Number Theory 108 (2004), 169-185. MR 2078662.
[9] M. Prevost, A family of criteria for irrationality of Euler's constant. Preprint, 2005. arXiv:math/0507231v1 [math.NT].
[10] T. Rivoal, Rational approximations for values of derivatives of the gamma function, Trans. Amer. Math. Soc. 361 (2009), 6115-6149. MR 2529926
[11] T. Rivoal, On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant, Michigan Math. J. 61 (2012) 239-254. MR 2944478
[12] J. Sondow, Criteria for irrationality of Euler's constant, Proc. Amer. Math. Soc. 131 (2003), 3335-3344. MR 1990621
[13] J. Sondow and W. Zudilin, Euler's constant, q-logarithms, and formulas of Ramanujan and Gosper, Ramanujan J. 12 (2006), 225-244. MR 2286247.
[14] R. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Cole, 1986.
[15] D. Sweeney, On the computation of Euler's constant, Math. Comp. 17 (1963), 170-178. MR 0160308

Pablo A. Panzone
Departamento e Instituto de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina
pablopanzone@hotmail.com

Received: March 28, 2014
Accepted: September 7, 2015

[^0]: 2010 Mathematics Subject Classification. 41-99, 11Jxx.
 Key words and phrases. Euler's constant, Approximation, Linear form, Irrationality.
 The author was supported in part by Universidad Nacional del Sur and CONICET.

