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ABSTRACT

The nanoscale properties of materials can have a great influence on their macroscopic behavior; for instance, the generation and accumula-
tion of defects at the nanoscale, such as point defects, porosity, and interfaces, can change their thermal properties. In this work, we study
the role of an interface in the thermal conductivity between two nanoparticles without any external load. We consider a system subjected to
a temperature gradient perpendicular to the contact surface and study the thermal conductivity, thermal conductance, thermal resistance,
and contact resistance vs nanoparticle size. The thermal resistance at the interface increases linearly with nanoparticles’ contact radius ac.
A model based on the contact area between two nanoparticles allows us to reasonably explain the obtained numerical results for the
thermal conductivity, leading to a net decrease in effective conductivity as the nanoparticle size increases, reasonably well described by a
(ac=R) dependence. Simulated thermal conductance was found to be proportional to (ac=R).

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004117

I. INTRODUCTION

Nanoscale physics has been in the focus of the scientific
community during the last few decades, and many theories and
experiments have been formulated to explain and study the behav-
ior of materials at this scale. However, many questions remain
unanswered, including questions related to the thermodynamics
properties of nanostructures. In particular, several experimental
methods have been developed in order to study the thermal con-
ductivity at the nanoscale,1 such as the 3ω method, scanning
thermal microscopy, optical pump-probe methods, and thermal
conductivity spectroscopy. While these techniques have successfully
measured the thermal conductivity of multiple nanostructured
materials,2,3 discrepancies have been found with models describing
heat transport across interfaces.4–6

Previous experimental works have shown the impact of inter-
faces and defects on thermal properties,6–11 creating a need for
more effective and accurate calculation methods. Microscopic

models can be used,12 but defects are difficult to introduce reliably.
In light of this problem, classical molecular dynamics (MD) simu-
lations have been extensively used for studies of thermal transport
at the nanoscale, especially if heat conduction is due to atomic
vibrations and electronic contributions can be neglected.8,9,13–15

Over the last few decades, two different methods to calculate
thermal conductivity have gained popularity in the scientific com-
munity:16 the Green–Kubo formulation17 and the direct method
(direct application of Fourier’s law). In this work, Non-Equilibrium
Molecular Dynamics (NEMD) simulations are used to apply the
direct method approach, imposing a temperature gradient across an
interface in a nanostructure.

Thermal properties at the nanoscale are important for techno-
logical applications. For instance, the figure of merit of thermoelec-
tric materials increases as the conductivity decreases.18 In the case
of nanoscale granular materials, thermal conductivity is reduced by
the porosity of the material and also by the fact that the contact
size is comparable to phonon mean free paths.19 Previous
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theoretical work12,19,20 has found nanoparticles system thermal
conductivity to be one or two orders of magnitude lower than in
bulk, smaller than the minimum thermal conductivity given by the
Einstein limit21 and showing great promise as thermal insulators.
The role of porosity on thermal conductivity has been studied
extensively at the micro- and macroscale.9,22–25 Nanoscale porosity
also has been studied for Si and SiO2.

9,26 There are many studies of
heat transport across interfaces. For instance, Choi and Roberts27

studied thermal conductance for solid Ar with a grain boundary,
and Maiti et al.28 and Schelling et al.16 studied Kapitza resistance
across grain boundaries in silicon using NEMD simulations. The
role of finite size effects has been less explored. Meng et al.19

studied the amorphous SiO2 nanoparticle conductivity and the
thermal resistance, showing that the interparticle resistance
depends strongly on the forces between particles, in particular, the
presence or absence of chemical bonds between nanoparticles.

II. METHODS

A. NEMD setup

Simulations are performed with the Large-scale Atomic/
Molecular Massively Parallel Simulator29 (https://lammps.sandia.gov).
Time integration was carried out with a velocity-Verlet algorithm,
with a time step of 0:005 τ. The simulated system consists of two
spherical fcc (face-centered cubic) nanoparticles in contact, with
atoms interacting through a Lennard–Jones (LJ) potential, with a
cutoff of 2:5 σ. A summary of LJ units appears in Table I.

In order to study the contact between two large atomistic
spheres, we simulate only a fraction of them around the contact
region. Spherical caps are created separately cutting them from the
fcc single crystal, oriented to give a (001) contact plane. Caps are
relaxed with the Polak–Ribiere version of the conjugate gradient
(CG) algorithm in LAMMPS. Caps are then moved together such
that both are within the cutoff of the potential; the system is once
again relaxed with CG. During this process, the spheres come
together naturally, forming a contact, as seen in Fig. 1. Both
spheres share the same orientation, since we are interested in the
contact finite size and not in the thermal resistance due to a grain
boundary. For spheres with a radius larger than 70 σ, the contact
stress is enough to nucleate dislocations, resulting in a dislocation
forest at the interface, which would affect thermal conductivity and
those cases have also been neglected.

In this paper, we focus on heat conduction between two
spheres with the same radius, as it has been considered in most
studies.20,23 Heat conduction between unequal spheres might also
be of interest, especially given that under experimental conditions,

there is usually a size distribution involved.10,30 For spheres of
radius R1 and R2, the effective radius of the system is

Reff ¼ 2R1R2

R1 þ R2
:

Results related to contact mechanics for two spheres with the
same radius R should be equivalent to results for two spheres of
different individual radii if Reff ¼ R . In order to consider this sce-
nario, we also include a few heat conduction simulations for
spheres where one has a radius of 23 σ, and the other has a radius
of 17, 20, or 27 σ. We note that, instead of Reff , R* ¼ Reff =2 is often
used in contact models.

TABLE I. Table of LJ units.

Magnitude Units Magnitude Units

Mass m Force ϵ/σ
Distance σ Temperature ϵ/kB
Energy ϵ Pressure ϵ/σ3

Time (τ) (ϵ/m/σ2)−1/2 Density σ−3

Velocity σ/τ

FIG. 1. Slices of the nanoparticle system at the end of the simulation, for
T ¼ 0:4, and for different radius, R, of the spheres. (a) R ¼ 17σ and (b)
R ¼ 60σ. Shades of gray represent the atoms of the different nanoparticles, as
classified at the beginning of the simulation.
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B. Contact radius

Previous work19,31–33 showed the importance of the contact
radius(ac) in the estimation of thermal properties.

Johnson–Kendall–Roberts (JKR),34 and Derjaguin, Muller,
and Toporov (DMT)35 derived expressions for the contact radius
between two elastic, adhesive spheres. For zero external pressure,
which is the case studied here,

aJKR ¼ 9
4

� �
γπR2

E*

� �� �1=3
(1)

and

aDMT ¼ 4
3
aJKR, (2)

where R is the nanoparticle radius, E* the reduced elastic modulus,
and γ is the surface energy. E* ¼ (1� ν21)=E1 þ (1� ν22)=E2

� ��1

depends on the elastic module E and the Poisson coefficient ν of
the nanoparticles.

The Tabor parameter36 is defined by

μ ¼ Rω2

2E*2z3

� �1=3

, (3)

where ω is the work of adhesion and z the equilibrium separation
between the spheres. μ was found to be between 0.4 and 0.7 for our
system, which, according to Johnson and Greenwood,36 lies in the
region between the two models.

In our simulation, ac was calculated using the relation pro-
posed by Vergeles et al.,37

a2c ¼
XN
i¼1

(xi � xc)
2 þ (yi � yc)

2

N
, (4)

where the summation is over all N atoms with zi ¼ zc + 0:5 σ. zc
is the location where the spheres touch, and xc and yc are the coor-
dinates of the center of mass of the N atoms. Contact radius was
also calculated using the scientific visualization and analysis soft-
ware OVITO38 (https://ovito.org), using the SurfaceMesh utility.

Figure 2 shows contact radius vs radius of the nanoparticle,
according to the DMT and JKR models, and from our simulations,
using the two different methods mentioned above. The agreement
between the Vergeles and OVITO approach was excellent. As
expected from the models, results are closer to the DMT prediction
at small radii, when cohesive forces are relatively stronger, and
results approach the JKR prediction as the radius increases. This is
related to the increase of the Tabor parameter μ,36 given by Eq. (3).
Due to this transitional behavior, the relationship ac / R1=2 gives a
better fit than ac / R2=3 predicted by Eqs. (1) and (2). The effective
contact radii for unequal spheres also agree with DMT/JKR
models, as expected.

C. Thermal conductivity calculation

There are many methods to calculate thermal conductivity,
keff , at the nanoscale,9 including methods that can distinguish dif-
ferent heat propagation modes.40 Here, we require a method that
can handle non-periodic boundary conditions, and up to nearly
106 atoms. Due to these limitations, we use the direct method, with
non-equilibrium molecular dynamics (NEMD) simulations of a
temperature gradient41 across the interface and also across the
nanoparticles.19 Fourier’s law can be applied,

keff ¼ JΔz=ΔT ,

where J ¼ Q=(Att) and ΔT=Δz are the heat flux (Fig. 3) and the
temperature gradient across the system (Fig. 4). At , Q, and t are the
thermostated area, the heat supplied by the thermostat, and time.
We calculate thermal conductivity only after a steady state has been

FIG. 3. Representative case for heat flux vs time, corresponding to the case of
two equal spheres, with R ¼ 30 σ. Heat flux becomes steady after 200 LJ time
units (420 ps for Ar). The dotted line indicates the value used to calculate
thermal conductivity for this case, T ¼ 0:4.

FIG. 2. Contact radius ac vs R. The dashed and dashed-dotted lines were
obtained from Eqs. (1) and (2), respectively, Young’s modulus, surface energy,
and Poisson coefficient were chosen according to Quesnel et al.39 Results for
unequal spheres, using OVITO, are shown as triangles.
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reached for both the heat flux, as seen in Fig. 3, and for the temper-
ature gradient.

A thin, fix region with a width of 2 σ is set at the far end of
each of the caps, and then a Langevin thermostat is applied during
105 steps, such that all the system achieves a desired temperature.
In this work, we use T ¼ 0:4 (approximately 40 K for Ar). At the
end of the thermalization, the system is still nearly stress free at the
interface, so the comparison with models for zero contact pressure
is valid. The lattice parameter is a0 ¼ 1:56 at this finite tempera-
ture. Some atomic mixing occurs at the interface for the smaller
nanoparticles, as observed in Fig. 1(a). A temperature gradient is
then applied to calculate thermal transport. Regions with a width
3 σ next to each fix region of the simulation box are set to T � δ
and T þ δ, respectively, during 3 106 steps. δ was typically set to
5% of the target temperature. Thermal and physical properties of
the system were calculated every 104 steps, and averaged over the
following 106 steps. We note that the contact radius is not modified
by the application of the temperature gradient.

The Langevin thermostat enables the calculation of the cumu-
lative energy added/subtracted to the atoms as they are thermo-
stated during the simulation. Effectively, this gives the energy
exchanged between an infinite thermal reservoir and the nanoparti-
cles. Then, Q can be calculated as the average between the energy
added and subtracted to the hot and cold thermostat, respectively.
Before calculating the conductivity for a nanosystem, the method
was validated using bulk calculations. Table II shows that our
results for bulk Argon(Ar) are in good agreement with experiments
and MD bulk simulations.27,42

Several methods have been proposed to predict the effective
thermal conductivity of a random packing of spheres.23,45–47 In this
work, we use the expression that Argento and Bouvard23 derived from
Carslaw et al.46 analysis, for the normalized thermal conductivity,

keff
kbulk

¼ 1
πR

ρncac, (5)

where nc is the mean number of contacts per particle and ρ is the
relative density of the packing.

D. The Einstein thermal conductivity limit

Assuming the phonon mean free path equal to half the wave-
length of the phonons, Einstein calculated the lowest possible
thermal conductivity of a solid, kEins.

48 This model, known as the
Einstein limit, gives conductivity values, which are extremely low
for crystalline solids,21,49 where the mean free path can be more
than one order of magnitude longer that Einstein assumed.
However, the model has been used to roughly explain the thermal
conductivity of amorphous solids, where there are no coherent
vibrations.21 kEins can be calculated as21

kEins ¼ k2B
�h
n1=3

π
ΘE

x2ex

(ex � 1)2
, (6)

where n ¼ a�3
0 is the number density of atoms, ΘE is the Einstein

temperature, and x ¼ ΘE=T . ΘE ¼ �h
kB

ffiffiffi
K
m

q
for a harmonic solid

with atoms of mass m and spring constant K . For LJ systems,50

K ¼ 72ϵ
21=3σ2, and we use n ¼ 4a�3

0 for fcc solids. Prasher20 theoretical
analysis for a bed of nanoparticles found thermal conductivity
values below the Einstein limit. MD simulations51 for a LJ solid
show that the effective phonon mean free path at T ¼ 0:4 is close
to 10 σ, while the Einstein limit calculation, Eq. (6), considers the
phonon mean free path close to 1 σ.21 This increased mean free
path would lead to a much better agreement between kEins and our
bulk MD simulations. In this work, MD conductivity results for
two spheres are also compared to Einstein limit value.

E. Contact resistance and thermal conductance

Due to the presence of an interface, determining the effective
thermal conductivity of a system is intrinsically related to the
thermal boundary resistance or contact resistance (RK )

52 and also
to the thermal boundary conductance (TC). RK and TC are calcu-
lated using NEMD as

RK ¼ 1
TC

¼ ΔTc

Jc
,

where Jc ¼ Q=(Act) and ΔTc are the heat flux and temperature-
drop at the interface. Ac is the interface contact area. Figure 5 illus-
trates how ΔTc was calculated.

TABLE II. Results for bulk argon (Ar), including experiments (k-Expt.43) and
previous MD simulations, MD-1,27 MD-2,42 and MD-3,44 showing that our method
provides adequate conductivity values for a bulk system. Temperature is given in K
and thermal conductivity in W/(K m).

T (K) k-Expt. k-MD-1 k-MD-2 k-MD-3 k-MD

10 3.67 2.36 4 3.33 3.15
20 1.36 1.57 1.58
25 0.99 1.05 1.08
30 0.78 0.903 0.87 0.905
50 0.46 0.53 0.417 0.45

FIG. 4. Temperature profiles for different nanoparticles radii averaged over the
last 106 simulation steps (approximately 1 ns for Ar), T ¼ 0:4.
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F. Thermal resistance

Another interesting property is the one-dimensional thermal
resistance

RT ¼ ΔT
_Q
,

where _Q is the heat flow or heat rate (Q=t). RT only considers the
heat rate and the temperature drop imposed by that heat rate. This
facilitates experimental measurements, compared to the contact
resistance, due to the difficulties obtaining an accurate experimental
contact area in a nanoscale system.11,23

For the bulk, the thermal resistance can be found as

Rbulk
T ¼ Δz

Atkbulk
,

where Δz and At represent the dimension and the cross section
area in the heat transfer direction, respectively.

According to Carslaw et al.46 analysis, the thermal resistance
for our specific geometry can be predicted as

Rcyl

RT
¼ 4

π

ac
R

	 

, (7)

where Rcyl is Rbulk
T for a cylinder with a height equal to the distance

between both cold and hot thermostat, and a cross section equal to
the thermostated area.

Argento and Bouvard,23 using a finite element code, found
this relationship to be

Rcyl

RT
¼ 1:112

ac
R

	 

: (8)

We note that they use the same particle radius and modify contact
radius by applying external pressure.

III. RESULTS AND DISCUSSION

A. Thermal conductivity

keff was calculated using the methodology outlined in Sec. II.
Figure 6 shows the behavior of the normalized thermal conductiv-
ity vs (ac=R). Results show that the conductivity of the system is
between 4% and 10% of the bulk conductivity and, as predicted in
Prasher20 analysis, is even smaller than the Einstein limit for bulk
conductivity. Note that the contact diameter (2ac) between the
nanospheres in our simulations, Fig. 2, was always larger, but
similar, to the phonon mean free path (10 σ) for the temperature
studied here.51

Equation (5) was fitted using a single contact, nc ¼ 1, corre-
sponding to the geometry in our simulations from Fig. 1. MD
results agree surprisingly well with Eq. (5), given that the model

was not developed for the nanoscale. Since keff
kbulk

/ (ac=R) and, for

this nanoparticle size range, ac / R1=2 (see Subsection II B), Fig. 7

FIG. 5. Temperature drop ΔTc at the interface between the nanoparticles. The
arrows show the magnitude of ΔTc used in the calculation of the contact
resistance.

FIG. 6. Thermal conductivity vs normalized contact radii (ac=R). The dashed
line shows Eq. (5) for a single contact, nc ¼ 1. The dotted line is the Einstein
conductivity value for T ¼ 0:4. Includes results for unequal spheres (triangles),
using R ¼ Reff .

FIG. 7. Thermal conductivity vs R�1=2 for T ¼ 0:4. The dashed line shows the
relation keff

kbulk
¼ 0:32R�1=2. Includes results for unequal spheres (triangles), using

R ¼ Reff .
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shows that the relationship keff
kbulk

/ R�1=2 fits our results fairly well,
as expected. The conductivity for a system of unequal spheres also
follows reasonably well the results for equal-size spheres.

B. Thermal and contact resistance

Figure 8 shows the MD results obtained for RK , where a linear
relationship was found between RK and ac

R

� ��1
. Taking into account

that ac / R1=2 for this size range, a linear relationship could be con-
sidered for RK vs ac. These values of thermal resistance are in the
same order of magnitude as those determined in previous MD simu-
lations of Kapitza resistance across interfaces in Si28,53 or Si/SiO2.

54

For the thermal resistance, we found that

Rcyl

RT
¼ 0:92

ac
R

	 

, (9)

where Rcyl

RT
/ ac

R

� �
, but the slope was smaller than the ones predicted

from Eqs. (7) and (8). Figure 9 shows a comparison between our

results and the results of Carslaw et al.46 and Argento and
Bouvard.23

C. Thermal conductance

Thermal boundary conductance (TC)11,41 is defined as
TC ¼ 1=RK . Therefore, from Fig. 8, TC would be proportional to
(ac=R). Conductance is, therefore, proportional to the contact
radius, increasing with the number of atoms in the contact region,
as shown in Fig. 10. For a bulk LJ system, TC was found to be
TC � 3:1.41 This is consistent with our results if we take the bulk
system conditions equivalent to the ones for (ac=R) ¼ 1. TC for
unequal spheres was not calculated due to difficulties calculating
the heat flux through the contact area: lack of symmetry along the
heat propagation direction, perpendicular to the contact interface,
causes heat flux variations alongside that direction.

Domingues et al.55 calculated TC between silica nanoparticles
(R ¼ 0:75–2:5 nm) from fluctuations in the heat flux from MD
simulations. Thermal conductance fluctuated significantly, and
results were transformed to an “atomic conductance,” multiplying
TC by the contact area. This “atomic conductance,” TCa, had units
of (W/K) and it was found to be roughly proportional to contact
surface. They proposed an estimation of this atomic conductance
as TCa ¼ (9=8)kBNc=τ, where Nc is the number of atoms involved
in heat transfer at the interface, and 1=τ � ω was estimated from
the largest phonon frequency for the system. We use the Debye fre-
quency for LJ, ω ¼ 0:976, and use contact area equal to Ncaat ,
where for LJ and the density in our simulations, aat ¼ 0:98σ2. This
gives TC ¼ 1:11, within the range of the values found in the simu-
lation, which indicates excellent agreement with our results, given
the simplicity of the analytical approximation.

IV. CONCLUSIONS

Thermal properties of two spherical nanoparticles in contact
have been studied considering Lennard–Jones interactions and no
external pressure. There is a transition between the Johnson–

FIG. 8. Contact resistance vs the inverse of the normalized contact radii
(ac=R). The dashed line shows Rk ¼ 0:28 ac

R

� ��1
. For Ar, it would be RK

(1:9 Km2=GW).

FIG. 9. Normalized inverse thermal resistance vs normalized contact radius.
Lines show the predictions for Eq. (7) (solid line), Eq. (8) (dashed line), and
Eq. (9) (dotted-dashed line).

FIG. 10. Thermal conductance (TC) vs (ac=R). A linear fit to the MD results,
TC ¼ 3:5 ac

R

� �
, has been added to guide the eye. The dotted-dashed line

shows the results from Domingues et al.55 The black dot shows the bulk result
from Stevens et al.41
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Kendall–Roberts (JKR)34 and Derjaguin, Muller, and Toporov
(DMT)35 models for the nanoparticle contact radius at the studied
scales, as expected.36 Due to this transition, the dependence of ac
with R is better described by R1=2, and not R2=3, as it is usually
assumed from a single model.

A thermal gradient was applied across the system, and the
steady-state heat flux was measured for different configurations.
Bulk thermal conductivity simulations used to calibrate our meth-
odology show good agreement with experiments and previous MD
simulations.

Thermal conductivity between two spheres in contact
decreases with the contact radius ac, and also decreases with nano-
particle radius R. On the other hand, thermal conductivity
increases with the ratio (ac=R) and is better described by (ac=R),
not by ac or R alone. It was found that a simple model based on
the contact area between spheres23 can reasonably explain this
behavior of the thermal conductivity.

We have also simulated unequal spheres and find that thermal
transport can be well described by the models and fits for equal-
size spheres, if the effective radius of the system is considered.

Temperature inside the nanoparticles varies relatively slowly,
but there is a large temperature drop at their interface, and the
contact resistance associated with this drop increases linearly with
the contact radius ac and decreases with (ac=R). Macroscopic
models for thermal resistance based on (ac=R)

23 show good agree-
ment with our nanoscale MD results.

Simulated thermal conductance was found to be directly pro-
portional to (ac=R). Values are consistent with previous simulated
bulk values41 and with a simple analytical model.55

The values found for the nanoparticles thermal conductivity
were below the Einstein limit for bulk conductivity,21 as predicted
by Prasher,20 despite considering here only a “perfect” interface
between nanoparticles with the same type of atoms. Therefore, our
low values for the thermal conductivity of the nanosystem could be
decreased even further by changing the conditions at the nanopar-
ticle interface, which shows the potential of nanoparticles systems
as insulators.

At the temperature studied here, T ¼ 0:4, the phonon mean
free path is slightly smaller than the contact diameter. Simulations
at lower temperature, where the mean free path is significantly
larger,51 might provide a larger reduction of the conductivity with
respect to bulk values.

It would be useful to consider in future studies the role of
contact pressure in the modification of thermal conductivity.
Compressive pressure would increase the contact radius,34 but also
add lattice strain, which can modify phonon transport,15 and possi-
bly nucleate pressure-induced defects.

Future research might also include the role of defects in the
nanoparticles, such as dislocations and vacancies, which would
influence thermal conductivity, especially if they are near or at the
interface, likely leading to a further decrease in thermal transport.
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