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Let M be a finite von Neumann algebra with a faithful normal trace τ . In this paper
we study metric geometry of homogeneous spaces O of the unitary group UM of M,
endowed with a Finsler quotient metric induced by the p-norms of τ , ‖x‖p = τ (|x|p)1/p ,
p � 1. The main results include the following. The unitary group carries on a rectifiable
distance dp induced by measuring the length of curves with the p-norm. If we identify
O as a quotient of groups, then there is a natural quotient distance ḋp that metrizes the
quotient topology. On the other hand, the Finsler quotient metric defined in O provides
a way to measure curves, and therefore, there is an associated rectifiable distance dO,p .
We prove that the distances ḋp and dO,p coincide. Based on this fact, we show that the
metric space (O, ḋp) is a complete path metric space. The other problem treated in this
article is the existence of metric geodesics, or curves of minimal length, in O. We give
two abstract partial results in this direction. The first concerns the initial values problem
and the second the fixed endpoints problem. We show how these results apply to several
examples. In the process, we improve some results about the metric geometry of UM with
the p-norm.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study metric properties of smooth homogeneous spaces O of the unitary group U M of a finite von
Neumann algebra M. If τ is a finite faithful normal trace on M, the p-norms on M (p � 1) induced by the trace, can
be used to turn U M into a complete metric space. This is achieved by giving T U M the Finsler metric that is given by the
p-norm at any point of U M , recalling that its Lie algebra can be identified with Msh , the skew-hermitian elements of M.
The p-norms in M can be used to turn O into a metric space, in two different ways. First, measuring the distance ḋp

between classes. Second, with the rectifiable distance dp induced by the Finsler metric just mentioned.
In both cases it is necessary to assume that the isotropy groups Gx ⊂ UM are closed in the p-norm (or else one ends

with a pseudo-distance where d(x, y) = 0 might not imply x = y in O). Note that when Gx is the unitary group of a von
Neumann subalgebra of M, then Gx is p-norm closed in U M . The first metric is well known (as it is the quotient metric on
a quotient of a topological metricable group), and moreover it is known that (O, ḋp) is a complete metric space [15, p. 109].
We show here that for p > 1, these two metrics coincide with no additional hypothesis (Theorem 4.11).

Next we study the existence of metric geodesics, or short paths, for the given metric. We give a first step in that direction
in Theorem 5.2, where it is shown that, under suitable hypothesis (in particular p even), the curves of the form δ(t) = etz · x,
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with minimal symbol z ∈ Msh , that is ‖z‖p � ‖z − y‖p for any y ∈ Gx are minimizing in O up to a critical t , among a certain
family of rectifiable curves.

We also show (Theorem 5.5) that there exists a certain set in O containing x such that any point there can be joined to
x with such a curve, which is shorter than any other smooth curve joining the same endpoints which does not leave the
mentioned set.

In some examples, for instance quotient spaces of U M with the unitary group U N , where N is a von Neumann subal-
gebra of the center of M, this set is in fact an open uniform neighborhood of x in O = U M/UN .

This paper is organized as follows: in Section 2, we introduce the necessary definitions (finite von Neumann algebras,
smooth homogeneous structures, rectifiable distances and uniform convexity in Banach spaces). Section 3 contains known
results on the rectifiable distance in the unitary group U M of a finite von Neumann algebra M, in particular minimality of
geodesics and local convexity of the geodesic distance. In Section 4 we introduce the rectifiable distance in the homogeneous
space O, and we prove several facts on the metric and topological properties of this space, including the coincidence
between the quotient topology and the topology induced by the rectifiable distance in O. These imply the completeness of
the metric space O with the rectifiable distance. In Section 5 we treat the problem of minimality of geodesics in O, and
prove two partial results related to the initial values problem and the fixed endpoints problem. We finish the paper with
a collection of examples where our results apply, among them the homogeneous spaces O = U M/UN , where N is a von
Neumann subalgebra of the center of M.

2. Definitions and background

Let M be a von Neumann algebra with a finite and faithful normal trace τ . Denote by M× and U M the groups of
invertible and unitary operators of M. Let 1 � p � ∞, and denote with L p(M) the noncommutative L p space of (M, τ ),
that is, the completion of M relative to the norm ‖ · ‖p , where ‖x‖p

p = τ (|x|p). When p = 2, L p(M) is a Hilbert space with
the inner product 〈a,b〉τ = τ (b∗a). We use the subscript h (resp. sh) to denote the sets of hermitian (resp. skew-hermitian)
operators. The symbol ‖ ‖ denotes the usual operator norm of M.

If f : X → Y is a smooth map between manifolds, we will use f∗ : T X → T Y to denote the differential of f and
f∗x : Tx X → T f (x)Y its specialization. Let O be a topological space on which U M acts continuously and transitively, such
that for any element x ∈ O, the subgroup Gx = {u ∈ UM : u · x = x}, called the isotropy group of the action at x, is a closed
submanifold of U M . This implies that O can be endowed with a differentiable manifold structure, in a way such that the
map

π = πx : UM → O, πx(u) = u · x

is a smooth submersion. Therefore O is a homogeneous space of the group U M .

Remark 2.1. For x ∈ O, denote by Gx the Banach–Lie algebra of the isotropy subgroup Gx . Since we are assuming that π
is a smooth submersion, and that O is given the differentiable structure that induces the final topology on Tx O, there
exists a closed supplement Fx ⊂ Msh such that Msh 
 Gx ⊕ Fx , and a smooth section sx : Tx O → Fx , (πx)∗1 ◦ sx = idTx O ,
sx ◦ (πx)∗1 = P Fx , where the last expression denotes the unique bounded projection in B(Msh) with rank Fx and kernel Gx .
The tangent space Tx O can be normed with the (uniform) norm,

‖V ‖x = inf
{‖z − y‖: y ∈ Gx

}
,

where z ∈ Msh is any lift of V , i.e. π∗(z) = V . Note that∥∥sx(V )
∥∥ = ∥∥sx

(
(πx)∗1(z)

)∥∥ = ∥∥P Fx(z)
∥∥ = ∥∥P Fx(z − y)

∥∥ � ‖P Fx‖‖z − y‖
for any lift z ∈ Msh of V ∈ Tx O and any s ∈ Gx . Thus ‖sx(V )‖ � ‖P Fx‖‖V ‖x . The norm of P Fx does not depend on the point
x ∈ O since

‖P Fu·x‖ = ‖Adu ◦ P Fx ◦ Adu∗‖ = ‖P Fx‖,
where Adu : M → M, Adu(z) = uzu∗ . Therefore, there exists a constant C O depending only on the differentiable structure
such that∥∥sy(V )

∥∥ � C O‖V ‖y for any y ∈ O and any V ∈ T y O.

2.1. Quotient metrics

Throughout this article 1 < p < ∞ unless otherwise stated, and L p denotes the length functional for piecewise smooth
curves in U M , measured with the p-norm:
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Lp(α) =
t1∫

t0

∥∥α̇(t)
∥∥

p dt,

while (unless otherwise stated) smooth means C1 and with nonzero derivative, relative to the uniform topology of M. Let
us introduce some notation. The action of U M on O induces two kind of maps. If one fixes x ∈ O, one has the submersion

πx : UM → O, πx(u) = u · x, u ∈ UM.

If one fixes u ∈ U M one has the diffeomorphism

�u : O → O, �u(x) = u · x, x ∈ O.

If x ∈ O and X ∈ Tx O, put

‖X‖x,p = inf
{‖z‖p: z ∈ Msh, (πx)∗1(z) = X

}
.

We call this Finsler metric the quotient metric of O, because it is the quotient metric in the metric linear space Tx O if one
identifies it with Msh/Gx . Indeed, since Gx = ker(πx)∗1, if z ∈ Msh with (πx)∗1(z) = X , then

‖X‖x,p = inf
{‖z − y‖p: y ∈ Gx

}
.

We shall omit the index p since it is fixed in any discussion. One of the main features of this metric in O is that it is
invariant by the group action (or in other words, that the group acts isometrically on the tangent spaces): a straightforward
computation shows that if x ∈ O, X ∈ Tx O and u ∈ U M , ‖(�u)∗x(X)‖u·x = ‖X‖x . Note that when p = ∞, this is the metric
that arises naturally if we regard O as a homogeneous space of U M , as a Banach–Lie group for the topology induced
in Msh by the uniform norm, as discussed in Remark 2.1.

Remark 2.2. Since the action is transitive, we shall drop the index x ∈ O for the maps involved, when there is no possibility
of confusion. The isotropy group will be denoted by G and the Lie algebra by G , and π : U M → O will denote the smooth
submersion.

Remark 2.3. Recall Clarkson’s inequalities [11] for L p(M) spaces. Let a,b ∈ L p(M), 1/p + 1/q = 1, then

(‖a + b‖q
p + ‖a − b‖q

p
) 1

q � 2
1
q
(‖a‖p

p + ‖b‖p
p
) 1

p if 1 < p � 2,

and (‖a + b‖p
p + ‖a − b‖p

p
) 1

p � 2
1
q
(‖a‖p

p + ‖b‖p
p
) 1

p if 2 � p < ∞.

From them it can be easily derived that L p(M) is uniformly convex and uniformly smooth, and that for any convex closed
set S ⊂ L p(M)sh there exists a continuous map Q S,p : L p(M)sh → S which sends x ∈ L p(M)sh to its best approximant
Q S,p(x) ∈ S , i.e.∥∥x − Q S,p(x)

∥∥
p � ‖x − s‖p

for any s ∈ S . The map Q S,p is single-valued and continuous since L p(M) is uniformly convex and uniformly smooth (see
for instance [5]). Omitting the index p for convenience, note that∥∥Q S(x)

∥∥
p �

∥∥Q S(x) − x
∥∥

p + ‖x‖p � ‖0 − x‖p + ‖x‖p = 2‖x‖p

and also that∥∥x − Q S(x) − s
∥∥

p �
∥∥x − Q S(x)

∥∥
p

for any s ∈ S , hence Q S (x − Q S(x)) = 0, namely Q S ◦ (1 − Q S ) = 0. Also, for any λ ∈ R, Q S(λx) = λQ S(x). Calling Q̄ S =
1 − Q S , we have

S = Q̄ −1
S (0) = Im(Q S), Q −1

S (0) = Im(Q̄ S),

and also

Q̄ 2
S = Q̄ , Q 2

S = Q S , Q̄ S ◦ Q S = Q S ◦ Q̄ S = 0,

which shows that Q S has some of the properties of the linear projection (when p = 2).



544 E. Andruchow et al. / J. Math. Anal. Appl. 365 (2010) 541–558
Let x ∈ O, G be the isotropy group, G the Lie algebra of G and G p its closure in L p(M)sh . Let Q = Q G be the projection
to the best approximant in G p . Let

G⊥p = Q −1(0) = {
x ∈ Lp(M)sh: ‖x‖p � ‖x − y‖p for any y ∈ G

}
.

Then any element z ∈ L p(M)sh can be uniquely decomposed as

z = z − Q (z) + Q (z),

where z − Q (z) = (1 − Q )(z) ∈ G⊥p and Q (z) ∈ G p .

Remark 2.4. In particular, for 1 < p < ∞, the quotient metric of O is given by

‖X‖x := ∥∥z − Q (z)
∥∥

p,

where z ∈ Msh is any element such that π∗1(z) = X . Note that there always exists such z since π∗1 is surjective. We call
z0 = z − Q (z) ∈ L p(M)sh a minimal lifting of X . A word of caution: the map Q depends on the chosen parameter p > 1.

Note that if p = 2, this metric is Riemannian. Indeed, if Q x = 1 − Px is the orthogonal projection onto G p
x , then each

z ∈ Msh can be uniquely decomposed as

z = z − Q x(z) + Q x(z) = z0 + Q x(z)

and z0 = Px(z) is orthogonal to Gx hence

‖z − y‖2
2 = ∥∥z0 + Q x(z) − y

∥∥2
2 = ‖z0‖2

2 + ∥∥Q x(z) − y
∥∥2

2 � ‖z0‖2
2

for any y ∈ G2,x , which shows that

‖X‖x = inf
{‖z − y‖2: y ∈ Gx

} = ‖z0‖2

where z0 is the unique vector in G⊥
x such that (πx)∗1(z0) = X .

We shall denote with Tx O p the completion of Tx O relative to the p-quotient metric. Then π∗1 extends naturally to a
surjective linear map π

p∗ : L p(M)sh → Tx O p , since∥∥π∗(yn) − π∗(zn)
∥∥

x = ∥∥yn − zn − Q (yn − zn)
∥∥

p � ‖yn − zn‖p

and then one can put π
p∗ (z0) = limn π∗1(zn) disregarding the particular sequence (zn)n�1 such that zn → z0 ∈ L p(M)sh .

Lemma 2.5. Let p > 1. Let x ∈ O and X ∈ Tx O p . An element z0 ∈ L p(M)sh with π
p∗ (z0) = X is a minimal lifting for X if and only if

τ (zp−1
0 y) = 0 for all y ∈ G . For any X ∈ Tx O p there exists a unique minimal lifting z0 ∈ G⊥p such that ‖z0‖p = ‖X‖x.

Proof. The proof is straightforward, see for instance [2, Lemma 4.3]. �
3. Metric structure of UM

In this section we recall and complete certain facts from [8], concerning the minimality of geodesics in U M , and in
addition we prove a local convexity result. The following elementary lemma will be used in the proof of Theorem 3.5, its
proof can be found in [2, Lemma 3.4].

Lemma 3.1. Let C, ε > 0, let f : (−ε,1+ε) → R be a non-constant real analytic function such that f ′(s)2 � C f ′′(s) for any s ∈ [0,1].
Then f is strictly convex in (0,1).

Remark 3.2.

1. The map exp(x) = ex , exp : Msh → UM is surjective.
2. The exponential map is a diffeomorphism between the sets

Msh ⊃ {
z ∈ Msh: ‖z‖ < π

} → {
u ∈ UM: ‖1 − u‖ < 2

}
.

3. Moreover, exp : {z ∈ Msh: ‖z‖ � π} → UM , is surjective.
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For a,b ∈ M, let Ra, La : M → M stand respectively for the right and left multiplication, and let ad a = Ra − La : M →
M stand for the adjoint operator. Then in [2, Lemma 3.3] it is proved the following lemma. Its proof can be adapted to our
context without any modification.

Lemma 3.3. Let a,b ∈ M. Then

exp∗a(b) =
1∫

0

e(1−t)abeta dt = ea F (ad a)b = F (ad a)
(
eab

)
,

where F (z) = ez−1
z = ∑

n�0
zn

(n+1)! . The differential is invertible at a if and only if σ(ad(a)) ∩ {2kπ i} = ∅ (k �= 0), and then

exp−1∗a (w) = e−a F (ad a)−1 w. In particular if ‖a‖ < π then exp∗a is invertible. If a ∈ Msh, the differential is a contraction, that is
‖exp∗a(b)‖p � ‖b‖p for any p ∈ [1,∞].

Remark 3.4. Let a,b, c ∈ Msh , let Ha : Msh → R stand for the symmetric bilinear form given by

Ha(b, c) = (−1)
p
2 p

p−2∑
k=0

τ
(
ap−2−kbakc

)
.

If Q is the quadratic form associated to H , then (see [3, Lemma 4.1] and [13, Eq. (3.1)]):

1. Q a([b,a]) � 4‖a‖2 Q a(b).
2. Q a(b) = p‖ba

p
2 −1‖2

2 + p
2

∑
l+m=n−2 ‖al(ab + ba)am‖2

2.

In particular Ha is positive definite for any a ∈ Msh .

The following theorem collects several results concerning the rectifiable p-distance in the unitary group of M, such as:
minimality of geodesics, uniqueness of such geodesics, comparison with the usual p-distance, and finally a fundamental
convexity result which improves the one stated in [3].

Theorem 3.5. Let 2 � p < ∞. The following facts hold:

1. Let u ∈ U M and x ∈ Msh with ‖x‖ � π . Then the curve μ(t) = uetx, t ∈ [0,1] is shorter than any other smooth curve in U M
joining the same endpoints, when we measure them with the length functional L p . Moreover, if ‖x‖ < π , the curve μ is unique
with this property among all the C2 curves in U M .

2. Let u0, u1 ∈ UM . Then there exists a minimal geodesic curve joining them. If ‖u0 − u1‖ < 2, this geodesic is unique among all the
C2 curves there.

3. The diameter of U M is π for all the p-norms.
4. If u, v ∈ U M then√

1 − π2

12
dp(u, v) � ‖u − v‖p � dp(u, v).

In particular the metric space (U M,dp) is complete.
5. Let p be an even positive number, u, v, w,∈ U M , with

‖u − v‖ <
√

2, ‖w − v‖ <
√

2 − ‖u − v‖.
Let β be a short geodesic joining v to w in U M . Then the rectifiable p-distance between u and β is a strictly convex function,
provided u does not belong to any prolongation of β .

Proof. The minimality was proved in [4, Theorem 5.4]. Let us prove that if ‖x‖ < π , then μ is unique with the minimality
property among all the smooth curves. To do this, we shall follow a standard procedure, using the first variation formula, in
this case, for the functional F p which is given by

F p(γ ) =
1∫

0

∥∥γ̇ (t)
∥∥p

p dt,

if γ (t) ∈ U M , t ∈ [0,1]. Let γs(t), t ∈ [0,1], s ∈ (−r, r), be a C2 variation of the curve γ , i.e. γs(t) ∈ UM , for all s, t , the map
(s, t) �→ γs(t) is C2 and γ0(t) = γ (t). We shall use a formula for d F p(γs)|s=0, obtained in [3] in the context of a C∗-algebra
ds
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with trace. As in classical differential geometry, we shall call the expression obtained the first variation formula. Let

V s = d

dt
γs and W s = d

ds
γs.

With lower case types we denote the left translations vs = γ ∗
s V s and ws = γ ∗

s W s . Note that V s, W s ∈ (T UM)γs whereas
vs, ws ∈ Msh . Then

(−1)p/2

p

d

ds
F p(γs) = τ

(
v p−1

s ws
)∣∣t=1

t=0 −
1∫

0

τ

(
d

dt

[
v p−1

s
]

ws

)
dt.

Suppose that γ (t) ∈ U M is a C2 minimal curve, and let γs(t) be a variation, with fixed endpoints γ (0) and γ (1), i.e.
γs(0) = γ (0) and γs(1) = γ (1) for all s. Then d

ds F p(γs)|s=0 = 0, and thus

0 = τ
(

v p−1
0 w0

)∣∣t=1
t=0 −

1∫
0

τ

(
w0

d

dt

(
v p−1

0

))
dt.

The fixed endpoints hypothesis implies that the first term vanishes. Then

1∫
0

τ

(
w0

d

dt

(
v p−1

0

))
dt = 0

for any variation γs with fixed endpoints. Let us denote by Z(t) = d
dt (v p−1

0 ) and by A(t) = w0(t). Both A and Z are contin-
uous fields in Msh . The variation formula implies that

1∫
0

τ
(

A(t)Z(t)
)

dt = 0

for any continuous field A in Msh such that A(0) = A(1) = 0. We claim that this condition implies that Z(t) = 0 for all t .
First note that the requirement that the field A vanishes at 0 and 1 can be removed: let fr(t) be a real function which

is constant and equal to 1 in the interval [r,1 − r] and such that f (0) = f (1) = 0, with 0 � fr(t) � 1 for all t . Let B(t) be
any continuous field in Msh and consider Ar(t) = fr(t)B(t). Then

∫ 1
0 Ar(t)Z(t)dt = 0, and if r → 0,

∫ 1
0 B(t)Z(t)dt = 0. Also

it is clear that the integral will vanish if A is non-skew-hermitian. Indeed, it is clear if A is hermitian, and for general A,
decompose A as the sum of its hermitian and skew-hermitian parts.

Consider A(t) = −Z(t), then
∫ 1

0 ‖Z(t)‖2
2 dt = 0, which implies Z(t) ≡ 0. Therefore v p−1

0 is constant, and since p is even

and v0 is skew-hermitian, v0(t) = γ (t)∗ d
dt γ (t) is constant, i.e. γ (t) = etx for some x ∈ Msh .

Fact 2. It is straightforward from the first item and Remark 3.2.
Fact 3. Any pair of unitaries u0, u1 can be joined by a minimal curve of length less or equal than π . Indeed, let x ∈ Msh ,

‖x‖ � π and ex = u∗
0u1. Then μ(t) = u0etx have minimal length equals to ‖x‖p � ‖x‖ � π . Then the diameter is exactly π

since the unitaries 1 and −1 are joined by the minimal curve μ(t) = eitπ1, which has length π .
Fact 4. Both metrics are invariant by left translation with elements of U M . Therefore it suffices to compare dp(u,1) and

‖u − 1‖p , for u ∈ U M . Let x = x∗ ∈ M with ‖x‖ � π and u = eix . Then by item 1, dp(u,1) = ‖x‖p . We follow Petz [14] for
the definition and properties of the spectral scale λt(x) of x. It is defined by

λt(x) = inf
{

s ∈ R: τ
(
e(s,∞)(x)

)
� t

}
,

where t ∈ (0,1) and eI (x) denotes the spectral projection of x corresponding to an interval I in R. If f is a real Borel
function on R, then by Proposition 1 in [14] we have τ ( f (x)) = ∫ 1

0 f (λt(x))dt . On the other hand, for |s| � π it is easily
seen that

|s|
(

1 − π2

12

)1/2

�
∣∣eis − 1

∣∣ � |s|.

Since ‖x‖ � π , we have |λt(x)| � π , t ∈ [0,1]. Then we obtain the inequality

‖u − 1‖p
p = τ

(∣∣eix − 1
∣∣p) =

1∫ ∣∣eiλt (x) − 1
∣∣p

dt �
1∫ ∣∣λt(x)

∣∣p
dt = ‖x‖p

p .
0 0
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The other inequality follows in the same fashion,

‖u − 1‖p
p =

1∫
0

∣∣eiλt (x) − 1
∣∣p

dt �
(

1 − π2

12

)p/2 1∫
0

∣∣λt(x)
∣∣p

dt = ‖x‖p
p =

(
1 − π2

12

)p/2

‖x‖p
p,

and our claim holds.
It is straightforward that (U M,dp) is a complete metric space: let (un)n�1 be a Cauchy sequence for dp , then it is

Cauchy in L p(M). Hence, it converges to an element u0 ∈ L p(M). Since (un)n�1 is uniformly bounded in the operator
norm, it follows that u0 ∈ M, and then clearly u0 ∈ UM .

Fact 5. It was proved in [3, Theorem 4.1] a similar result. With a slight modification of the proof, one obtains the
better convexity radius estimate stated here. We include the proof for the convenience of the reader. We may assume that
u = 1 since the action of unitary elements is isometric. Note that ‖v∗w − 1‖ = ‖v − w‖ <

√
2 < 2, so we can compute

z = log(v∗w) ∈ Msh , where log indicates the principal branch of the logarithm. Let β(s) = vesz , which is a short geodesic
joining v to w in U M since ‖z‖ < π . Then∥∥1 − vesz

∥∥ � ‖1 − v‖ + ∥∥1 − esz
∥∥ � ‖1 − v‖ + ∥∥1 − ez

∥∥ = ‖1 − v‖ + ‖v − w‖ <
√

2,

which implies that β has an analytic logarithm, ws = log(β(s)) = log(vesz), with ‖ws‖ < π
2 . Let γs(t) = et ws , then γs is a

short geodesic joining 1 and β(s), of length ‖ws‖p = dp(1, β(s)). Then f p(s) = ‖ws‖p
p = τ ((−w2

s )
p
2 ) = (−1)

p
2 τ (w p

s ), hence

f ′
p(s) = (−1)

p
2 pτ

(
w p−1

s ẇs
) = 1

p − 1
H ws (ẇs, ws),

where H is the bilinear form introduced in Remark 3.4. Since ews = vesz , then e−ws exp∗ws
(ẇs) = z by Lemma 3.3, namely

z =
1∫

0

e−t ws ẇset ws dt. (1)

Thus τ (w p−1
s ẇs) = ∫ 1

0 τ (w p−1
s e−t ws ẇset ws )dt = τ (zw p−1

s ). Hence

f ′′
p (s) = (−1)

p
2 p

p−2∑
k=0

τ
(

w p−2−k
s ẇs wk

s z
) = H ws (ẇs, z),

and again by Eq. (1) above, if we put δs(t) = e−t ws ẇset ws , then

f ′′
p (s) =

1∫
0

H ws

(
δs(0), δs(t)

)
dt.

Suppose that for this value of s ∈ [0,1], R2
s := Q ws (ẇs) �= 0, where Q ws is the quadratic form associated to H ws . If Ks ⊂ Msh

is the null space of H ws , consider the quotient space Msh/Ks equipped with the inner product H ws (·,·). An elementary
computation shows that δs(t) lives in a sphere of radius Rs of this pre-Hilbert space, hence H w(δs(0), δs(t)) = R2

s cos(αs(t)),
where αs(t) is the angle subtended by δs(0) and δs(t). Then, reasoning in the sphere

Rsαs(t) � Lt
0(δs) =

t∫
0

Q
1
2
ws

(
e−t ws [ws, ẇs]et ws

)
dt

=
t∫

0

Q
1
2
ws

([ws, ẇs]
)

dt = t Q
1
2
ws

([ws, ẇs]
)
.

By property 1 of Remark 3.4, Rsαs(t) � t2‖ws‖Rs < Rsπ . So cos(αs(t)) � cos(2t‖ws‖) and then integrating with respect to
the t-variable,

f ′′
p (s) � R2

s
sin(2‖ws‖)

2‖ws‖ > 0

provided Rs �= 0. On the other hand, the Cauchy–Schwarz inequality for H ws shows that if Rs = 0, then

(p − 1) f ′
p(s) = H ws (ws, ẇs) � Q

1
2
w (ẇs)Q

1
2
w (ws) = 0.
s s
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Assume that Rs is identically zero, s ∈ [0,1]. Then f p is constant with f p(s) = f p(0) = ‖log(v)‖p
p for any s ∈ [0,1]. Moreover,

by property 2 of the remark above, Rs = 0 implies w
p
2 −1
s z = 0 and an elementary computation involving the functional

calculus of skew-hermitian operators shows that wsz = 0. Put y = log(v); in particular we have yz = 0 which implies, since
ws = log(e yesz), that ws = y + sz by the Baker–Campbell–Hausdorff formula. But since the p-norm of Msh is strictly convex,
ws = y + sz cannot have constant norm unless y is a multiple of z, and in that case, u and β are aligned contradicting the
assumption of the theorem. So there is at least one point s0 ∈ [0,1] where Rs0 �= 0, so f p is non-constant. There exists a

positive constant C such that sin(2‖ws‖)
2‖ws‖ � C , hence f ′′

p (s) � R2
s C = Q w(ẇ)C . On the other hand Q w(w) = p(p − 1)‖ws‖p

p �
p(p − 1)‖ws‖p < p(p − 1)( π

2 )p , so

(p − 1)2 f ′
p(s)2 = H2

ws
(ws, ẇs) � Q ws (ẇs)Q ws (ws) � p(p − 1)π p

2pC
f ′′

p (s),

and by Lemma 3.1, f p is strictly convex. �
The following remark justifies in part the election of the uniform topology to differentiate curves in U M . We show that

in order to produce minimal curves, the velocity vectors of the exponential should have uniform length less or equal than π .

Remark 3.6. Let z ∈ L p(M)h such that π < ‖z‖ < ∞. By the Stone theorem the curve δ(t) = eitz is C1 if we differentiate it
in the strong topology of the standard representation of M. We claim that δ is not of minimal length joining its endpoints
in UM when we measure with the p-norm.

In order to prove this consider the function f : R → [−π,π ] given by

f (t) =

⎧⎪⎨
⎪⎩

t + 2(k + 1)π, −2(k + 3)π � t < −(2k + 1)π,

t, −π � t � π,

t − 2(k + 1)π, (2k + 1)π < t � (2k + 3)π.

Clearly it is a Borel measurable function. Then we use the Borel functional calculus of z = ∫
σ(z) λde(λ) to obtain

〈
ei f (z)ξ, η

〉 = ∫
σ (z)

ei f (λ) deξ,η(λ) =
∫

σ (z)

eiλ deξ,η(λ) = 〈
eizξ,η

〉
.

Therefore, we have eif (z) = eiz . Moreover, note that f (z) ∈ Mh with ‖ f (z)‖ � π . Now we assert that the curve δ1(t) = eit f (z)

is shorter than the curve δ. Recall that for a τ -measurable operator z the t-th generalized s-number μt(z) is defined by

μt(z) = inf
{‖ze‖: e is a projection in M, τ (1 − e) � t

}
.

We shall use the following facts (see [9]):

• Since the map t �→ μt(z) is non-increasing, continuous from the right and satisfies limt↓0 μt(z) = ‖z‖, there exists ε > 0
such that μt(z) > π for all t ∈ (0, ε).

• It is apparent that μt( f (z)) � π , t > 0, since ‖ f (z)‖ � π .
• Note that | f (t)| � |t|, for all t ∈ R. Then, we have | f (z)| � |z|, which implies μt( f (z)) � μt(z).

Therefore,

Lp(δ1)
p = ∥∥ f (z)

∥∥p
p =

1∫
0

μt
(

f (z)
)p

dt �
ε∫

0

μt
(

f (z)
)p

dt +
1∫

ε

μt(z)p dt

<

ε∫
0

μt(z)p dt +
1∫

ε

μt(z)p dt = ‖z‖p
p = Lp(δ)p,

and our claim follows.

Remark 3.7. The previous remark in fact shows that, for a one-parameter group etz to be minimizing, the symbol z has to
be bounded (and ‖z‖ � π ). This is due to the fact that the Borel functional calculus can be computed also for elements
z ∈ L p(M)h , and one obtains a shorter path by trimming the unessential parts of z, obtaining a shorter curve joining 1
and eiz .
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4. Rectifiable distance in O

Let x ∈ O, let G, G indicate the isotropy group and algebra of x, respectively. Let γ ⊂ O such that γ (0) = x. Let Γ,Λ

be smooth lifts of γ ∈ O. Then α = Γ ∗Λ ∈ G , thus α̇ ∈ αG , namely Γ̇ ∗Λ + Γ ∗Λ̇ = Γ ∗Λz for some z ∈ G . Then, since
Γ̇ ∗ = −Γ ∗Γ̇ Γ ∗ , multiplying by Λ∗Γ to the right yields

−Γ ∗Γ̇ + Γ ∗Λ̇Λ∗Γ = AdΓ ∗Λ z = z̃ ∈ G. (2)

Since ‖Γ ∗Γ̇ − Q (Γ ∗Γ̇ )‖p � ‖Γ ∗Γ̇ + s‖p for any s ∈ G , if we put s = −Γ ∗Γ̇ + Γ ∗Λ̇Λ∗Γ − AdΓ ∗Λ Q (Λ∗Λ̇) we obtain∥∥Γ ∗Γ̇ − Q
(
Γ ∗Γ̇

)∥∥
p �

∥∥Λ̇Λ∗ − ΛQ
(
Λ∗Λ̇

)
Λ∗∥∥

p = ∥∥Λ∗Λ̇ − Q
(
Λ∗Λ̇

)∥∥
p .

Since the reversed inequality also holds in the above remark, we have a natural definition of quotient metric for smooth
curves γ ∈ O:

Definition 4.1. Let γ ∈ O be a piecewise smooth curve. The p-length of γ is defined as follows:

LO,p(γ ) =
1∫

0

‖γ̇ ‖γ ,p dt, where ‖γ̇ ‖γ ,p = ∥∥Γ ∗Γ̇ − Q
(
Γ ∗Γ̇

)∥∥
p

for any smooth lift Γ ∈ U M such that Γ (0) = 1. The rectifiable distance in O is defined accordingly,

dO,p(u · x, v · x) = inf
{

LO,p(γ ): γ ⊂ O, γ (0) = u · x, γ (1) = v · x
}
,

where the curves γ considered are piecewise smooth.

Remark 4.2. All but one of the properties of a distance function are satisfied by dO,p trivially. The point is to establish if
dO,p(u · x, v · x) = 0 implies that u · x = v · x. This cannot be solved as in Riemannian or Finsler geometry where the existence
of normal neighborhoods is guaranteed. See Corollary 4.8 below for the proof.

Remark 4.3. The previous definition can be adapted for any norm quotient norm. For instance, for the uniform norm, let
γ : [0,1] → U M be piecewise smooth, and Γ : [0,1] → U M is a piecewise smooth lift of γ with Γ (0) = 1, then put∥∥γ̇ (t)

∥∥
γ (t),∞ = inf

z∈Gx

∥∥Γ ∗(t)Γ̇ (t) + z
∥∥.

The computation in (2) shows that if Λ is any other smooth lift of γ , then

inf
z∈Gx

∥∥Γ ∗(t)Γ̇ (t) + z
∥∥ �

∥∥Λ∗(t)Λ̇(t) + s
∥∥,

for any s ∈ Gx . Thus, the quotient speed is well defined in this case also. The rectifiable length LO,∞ and distance dO,∞ are
defined accordingly.

4.1. Almost isometric liftings

We begin this section with an elementary observation, which will be used to obtain liftings of curves in O. We assume
that p > 1.

Lemma 4.4. Let x ∈ O and Q = Q Gx be the best approximant projection in L p(M)sh. Let Γ ⊂ U M be a piecewise smooth
curve parametrized in the interval [0,1], and let ε > 0. Then there exists a polygonal curve wε : [0,1] → Gx such that ‖wε(t) +
Q (Γ ∗Γ̇ )(t)‖p < ε for any t ∈ [0,1].

Proof. Let α(t) = −Q (Γ ∗(t)Γ̇ (t)). Then, since Γ is smooth for the uniform topology in M, both Γ and Γ̇ are continuous
for the p-norm, hence α : [0,1] → L p(M) is continuous (since Q is continuous). The curve α has its image contained in G p

x .
Then one can find a polygonal curve wε ⊂ Gx as claimed since Gx is dense in G p

x , as follows: split the interval [0,1] in n
pieces {Ik}k=1...n in order to obtain∥∥α(t) − α(s)

∥∥
p < ε/5 = δ

if |s − t| ∈ Ik , the partition given by 0 = t1 < t1 < · · · < tn = 1, and put αk = α(tk). Let {wk}k=1...n ⊂ Gx such that
‖αk − wk‖p < δ, and let wε(t) stand for the polygonal in Gx joining the points wk in their given order. Now, if t ∈ Ik ,
then
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∥∥wk − wε(t)
∥∥

p � ‖wk − wk+1‖p

�
[‖wk − αk‖p + ‖αk − αk+1‖p + ‖αk+1 − wk+1‖

]
< [δ + δ + δ] = 3δ,

and hence∥∥α(t) − wε(t)
∥∥

p �
∥∥α(t) − αk

∥∥
p + ‖αk − wk‖p + ∥∥wk − w(t)

∥∥
p < δ + δ + 3δ = 5δ = ε. �

We collect in the following theorem some facts; some of them are elementary while others are adaptations and im-
provements of results in [2].

Theorem 4.5.

1. Let k � 1, w ∈ M with ‖w‖ < π
2 . Then T = 1 + (ad w)2

4k2π2 is invertible in B(M) and ‖T −1‖ � (1 − ‖w‖2

k2π2 )−1 .

2. Consider g(r) = r sin(r)−1 with g(0) = 1. Then g : [0,π) → R is positive and increasing, and from the Weierstrass expansion of
sin(z) we obtain

g(z) =
∏
k�1

(
1 − z2

k2π2

)−1

,

for any z such that |z| < π . Let F (z) = (ez − 1)z−1 , w ∈ M with ‖w‖ < π
2 . Then ‖F (ad w)−1‖ � g(‖w‖).

3. Let x ∈ O, w ⊂ Gx a piecewise smooth curve parametrized in the interval [0,1]. If G(z) = z−1(1 − e−z), then there exists a
piecewise smooth curve z : [0,1] → Gx with z(0) = 0 such that G(ad z)ż = w. If u = ez, then u : [0,1] → Gx ⊂ UM obeys the
differential equation u̇u∗ = w.

Proof. 1. Since ‖ad w‖ � 2‖w‖ < π , the map T is invertible and its inverse can be computed with the Neumann series.
2. The Weierstrass expansion of F is given by F (z) = ∏

k�1(1 + z2

4k2π2 ) where the product converges uniformly on com-
pact sets to F . Then F (ad w) is invertible since ‖ad(w)‖ < π and

F (ad w)−1 =
∏
k�1

(
1 + (ad(w))2

4k2π2

)−1

.

Hence

∥∥F (ad w)−1
∥∥ �

∏
k�1

(
1 − ‖w‖2

k2π2

)−1

= g
(‖w‖)

by the previous item.
3. Assume first that w is smooth in the whole [0,1]. Let R0 = maxt∈ J̄ ‖w(t)‖, where J is an open set containing [0,1]

where w is differentiable. Let 0 < R < π
2 . Then if x ∈ Gx ∩ B(0, R), the operator G(ad x) is invertible, and its inverse is analytic

and can be written as a power series in ad x, hence G(ad x)−1 : Gx → Gx because Gx is a Banach–Lie algebra. Moreover, since
g is increasing,∥∥G(ad x)−1

∥∥ � g
(‖x‖) � g(R).

Let f : J × B(0, R) ∩ Gx → Gx be given by f (t, x) = G(ad x)−1 w(t). Then f is continuous since w and G−1 are continuous,
moreover∥∥ f (t, x)

∥∥ �
∥∥G(ad x)−1

∥∥‖w‖ � g(R)R0 = L

by the previous item. Now since H(ad x) = G(ad x)−1 is analytic in the ball ‖x‖ < π
2 , we have∥∥H(ad x) − H(ad y)

∥∥ � C(R)‖ad x − ad y‖ � 2C(R)‖x − y‖
where C(R) is a bound for H ′ in |z| � R . Then∥∥ f (t, x) − f (t, y)

∥∥ � 4C(R)R0‖x − y‖ = K‖x − y‖.
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Then f satisfies a Lipschitz condition, uniformly respect to t ∈ J , hence by the standard theorem of existence for ordinary
differential equations [12, Proposition 1.1, Chapter IV], there exists a continuous solution z0 : (−b,b) × B(0, R/4) → Gx ∩
B(0, R) of the integral equation

z(t) =
t∫

0

f
(
s, z(s)

)
ds

with z0(0) = 0. Here b is any real number such that 0 < b < R
4LK = sin(R)

32C(R)R2
0

. Note that z0 is in fact smooth. Differentiating

both sides and multiplying by F (ad z(t)) gives the equation stated. We have proved so far that the equation

G(ad z)ż = w

has a local solution defined around zero. By a standard argument, it follows that one can find a piecewise smooth solution
defined on the whole interval [0,1]: let N ∈ N such that 1

N < b and let tk = k
N . Then [tk, tk+1] (k = 0,1, . . . , N) is a partition

of [0,1] such that the integral equation

z(t) =
tk+1∫
tk

f
(
s, z(s)

)
ds

with the initial conditions z0(0) = 0, zk(tk) = zk−1(tk) for k � 1, has a solution zk : [tk, tk+1] → G . Then the curve
z1�z2� · · · �zN is a piecewise smooth solution of the equation stated in the whole [0,1]. If w is piecewise smooth instead of
smooth, one might replace the argument above for a similar argument in each of the intervals where w is smooth, and use
the continuity of w to state the boundary conditions for z. If u(t) = ez(t) , then

u̇(t) = exp∗z(t)

(
ż(t)

) = ez(t) F
(
ad z(t)

)
ż(t)

by Lemma 3.3. Then

u̇u∗ = ez F (ad z)że−z = G(ad z)ż = w. �
Note that the general theory ensures the existence of piecewise smooth liftings in U M of smooth curves in O, due to

the fact that for any fixed x ∈ O, the map

πx : UM → O, πx(u) = u · x,

is a submersion.

Theorem 4.6. Let γ ⊂ O be a smooth curve defined in an interval containing [0,1] such that γ (0) = x. Then, for any ε > 0, γ admits
a smooth lift βε ⊂ UM (that is βε · x = γ ) such that L p(βε) < LO,p(γ ) + ε . We shall call such βε an ε-isometric lift of γ .

Proof. Let Γ ∈ U M be any piecewise smooth lift of γ , defined in an interval containing [0,1], and let wε : [0,1] → Gx be
as in Lemma 4.4. Note that wε , being a polygonal, is continuous for the uniform topology of M. By item 3 of Theorem 4.5,
there exists a piecewise smooth curve u : [0,1] → Gx with u(0) = 1 such that u̇u∗ = wε . Now consider βε = Γ u. Then βε is
clearly a lift of γ with

β̇ε = Γ̇ u + Γ u̇ = Γ
(
Γ ∗Γ̇ + wε

)
u.

Hence L p(βε) < LO,p(γ ) + ε because

‖β̇ε‖p = ∥∥Γ ∗Γ̇ + wε

∥∥
p �

∥∥Γ ∗Γ̇ − Q
(
Γ ∗Γ̇

)∥∥
p + ∥∥Q

(
Γ ∗Γ̇

) + wε

∥∥
p < ‖γ̇ ‖γ + ε. �

With the last theorem at hand, we can prove the fundamental result that the rectifiable distance in O can be computed
as the infima of lengths of rectifiable curves in U M joining the corresponding fibers.

Corollary 4.7. Let u, v ∈ U M , x ∈ O. Then

dO,p(u · x, v · x) = inf
{

Lp(Γ ): Γ ⊂ UM, Γ (0) · x = u · x and Γ (1) · x = v · x
}
,

where the curves Γ considered are piecewise smooth.
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Proof. It suffices to check the assertion for u = 1. Let d = dO,p(x, v · x) and D = inf{L p(Γ ): Γ ⊂ UM, Γ (0) · x =
u · x and Γ (1) · x = v · x}. Let Γ ⊂ U M such that Γ (0) · x = x, Γ (1) · x = v · x. Then, if γ = Γ · x ⊂ O, we have γ (0) = x and
γ (1) = v · x and also

‖γ̇ ‖γ = ∥∥Γ ∗Γ̇ − Q
(
Γ ∗Γ̇

)∥∥
p �

∥∥Γ ∗Γ̇
∥∥

p = ‖Γ̇ ‖p,

thus d � LO,p(γ ) � L p(Γ ). It follows that d � D . On the other hand, let γ ⊂ O joining x to v · x such that LO,p(γ ) < d + ε .
By the previous theorem, there exists an ε-isometric lift βε of γ ; note that βε(0) · x = 1 · x = x and βε(1) · x = γ (1) = v · x.
Thus

D � Lp(βε) < LO,p(γ ) + ε < d + 2ε. �
Corollary 4.8. Let x ∈ O. Then the quantity dO,p defines a distance in O whenever Gx is a closed subgroup of U M in the p-norm.

Proof. As mentioned earlier, it remained to check that dO,p(x, y) = 0 implies x = y. Let y = v · x for some v ∈ U M , assume
that dO,p(x, y) = 0. Then by the previous corollary for any ε > 0 there exists a curve Γ ∈ U M such that Γ (0) = 1, Γ (1) · x =
v · x and the assumption implies L p(Γ ) < ε . Since Γ (1) ∈ vGx , then dp(1, vGx) � L p(Γ ) < ε . Since ε is arbitrary, then
1 ∈ vGx , or equivalently v∗ ∈ Gx , and then v ∈ Gx , showing that y = x. �
Remark 4.9. We point out that when Gx is the unitary group of a von Neumann subalgebra of M, then Gx is p-norm closed
in UM .

4.2. Two metrics in the space O

For homogeneous spaces G/H of metrizable topological groups G , there is one distinguished metric that can be intro-
duced. It is the quotient metric induced by the distance among classes g H in the original group. We recall the following
result (see for instance [15, p. 109]):

Lemma 4.10. Let G be a metrizable topological group, and H be a closed subgroup. If d is a complete distance function on G inducing
the topology of G, and if d is invariant under right translation by H, i.e. d(xh, yh) = d(x, y) for any x, y ∈ G and h ∈ H, then the left
coset space G/H = {xH: x ∈ G} is a complete metric space under the metric ḋ given by

ḋ(xH, yH) = inf
{

d(xh, yk): h,k ∈ H
}
.

Moreover, the distance ḋ metrizes the quotient topology of groups. Let us observe how Lemma 4.10 applies to our
situation. We take G = U M , and for fixed x ∈ O, we take H = Gx . A minor modification of the argument in Theorem 3.5
shows that the groups (U M,dp) are complete for any p � 1.

Theorem 4.11. Let x ∈ O, u, v ∈ U M , and let

ḋp(u · x, v · x) = inf
{

dp(uw1, v w2): wi ∈ Gx
}
.

Then if p > 1, ḋp = dO,p . In particular, if Gx is a closed subgroup of U M in the p-norm, then (O,dO,p) is complete, and the induced
topology matches the quotient topology of O 
 (U M,dp)/Gx.

Proof. First we show that ḋp � dO,p . By Corollary 4.7, for each ε > 0, there exists a curve Γ ⊆ U M satisfying Γ (0) = uw0,
Γ (1) = v w1, wi ∈ Gx and L p(Γ ) < dO,p(u · x, v · x) + ε . Therefore,

ḋp(u · x, v · x) � dp(uw0, v w1) � Lp(Γ ) < dO,p(u · x, v · x) + ε.

Since ε is arbitrary, our claim follows. Conversely, given ε > 0, there exist wi ∈ Gx , i = 1,2, such that dp(uw1, v w2) <

ḋp(u · x, v · x) + ε , and there exists Γ ⊂ U M such that Γ (0) = uw1, Γ (1) = uw2, and L p(Γ ) < dp(uw1, uw2) + ε . Then

dO,p(u · x, v · x) � LO,p(Γ · x) � Lp(Γ ) < dp(uw1, v w2) + ε < ḋp(u · x, v · x) + 2ε,

showing that the reversed inequality also holds. Finally, since (U M,dp) is complete, the last claim follows from the previous
lemma. �
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4.3. The path metric space O

The space O is a path metric space for any p � 1, or in the terminology introduced in [10] by M. Gromov, O is a space de
longeur. That is, the distance dO,p (= ḋp if p > 1) among pairs of points in the space O matches the infimum of the length
of the rectifiable paths joining the points. The rectifiable lenght of paths γ : [0,1] → O is defined as

�p(γ ) = sup
{ti}

n−1∑
i=0

dO,p
(
γ (ti), γ (ti+1)

)
,

where {ti} is any finite partition of the interval [0,1] ∈ R. The rectifiable distance d�,p among x, u · x ∈ O is the infimum of
the length of the rectifiable paths γ joining them, when the length is measured as above. It is straightforward to see that

d�,p � dO,p .

Indeed, for given γ joining fixed endpoints x, y ∈ O, consider the trivial partition t0 = 0, t1 = 1. Thus �p(γ ) � dO,p(x, y),
and taking the infimum over rectifiable paths γ gives the result. It is well known, at least in the finite dimensional setting,
that both metrics do agree. Since the proof is elementary and we could not find a suitable reference, we include it.

Proposition 4.12. If γ is a piecewise C1 curve in O, then LO,p(γ ) � �p(γ ). If x, u · x ∈ O, then d�,p(x, u · x) = dO,p(x, u · x).

Proof. Let {ti}i=0...n−1 be a partition of [0,1]. Then

LO,p(γ ) =
n−1∑
i=0

LO,p(γ |[ti ,ti+1]) �
n−1∑
i=0

dO,p
(
γ (ti), γ (ti+1)

)
.

If we pick a partition such that �p(γ ) <
∑n−1

i=0 dO,p(γ (ti), γ (ti+1)) + ε , the first claim follows. Now let ε > 0, and let
Γ : [0,1] → U M be piecewise smooth such joining x, u · x such that L p(Γ ) � dO,p(x, u · x) + ε . Then by the previous
assertion

d�,p(x, u · x) � �p(Γ · x) � LO,p(Γ · x) � Lp(Γ ) � dO,p(x, u · x) + ε.

Thus d�,p(x, u · x) � dO,p(x, u · x) and since the other inequality always holds, we have the second claim. �
5. Minimality of geodesics in O

Recall that the induced norm in the tangent spaces is not complete. Therefore in the case of p = 2 the classical theory
of Riemann–Hilbert manifolds is not available, so it makes sense to ask about the local minimality of the geodesics of the
Levi–Civita connection. In [6] was given an abstract sufficient condition in order that these geodesics are locally minimal.
In this section we shall prove a partial result toward the minimality of geodesics for p even, under the hypothesis specified
below.

Our argument on minimality will consist in comparing the lengths of the liftings of curves in O to the unitary group U M .
For the case p = 2 this technique is based on the following result. Let sx : (T O)x → Fx ⊂ L2(M)sh stand for the isometric
orthogonal projection to Fx , the orthogonal supplement of Gx in L2(M)sh . Let γ (t), t ∈ [0,1] be a smooth curve in O, with
γ (0) = x, and let Γ be its horizontal lifting, i.e. the unique solution of the differential equation{

Γ̇ = sγ (γ̇ )Γ,

Γ (0) = 1.

Then L2(Γ ) = L2(γ ). Indeed, ‖γ̇ ‖γ = ‖sγ (γ̇ )‖2 = ‖Γ ∗Γ̇ ‖2 = ‖Γ̇ ‖2, and the claim follows. This result shall not be needed,
we include it here to mark the breach between the case p = 2 and the case p > 2. Let us state the following definition.

Definition 5.1. Let O = U M · x (x ∈ O) be an homogeneous space, let Gx ⊂ UM stand for the isotropy subgroup. We say
that Gx is locally exponential in U M , if there exist εO, δO > 0 such that ‖u − 1‖ < εO and u ∈ Gx implies that there exists
z ∈ Gx with ‖z‖ < δO and ez = u. This is equivalent to ask for Gx to be a (topological) submanifold of U M in the uniform
norm.

If u ∈ Gx implies that there exists z ∈ Gx with ez = u, we say that Gx is an exponential subgroup of U M .

Throughout this section we assume that the isotropy group Gx is an exponential subgroup. Apparently, if this holds for
a given x ∈ O, then it holds for any u · x ∈ O (since the groups Gu·x and Gx are conjugate by an inner automorphism). This
property implies in particular, that Gx is geodesically convex: given any pair of elements v1, v2 ∈ Gx with ‖v1 − v2‖ < εO ,
then there exists a geodesic of U M , which lies inside Gx , and joins v1 and v2. The results in this section can be extended



554 E. Andruchow et al. / J. Math. Anal. Appl. 365 (2010) 541–558
to locally exponential groups in the obvious fashion, but we prefer to state them assuming that Gx is exponential since the
arguments become more clear this way.

Assume that x and y are connected by the geodesic γ (t) = etz · x in O, with z ∈ Msh a minimal lifting, i.e. Q (z) = 0.
It is unclear if this curve is short for the p-metric in O. We state next a partial result in that direction.

One requirement of the proof is that Q maps bounded operators into bounded operators, and moreover, that it is
uniformly bounded. There are a collection of examples in the following section with these properties. We have shown in
Theorem 4.6 that for p > 2 we can obtain almost isometric lifts of curves in O. In case Q is uniformly bounded, one can
sharpen this result to obtain isometric lifts.

Now we state our result on minimality of curves. It is assumed that Gx is an exponential subgroup of U M , and that Q
maps bounded elements of M into bounded elements of M.

Theorem 5.2. Let p be a positive even number, x ∈ O, and assume that there exists a constant K O,p such that ‖Q (y)‖ � K O,p‖y‖
for any y ∈ Msh. If z ∈ Msh, ‖z‖ < π

3 and Q (z) = 0, then the curve

δ(t) = etz · x,

which verifies δ(0) = x and δ̇(0) = X = π∗(z) ∈ Tx O, and has length LO,p = ‖z‖p , is shorter for the p-metric than any other smooth
curve γ ⊂ O joining x to ez · x, provided LO,∞(γ ) < ε, where

ε = ε(O, p) =
√

2 − 1

C O(1 + K O,p)

and C O is a constant given by the smooth structure as in Remark 2.1.
Moreover, the curve δ is unique in the sense that if γ ⊂ O is another curve joining x to ez · x of length ‖z‖p , such that LO,∞(γ ) < ε,

then γ (t) = etz · x.

Proof. Let γ be a smooth curve in O with γ (0) = x and γ (1) = ez · x, and assume that LO,∞(γ ) < ε. Since ‖z‖ < π
3 , we

have ‖ez − 1‖ < 1 <
√

2. On the other hand, if Γ is a smooth lift of γ with Γ (0) = 1, by the assumption on Q we can
consider the differential equation in M given by

G(ad x)ẋ = −Q
(
Γ ∗Γ̇

)
as in Theorem 4.5. It has a unique solution x(t) ∈ Gx such that x(0) = 0, and if u = ex , then u : [0,1] → Gx ⊂ UM obeys the
differential equation u̇u∗ = −Q (Γ ∗Γ̇ ). Thus in this case, ‖u̇‖ � K O‖Γ̇ ‖. Hence, if β = Γ u, then β is an isometric lift of γ
and moreover

∥∥β(1) − 1
∥∥ �

∥∥Γ (1) − 1
∥∥ + ∥∥u(1) − 1

∥∥ �
1∫

0

∥∥Γ ∗Γ̇
∥∥ +

1∫
0

‖u̇‖ � (1 + K O)

1∫
0

∥∥Γ ∗Γ̇
∥∥.

Thus, if C O is a constant such that ‖sy(V )‖ � C O‖V ‖y for any y ∈ O as in Remark 2.1, then

∥∥β(1) − 1
∥∥ � C O(1 + K O)

1∫
0

‖γ̇ ‖γ = C O(1 + K O)LO,∞(γ ) <
√

2 − 1 <
√

2 − ∥∥ez − 1
∥∥.

Let w ∈ Msh such that ‖w‖ � π and ew = β(1). Then Theorem 3.5 applies. Note that the curve μ(t) = etz is an isometric
lift for δ. Let ν(t) = ezety be the minimal geodesic of U M , lying inside ezGx (i.e. y ∈ Gx), connecting ez to ew , which exists
due to the fact that Gx is an exponential subgroup. Then by item 5 of Theorem 3.5, the map f (s) = dp

p(1, ν(s)) is convex.
Note that f ′(0) = (−1)p/2 Tr(zp−1 y), which vanishes by Lemma 2.5, because z is a minimal lift. Then

Lp(μ)p = dp
p
(
1, ν(0)

) = f (0) � f (1) = dp
p
(
1, ν(1)

) = ‖w‖p
p � Lp(β)p .

Hence

‖z‖p = LO,p(δ) � Lp(β) = LO,p(γ ).

If LO,p(γ ) = ‖z‖p (i.e. if γ is also short), then

f (0) = ‖z‖p � f (1) = ‖w‖p � Lp(β) = LO,p(γ ) = ‖z‖p = f (0),

so f (1) = f (0), which forces z = w because f is strictly convex. In particular β(1) = ez and L p(β) = L p(μ) = ‖z‖p . Since
‖z‖ < π/2 < π , the curve μ is the unique short geodesic joining 1 to ez in UM , and then β = μ, or in other words,
γ = δ. �
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Remark 5.3. The restriction on the quotient uniform length of the curves γ can be removed for p = 2 due to the existence
of the supplement F given by the smooth structure of O satisfying Msh 
 G ⊕ F . The key is that the exponential map is a
local diffeomorphism between F and O. In the general case p > 2 we do not know if the exponential map is local bijection
between G⊥p and O (or even if G⊥p ∩ M �= {0}).

However, assuming that Q maps bounded elements of M into bounded elements of M, it is interesting to note that
the map

ϕ = (1 − Q G )|F : F → G⊥p

is a bijection. In fact, Q (ϕ( f )) = Q ◦ (1 − Q )( f ) = 0 for any f ∈ F showing that ϕ maps into G⊥p . Secondly ϕ( f1) = ϕ( f2)

implies f1 − f2 = Q ( f1)− Q ( f2) ∈ Gx thus f1 = f2 if f i ∈ F , showing that ϕ is injective. In third place, if z ∈ G⊥p , z = zg +z f
with zg ∈ G and z f ∈ F , hence 0 = Q (z) = zg + Q (z f ). Thus taking f = z f ∈ F , one obtains ϕ( f ) = z f − Q (z f ) = z f + zg = z
showing that ϕ is surjective. The inverse is given by the linear projection onto F , that is

ϕ−1 = P F |G⊥p : G⊥p → F .

Note that, while ϕ is continuous for the p-norm, ϕ−1 is continuous for the uniform norm, showing the breach between the
smooth structure and the metric structure.

It is also worthwile noting that, if Q is continuous for the uniform topology of M, then the above maps are homeomor-
phisms. Moreover, it must be uniformly bounded since, if it were not, there would exist a sequence (xn)n�1 of elements of
M such that ‖xn‖ = 1 and ‖Q (xn)‖ � n. But this contradicts the fact that Q (0) = 0, since ‖Q ( xn

n )‖ � 1, and the assumption
on the continuity of Q gives Q ( xn

n ) → 0 in M.

Remark 5.4. Assume that Q is uniformly bounded (‖Q (z)‖ � K O,p‖z‖ for any z ∈ Msh). Let B R(0) ⊂ F with R small
enough to ensure π ◦ exp is a diffeomorphism with its image in O. Consider V R⊥ = ϕ(B R(0)), which is open in G⊥p with
the relative (uniform) topology, since ϕ−1 = P F is continuous. Then, if z ∈ V R⊥ , we have z = ϕ(y) for some y ∈ B R(0), hence

‖z‖ = ∥∥y − Q (y)
∥∥ � (1 + K O,p)‖y‖ < (1 + K O,p)R.

Let

U R
O = π ◦ exp

(
V R⊥

) = {
ew−Q (w) · x: w ∈ F , ‖w‖ < R

}
.

Note that it is not clear whether this is an open neighborhood of x ∈ O or not, even if we assume that Q is continuous for
the uniform topology.

Now we can state our theorem on minimal curves joining given endpoints in O. Let p be a positive even number, x ∈ O,
and assume that there exists a constant K O,p such that ‖Q (y)‖ � K O,p‖y‖ for any y ∈ Msh . Let

r = min

{
R,

ε

2(1 + K O,p)
,
π

3

}
where R is as in the previous remark, and ε = ε(O, p) as in the previous theorem. Let V r⊥ , U r

O ⊂ O be the sets defined in
the previous remark.

Theorem 5.5. For any y ∈ U r
O there exists z ∈ V r⊥ such that ez · x = y and

δ(t) = etz · x

is shorter for the p-metric than any other piecewise smooth curve γ ⊂ O joining x to y, provided γ ⊂ U r
O .

Moreover, the curve δ is unique in the sense that if γ ⊂ U r
O is another piecewise smooth curve joining x to y of length ‖z‖p then

γ (t) = etz · x.

Proof. The existence of such z is guaranteed by Remark 5.4. Let γ ⊂ U r
O be piecewise smooth, we can assume that γ is

defined in [0,1]. Consider a partition {[ti, ti+1]} of [0,1] in N equal pieces such that LO,∞(γ |[ti ,ti+1]) < r. By the previous
theorem, γ |[t0,t1] is longer than the curve δ1(t) = ez1 · γ (t0), where z1 ∈ V r⊥ is such that ez1 · γ (t0) = γ (t1). Let α�β denote
the path α followed by the path β . Then

LO,∞(δ1�γ |[t1,t2]) = LO,∞(δ1) + LO,∞(γ |[t1,t2]) < ‖z1‖ + r < ε.

Let z2 ∈ V r⊥ such that ez2 · x = γ (t2). Then by the previous theorem, the path δ2(t) = etz2 · x is shorter than δ1�γ |[t1,t2] , thus
δ1�γ |[t2,1] is shorter that γ . Iterating this argument, one ends with a curve δN = etzN · x, joining x to y in U r

O , which is
shorter that γ . Since ‖zN‖ < r, it must be zN = z.

The uniqueness follows observing that in each step, if the length of γ is equal to ‖z‖p , its restriction must have length
‖zi‖p , and by the previous lemma it should match δi . �
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5.1. Examples

We give examples of homogeneous spaces where Theorems 5.2 and 5.5 apply. The fundamental step is to prove that
the metric projection Q is uniformly bounded. Up to now we do not know if it is general fact, even in the case when the
Lie algebra where Q projects consists of skew-hermitian operators of a von Neumann subalgebra. Therefore each example
needs an ad-hoc proof of this fact. We give sketches of proofs here, full proofs can be found in [7]. Finally, let us observe
that the examples below serve obviously as other examples for Theorem 4.11.

5.1.1. Finite dimensional Lie algebras
The first immediate example takes place when the Lie algebra G is a finite dimensional vector space. Therefore the ‖ .‖p

completion of G is equal to G . Hence it is trivial that the projection Q : L p(M)sh → G p = G preserves bounded elements.

Lemma 5.6. Let 1 < p < ∞ and G a finite dimensional Lie algebra. Then the projection Q is continuous and in particular, uniformly
bounded.

Proof. Since G is a finite dimensional real vector space, all the norms are equivalent. Therefore, there exists a constant
cp > 0 such that cp‖z‖ � ‖z‖p � ‖z‖, for all z ∈ G . Now, given ε > 0, there exists δ(x, ε, p) such that ‖x − y‖p < δ implies
‖Q (x) − Q (y)‖p < ε. Hence, if ‖x − y‖ < δ, then ‖x − y‖p < δ and∥∥Q (x) − Q (y)

∥∥ � c−1
p

∥∥Q (x) − Q (y)
∥∥

p < c−1
p ε.

The argument at the end of Remark 5.3 establishes the uniform boundness of Q . �
We describe an example where this situation arises.

Example 5.7. Let v0 ∈ M be a partial isometry of finite co-rank. Consider the set

Iv0 = {
v ∈ M: v∗

0 v0 = v∗v
}

of partial isometries in M with initial space p. There is a transitive action of U M on Iv0 given by u · v = uv , u ∈ U M ,
v ∈ Iv0 . The set Iv0 is a C∞ submanifold of M in the norm topology and a homogeneous space of U M . The isotropy group
at v ∈ Iv0 of the action is

{u ∈ UM: uv = v}.
Therefore the Lie algebra of the above group is given by

Gv = {x ∈ Msh: xv = 0},
and the unitaries in the isotropy group can be described as

u =
(

1 0
0 d

)
,

with d a unitary operator, the group is exponential. Then Theorem 5.2 applies to this situation, and the curves δ(t) = etz v
with minimal symbol z are short among sufficiently short curves γ ∈ O. This example was studied in [1].

5.1.2. Subalgebra of the center
This example is concerned with a subalgebra N ⊆ Z(M), where Z(M) is the center of M. In order to show that Q

preserves bounded elements we have the following lemma, see [7] for a proof and a counterexample for p > 2, if we remove
the hypothesis that x and y commute.

Lemma 5.8. Let p � 2 an even number. Let x, y ∈ L p(M) satisfying x � 0, y = y∗ and xy = yx. Then∥∥x − y+∥∥
p � ‖x − y‖p,

where y = y+ − y− is the Jordan decomposition.

Applying the previous lemma to a positive element x ∈ M and Q (x) ∈ L p(N ) we obtain∥∥x − Q (x)+
∥∥

p �
∥∥x − Q (x)

∥∥
p .

Hence by the uniqueness of Q (x) it follows that Q (x) = Q (x)+ . In particular, it follows that the projection Q maps positive
elements of L p(M) into positive elements of L p(N ).
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Corollary 5.9. If N ⊂ Z(M), then for any p > 1 the projection Q maps bounded elements into bounded elements, moreover∥∥Q (z)
∥∥ � 3‖z‖ for any z ∈ Msh.

Proof. Let x ∈ M a positive element. Note that ‖x‖− Q (x) = Q (‖x‖− x) � 0, then 0 � Q (x) � ‖x‖, i.e. Q (x) is bounded. Let
x ∈ Mh , then there exists a real number c > 0 such that x + c is positive. Since Q (x) + c = Q (x + c) is bounded, it follows
that Q (x) is bounded, and moreover, if x ∈ Mh then∥∥Q (x)

∥∥ = ∥∥Q
(
x + ‖x‖ − ‖x‖)∥∥ = ∥∥Q

(
x + ‖x‖) − ‖x‖∥∥ �

∥∥Q
(
x + ‖x‖)∥∥ + ‖x‖ �

∥∥x + ‖x‖∥∥ + ‖x‖ � 3‖x‖.
Replacing x by ix yields the result for z ∈ Msh . �
Remark 5.10. In case that the Lie algebra is given by antihermitic operators of a von Neumann subalgebra of M we have
the bound C O � 2. This follows because the projection P Fx coincides with I − E , where E is the unique normal conditional
expectation preserving the trace onto the subalgebra.

Remark 5.11. Let U r
O ⊂ O as in Theorem 5.5. If O is the quotient space obtained as U M/UN , and N ⊂ Z(M), then U r

O is
an open neighborhood of x in O. In fact,

U r
O = {

ew−Q (w) · x: w ∈ F , ‖w‖ < r
} = {

ew · x: w ∈ F , ‖w‖ < r
}
,

and the last set is clearly open in O by our choice of r.

5.1.3. Diagonal algebra in M ⊗ M2
Let M2 denote the 2 × 2 matrix algebra. We define a finite trace τ̂ on M ⊗ M2 by

τ̂

((
x11 x12
x21 x22

))
= 1

2
τ (x11 + x22),

(
x11 x12
x21 x22

)
∈ M2 ⊗ M.

It is straightforward to show that L p(M ⊗ M2, τ̂ ) = L p(M) ⊗ M2.
We take the subalgebra N consisting of diagonal operator matrices, i.e.

N =
{(

x11 0
0 x22

)
: x11, x22 ∈ M

}
.

In this example we can explicitly compute the projection Q . Actually, this is a consequence of the following inequality,
see [7] for a proof.

Lemma 5.12. Let p � 2 a positive even number and b ∈ M. Then,∥∥∥∥
(

0 b
b∗ 0

)∥∥∥∥
p

�
∥∥∥∥
(

a b
b∗ d

)∥∥∥∥
p
,

for all a,b ∈ Mh.

It is plain that Q : (L p(M) ⊗ M2)h → L p(N )h is given by

Q

((
x11 x12
x21 x22

))
=

(
x11 0
0 x22

)
.

In particular, Q preserves bounded elements and is uniformly bounded. Moreover, it is continuous in the uniform topology
since it matches the unique tracial invariant conditional expectation E from the algebra to the subalgebra.

Example 5.13. Consider the projection in M ⊗ M2 given by e = ( 1 0
0 0

)
. Let Oe denote the unitary orbit, i.e. Oe = {ueu∗:

u ∈ UM⊗M2 }. This example was studied in detail in [4]. It was proved that it is a homogeneous space of the unitary group
UM⊗M2 of M ⊗ M2. Moreover, it was shown that the initial values problem has solution and any pair of points in this
homogeneous space can be joined by a minimal curve. Despite our results are more restrictive in this particular example,
we shall show how they apply, since the techniques involved are quite different.

The isotropy group at e of the natural action of U M⊗M2 is given by

Ge = {u ∈ UM⊗M2 : ue = eu}.
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The Lie algebra of this group is

Ge = {
x ∈ (M ⊗ M2)sh: xe = ex

} =
{(

a 0
0 d

)
: a,d ∈ Msh

}
.

Therefore by our preceding discussion the projection Q onto the Lie algebra preserves bounded elements, so our results
about minimality of curves holds.

5.1.4. Special diagonal algebra in M ⊗ M2
Consider the following subalgebra of M ⊗ M2 given by

N =
{(

x 0
0 x

)
: x ∈ M

}
.

Let E denote the unique trace-invariant (with respect to the trace τ̂ ) conditional expectation onto N , i.e.

E : M ⊗ M2 → N , E

((
x11 x12
x21 x22

))
= 1

2

(
x11 + x22 0

0 x11 + x22

)
.

We denote by E p the extension of the above expectation to the corresponding noncommutative L p spaces.

Lemma 5.14. Let 2 � p < ∞, p even. Then:∥∥∥∥
(

(a − c)/2 b
b (c − a)/2

)∥∥∥∥
p

�
∥∥∥∥
(

a b
b c

)
+

(
d 0
0 d

)∥∥∥∥
p

for any d ∈ M.

Proof. See [7]. �
If L stands for the following real subspace of Mh ⊗ M2 given by

L =
{(

a b
b c

)
: a,b, c ∈ Mh

}

and L p is the respective completion with the p-norm, then it is easy to check, using the previous lemma, that E : L → N
and E p : L p → L p(N ) for p even, are contractive maps.

Analogous statements hold for the subspace

D =
{(

0 b
b∗ 0

)
: b ∈ M

}
,

invoking Lemma 5.12. If p is even or p = ∞, then Q N ,p = E p , namely the best approximant can be obtained via the
conditional expectation in L. In particular Q is uniformly bounded L. A similar argument shows that Q is uniformly
bounded in D.

It is not clear, and we would like to know, if Q is uniformly bounded in M ⊗ M2.
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