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This paper addresses the control of biomass growth rate in fed-batch bioreactors. The main

difficulty when designing controllers for these processes is the lack of accurate on-line knowl-

edge of the controlled variable as well as the strong parameter and model uncertainties.

A completely novel approach to the control design is introduced in this paper which allows

us to overcome these problems. In fact, the proposed controller, which is applicable to a

large class of fermentation processes, requires minimal knowledge of the process parameters

and only uses on-line measurement of volume and biomass concentration. First, a reference

model is proposed and a goal manifold in the state space is derived where the control objective

is satisfied. A partial state feedback law is then proved to be an invariant control for the goal

manifold. Then, the feedback gain is dynamically adjusted via a discontinuous action that

enforces a sliding regime such that all state trajectories are steered towards the goal manifold.

This sliding mode controller presents very attractive robustness properties. The performance

of the controller is evaluated through numerical analysis and experimental results.

1. Introduction

Fed-batch processes are extensively used in the expand-
ing biotechnological industry. The requirements to opti-
mize the production and improve the product quality

obtained from the bioreaction processes are encouraging
the development of robust and reliable controllers.

For this reason, fed-batch process control is receiving
great attention by the research community. From the
control viewpoint, fed-batch fermentation processes

are a challenging problem. The control designer must
deal with strong modeling approximations, parameter
uncertainties, external disturbances, nonlinear and pos-

sibly non-minimum phase dynamics, lack of accurate
on-line measurements of important variables involved

in the process, etc.
A fed-batch bioreactor can be defined as a tank with

no outgoing flow, where several microbial growth and

enzyme-catalyzed reactions occur simultaneously in
a liquid medium. The growth of biomass (bacteria,
yeasts, etc.) proceeds by consumption of nutrients or
substrates (carbon, nitrogen, oxygen, etc.) provided the
environmental conditions (pH, temperature, illumina-
tion, etc.) are favorable. Simultaneously, some reactants
are transformed into products or metabolites through
the enzyme-catalyzed reactions mentioned above.

Most of the biotechnological processes treated here are
pure cultures with one limiting substrate.1 In many of
these processes, the formation of the metabolite we are
interested in is directly associated to microbial growth.
These so-called growth-linked reactions are represented
by Bastin and Dochain (1990) and Zlateva (2000).

SðsubstrateÞYXðbiomassÞ þ PðproductÞ ð1Þ

The symbol Y indicates that the biomass is an auto-
catalyst. The more biomass there is, the more biomass
(and product) can be produced. This growth may be
inhibited by the presence of a certain product (an inhibi-
tor) or an exceedingly high substrate concentration.

*Corresponding author. Email: jpico@ai2.upv.es
1Although the biomass needs several substrates to grow, only one is

not in excess at a given production phase.
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Processes for the production of single-cell proteins,

alcohol and gluconic acid all belong to this category

(Zlateva 2000).
When developing models for control purposes, a set

of standard simplifications are commonly performed

(Dunn et al. 2003):

. The microorganisms are regarded as black boxes,

without delving into the intracellular mechanisms

(the model is said to be non-structured).
. The model is built supposing an average microorgan-

ism (it is said to be non-segregated).
. The conditions and concentrations in the tank are

supposed to be homogeneous.
. Only the limiting substrate takes part in the model.
. Only one product is generally considered in the model:

either the metabolite of interest or, if it exists, the

inhibitor.

From a biological standpoint, an important goal is to

force and keep microorganisms into a given physio-

logical state in which production of a certain species is

optimal (Jobé et al. 2003 and Henson and Seborg

1992). This specification usually translates into the fol-

lowing control objective: the regulation of the biomass

growth rate.
The survey papers (Parulekar and Lim 1985, Johnson

1987, Lee et al. 1999, Rani and Rao, 1999), describe the

history and state of the art in the field of fed-batch

processes control. Due to the difficulties in measuring

the controlled variable, many papers found in literature

basically propose open-loop control with given feeding

flow profiles. In many contributions proposing closed-

loop control, the controlled variable is indirectly

estimated by on-line measurements of some auxiliary

variable such as dissolved oxygen and/or deal with

very particular processes in which the substrate or a prod-

uct is measurable. Two approaches are typical, either the

substrate, the inhibitor product or the dissolved oxygen

are regulated to a prefixed value, or a fixed feedforward

exponential feeding is applied along with some error

feedback term (Valentinotti et al. 2003, Oliviera et al.

2004, Arndt and Hitzmann 2004). Another research

line is dedicated to develop more generic control strate-

gies applying ideas of adaptive and optimal control

(Smets et al. 2002, 2004). These control strategies

employ an estimation of the controlled variable

obtained from on-line measurement of biomass concen-

tration (Claes and Van Impe 1999), a closed loop

version of the exponential feeding law and some error

feedback term. Although much progress has been

made, this approach still presents some shortcomings

to overcome. In fact, the sensitiveness to the high level

of noise corrupting the estimation and the strong depen-

dence on process parameters hamper the implementa-

tion of these controllers in real processes. Thus, for

non-monotonous kinetic functions, the feedback gain

switches according to the sign of the estimated growth

rate derivative so as to globally stabilize the process.

As a consequence of the high sensitivity to the noise cor-

rupting the estimation, convergence to the desired set-

point may be critically delayed in some circumstances.

To cope with process uncertainties, some authors have

suggested the use of neural network adaptive control

and found it superior under some conditions to conven-

tional adaptive control (Boscovic and Narendra 1995).

In Moya et al. (2002), another approach to controller

design with few measured variables is proposed which

is based on the transformation of the process dynamics

to the feed-forward form. Unfortunately, most of the

published papers poorly evaluate the performance of

the controllers under the realistic assumption of param-

eter uncertainty and corroborate their theoretical results

by simulation analysis using simple mathematical

models with known parameters.
In this paper, a novel controller for specific growth

rate regulation is developed which is applicable to a

large set of fermentation processes, in particular to

those described by (1) with both monotonous and

non-monotonous (with inhibition by substrate) growth

kinetics. First, the control objective is stated in terms

of a goal manifold (§ 2). An invariant control law is

derived next (§ 3). Then, with the aim of having control

of the reaching trajectory towards the goal manifold,

and to robustify the controller against parameter uncer-

tainties, a globally stabilizing adaptive algorithm is

developed based on variable structure control theory

and the associated sliding regimes (Sira-Ramirez 1988,

Utkin 1992, Hung et al. 1993). The proposed sliding

mode controller presents very interesting features.

Most importantly, it assumes minimal knowledge of

the process parameters and only requires on-line mea-

surements of volume and biomass concentration.2

Moreover, no estimator for the specific growth rate is

used. Additionally, the controller completely rejects

actuator (valves) errors and is robust to process param-

eter uncertainties and bounded disturbances in environ-

mental variables. Particularly, zero steady state error is

achieved despite all these types of perturbations as

well as despite a biomass measurement offset. All these

properties are corroborated by simulation (§ 5) and

2A biomass sensor (Navarro et al. 2001) that works accurately and reliably for a wide range of concentrations has been designed and patented by our

research group. To obtain the experimental results presented in § 6, the proposed controller has used the data supplied by this sensor.
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experimental results (§ 6). Finally, § 7 outlines the
conclusions of the paper and suggests future work.

2. Problem statement

Most of the fermentation processes represented by (1)
have the following description in state-space (Bastin
and Dochain 1990 and Dunn et al. 2003):

�0 ¼

_xx ¼ �ðsÞx�Dx
_ss ¼ �ys�ðsÞx�mxþDðsi � sÞ
_pp ¼ yp�ðsÞx�Dp
_vv ¼ F

8>><
>>: ð2Þ

where x, s and p are the biomass, substrate and product
concentrations respectively; si is the influent substrate
concentration; v is the volume; F is the feeding flow;
D ¼ F=v is the dilution rate; ys and yp are yield coeffi-
cients; m is the maintenance constant. Finally, � is the
specific growth rate which is an either monotonous or
non-monotonous function of substrate concentration.
Typical examples are (figure 1):

. Monod:

�ðsÞ ¼
�ms

ks þ s
ð3Þ

. Haldane:

�ðsÞ ¼
�os

ks þ sþ ðs2=kiÞ
: ð4Þ

The control objective is the regulation of this specific
growth rate at a given value � ¼ �r.

Since p affects neither microbial growth nor substrate
consumption, it has no influence on the controller
design. Consequently the equation for product will be
discarded. System �0 with its third equation omitted
will be hereinafter referred as �.

It should be noted the control specification implies
that a given manifold must be tracked, i.e. it is not
desired to stabilize around a point. Furthermore, the
state trajectory on this manifold is unbounded.
Volume goes to infinity, biomass concentration follows
a bounded trajectory and only substrate concentration
stabilizes around a value sr satisfying �ðsrÞ ¼ �r.

The control design is subject to the following
constraints:

. The only on-line measurable variables are volume and
biomass concentration.

. The yield coefficient ys, the maintenance constant m,
and the influent substrate concentration si are uncer-
tain parameters that, moreover, may vary during the
process.

. The specific growth rate � is an imprecisely known
function of s.

. The control signal is the feeding flow F (F� 0).

Let us define a reference model for �:

�r
�
¼

_xx ¼ �rx� �x2, xðt0Þ ¼ xr, 0
_vv ¼ �xv, vðt0Þ ¼ vr, 0
s ¼ sr:

8<
: ð5Þ

0 2 4 6 8 10
0

0.1

0.2

 µ
 [

1/
h]

0 2 4 6 8 10
0

0.1

0.2

 µ
 [

1/
h]

 s [g/L]

 µ
m

 

 µ
m

 

 s
m

 

Figure 1. (a) Monod and (b) Haldane kinetic functions.

130 E. Picó-Marco et al.

D
ow

nl
oa

de
d 

by
 [

K
ar

ol
in

sk
a 

In
st

itu
te

t, 
U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
9:

23
 0

8 
Se

pt
em

be
r 

20
15

 



It can be shown (Picó-Marco and Picó 2003) that, no

matter the form of �, there exists an invariant control

for � with respect to a reference manifold generated

by �r. In other words, once the state of � is on the refer-

ence manifold, it remains there.
This result is presented in the following section.

Thereafter a sliding mode adaptive controller, which

provides very interesting robustness properties, is devel-

oped using as basis the invariant control.

3. Invariant control

In order to get an explicit expression for the reference

manifold, it must be noticed that the first equation in

(5) is a logistic one, with solution:

xðtÞ ¼
ð�r=�Þ

1þ ðð�r=�xr, 0Þ � 1Þe��rt
: ð6Þ

The volume trajectory is easily obtained after realizing

that the absolute biomass ðxvÞ follows an exponential

trajectory and _vv ¼ �ðxvÞ. Hence

vðtÞ ¼ vr, 0 þ
�xr, 0vr, 0
�r

ðe�rt � 1Þ: ð7Þ

Solving (6) and (7) for t and equating, an integral for

�rfx, vg is obtained:

x�
�r

�
� xr, 0vr, 0 �

�r

�
vr, 0

� � 1
v
¼ 0 ð8Þ

which, along with

s� sr ¼ 0 ð9Þ

defines the goal manifold, referred in the sequel as Zr, 0.

Actually, there are different goal manifolds for different

initial conditions ðxr, 0, vr, 0Þ. Figure 2 shows Zr, 0 for sev-
eral initial conditions of the reference model. Note that

the control objective of maintaining a constant growth

rate �r is accomplished on any of these manifolds. In
fact, what really matters is the slope of the manifolds.

The difference among all these manifolds lies on the

amount of biomass obtained at the end of the process.
A new coordinate system is obtained that has one

coordinate z along Zr, 0 and two other coordinates
’1, ’2 transversal to it. The new coordinates can be

defined as:

’1
�
¼ x�

�r

�
� ðxr, 0vr, 0 �

�r

�
vr, 0Þ

1

v

’2
�
¼ s� sr

z �
¼ xv:

9>>>>=
>>>>;

ð10Þ
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Figure 2. Goal manifolds on the z� v plane.
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Now, it must be confirmed that there exists an invariant
control. That is, a control such that once the state of �
reaches Zr, 0, it remains there, i.e. ’ ¼ colð’1, ’2Þ � 0.
The condition for ðf , gÞ-invariance of a dynamic
system _xx ¼ f ðxÞ þ gðxÞu with respect to the submanifold
Z implies the existence of a solution u ¼ UðxÞ (the invar-
iant control) of the algebraic equation

@’

@x
f ðxÞ þ

@’

@x
gðxÞu ¼ 0 x2Z: ð11Þ

In our case, two equations are obtained. The first one is
fulfilled for the partial state feedback law:

F �
¼Uðx, vÞ ¼ �xv ð12Þ

for any constant �. The second one gives an expression
for �:

� ¼ �r ¼
ys�r þm

si � sr
: ð13Þ

Observation 1: Feedback laws similar to (12) can be
found in the literature (see for instance Lee et al.
(1999), Smets et al. (2004), Moya et al. (2002)). The
expression (12) is derived here from a completely differ-
ent approach. From equation (11), following Fradkov
et al. (1999), it is easy to show that equations (12) and
(13) constitute an invariant control for � on Zr, 0.

Observation 2: Given �r and hence �, the biomass at the
end of the process zf (which is usually a variable of inter-
est) is completely determined by the initial conditions of
the reference model ðxr, 0, vr, 0Þ. From (8), it follows that
zf ¼ zr, 0 þ ð�r=�Þðvf � vr, 0Þ where zr, 0 ¼ xr, 0vr, 0 and vf is
the final volume of the reactor.

Observation 3: It is straightforward to demonstrate that
(12)–(13) also provides local convergence towards a goal
manifold Zr, 0 with unknown initial condition ðxr, 0, vr, 0Þ.
Moreover, this convergence is global for monotonous
kinetic functions, and also for Haldane-like functions
provided si is properly bounded. For the sake of brevity,
we omit this demonstration. Instead, we will demon-
strate convergence of the robust sliding mode adaptive
controller.

4. Sliding mode adaptive control

Let us consider process � with the partial feedback
law (12):

�f ¼

_xx ¼ �ðsÞx� �x2

_ss ¼ �ys�ðsÞx�mxþ �xðsi � sÞ
_vv ¼ �xv:

8<
: ð14Þ

The problem to face now is the following. For any given
initial conditions ðxr, 0, vr, 0Þ defined for the reference
model �r, and any (not necessarily known) initial condi-
tion for the process �f,

3 define an adaptive law for � so
that �f is immersed into �r with minimal knowledge of
the kinetic function �(s) and the process parameters.

Since only biomass and volume are assumed to be
measured on-line, only the first off-the-manifold coordi-
nate ’1 will be used in the sequel as error signal. More
specifically the normalized error signal:

� z, v, �ð Þ�¼
’1
x

¼ 1�
zr, 0

z
�
�r

�z
v� vr, 0
� �

: ð15Þ

4.1. Ideal sliding mode adaptation law

The goal is to adapt � so that � ! 0 and thus system �f

approaches the zero level set of the integral of �r defined
by (8) despite process uncertainties. For this purpose, let
us propose the following reaching dynamics for the
nominal system (Hung et al. 1993, Sira-Ramirez 1993):

_�� ¼ �N1� �N0 sign ð�Þ ð16Þ

with N0 > 0, N1 > 0, so that the manifold � � 0 is
reached in a finite time �, ideally

� ¼
1

N1
ln 1þ

N1

N0
j�ðt0Þj

� �
:

Moreover, once the manifold defined by � � 0 is
reached, the state trajectory will be ideally maintained
on it by means of an infinite frequency switching
action. This type of behaviour is called ideal sliding
regime on the sliding manifold � � 0 (Sira-Ramirez
1988, Utkin 1992).

Differentiating (15):

_�� ¼
_��

�2
v� vr, 0

z
�r þ �ðsÞ 1� �ð Þ � �r ð17Þ

and equating to (16), the following discontinuous
adaptation law for � results:

_�� ¼
��2z

�r v� vr, 0
� � ðN1 � �̂�Þ� þN0 sign ð�Þ þ �̂�� �r½ �:

ð18Þ

Actually, a precise estimation of � (�̂�) is not necessary.
This is one of the main advantages of the proposed
control scheme. In fact, any bounded error in the

3For technical reasons, the initial volume of �r must be chosen smaller than the one of �f.

132 E. Picó-Marco et al.

D
ow

nl
oa

de
d 

by
 [

K
ar

ol
in

sk
a 

In
st

itu
te

t, 
U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
9:

23
 0

8 
Se

pt
em

be
r 

20
15

 



estimation of � will be compensated by the linear

and discontinuous feedback terms N1� and N0 sign ð�Þ
respectively. Furthermore, it is sufficient to choose

�̂� ¼ �r. Conditions for N0 and N1 to impose an ideal

sliding regime on � � 0 despite replacing �̂� by �r can

be easily derived (Sira-Ramirez 1988, Utkin 1992).

4.2. Real sliding mode adaptation law

We are interested in the implementation of the

proposed control strategy. With this purpose, the

infinite switching frequency that characterizes the ideal

sliding mode should be limited. Actually, there are sev-

eral approximations to the ideal sliding mode. For

instance, the sign ð�Þ function can be replaced by a

pulse width modulator, a hysteresis comparator, a

high-gain amplifier with saturation, etc. (Hung et al.

1993). In this paper, the latter approach has been

taken which leads to a smooth control action (Slotine

and Li 1991).
Let us redefine the adaptation law as:

_�� ¼
��2z

�r v� vr, 0
� � gð�� ���, � �Þ

1

T�
� �r

� �
�: ð19Þ

Assume for the moment that gð�� ���, � �Þ � 1. Besides,

1

T�
¼

N0

max fj�j, �g
þN1 ð20Þ

N0 ¼ �ð1þ n0Þ n0 > 0 ð21Þ

N1 ¼ �ð1þ n1Þ n1 > 0 ð22Þ

� ¼ max f�r,�m � �rg ð23Þ

with 0 < � < 1.
Let us evaluate now the convergence of the real slid-

ing mode control to the sliding manifold. From (17)

and (19) the time evolution of the normalized error

signal, i.e. the reaching dynamics is governed by:

_�� ¼ �
1

T�
þ �ðsÞ � �r

� �
� þ �ðsÞ � �rð Þ: ð24Þ

Define now the Lyapunov-like function:

W ¼
1

2
�2: ð25Þ

Then:

_WW ¼ �
N0

max fj�j, �g
� �N1�

2 þ � � �2
� �

�� �̂�ð Þ

¼

ð�� �rÞ� �N0j�j � ðN1 þ �� �rÞ�
2 �j j � �

ð�� �rÞ� �
N0

�
þN1 þ �� �r

� �
�2 �j j < �

8><
>:

< 0 for �j j >
�

1þ n0 þ n1�
: ð26Þ

Notice that, although �r has been used instead of an
estimation of �, the off-the-manifold error can be
done arbitrarily small by appropriately selecting the
constant � and the gains n0 (N0) and n1 (N1).

Observation 4: In the limit, choosing �! 0, the real
sliding mode adaptation law converges to the ideal slid-
ing mode previously described.

4.3. Stability analysis

It has been already shown that state trajectories con-
verge to (the close vicinity of ) � � 0. This section is
devoted to demonstrate that system trajectories on the
sliding surface � � 0 asymptotically converge to the
goal manifold Zr, 0. In other words, we will demonstrate
that if the first off-the-manifold error (’1) is maintained
at zero, the second off-the-manifold error (’2) also tends
to zero (i.e. s ! sr) and the feedback gain tends to its
nominal value �r given by (13). Besides, the biomass
concentration converges to a given trajectory whereas
volume diverges (according to (6) and (7), respectively).
In the case of non-monotonous kinetics some precau-
tions must be taken.

4.3.1. Sliding dynamics. On the sliding manifold � � 0,
the closed-loop system dynamics (14) can be rewritten
as follows:

�� ¼

_ss ¼ �ys�ðsÞ �mþ �ðsi � sÞ½ �x

_�� ¼ ��2
�ðsÞ � �r

�r

v

v� vr, 0

� �
x

_vv ¼ �v½ �x

8>>><
>>>:

ð27Þ

where the equation for � has been obtained from (17)
and the sliding mode existence condition (� ¼ 0,
_�� ¼ 0). Besides, the equation for biomass concentration
has been omitted to avoid redundancy. In fact,
on the sliding manifold � � 0, x is algebraically
dependent on the other state variables: x ¼ ðzr, 0=vÞ þ
ð�r=�vÞðv� vr, 0Þ. See that replacing x in the last
equation of (27) yields _vv ¼ �rðv� vr, 0Þ þ �zr, 0, which
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confirms that the volume diverges exponentially on

� � 0 (recall that v0 > vr, 0).

4.3.2. Partial stability

Definition: Let � :V �
¼ ½v0,1½ � �1, 0� the func-

tion  ðvÞ ¼ ðv=v� vr, 0Þ . See that v ¼  �1ð Þ ¼
vr, 0ð = � 1Þ and that the Frechet derivative  0 ¼

�ð � 1Þ2=vr, 0. Furthermore, x can be rewritten as

x ¼ xr, 0ð � 1Þ þ �r=�
	 


ð1= Þ.

Definition: Let � the partial state � ¼ colðs, �Þ and

�r ¼ colðsr, �rÞ. Recall that s2S ¼�0, si½ and �2<þ.

Let M ¼ S �<þ, and M� the region of � � 0 such

that � 2M.

Let define the continuously differentiable function

Vð�, Þ ¼  

ðs
sr

�ð&Þ � �r

�r
d& þ ðsi � srÞ ln

�

�r
þ
ð�r � �Þ

�

� �
:

ð28Þ

with time derivative

_VVð�, Þ ¼ � xð�, Þ

�
ð � 1Þ�

ðs
sr

�ð&Þ � �r

�r
d&

þ
ys

�r
ð�ðsÞ � �rÞ

2
þ
�

�r
ð�ðsÞ � �rÞðs� srÞ

�
:

ð29Þ

Locally around �r, Vð�, Þ is upper and lower

bounded by the positive definite functions Vð�Þ�¼
Vð�, 0Þ and Vð�Þ�¼Vð�, 1Þ:

Vð�Þ � Vð�, Þ � Vð�Þ: ð30Þ

Additionally,

_VVð�, Þ � �Qð�Þ ð31Þ

where Qð�Þ�¼ � _VVð�, 1Þ is nonnegative definite.
Then, �� is Lyapunov stable with respect to � uni-

formly in v, and there exists D � M (D3 �r) such that

for all ð�, vÞ 2D � V, �ðtÞ ! EðDÞ �¼ f� 2D :Qð�Þ ¼ 0g as

t ! 1 (Chellaboina and Haddad 2002). Although it is

not generally true for partially stable systems, an invar-

iance principle can be derived for asymptotically auton-

omous partial systems (Chellaboina and Haddad 2002,

Rouche et al. 1977) (Ch. 8). Fortunately, this is our

case. In fact,  ! 1 and x ! �r=� as v diverges. So,

the partial system ��, � defined by the first two

equations of (27) asymptotically converges to the

autonomous system

�a
�, � ¼

_ss ¼ �ys�ðsÞ �mþ �ðsi � sÞ½ �
�r

�
_�� ¼ ��ð�ðsÞ � �rÞ

(
ð32Þ

It is easy to see that �r is the largest invariant set for (32)
in EðDÞ. Consequently, �� is asymptotically stable with
respect to � uniformly in v.

4.3.3. Global stability for monotonous kinetic functions.

For monotonous kinetic functions, e.g. Monod,

* Vð�, Þ verifies (30) for all � 2M and Vð�Þ is radially
unbounded.

* _VVð�, Þ verifies (31) for all � 2M and �r is the largest
invariant set for (32) in EðMÞ.

Consequently, �� is globally asymptotically stable with
respect to �r uniformly in v (Chellaboina and Haddad
2002). Then, the system �f on � � 0 globally asymptoti-
cally converges to the goal manifold Zr, 0 defined by
the reference model �r.

4.3.4. Stability for non-monotonous kinetic functions.

For non-monotonous kinetic functions, e.g. Haldane,
the previous results about stability, and hence about
convergence towards Zr, 0 are only local. Actually, the
partial system may present two equilibrium points. Let
us denote sm the substrate concentration at which the
growth rate is maximum, sr < sm and sr > sm the sub-
strate concentrations satisfying �ðsrÞ ¼ �ðsrÞ ¼ �r.
Locally around sr, the kinetic function behaves as a
monotonous function. Then, �� locally asymptotically
stabilizes around �r uniformly in v, and the system �f

on � � 0 locally asymptotically converges to the goal
manifold Zr, 0.

In the sequel, the adaptation law is modified in order
to achieve global convergence towards Zr, 0.

Definition: Let S
r
¼ fs2S: s < srg, L

r
¼ f�2<þ:

� < �r ¼ ðys�r þmÞ=ðsi � srÞg, M
r
¼ S

r
� L

r and Mr
�

the region of � � 0 where � 2M
r.

It is clear from (29) and (27) that Mr
� is a domain of

attraction of �r on the sliding manifold � � 0, that is a
region of convergence towards Zr, 0 on � � 0.
Nevertheless, if the adjustable feedback gain � or the
substrate concentration take large values, the system
state might reach (the close vicinity of) the sliding mani-
fold outside the domain of attraction, leading to unde-
sired unstable dynamics.

A possible solution suggested here is to modify the
adaptation law so that the trajectories are steered to
reach the attractive region Mr

� of the sliding manifold
� � 0. A natural way of avoiding the aforementioned
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undesired dynamics is limiting the feeding governed by �
and si.
Let rewrite the second equation of �f, where, to

simplify the analysis, the stabilising term �mx is

disregarded:

_ss ¼ �ys�ðsÞ þ �ðsi � sÞ½ �x: ð33Þ

Figure 3(a) displays a Haldane kinetic function �(s) and
the reference growth rate. Let assume we fix � ¼ ��� with

�r < ��� < �r. The solid straight line represents the equa-

tion y ¼ ���ðsi � sÞ=ys. Note that for all values of s such

that the curve �(s) is over the solid line, the right hand

side of (33) is negative, that is s decreases. As a conse-

quence, the partial state � will reach M
r and will

remain there until � � 0 (specifically, Mr
�) is eventually

reached. According to this, the adaptation law is

modified by incorporating the saturation function

gðw1,w2Þ ¼
0 if w1 � 0 ^ w2 � 0
1 otherwise:

�
ð34Þ

To complete the analysis, we need to show that

despite saturation, all state trajectories finally reach

the vicinity of � � 0. In fact, during � saturation

( _�� ¼ 0), the first term of (17) is cancelled. Then, the

derivative of the Lyapunov-like function (25) becomes

_WW ¼ ���2 þ ð�� �rÞ�: ð35Þ

On one hand, if � > 0, saturation becomes inactive

(gð�, �Þ ¼ 1) and the right-hand side of (18) is negative

(i.e. � leaves saturation). Thus, inequality (26) holds,

i.e. the trajectory points towards � � 0. On the other

hand, if � < 0, � remains at its limit value. Therefore,

to approach � � 0, (35) should be negative whenever

� < 0. It can be shown that this is true, possibly

except for an initial period of time. In fact, as � is main-

tained fixed at ���, the partial state � will finally reach M
r,

and moreover, will converge to ��� ¼ ð�ss, ���Þ 2M
r, where �ss

is the substrate concentration at which the solid line

crosses the kinetic function in figure 3(a). Since

�ð�ssÞ > �r, _WW will, sooner or later, become negative.

Consequently, trajectories will finally point towards

� � 0 from both sides as desired.

Observation 5: Note, however, that limiting � is not

sufficient to guarantee global attraction towards M
r.

In fact, consider figure 3(b) that corresponds to a

larger value of si. In this case, although �r < ��� < �r,
S
r, and hence M

r, is not reached from all initial condi-

tions. In particular, it is not so from large initial sub-

strate concentrations. This means that si should also

be limited. In fact, the line must be below the �(s)
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Figure 3. Limit value of gain � for Haldane-like kinetics.
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curve for s2S � S
r. Unfortunately, the more uncertain

the kinetic function is, the more conservative the
design should be.

Observation 6: Note that for Monod-like kinetic func-
tions, although it is not necessary to assure convergence
toward Zr, 0, limiting � may also be used to improve the
transient from certain initial conditions. Certainly, a
kind of windup effect may appear due to the saturation
of Monod functions and the integrator implicit in (18).
Then, in order to reach and maintain the process state
on the sliding manifold � � 0, a large overshoot in �
may appear, leading to an excess of feeding and a
large settling time. Limiting appropriately the value of
�, the substrate concentration is bounded hence avoid-
ing strong saturation of the growth rate and the asso-
ciated windup effect. Based on the previous analysis,
global convergence towards Zr, 0 on the sliding manifold
� � 0 is still guaranteed despite � limitation provided
��� > �r.

4.4. Robustness properties

The proposed control strategy presents very attractive
robustness features. Note that the control signal
F ¼ �xv and the adaptation law (19) are completely
insensitive to the system parameter uncertainties. In
fact, neither ys, nor m, nor the equilibrium substrate
concentration sr are used to compute the control
signal. For the same reason, the control strategy is not
affected by perturbations in the influent substrate con-
centration si. Furthermore, no on-line estimation of
the substrate concentration or the specific growth rate
is used by the control algorithm. In the case of non-
monotonous kinetics, only some bounds for the process
parameters are needed to design the limit value of �
(along with an adequate value for si), thus guaranteing
global stability. In order to have a criteria to design
the sliding mode gains N0 and N1, just an upper
bound for the maximum achievable value of � is neces-
sary. When properly designed, these gains N0 and N1

enforce the state towards the vicinity of the sliding mani-
fold � � 0 despite the lack of knowledge of � and the
process parameters, and despite uncertainties in the
actuators (valves) response (the valves can be seen as
within a high gain loop, so that any error in F leads to
a negligible error in �).
On the other hand, to compute the off-the-manifold

error signal � which governs the gain adaptation law,
as well as the control signal F, both biomass concentra-
tion and volume must be measured. Nevertheless, it is
easy to see that a biomass concentration measurement
offset does not affect the steady state growth rate. In
fact, replacing � by F / z in (15), where F is the real con-
trol action, it follows that the off-the-manifold error �

becomes independent of z (and also of x) as biomass
increases (z 	 zr, 0). Moreover, a steady state growth

rate offset (i.e. an off-the-manifold error) can only be
caused by errors in volume measurement.

5. Simulation results

Simulation results for fed-batch processes with both

Monod and Haldane kinetics are presented to corro-
borate the attractive features of the proposed control
strategy.

The process and controller parameters used in simula-
tions are listed in table 1. The Monod and Haldane

kinetic functions are depicted in figure 1.

5.1. Monod kinetics

Here, the ability to regulate the growth rate � at its
desired value �r despite noisy (with zero mean) measures

of x and v, and despite uncertainties in the process para-
meters ks, ys and m is evaluated. These uncertainties
cause an error in the nominal initial condition �0 ¼ �r.
The simulation results for initial conditions ðx0, s0, v0Þ ¼
ðxr, 0, 0:1, vr, 0

þÞ are presented in figure 4. The nominal
response of the system, i.e. when the parameters are

assumed to be perfectly known, is drawn in solid line.
It is observed that the growth rate � and the adaptable
gain � rapidly converge towards their desired values �r

and �r, respectively. Simulation results have been also
obtained when a þ100% error in the estimation of ks
is considered in the controller design. The time response

under this test condition is overlapped by the nominal
response. Additionally, the dashed line depicts the

performance with a þ20% error in the estimation of
ys. Finally, with dot-dashed line, the response neglecting
the maintenance constant m in the determination of �0 is
shown. In all cases, the closed-loop responses rapidly
converge towards the nominal response, corroborating

Table 1. Parameters and test conditions.

Parameter Value Parameter Value

�m [1/h] 0.22 vf [L] 30

ks [g/L] 0.14 �r [1/h] 0.1

ys 1.43 si [g/L] 20

m [1/h] 0.05 � 0.05

ki [g/L] 4 �0 0.5

xr, 0 [g/L] 5 �1 0.5

vr, 0 [L] 91

Meas. noise x

Meas. noise V

þ �0:1, 0, 0:1f gx

þN 0:5, 0:01ð Þ

þN 0, 0:001ð Þ
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the excellent regulation properties despite parameter
uncertainties and measurement noise.

5.2. Haldane kinetics

In this subsection different simulation results are pre-
sented for a fed-batch process with Haldane kinetics.
Figure 5 shows in solid line the response of the closed-

loop system for initial conditions beyond its peak value
(s > sm): ðx0, s0, v0Þ ¼ ðxr, 0, 2:5, vr, 0

þÞ. It is seen that the
substrate concentration is rapidly reduced and, conse-
quently, the growth rate converges to its desired value
�r. Simulation results are also presented when a

10% error in the biomass measurement is considered
(dashed and dot-dashed lines). Note that the adjustable
gain � tends to different steady state values (figure 5(b))
to compensate for these large errors in the measured
biomass (figure 5(c)). As a consequence, the growth
rate is stabilized at �r, corroborating the robustness
property to biomass measurement errors.
Finally, simulation analysis were conducted to vali-

date the ability of the controller to reach the prescribed
manifold from different initial conditions (figure 6). The
response from ðx0, s0, v0Þ ¼ ðxr, 0, 0:1, vr, 0

þÞ is drawn in
solid line. The prescribed surface is immediately reached
and the growth rate rapidly converges to �r. The
response from a larger initial biomass concentration
(x0 ¼ 1:4 � xr, 0 ¼ 7g=L) is shown in dashed line. The
excess of biomass and the low incoming flow (low �)
necessary to reduce the normalized error � lead to the
undershoot in the growth rate observed in figure 6(a).
After the prescribed surface is reached, the growth rate
rapidly converges to its desired value. On the other
hand, the response from an initial condition with nega-
tive error � is depicted in dotted line. The system state
converges towards the prescribed surface with a velocity

governed by the controller parameters n0 and n1. The
incoming flow (i.e. �) is increased to reduce the magni-
tude of this error. Unfortunately, when the prescribed
manifold is reached, �	 �r, and the state trajectory is
oriented in opposite direction to the domain of attrac-
tion Mr

� . Consequently, both the controller parameter
� and the substrate concentration s diverge.
Conversely, the response of the system from the same
initial condition but bounding the gain � � ��� is shown
in dot-dashed line. At the cost of enlarging the reaching
time, this limitation of the feedback gain guarantees that
the prescribed manifold is reached inside the domain of
attraction of the equilibrium point for the partial state
� ¼ �r.

Observation 6: The simulation results using large initial
errors � shown in this last example are intended to put in
evidence the reaching and stabilizing properties of the
proposed controller. In practice, however, the initial
conditions for x and v of process � and of reference
system �r can be adjusted to avoid large transient
responses.

6. Experimental results

In this xsection some experimental results are presented.
A fed-batch fermentation on glucose is included, carried
out using the natural Saccharomyces cerevisiae strain
T73wt and medium YPD. The goal was to keep a low
specific growth rate �r ¼ 0:11h�1 so as to avoid the for-
mation and accumulation of ethanol. Environmental
conditions where controlled to T ¼ 30�C and
pH ¼ 4:5 on a Biostat B5L reactor.

The experimental results are shown in figure 7. After
an initial batch with a glucose concentration of 5g=L,
the controlled fed-batch was switched on at t0 ¼ 7:65h,
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Figure 4. Simulation results (first 20 hours) for Monod kinetics with parameter uncertainties.
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when the glucose in the medium was almost depleted.

The concentration of glucose in the feeding flow was

set to 20g=L. The constants of the goal manifold were

set to zr, 0 ¼ zðt0Þ and vr, 0 ¼ 0:9vðt0Þ, whereas the initial

value of the feeding gain � was set to

�ðt0Þ ¼ 1:3 � 10�3LðghÞ�1. Under these conditions, the

initial value of the normalized off-the-manifold error

results �ðt0Þ ¼ �2:3.
The control algorithm increases � (figure 7(c)) in order

to approach the sliding surface � � 0 (figure 7(b)). The

integral action inherent to the controller causes an initial

overshoot in the specific growth rate for some 4 hours

(figure 7(a)). This transient overshoot could have been

reduced by choosing zr, 0, vr, 0 and �ðt0Þ so that

�ðt0Þ ffi 0. Anyway, the large initial value of �ðt0Þ
allows us to corroborate the reaching properties towards

� � 0 of the algorithm. During the rest of the experi-

ment, the specific growth rate � keeps around the

desired value but for some periods of time (around

t ¼ 20 h and t ¼ 25 h). At these, � drops due to limita-

tion in the oxygen supply, as seen in figures 7(d) and

7(e) looking at the decrease of pO2 at t ¼ 20 h and the

increase of the stirrer speed at t ¼ 25 h. This behaviour

occurs because there was deficient control loop for

pO2 in the experiment, and O2 was not considered as a

limiting substrate in the model. Actually, whenever

this limitation appears, one should improve the oxygen

transfer rate by means of the air supply and stirrer

speed and/or demand for a lower specific growth rate.

The long term variation in � (figure 7(c)), which is com-

monly observed in all long experiments, can be

explained as an adaptation to the varying yield
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Figure 5. Simulation results for Haldane kinetics with biomass error measurement.
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coefficient ys. For this reason, control strategies using
a-priori estimation of ys usually fail to regulate the
specific growth rate during the whole experiment.
Figure 7(f) shows the evolution of the absolute bio-

mass w.r.t. volume. Also, goal manifolds for different
representative values of � are depicted. These values of
� were obtained at the beginning (t ¼ 8h), the middle
(t ¼ 20 h) and the end (t ¼ 35 h) of the fed-batch pro-
cess. Recall that the appropriate value of the feeding
gain � is not known and even varies with time.
Therefore, the goal manifold must also be searched
for, as it depends on �. Notice how, after the transient
phase, the absolute biomass z follows a trajectory paral-
lel to the goal manifold Zr, 0, �ð35hÞ. The reason why the
trajectory tracks a parallel to Zr, 0, �ð35hÞ instead of
Zr, 0, �ð35hÞ itself is due to an offset in the measurement
of the off-the-manifold error. Yet, the controller is

robust against this kind of offsets. Thus, the specific
growth rate is correctly driven to the reference.

Finally, it is important to stress the low values of glu-
cose in the medium after the initial batch. They kept at
values around 0:023g=L throughout the experiment.
Their order of magnitude is close to that of measure-
ment noise. Therefore, a control strategy based some-
how on measurements or estimation of the substrate is
not feasible in practice. As for the ethanol concerns,
the low specific growth rate avoided its formation.

7. Conclusions and further research

In this paper, an SM-based adaptive controller was
developed for specific growth rate regulation of a large
class of fermentation processes. The main advantage
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Figure 6. Simulation results for Haldane kinetics from different initial conditions.
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of this controller is that requires minimal knowledge of
the process under control, thus presenting strong robust-
ness properties to parameter uncertainties. Moreover,
zero steady state error is achieved despite these uncer-
tainties as well as despite biomass measurement errors.
These attractive features are corroborated by simulation
and experimental results. The control law is applicable
to fed-batch processes with monotonous kinetics as
well as non-monotonous ones with substrate inhibition.

Further research should be oriented to extend these
results to other types of fermentation processes, for
instance those with product inhibition. In this case a
new actuator could be introduced which separates a
fraction of the inhibitory product from the broth
Gonzalez-Vara et al. 2000). This would account for
introducing a new term of the form �ð�=vÞp in product
equation of �0. It can be shown that this new control
action, along with the existing one, form again an
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Figure 7. Experimental results for the fed-batch fermentation on S. cerevisiae T73.
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invariant control. Measuring the product an analogous
adaptive scheme should be analized, as an alternative
to schemes trying to regulate the inhibitory product to

a residual value (Valentionotti et al. 2003).
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